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Dear Reviewer, 

 

We sincerely thank you for your thoughtful comments and constructive suggestions on 

our manuscript. We have carefully revised the manuscript in response to your feedback, 

with all changes clearly marked using track changes. In the revised manuscript and 

accompanying supplementary materials, modifications are highlighted in blue for ease 

of reference. 

 

Below, we provide a detailed, point-by-point response to each of your comments. For 

clarity, your original remarks are shown in italics, followed by our corresponding 

replies. We have made every effort to address all concerns comprehensively and to 

improve the scientific rigor, clarity, and overall quality of the manuscript. 

 

We sincerely appreciate the time and effort you invested in reviewing our work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Response to Reviewer3_Comments 

 

Reviewer Comment 1: 

The effectiveness of spatial block CV is dependent on the block size being large enough 

to account for the spatial autocorrelation range of the data. The authors have used 1° 

(~100 km), which needs to be justified. Some previous studies (e.g., Ploton, et al. 2020 

Nature Communications 11 (1): 4540) showed that typical climate variables can exhibit 

significant spatial correlation up to 500 km. Therefore, the authors should provide a 

justification for their choice of 1°, for instance by using semivariograms of the observed 

Ts to determine the distance at which spatial autocorrelation becomes negligible. 

Otherwise, the data leakage problem is only reduced, not solved. 

 

Response to Reviewer Comment 1: 

Thank you very much for your valuable comment. We recognize that the effectiveness 

of spatial block cross-validation (CV) largely depends on the size of the blocks, which 

must be sufficiently large to capture the spatial autocorrelation structure inherent in the 

data. In addition, the spatial block partitioning strategy previously adopted in our study 

was limited by an inadequately defined threshold and, more importantly, by the fact 

that the boundaries of adjacent blocks were often very close to each other. As a result, 

stations located near block edges could still be separated by only short distances and 

thus remain spatially correlated, making it difficult to fully eliminate potential data 

leakage under the original partitioning scheme. 

 

Following your suggestion, we performed a semivariogram analysis to determine the 

optimal distance required to effectively reduce spatial autocorrelation in the Ts data. As 

shown in Figure S8, the semivariogram of the Ts data reaches a plateau at a distance of 

approximately 400–500 km, with only minor variations beyond this range. This 

indicates that spatial autocorrelation in Ts declines substantially around 500 km and 

becomes negligible at greater distances. This finding is consistent with Ploton et al., 

(2020), who also reported significant spatial dependence in climate variables over 

scales of 250~500 km. 

 

Based on these results, we revised our sampling strategy to more effectively mitigate 

spatial autocorrelation in the Ts station data and to reduce the risk of data leakage 

between the training and testing subsets arising from spatial dependence. The revised 

method has been updated in Section 2.3.3 of the manuscript. We believe that these 

improvements better address the reviewer’s concerns regarding spatial autocorrelation 

and further enhance the reliability of our model’s generalization assessment. We 

sincerely appreciate your insightful comment, which has substantially strengthened the 

methodological rigor of our study. 

 

Revised Text in Section 2.3.3 (L354-L375): 

Significant spatial autocorrelation commonly exists among nearby Ts observation sites. 



To prevent potential data leakage caused by randomly splitting the training and testing 

subsets, we conducted the partitioning at the station level and constructed a buffer zone 

around the selected test station. All other stations located within this buffer were 

removed, and only stations outside the buffer were retained as the training set. This 

strategy effectively ensures that samples within the same sub-grid do not appear 

simultaneously in both the training and testing subsets due to spatial autocorrelation, 

thereby allowing a more robust and unbiased assessment of the model’s generalization 

performance. 

 

Specifically, considering the availability of sufficient training samples, one station was 

randomly selected as the test sample within each sub-grid. A 500 km buffer was 

subsequently created around the test station, with the radius determined based on the 

effective distance for reducing spatial autocorrelation among stations as shown in 

Appendix Figure S8. All stations within the buffer were excluded, and only those 

outside the buffer were used for model training. Subsequently, five-fold cross-

validation was performed at the station level, and GridSearchCV was used to optimize 

three key hyperparameters: the number of trees (n_estimators), maximum tree depth 

(max_depth), and learning rate (learning_rate). The search ranges for these parameters 

are provided in Appendix Table S1. The optimal hyperparameter combination was 

identified by minimizing the mean validation error. Finally, the model was retrained on 

the full training subset using the optimized parameters and evaluated on the spatially 

independent test sample to rigorously assess its generalization capability. 

 

Here are the revisions, supplemented in the Appendix (L95-L100): 

 



Figure S8. Experimental and theoretical semivariograms of annual mean Ts at 0 cm 

(The spherical, exponential, and Gaussian models are fitted for comparison). 

Reference 

Ploton, P., Mortier, F., Réjou-Méchain, M., Barbier, N., Picard, N., Rossi, V., Dormann, 

C., Cornu, G., Viennois, G., Bayol, N., Lyapustin, A., Gourlet-Fleury, S., and 

Pélissier, R.: Spatial validation reveals poor predictive performance of large-scale 

ecological mapping models, Nat. Commun., 11, 4540, 

https://doi.org/10.1038/s41467-020-18321-y, 2020. 

 

Reviewer Comment 2: 

In their response, the authors present a new figure (labeled Figure 1 in the response 

letter) that validates the model's ability to capture the spatial distribution of annual 

mean Ts. However, the number of points in this figure looks far greater than the ~200 

sites that would constitute a 10% test set, suggesting that all stations are included in 

this validation. For a validation to be a true test of generalization, it must be performed 

exclusively on the held-out test blocks. 

Furthermore, I suggest an enhancement: color-code the points in the plot by their 

parent quadtree grid. This would provide a visual assessment of the performance of the 

different localized models. 

 

Response to Reviewer Comment 2: 

Thank you for your valuable suggestions, which have helped us further enhance the 

rigor and clarity of our spatial validation and visualization. In the previous response 

letter, Figure 1 indeed included all stations rather than only the independent test-block 

stations. Therefore, in the revised manuscript, we validate the model’s ability to capture 

the spatial distribution of annual mean Ts using only the test set. 

 

Regarding your suggestion to color-code the points based on their quadtree grids, our 

quadtree system is rotated at six different angles. Under different rotations, both the 

number of sub-grids and their identifiers vary, and the selected test set is not fixed across 

rotations. As a result, it is not feasible to apply a consistent color-coding scheme to 

represent grid membership within a single figure. 

 

Nevertheless, the revised Figure S12 clearly demonstrates that across all rotation angles 

and corresponding grid structures, the localized models consistently and accurately 

capture the spatial distribution of annual mean Ts when evaluated on the independent 

test set. This further confirms the robustness of the rotated-quadtree modeling 

framework. 

 

Here are the revisions, supplemented in the Appendix (L118-L121): 



 

Figure S12. Comparison between estimated and observed annual mean Ts across six 

depths (0~40 cm) 

 

Reviewer Comment 3: 

The addition of an independent validation using 18 flux tower sites is a great 

improvement. The authors present the daily time-series comparison in the new Figure 

5. To maintain consistency with the most robust validation practices, I suggest that the 

authors also present the annual mean Ts (spatial-only validation) comparison between 

model and observation. 

Response to Reviewer Comment 3: 

We appreciate the reviewer’s insightful suggestion. Following your recommendation, 

we have now included an additional spatial-only validation based on the annual mean 

Ts derived from the 18 independent flux tower sites. This new analysis directly assesses 

the model’s ability to reproduce the spatial distribution of annual mean Ts without 

relying on temporal information. 

 

The results are presented in the newly added Figure S13, which compares the observed 

and estimated annual mean Ts across six soil depths (0~40 cm). Despite the small 

number of independent sites and the strong climatic heterogeneity among tower 

locations, the model achieves reasonable agreement with observations, demonstrating 

its capacity to capture the spatial variability of annual mean Ts under independent 

conditions. This addition ensures consistency with best practices in model evaluation 

and provides a more comprehensive and rigorous validation of the model’s spatial 

performance. 

 

Here are the revisions, supplemented in the Appendix (L122-L126): 



 

Figure S13. Comparison between estimated and FLUX towers annual mean Ts across 

six depths (0~40 cm) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Response to Reviewer4_Comments 

Specific comments: 

Reviewer Comment 1: 

Discussion on time-series is missing. How has the Ts changed during this decade? 

Response to Reviewer Comment 1: 

Thank you for this helpful comment. We agree that our current manuscript does not 

include a full discussion of long-term Ts changes over the entire decade (2010–2020). 

In our study, interannual variability of Ts during this period is relatively small, and our 

primary objective was to evaluate the model’s ability to reproduce Ts dynamics rather 

than to analyze long-term climate trends. Therefore, instead of presenting a full decadal 

trend analysis, we selected four representative stations and examined in detail their 

daily variations of air temperature, LST and Ts for the period 2018–2019 as illustrative 

examples. 

 

Revised Text (L524-L541): 

To further assess the temporal performance of Ts estimation, Fig. 11 presents the time 

series of estimated Ts alongside in-situ measurements at four randomly selected stations 

(e.g., Station 56748, 99.18°E, 25.12°N) from January 2018 to January 2020. The figure 

displays Ts at two depths (0 cm and 40 cm), including estimated Ts (Estimated_0cm, 

Estimated_40cm), in-situ Ts (In-situ_0cm, In-situ_40cm), daily mean land surface 

temperature (Daily_mean_LST), and 2-meter air temperature (Temperature_2m). The 

air temperature shows distinct seasonal cycles, while Ts exhibits smoother temporal 

variations. In general, Ts reaches its peak during summer and its minimum in winter, 

though its temporal dynamics vary with soil depth. Specifically, Ts at 0 cm responds 

rapidly to air temperature changes and exhibits larger amplitude variations, while Ts at 

40 cm shows slower responses and a noticeable lag, reflecting the damping effect of 

vertical heat conduction. Site-level accuracy was evaluated using RMSE, which ranged 

from 1.24 K to 2.05 K across both depths, indicating strong agreement between 

predicted and observed values. Overall, the time series analysis confirms the robustness 

and reliability of the model in estimating Ts across varying depths, offering valuable 

insights into regional soil thermal dynamics. 



 
Figure 11. Time series of the Estimated_0cm, Estimated_40cm, Daily_mean_LST, 

and Temperature_2m at four sites from different regions between 2018-2019. 

 

Reviewer Comment 2: 

Too many figures in the main text. Suggest to move some into supplemental material. 

Response to Reviewer Comment 2: 

Thank you for your helpful suggestion. Following your recommendation, we have 

streamlined the presentation of figures in the main text. Specifically, we have merged 

the original Sections 3.1 and 3.2 into a new Section 3.1 to reduce redundancy and 

improve the clarity of the Results. In addition, Figure 7 from the former Section 3.2 has 

been moved to the Supplementary Material. These adjustments help keep the main 

manuscript focused on essential results while ensuring that all supporting visualizations 

remain accessible in the appendix. 

 

Reviewer Comment 3: 

Adaptive scaling can lead to confusion when interpreting the spatial resolution of a 

dataset. I would recommend authors to report the "effective spatial resolution" 

information of each grid, or store it as a separated supporting dataset. Otherwise, it is 

hard to be used for comparison against other regional/global products with fixed 

spatial resolution. 

Response to Reviewer Comment 3: 

Thank you very much for your thoughtful comment. We fully understand the concern 

that adaptive spatial partitioning may cause confusion regarding the spatial resolution 

of the final dataset. Here we would like to clarify that, although our modeling 

framework uses a rotated-quadtree structure to adaptively partition the training space 



based on the density of in-situ observations, the final Ts product is always generated at 

a fixed spatial resolution of 1 km. 

 

The adaptive quadtrees are used only during the modeling stage to train localized 

XGBoost models under multiple rotation angles. After model training, the predictions 

from all rotated-quadtree configurations are aggregated and mapped onto a uniform 1-

km grid across China. Therefore, the effective spatial resolution of the final product 

does not vary across space, and all output grids represent the same 1-km resolution 

regardless of quadtree size during training. 

 

We hope this clarification addresses your concern, and we appreciate your attention to 

dataset usability and transparency. 

 

Reviewer Comment 4: 

The dataset is claimed to be freely accessible, but I cannot access the data through FTP. 

Authors need to verify and check the link, or upload a copy to an open access repository, 

otherwise it does not meet the requirement of ESSD. 

Response to Reviewer Comment 4: 

Thank you for pointing out this issue. We sincerely apologize for the inconvenience 

caused by the temporary inaccessibility of the FTP link. After receiving your comment, 

we immediately contacted the data center and confirmed that the FTP remote server 

itself had not experienced any malfunction. To ensure that the dataset fully meets 

ESSD’s data accessibility requirements, we have taken the following steps: 

(1) The complete Ts dataset has been re-uploaded to the National Tibetan Plateau Data 

Center (TPDC), and the DOI download links have been fully verified and are 

functioning properly. Two stable access links are now provided for users: 

https://doi.org/10.11888/Terre.tpdc.302333 

https://cstr.cn/18406.11.Terre.tpdc.302333 

(2) If access issues persist, we kindly recommend users to switch to another network 

environment (e.g., non-campus network or networks without firewall restrictions), as 

some institutional networks may block external data repository access. 

At present, the dataset is fully accessible through the verified DOI links and fully 

satisfies the data availability requirements of ESSD. We sincerely appreciate your 

valuable feedback. 

 

Technical corrections: 

Reviewer Comment 1: 

Line 108 - 116: This part can be moved to objectives. When describing each objective, 

state the uniqueness/improvement from your study. 

Response to Reviewer Comment 1: 

Thank you very much for your valuable suggestion. Following your recommendation, 

we have revised the corresponding part of the Introduction. The updated content has 

now been incorporated into the revised manuscript. 

https://doi.org/10.11888/Terre.tpdc.302333
https://cstr.cn/18406.11.Terre.tpdc.302333


 

Revised Text (L105-L135): 

Recent advances in spatially adaptive modeling have increasingly emphasized the 

importance of addressing spatial heterogeneity and uneven sampling density in 

environmental datasets. Classical quadtree structures and related hierarchical spatial 

data models provide the theoretical foundation for constructing adaptive, variable-sized 

spatial partitions, enabling efficient organization of multiscale spatial information 

through recursive subdivision (Samet, 1984). Building on this foundation, Lagonigro 

et al., (2020) developed the AQuadtree R package, which provides an adaptive spatial 

partitioning framework capable of generating variable-sized grid cells according to the 

spatial distribution of observations. This adaptive partitioning produces finer grids in 

data-dense regions and coarser grids where observations are sparse, ensuring a spatial 

structure that better reflects sampling heterogeneity and improves the model’s capacity 

to capture localized spatial variability. Extending this idea, we develop a rotated-

quadtree strategy that applies multiple orientation angles during the quadtree 

subdivision process. This enhancement allows the model to capture spatial 

heterogeneity from multiple directional perspectives, and averaging predictions across 

rotation angles substantially reduces the boundary artifacts that may arise from single-

angle grid partitioning, ultimately improving the robustness of local modeling under 

complex environmental gradients. 

 

To address the irregular station distribution, and non-stationarity commonly 

encountered in large-scale Ts estimation, we construct a spatially adaptive modeling 

framework based on the rotated quadtree approach. Within each grid cell, multi-source 

environmental predictors are integrated with in situ station records, and Ts is estimated 

using XGBoost models. Based on this framework, the objectives of this study are to: 

(1) construct a spatially adaptive modeling system; (2) generate a multi-layer Ts dataset 

at a daily time-step and one kilometer resolution in China from 2010-2020; and (3) 

evaluate the dataset through independent validation with flux tower observations and 

benchmarking against widely used Ts products. The proposed methodology could 

directly address the scaling challenges induced by spatial heterogeneity and uneven 

data distribution. The generated products would provide a robust foundation for high-

resolution environmental modeling, precision agriculture and climate impact 

assessments. 

Reference 

Lagonigro, R., Oller, R., Martori, J.C., 2020. AQuadtree: An R package for quadtree 

anonymization of point data. 

Samet, H., 1984. The quadtree and related hierarchical data structures. ACM Comput. 

Surv. CSUR 16, 187–260. 

 

Reviewer Comment 2: 

Line 110: I would be curious about how to use your data product, since most of the 

observed/modeled data products have uniform spatial resolution, and your varying 

resolution product will be hard for intercomparison against them. 



Response to Reviewer Comment 2: 

Thank you for raising this important question. We would like to clarify that although 

our modeling framework employs an adaptive, rotated-quadtree structure during the 

training stage, the final Ts product is always generated on a uniform 1-km grid across 

China. The adaptive partitioning only determines how local XGBoost models are 

trained according to site density, and it does not affect the spatial resolution of the final 

gridded product. To avoid potential misunderstanding, we provide the following 

clarification here: 

(1) The adaptive grid system is used solely for local model training; 

(2) The final predicted Ts fields are mapped to a fixed 1-km grid;  

Thus, users can apply our Ts dataset in the same manner as any other 1-km gridded 

environmental product, without concerns related to heterogeneous spatial resolution. 

 

Reviewer Comment 3: 

Line 252: How did you treat auxiliary predictors differently from main predictors? 

Response to Reviewer Comment 3: 

Thank you for raising this point. In addition to the distinction between main and 

auxiliary predictors, we would like to further clarify how multicollinearity was handled 

and why both air temperature and LST were retained in the final model. 

 

Before modeling, we conducted a comprehensive variance inflation factor (VIF) 

analysis for all predictor variables to remove those exhibiting strong multicollinearity. 

The results are shown in the Supplementary Figures. As expected, air temperature and 

satellite-derived LST showed high collinearity. To determine whether both variables 

should be retained, we performed a comparative modeling experiment using two 

predictor combinations: 

(1) Air temperature + other predictors 

(2) Air temperature + LST + other predictors 

As shown in Supplementary Figure S3 and Figure S4, the second combination (air 

temperature + LST + other predictors) consistently produced the best predictive 

performance across depths. This indicates that although air temperature and LST are 

correlated, they contain complementary thermal information—air temperature captures 

large-scale atmospheric conditions, whereas LST provides fine-resolution surface 

radiometric temperature signals. 

 

Therefore, despite their statistical collinearity, both variables were retained in the final 

model to maximize predictive accuracy. This rationale has been added to Section 2.3.1 

of the revised manuscript. 

 

Here are the revisions, supplemented in the Appendix (L5-L20): 



 
Figure S3. Comparison of Modeling Accuracy with Different Feature Variables 

(Feature1 represents using both air temperature and LST together with other feature 

variables, while Feature 2 represents using only air temperature together with other 

feature variables) 

 

 
Figure S4. Differences in model accuracy across land cover types under different 

feature variable combinations. (Feature1 represents using both air temperature and 

LST together with other feature variables, while Feature 2 represents using only air 

temperature together with other feature variables) 

 

 

 

 

 



Reviewer Comment 4: 

Line 268: Change "fig. 3" to "fig. 2" 

Response to Reviewer Comment 4: 

Thank you for your correction. We have updated the figure citation accordingly in the 

revised manuscript. 

 

Reviewer Comment 5: 

Line 300: "Such differences are particularly important in complex ecosystems such as 

forests, where canopy structure and biological processes substantially influence 

thermal dynamics (Liu et al., 2025)." I'm not quite understanding this sentence and its 

connection to the context, can you explain a bit or rephrase? 

Response to Reviewer Comment 5: 

Thank you for pointing out the lack of clarity in this sentence. We agree that the original 

description did not clearly convey its intended meaning nor its connection to the context. 

The purpose of this sentence was to justify why both daily mean LST and air 

temperature were retained despite their high VIF values, by emphasizing their physical 

differences and complementary thermal information. To improve clarity, we have 

rewritten the sentence in the revised manuscript. 

 

Revised Text (L285-L297): 

Although the daily mean LST (LST_mean) and air temperature exhibit high collinearity 

(VIF > 10; Fig. S2), we chose to retain both variables because they represent different 

thermal information. LST_mean captures high-resolution surface radiative temperature 

signals, whereas air temperature reflects broader-scale atmospheric thermal conditions. 

In ecosystems with complex canopy structures, such as forests, the canopy can alter 

radiative transfer processes and cause LST to deviate from the true subsurface thermal 

environment(Liu et al., 2025). Therefore, the two variables provide complementary 

thermal information that helps better characterize soil thermal dynamics.In addition, we 

compared the model performance under different combinations of predictor variables 

(Fig. S3 and Fig. S4). The results show that the combination of air temperature + LST 

+ other predictors achieved the best modeling accuracy at the surface soil layers. 

Therefore, retaining both air temperature and LST in the final model is reasonable and 

necessary. 

Reference 

Liu X., Li Z.-L., Duan S.-B., Leng P., Si M., 2025. Retrieval of global surface soil and 

vegetation temperatures based on multisource data fusion. Remote Sens. Environ. 

318, 114564. https://doi.org/10.1016/j.rse.2024.114564 

 

Reviewer Comment 6: 

Line 440: Should MAE equation be the difference between prediction and observations 

divided by total sample number? Is "2" a typo? 

Response to Reviewer Comment 6: 

Thank you for pointing this out. You are correct — the denominator should represent 

the total number of samples (N). The “2” in the MAE equation was a typographical 



error. The correct formulation of the Mean Absolute Error (MAE) is: 

 1
| |

N

i ii
x y

MAE
N

=
−

=


  (1.1) 

where  and iy  denote the observed and predicted values, respectively. We have 

corrected this in the revised manuscript. 

 

Reviewer Comment 7: 

Fig. 6, 7: There are narrow regions with quite dark color over the eastern coast. Are 

these regions with low R-square and RMSE or just the boundary? Please clarify. 

Response to Reviewer Comment 7: 

Thank you for your observation. The narrow dark regions in Figures 6 and 7 along the 

eastern coast correspond to islands and boundary areas, rather than regions with low R² 

or high RMSE values. We apologize for any confusion this may have caused. 

 

Reviewer Comment 8: 

Line 579: Did you upscale your fine resolution results from XGBoost before comparing 

it to other data products? 

Response to Reviewer Comment 8: 

Thank you for your question. Before comparing with the ERA5_Land and GLDAS 

products, all three datasets were resampled to match the spatial resolution of 

ERA5_Land. This ensured consistency in spatial scale and allowed for a fair and 

accurate evaluation. 

 

Reviewer Comment 9: 

Section 3.1 and 3.2 both are evaluated at site level, so I suggest merging them. 

Response to Reviewer Comment 9: 

As you correctly pointed out, both Sections 3.1 and 3.2 focused on model evaluation at 

the site level. Accordingly, we have merged the original Sections 3.1 and 3.2 into a 

single new Section 3.1 based on your suggestion. In addition, Figure 7 from the former 

Section 3.2 has been moved to the Appendix. 

 

Reviewer Comment 10: 

section 3.3: Fine resolution product shall be able to reflect the response of Ts to 

elevation. I did not see any discussion on this point. 

Response to Reviewer Comment 10: 

Thank you for this valuable comment. In the revised manuscript, we have expanded our 

discussion on how the fine-resolution Ts product captures the response of Ts to elevation. 

In this section, we compare our product with other existing datasets and highlight the 

advantages of our 1-km Ts estimates in representing spatial variations across different 

topographic conditions. Please refer to Section 3.3 of the revised manuscript for the 

detailed discussion. 

 

ix



Revised Text (L470-L479): 

Figure 9 presents a comparison of the Ts products at the 0 cm depth with the ERA5-

Land and GLDAS 2.1 reanalysis datasets, including both national-scale patterns (Fig. 

9a–c) and zoomed-in regional details (Fig. 9d–f). Compared with the two reanalysis 

products, our generated Ts dataset exhibits substantially finer spatial resolution, 

enabling a clearer representation of localized spatial heterogeneity. As illustrated in the 

zoomed-in panels of Figure 9, our Ts product accurately captures terrain- and elevation-

driven temperature gradients in regions with strong topographic variability, such as the 

transition zone from the Sichuan Basin to the margins of the QTP. In contrast, the coarse 

spatial resolution of ERA5-Land and GLDAS 2.1 tends to smooth out these fine-scale 

topographic effects, resulting in a loss of spatial detail. 

 

Reviewer Comment 11: 

Fig. 12: Authors shall improve the figure quality. Lines are too thin and resolution 

seems to be low. 

Response to Reviewer Comment 11: 

Thank you for your helpful comment regarding the figure quality. We have improved 

the visualization by increasing the line thickness and rendering resolution. The figure 

has been regenerated at higher quality and the updated version has been incorporated 

into the revised manuscript. The original Figure 12 has now been updated and is 

presented as Figure 11 in the revised manuscript. 

 
Figure 11. Time series of the Estimated_0cm, Estimated_40cm, Daily_mean_LST, 

and Temperature_2m at four sites from different regions between 2018-2019. 

 

 



Reviewer Comment 12: 

Line 822: Missing soil moisture can also bring substantial error in capturing daily or 

sub-daily variations of soil temperature. Authors shall discuss it as well. 

Response to Reviewer Comment 12: 

Thank you for this insightful comment. We agree that soil moisture plays an important 

role in regulating daily and sub-daily soil temperature dynamics, and the absence of 

soil moisture information can introduce additional uncertainty in Ts estimation. In the 

revised manuscript, we have added a dedicated discussion on this issue, highlighting 

how the lack of soil moisture data may affect the model’s performance and the potential 

pathways for future improvements. The detailed discussion can be found in Section 4.3. 

Revised Text (L674-L682): 

Short-term changes in soil moisture alter fundamental soil thermal properties, including 

heat capacity, thermal conductivity, and thermal diffusivity, which in turn control heat 

transfer processes and sub-daily Ts dynamics. (Abu-Hamdeh, 2003; Subin et al., 2013). 

Consequently, the absence of soil moisture information may introduce additional 

uncertainty when modeling daily and sub-daily Ts dynamics, especially at deeper layers. 

Incorporating high-resolution soil moisture datasets in future work would improve the 

representation of soil hydrothermal interactions and further enhance Ts estimation 

accuracy. 

Reference 

Abu-Hamdeh, N.H., 2003. Thermal properties of soils as affected by density and water 

content. Biosyst. Eng. 86, 97–102. 

Subin, Z.M., Koven, C.D., Riley, W.J., Torn, M.S., Lawrence, D.M., Swenson, S.C., 

2013. Effects of soil moisture on the responses of soil temperatures to climate 

change in cold regions. J. Clim. 26, 3139–3158. 

 

Reviewer Comment 13: 

Line 826: "explained by the physical characteristics of soil temperature". Should this 

be "the physical characteristics of soil texture profile"? 

Response to Reviewer Comment 13: 

Thank you for this helpful clarification. We agree that the original expression was 

imprecise. The depth-dependent behavior of Ts is indeed more closely related to the 

physical characteristics of the soil profile, including soil texture, bulk density, and 

thermal properties, rather than to the “characteristics of soil temperature” itself. We 

have revised the manuscript accordingly to replace the phrase with “the physical 

characteristics of the soil profile.” This improves both accuracy and clarity. 

Revised Text (L663-L664): 

This depth-dependent pattern can be explained by the physical characteristics of the 

soil profile. 

 

Reviewer Comment 14: 

Line 830: "dampen high-frequency fluctuations and stabilize the relationship between 

predictors and Ts". This conclusion is a bit misleading. In relatively deeper soil depth, 

"dampen high-frequency fluctuations" is true, but this does not stabilize the predictor - 



Ts relationship, but reduces the signal of the predictor. Following these reasons, 

"thereby improving performance at these depths" is not true. The lower RMSE/R2 is a 

consequence of low variability of deeper soil temperature itself, not reflecting a better 

performance for deeper soil temperature. Please revise. 

Response to Reviewer Comment 14: 

We appreciate this insightful comment. We agree that the original wording may have 

been misleading. The reduced RMSE and increased R² at intermediate depths do not 

necessarily imply that the predictor–Ts relationships are stronger at those depths. 

Instead, the improved metrics primarily reflect the dampened variability of Ts caused 

by thermal buffering and increased heat capacity in mid-soil layers. In the revised 

manuscript, we have rewritten the sentence to clarify that the performance metrics at 

middle depths are largely a consequence of reduced temporal and spatial fluctuations 

in Ts, rather than inherently better model performance or stronger predictor–response 

relationships. 

Revised Text (L667-L670): 

In contrast, intermediate soil layers buffer high-frequency temperature fluctuations 

through thermal diffusion and higher heat capacity. As a result, Ts becomes more stable 

with lower natural variability at these depths, leading to lower RMSE and higher R² 

values. 

 

Reviewer Comment 15: 

Line 832: "At greater depths, however, surface-level errors propagate downward 

through the cascading framework, resulting in reduced accuracy—particularly during 

summer and winter." Can this be a consequence from uncertain soil texture profile input? 

As soil goes deeper, the uncertainty from soil texture will accumulate and becomes 

higher, 

Response to Reviewer Comment 15: 

Thank you for this valuable suggestion. We agree that uncertainty in soil texture inputs 

can accumulate with depth and may contribute to the reduced accuracy observed at 

deeper soil layers. Although our modeling framework incorporates multi-layer soil 

texture information, uncertainties in deep soil texture may propagate through the 

cascading prediction structure. We have added this point to Section 4.3 of the 

Discussion, acknowledging that soil texture uncertainty is an additional factor 

influencing deep-layer Ts errors. 

 

Revised Text (L671-L674): 

At deeper layers, prediction accuracy decreases because surface-level errors propagate 

downward through the hierarchical modeling framework, and uncertainties in soil 

texture inputs gradually accumulate with depth; during periods such as summer and 

winter, these combined uncertainties may be further amplified. 

 

Reviewer Comment 16: 

Line 836: Another reason is that the LST product reflects the temperature that the 

remote sensor observed. So it can be either soil surface temperature, snow temperature 



or temperature at canopy top. Please address how this uncertainty source can impact 

your results. 

Response to Reviewer Comment 16: 

We greatly appreciate this important comment. We agree that the LST product 

represents the radiometric temperature observed by the satellite sensor, and the specific 

temperature it reflects may vary depending on land cover and seasonal conditions. As 

a result, LST may correspond to surface Ts, snow surface temperature, or canopy-top 

temperature. This inherent ambiguity indeed introduces an additional source of 

uncertainty in the estimation of Ts. We have added a discussion of this issue in Section 

4.3 of the revised manuscript. 

 

Revised Text (L683-L703): 

Seasonal variations and differences in land cover also contribute to the spatiotemporal 

differences in model performance. As shown in Figures 7 and 8, the model performs 

better in spring and autumn, whereas its accuracy declines in summer and winter. In 

summer, vigorous vegetation growth and canopy closure alter surface–atmosphere 

energy exchange processes and weaken the relationship between canopy temperature 

and subsurface Ts, thereby reducing the effectiveness of LST as a proxy for near-surface 

Ts (Kropp et al., 2020; Cui et al., 2022). Moreover, because satellite sensors measure 

radiometric temperature, LST in densely vegetated regions often represents canopy-top 

temperature rather than the surface Ts, introducing an additional source of uncertainty. 

In winter, snow cover further increases complexity: the high albedo of snow reduces 

net radiation (Loranty et al., 2014; Li et al., 2018), and its insulating effect weakens the 

soil’s response to cold-air fluctuations (Zhang, 2005; Myers-Smith et al., 2015). 

Meanwhile, Meanwhile, freezing of soil water alters soil thermal conductivity and heat 

capacity, and frequent freeze–thaw cycles introduce nonlinear dynamics into Ts, 

increasing modeling uncertainty (Li et al., 2023a; Imanian et al., 2024). Although our 

multi-source adaptive modeling framework demonstrates robust performance across 

varying depths and environmental conditions, it does not explicitly represent the 

physical mechanisms governing vertical heat transfer. Future research could 

incorporate deep learning models capable of learning complex spatiotemporal 

dependencies to enhance the physical interpretability of Ts variations across time, space, 

and depth. 
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Response to Reviewer5_Comments 

Reviewer Comment 1: 

The Introduction would benefit from incorporating recent advances in spatial adaptive 

modeling using quadtree recursive retrieval, with explicit discussion of the comparative 

advantages of the proposed methodology. 

Response to Reviewer Comment 1: 

Thank you very much for this constructive suggestion. We agree that a more systematic 

discussion of recent advances in spatial adaptive modeling based on quadtree recursive 

partitioning would strengthen the Introduction. In the revised manuscript, we have 

expanded the Introduction to incorporate relevant developments in quadtree-based 

spatial modeling and have further clarified the advantages of our proposed rotated-

quadtree framework. 

 

Revised Text (L105-L135): 

Recent advances in spatially adaptive modeling have increasingly emphasized the 

importance of addressing spatial heterogeneity and uneven sampling density in 

environmental datasets. Classical quadtree structures and related hierarchical spatial 

data models provide the theoretical foundation for constructing adaptive, variable-sized 

spatial partitions, enabling efficient organization of multiscale spatial information 

through recursive subdivision (Samet, 1984). Building on this foundation, Lagonigro 

et al., (2020) developed the AQuadtree R package, which provides an adaptive spatial 

partitioning framework capable of generating variable-sized grid cells according to the 

spatial distribution of observations. This adaptive partitioning produces finer grids in 

data-dense regions and coarser grids where observations are sparse, ensuring a spatial 

structure that better reflects sampling heterogeneity and improves the model’s capacity 

to capture localized spatial variability. Extending this idea, we develop a rotated-

quadtree strategy that applies multiple orientation angles during the quadtree 

subdivision process. This enhancement allows the model to capture spatial 

heterogeneity from multiple directional perspectives, and averaging predictions across 

rotation angles substantially reduces the boundary artifacts that may arise from single-

angle grid partitioning, ultimately improving the robustness of local modeling under 

complex environmental gradients. 

 

To address the irregular station distribution, and non-stationarity commonly 

encountered in large-scale Ts estimation, we construct a spatially adaptive modeling 

framework based on the rotated quadtree approach. Within each grid cell, multi-source 

environmental predictors are integrated with in situ station records, and Ts is estimated 

using XGBoost models. Based on this framework, the objectives of this study are to: 

(1) construct a spatially adaptive modeling system; (2) generate a multi-layer Ts dataset 

at a daily time-step and one kilometer resolution in China from 2010-2020; and (3) 

evaluate the dataset through independent validation with flux tower observations and 

benchmarking against widely used Ts products. The proposed methodology could 

directly address the scaling challenges induced by spatial heterogeneity and uneven 



data distribution. The generated products would provide a robust foundation for high-

resolution environmental modeling, precision agriculture and climate impact 

assessments. 
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Reviewer Comment 2: 

Additional clarification regarding auxiliary variable selection criteria is warranted. 

Beyond literature review, principles such as correlation analysis should be elaborated. 

It is recommended to first validate the existence of spatially non-stationary 

relationships using bivariate local Moran’s I, then proceed with spatial partitioning 

and predictive modeling via quadtree recursive retrieval. 

Response to Reviewer Comment 2: 

Thank you very much for your valuable suggestion. We agree that it is necessary to 

further clarify the criteria for selecting auxiliary variables and the evaluation of spatial 

non-stationarity. In the revised manuscript, we focus on the local form of spatial 

association analysis and provide a more detailed explanation of the analytical 

procedures used in this study. 

 

Here are the revisions, supplemented in the Appendix (L23-L50): 

To examine whether the relationships between Ts (GST_Avg) and the auxiliary 

variables exhibit spatial non-stationarity, we employed the Local Bivariate Moran’s I, 

a local statistic within the Local Indicators of Spatial Association (LISA) framework. 

This method allows us to reveal localized spatial associations and spatially varying 

relationships between the target variable (X) and the spatially lagged auxiliary variable 

(Wy). First, we constructed a spatial weights matrix using the K-nearest neighbors 

method (K = 8). This configuration is suitable for the irregular spatial distribution of 

meteorological stations across China and ensures that each station has a comparable 

number of spatial neighbors. 

 

Based on this spatial weights structure, we calculated the Local Bivariate Moran’s I 

between GST_Avg (X) and elevation (Y), and obtained permutation-based p-values.We 

then computed the spatially lagged auxiliary variable (Wy) and classified each station 

into one of four significant LISA cluster types (p < 0.05): High–High (red), High–Low 

(green), Low–High (purple), and Low–Low (blue). Stations with non-significant local 

associations (p ≥ 0.05) are shown in gray. As illustrated in Figure S5, approximately 

64% of the stations exhibit statistically significant local spatial associations, and all four 

cluster types occur across different regions of China. These spatially heterogeneous 

local association patterns clearly indicate pronounced spatial non-stationarity in the Ts–

elevation relationship. 

 



These findings further demonstrate the necessity of adopting a spatially adaptive 

modeling framework. Accordingly, the rotated quadtree model developed in this study 

is well justified, as it can effectively capture localized variations in predictor–response 

relationships. 

 
Figure S5. Spatial patterns of the bivariate Local Moran’s I between GST_Avg and 

elevation at meteorological stations across China. 

Revised Text (L300-L305): 

We applied the Local Bivariate Moran’s I analysis to assess the local spatial relationship 

between surface Ts (GST_Avg) and elevation as an illustrative example (Fig. S5). The 

results reveal significant spatial variations in their local association (p < 0.05), 

indicating pronounced spatial non-stationarity in the Ts–elevation relationship. These 

findings justify the need for a spatially adaptive modeling strategy capable of capturing 

localized heterogeneity. 

 

Reviewer Comment 3: 

Methodological details concerning quadtree rotation require elaboration: Can this 

approach achieve complete coverage of the study area? Is 360-degree rotation 

necessary to cover all prediction grids followed by averaging for final predictions? 

Supplementary materials illustrating the detailed procedures of the proposed model 

would be valuable. 

Response to Reviewer Comment 3: 

First, the grid cells generated by a single quadtree subdivision may not fully cover the 

entire study area and may omit stations located near the domain boundaries. To address 

this limitation, we employ six rotated quadtree configurations at different orientation 

angles, which collectively ensure complete spatial coverage and prevent potential loss 

of edge-area observations caused by a single subdivision. Second, a full 360° rotation 



is unnecessary. We selected six representative angles—0°, 15°, 30°, 45°, 60°, and 75°—

which sufficiently cover different directional alignments; additional angles would only 

introduce redundancy without improving performance. Third, we average the 

predictions obtained from the six rotation angles, which allows the model to capture 

spatial heterogeneity from multiple directional perspectives while effectively 

mitigating boundary artifacts induced by any single quadtree partition. This ensemble 

approach markedly enhances the stability and robustness of the final soil temperature 

estimates. Finally, following your recommendation, we have added detailed workflow 

diagrams and supplementary materials that illustrate the complete rotated-quadtree 

modeling framework, including grid rotation, spatial subdivision, model training, and 

prediction integration. 

 

Revised Text (L306-L336): 

A quadtree is a hierarchical spatial data structure that recursively subdivides a two-

dimensional space into four quadrants, enabling efficient spatial indexing and localized 

data organization. In this study, we adopted a bottom-up, rotated quadtree–based spatial 

partitioning strategy that adaptively generates finer grids in regions with dense 

observations and coarser grids in sparsely sampled areas. Compared with global 

modeling or static grid partitioning, this adaptive approach improves regional modeling 

fidelity while maintaining computational efficiency. The procedure consists of the 

following steps: 

(1) Initialization of Minimum Units 

The entire study area was first divided into uniform minimum-sized units (leaf nodes), 

each representing a basic spatial element that may contain zero or more soil temperature 

observations. This initialization provides the base spatial resolution for subsequent 

hierarchical construction. An illustration of the quadtree structure and spatial indexing 

principles is provided in Fig. S2. 

(2) Bottom-up Hierarchical Merging 

Starting from the leaf nodes, groups of four adjacent quadrants were recursively merged 

into parent nodes if each contained fewer than 30 observation sites (threshold selection 

detailed in Fig. S4). The merging process continued upward until no further groups met 

the threshold. This approach ensures that each node has sufficient sample size while 

achieving spatially adaptive partitioning across the study area. Each subregion is then 

assigned a localized Ts prediction model. 

(3) Rotation at Multiple Angles 

To reduce potential edge effects introduced by static grid boundaries, we implemented 

a rotated quadtree partitioning strategy. The quadtree structure was rotated at six angles 

(0°, 15°, 30°, 45°, 60°, and 75°), producing distinct sets of spatial partitions for each 

orientation (Fig. 3). Independent models were trained for each rotated configuration, 

and the final Ts estimates were obtained by averaging the outputs from all six models. 

This rotation-based ensemble method improves spatial smoothness and minimizes 

discontinuities at partition boundaries. 



 
Figure 3. Multi-angle adaptive quadtree partitioning of site observations (0°, 15°, 30°, 

45°, 60°, 75°) 

 

Reviewer Comment 4: 

It is recommended to add a section of pseudocode to illustrate the computational 

process of spatial adaptive partition method. 

Response to Reviewer Comment 4: 

Thank you very much for your suggestion regarding improving the transparency and 

reproducibility of our method. In response, we have made the complete R 

implementation of the rotated-quadtree spatial adaptive partitioning algorithm publicly 

available on GitHub. The repository includes all scripts used to construct the six rotated 

quadtree partitions, generate the spatial blocks, and export the polygon shapefiles. The 

code is openly accessible at: https://github.com/wangxt1314/Rotated-quadtree 

 

This repository also provides detailed documentation and example files, enabling users 

to fully reproduce the quadtree construction and subsequent modeling workflow. We 

believe that making the full code publicly accessible will substantially enhance the 

reproducibility and transparency of our study. 

 

Revised Text (L730-L732): 

7. Code availability 

The R scripts used to implement the rotated-quadtree spatial adaptive partitioning are 

publicly available at: https://github.com/wangxt1314/Rotated-quadtree 

 

Reviewer Comment 5: 

Given the simultaneous inclusion of elevation and slope (often derived from elevation) 

as auxiliary variables, potential multi-collinearity concerns should be addressed. 

Please discuss whether this correlation might affect model predictive performance. 

Response to Reviewer Comment 5: 

Thank you very much for raising this important point. As slope is derived from the 

digital elevation model (DEM), it is indeed correlated with elevation. To assess whether 

https://github.com/wangxt1314/Rotated-quadtree
https://github.com/wangxt1314/Rotated-quadtree


this relationship may introduce multicollinearity issues in our modeling framework, we 

conducted a Variance Inflation Factor (VIF) analysis for all auxiliary variables. The 

results are presented in Figure S2. Variance Inflation Factor (VIF) of predictor variables 

in the Supplementary Materials. The VIF values for both elevation and slope are well 

below commonly accepted thresholds (VIF < 10), indicating that their correlation is not 

strong enough to compromise model stability. Furthermore, our modeling framework 

is based on a tree-based algorithm (XGBoost), which learns through recursive 

partitioning driven by information gain. Such models are inherently robust to 

correlations among predictor variables and are far less susceptible to multicollinearity 

issues than linear regression models, where parameter estimates can become unstable 

under collinearity. 

 
Figure S2. Variance Inflation Factor (VIF) of predictor variables 

 

Reviewer Comment 6: 

As model predictions and uncertainty typically coexist, and given the high accuracy 

demonstrated in validation results, provision of corresponding prediction uncertainty 

estimates would strengthen the methodological rigor. 

Response to Reviewer Comment 6: 

Thank you very much for your valuable comment. We agree that incorporating a 

prediction uncertainty assessment further strengthens the scientific rigor of our 

methodology. In response to your suggestion, we have added an uncertainty analysis 

based on an ensemble of six quadtree models constructed under different rotation angles. 

 

Specifically, each observation station is predicted six times using quadtree partitioning 

structures generated at six different rotation angles. We quantify prediction uncertainty 

as the standard deviation of these six predicted Ts values, which reflects the stability 



and sensitivity of the model predictions to changes in spatial partitioning orientation. A 

larger standard deviation indicates substantial divergence among predictions from 

different rotations, suggesting higher structural uncertainty caused by spatial 

heterogeneity, partition boundary effects, or variation in local sample density. 

Conversely, when the six predictions remain highly consistent, the standard deviation 

is small, indicating that the model is stable across different partitioning orientations and 

exhibits lower uncertainty. 

 

To derive a more robust annual uncertainty estimate, we further average the daily 

uncertainty values for each station within each year, resulting in a station-level annual 

uncertainty index (Fig.S14). This uncertainty metric serves as a useful complement to 

the prediction results by identifying areas where the model exhibits stronger structural 

variability or weaker observational support, thereby enhancing the transparency and 

credibility of the modeling results. 

 

Figure S14. Spatial patterns of prediction uncertainty at six soil depths based on the 

rotated-quadtree ensemble. 

 

The station-based uncertainty analysis shows that at the 0 cm depth, a substantially 

larger proportion of stations exhibit high uncertainty compared with other depths. The 

stations with higher uncertainty are mainly concentrated in the Sichuan Basin, the 

Yunnan–Guizhou Plateau, and the Qinghai–Tibet Plateau, which are characterized by 

complex geological and geomorphological environments. In contrast, the overall 

uncertainty levels at the remaining depths are considerably lower and spatially more 

stable. We believe that incorporating this improvement will further strengthen the 



methodological rigor, enhance the reliability of the results, and provide valuable 

guidance for future users of the dataset. 


