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Dear Reviewer,

We sincerely thank you for your thoughtful comments and constructive suggestions on
our manuscript. We have carefully revised the manuscript in response to your feedback,
with all changes clearly marked using track changes. In the revised manuscript and
accompanying supplementary materials, modifications are highlighted in blue for ease
of reference.

Below, we provide a detailed, point-by-point response to each of your comments. For
clarity, your original remarks are shown in italics, followed by our corresponding
replies. We have made every effort to address all concerns comprehensively and to
improve the scientific rigor, clarity, and overall quality of the manuscript.

We sincerely appreciate the time and effort you invested in reviewing our work.



Response to Reviewer3 Comments

Reviewer Comment 1:

The effectiveness of spatial block CV is dependent on the block size being large enough
to account for the spatial autocorrelation range of the data. The authors have used 1°
(~100 km), which needs to be justified. Some previous studies (e.g., Ploton, et al. 2020
Nature Communications 11 (1): 4540) showed that typical climate variables can exhibit
significant spatial correlation up to 500 km. Therefore, the authors should provide a
Justification for their choice of 1°, for instance by using semivariograms of the observed
Is to determine the distance at which spatial autocorrelation becomes negligible.
Otherwise, the data leakage problem is only reduced, not solved.

Response to Reviewer Comment 1:

Thank you very much for your valuable comment. We recognize that the effectiveness
of spatial block cross-validation (CV) largely depends on the size of the blocks, which
must be sufficiently large to capture the spatial autocorrelation structure inherent in the
data. In addition, the spatial block partitioning strategy previously adopted in our study
was limited by an inadequately defined threshold and, more importantly, by the fact
that the boundaries of adjacent blocks were often very close to each other. As a result,
stations located near block edges could still be separated by only short distances and
thus remain spatially correlated, making it difficult to fully eliminate potential data
leakage under the original partitioning scheme.

Following your suggestion, we performed a semivariogram analysis to determine the
optimal distance required to effectively reduce spatial autocorrelation in the 75 data. As
shown in Figure S8, the semivariogram of the 7 data reaches a plateau at a distance of
approximately 400-500 km, with only minor variations beyond this range. This
indicates that spatial autocorrelation in 75 declines substantially around 500 km and
becomes negligible at greater distances. This finding is consistent with Ploton et al.,
(2020), who also reported significant spatial dependence in climate variables over
scales of 250~500 km.

Based on these results, we revised our sampling strategy to more effectively mitigate
spatial autocorrelation in the 7 station data and to reduce the risk of data leakage
between the training and testing subsets arising from spatial dependence. The revised
method has been updated in Section 2.3.3 of the manuscript. We believe that these
improvements better address the reviewer’s concerns regarding spatial autocorrelation
and further enhance the reliability of our model’s generalization assessment. We
sincerely appreciate your insightful comment, which has substantially strengthened the
methodological rigor of our study.

Revised Text in Section 2.3.3 (L354-L.375):
Significant spatial autocorrelation commonly exists among nearby 75 observation sites.



To prevent potential data leakage caused by randomly splitting the training and testing
subsets, we conducted the partitioning at the station level and constructed a buffer zone
around the selected test station. All other stations located within this buffer were
removed, and only stations outside the buffer were retained as the training set. This
strategy effectively ensures that samples within the same sub-grid do not appear
simultaneously in both the training and testing subsets due to spatial autocorrelation,
thereby allowing a more robust and unbiased assessment of the model’s generalization
performance.

Specifically, considering the availability of sufficient training samples, one station was
randomly selected as the test sample within each sub-grid. A 500 km buffer was
subsequently created around the test station, with the radius determined based on the
effective distance for reducing spatial autocorrelation among stations as shown in
Appendix Figure S8. All stations within the buffer were excluded, and only those
outside the buffer were used for model training. Subsequently, five-fold cross-
validation was performed at the station level, and GridSearchCV was used to optimize
three key hyperparameters: the number of trees (n_estimators), maximum tree depth
(max_depth), and learning rate (learning_rate). The search ranges for these parameters
are provided in Appendix Table S1. The optimal hyperparameter combination was
identified by minimizing the mean validation error. Finally, the model was retrained on
the full training subset using the optimized parameters and evaluated on the spatially
independent test sample to rigorously assess its generalization capability.

Here are the revisions, supplemented in the Appendix (L95-L100):
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Figure S8. Experimental and theoretical semivariograms of annual mean 7s at 0 cm

(The spherical, exponential, and Gaussian models are fitted for comparison).

Reference

Ploton, P., Mortier, F., R¢jou-Méchain, M., Barbier, N., Picard, N., Rossi, V., Dormann,
C., Cornu, G., Viennois, G., Bayol, N., Lyapustin, A., Gourlet-Fleury, S., and
Pélissier, R.: Spatial validation reveals poor predictive performance of large-scale
ecological mapping models, Nat. Commun., 11, 4540,
https://doi.org/10.1038/s41467-020-18321-y, 2020.

Reviewer Comment 2:

In their response, the authors present a new figure (labeled Figure 1 in the response
letter) that validates the model's ability to capture the spatial distribution of annual
mean 1s. However, the number of points in this figure looks far greater than the ~200
sites that would constitute a 10% test set, suggesting that all stations are included in
this validation. For a validation to be a true test of generalization, it must be performed
exclusively on the held-out test blocks.

Furthermore, I suggest an enhancement: color-code the points in the plot by their
parent quadtree grid. This would provide a visual assessment of the performance of the
different localized models.

Response to Reviewer Comment 2:

Thank you for your valuable suggestions, which have helped us further enhance the
rigor and clarity of our spatial validation and visualization. In the previous response
letter, Figure 1 indeed included all stations rather than only the independent test-block
stations. Therefore, in the revised manuscript, we validate the model’s ability to capture
the spatial distribution of annual mean 75 using only the test set.

Regarding your suggestion to color-code the points based on their quadtree grids, our
quadtree system is rotated at six different angles. Under different rotations, both the
number of sub-grids and their identifiers vary, and the selected test set is not fixed across
rotations. As a result, it is not feasible to apply a consistent color-coding scheme to
represent grid membership within a single figure.

Nevertheless, the revised Figure S12 clearly demonstrates that across all rotation angles
and corresponding grid structures, the localized models consistently and accurately
capture the spatial distribution of annual mean 75 when evaluated on the independent
test set. This further confirms the robustness of the rotated-quadtree modeling
framework.

Here are the revisions, supplemented in the Appendix (L118-L121):
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Figure S12. Comparison between estimated and observed annual mean 7 across six
depths (0~40 cm)

Reviewer Comment 3:

The addition of an independent validation using 18 flux tower sites is a great
improvement. The authors present the daily time-series comparison in the new Figure
5. To maintain consistency with the most robust validation practices, I suggest that the
authors also present the annual mean T (spatial-only validation) comparison between
model and observation.

Response to Reviewer Comment 3:

We appreciate the reviewer’s insightful suggestion. Following your recommendation,
we have now included an additional spatial-only validation based on the annual mean
T5 derived from the 18 independent flux tower sites. This new analysis directly assesses
the model’s ability to reproduce the spatial distribution of annual mean 75 without
relying on temporal information.

The results are presented in the newly added Figure S13, which compares the observed
and estimated annual mean 7s across six soil depths (0~40 cm). Despite the small
number of independent sites and the strong climatic heterogeneity among tower
locations, the model achieves reasonable agreement with observations, demonstrating
its capacity to capture the spatial variability of annual mean 75 under independent
conditions. This addition ensures consistency with best practices in model evaluation
and provides a more comprehensive and rigorous validation of the model’s spatial
performance.

Here are the revisions, supplemented in the Appendix (L122-L126):
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Figure S13. Comparison between estimated and FLUX towers annual mean 7 across

six depths (0~40 cm)



Response to Reviewer4 Comments

Specific comments:

Reviewer Comment 1:

Discussion on time-series is missing. How has the Ts changed during this decade?
Response to Reviewer Comment 1:

Thank you for this helpful comment. We agree that our current manuscript does not
include a full discussion of long-term 7 changes over the entire decade (2010-2020).
In our study, interannual variability of 75 during this period is relatively small, and our
primary objective was to evaluate the model’s ability to reproduce 75 dynamics rather
than to analyze long-term climate trends. Therefore, instead of presenting a full decadal
trend analysis, we selected four representative stations and examined in detail their
daily variations of air temperature, LST and 75 for the period 2018-2019 as illustrative
examples.

Revised Text (LL524-1.541):

To further assess the temporal performance of 7s estimation, Fig. 11 presents the time
series of estimated 7 alongside in-situ measurements at four randomly selected stations
(e.g., Station 56748, 99.18°E, 25.12°N) from January 2018 to January 2020. The figure
displays 7 at two depths (0 cm and 40 cm), including estimated 75 (Estimated Ocm,
Estimated 40cm), in-situ 75 (In-situ_Ocm, In-situ 40cm), daily mean land surface
temperature (Daily mean LST), and 2-meter air temperature (Temperature 2m). The
air temperature shows distinct seasonal cycles, while 75 exhibits smoother temporal
variations. In general, Ts reaches its peak during summer and its minimum in winter,
though its temporal dynamics vary with soil depth. Specifically, 75 at 0 cm responds
rapidly to air temperature changes and exhibits larger amplitude variations, while 75 at
40 cm shows slower responses and a noticeable lag, reflecting the damping effect of
vertical heat conduction. Site-level accuracy was evaluated using RMSE, which ranged
from 1.24 K to 2.05 K across both depths, indicating strong agreement between
predicted and observed values. Overall, the time series analysis confirms the robustness
and reliability of the model in estimating 7 across varying depths, offering valuable
insights into regional soil thermal dynamics.
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Figure 11. Time series of the Estimated Ocm, Estimated 40cm, Daily mean LST,
and Temperature 2m at four sites from different regions between 2018-2019.

Reviewer Comment 2:

Too many figures in the main text. Suggest to move some into supplemental material.
Response to Reviewer Comment 2:

Thank you for your helpful suggestion. Following your recommendation, we have
streamlined the presentation of figures in the main text. Specifically, we have merged
the original Sections 3.1 and 3.2 into a new Section 3.1 to reduce redundancy and
improve the clarity of the Results. In addition, Figure 7 from the former Section 3.2 has
been moved to the Supplementary Material. These adjustments help keep the main
manuscript focused on essential results while ensuring that all supporting visualizations
remain accessible in the appendix.

Reviewer Comment 3:

Adaptive scaling can lead to confusion when interpreting the spatial resolution of a
dataset. I would recommend authors to report the "effective spatial resolution”
information of each grid, or store it as a separated supporting dataset. Otherwise, it is
hard to be used for comparison against other regional/global products with fixed
spatial resolution.

Response to Reviewer Comment 3:

Thank you very much for your thoughtful comment. We fully understand the concern
that adaptive spatial partitioning may cause confusion regarding the spatial resolution
of the final dataset. Here we would like to clarify that, although our modeling
framework uses a rotated-quadtree structure to adaptively partition the training space



based on the density of in-situ observations, the final 7§ product is always generated at
a fixed spatial resolution of 1 km.

The adaptive quadtrees are used only during the modeling stage to train localized
XGBoost models under multiple rotation angles. After model training, the predictions
from all rotated-quadtree configurations are aggregated and mapped onto a uniform 1-
km grid across China. Therefore, the effective spatial resolution of the final product
does not vary across space, and all output grids represent the same 1-km resolution
regardless of quadtree size during training.

We hope this clarification addresses your concern, and we appreciate your attention to
dataset usability and transparency.

Reviewer Comment 4:

The dataset is claimed to be freely accessible, but I cannot access the data through FTP.
Authors need to verify and check the link, or upload a copy to an open access repository,
otherwise it does not meet the requirement of ESSD.

Response to Reviewer Comment 4:

Thank you for pointing out this issue. We sincerely apologize for the inconvenience
caused by the temporary inaccessibility of the FTP link. After receiving your comment,
we immediately contacted the data center and confirmed that the FTP remote server
itself had not experienced any malfunction. To ensure that the dataset fully meets
ESSD’s data accessibility requirements, we have taken the following steps:

(1) The complete 75 dataset has been re-uploaded to the National Tibetan Plateau Data
Center (TPDC), and the DOI download links have been fully verified and are
functioning properly. Two stable access links are now provided for users:
https://doi.org/10.11888/Terre.tpdc.302333

https://cstr.cn/18406.11.Terre.tpdc.302333

(2) If access issues persist, we kindly recommend users to switch to another network

environment (e.g., non-campus network or networks without firewall restrictions), as
some institutional networks may block external data repository access.

At present, the dataset is fully accessible through the verified DOI links and fully
satisfies the data availability requirements of ESSD. We sincerely appreciate your
valuable feedback.

Technical corrections:

Reviewer Comment 1:

Line 108 - 116: This part can be moved to objectives. When describing each objective,
state the uniqueness/improvement from your study.

Response to Reviewer Comment 1:

Thank you very much for your valuable suggestion. Following your recommendation,
we have revised the corresponding part of the Introduction. The updated content has
now been incorporated into the revised manuscript.


https://doi.org/10.11888/Terre.tpdc.302333
https://cstr.cn/18406.11.Terre.tpdc.302333

Revised Text (L105-L135):

Recent advances in spatially adaptive modeling have increasingly emphasized the
importance of addressing spatial heterogeneity and uneven sampling density in
environmental datasets. Classical quadtree structures and related hierarchical spatial
data models provide the theoretical foundation for constructing adaptive, variable-sized
spatial partitions, enabling efficient organization of multiscale spatial information
through recursive subdivision (Samet, 1984). Building on this foundation, Lagonigro
et al., (2020) developed the AQuadtree R package, which provides an adaptive spatial
partitioning framework capable of generating variable-sized grid cells according to the
spatial distribution of observations. This adaptive partitioning produces finer grids in
data-dense regions and coarser grids where observations are sparse, ensuring a spatial
structure that better reflects sampling heterogeneity and improves the model’s capacity
to capture localized spatial variability. Extending this idea, we develop a rotated-
quadtree strategy that applies multiple orientation angles during the quadtree
subdivision process. This enhancement allows the model to capture spatial
heterogeneity from multiple directional perspectives, and averaging predictions across
rotation angles substantially reduces the boundary artifacts that may arise from single-
angle grid partitioning, ultimately improving the robustness of local modeling under
complex environmental gradients.

To address the irregular station distribution, and non-stationarity commonly
encountered in large-scale 7s estimation, we construct a spatially adaptive modeling
framework based on the rotated quadtree approach. Within each grid cell, multi-source
environmental predictors are integrated with in situ station records, and 7 is estimated
using XGBoost models. Based on this framework, the objectives of this study are to:
(1) construct a spatially adaptive modeling system; (2) generate a multi-layer 75 dataset
at a daily time-step and one kilometer resolution in China from 2010-2020; and (3)
evaluate the dataset through independent validation with flux tower observations and
benchmarking against widely used 7s products. The proposed methodology could
directly address the scaling challenges induced by spatial heterogeneity and uneven
data distribution. The generated products would provide a robust foundation for high-
resolution environmental modeling, precision agriculture and climate impact
assessments.
Reference
Lagonigro, R., Oller, R., Martori, J.C., 2020. AQuadtree: An R package for quadtree
anonymization of point data.
Samet, H., 1984. The quadtree and related hierarchical data structures. ACM Comput.
Surv. CSUR 16, 187-260.

Reviewer Comment 2:

Line 110: I would be curious about how to use your data product, since most of the
observed/modeled data products have uniform spatial resolution, and your varying
resolution product will be hard for intercomparison against them.



Response to Reviewer Comment 2:

Thank you for raising this important question. We would like to clarify that although
our modeling framework employs an adaptive, rotated-quadtree structure during the
training stage, the final 7§ product is always generated on a uniform 1-km grid across
China. The adaptive partitioning only determines how local XGBoost models are
trained according to site density, and it does not affect the spatial resolution of the final
gridded product. To avoid potential misunderstanding, we provide the following
clarification here:

(1) The adaptive grid system is used solely for local model training;

(2) The final predicted T fields are mapped to a fixed 1-km grid;

Thus, users can apply our 75 dataset in the same manner as any other 1-km gridded
environmental product, without concerns related to heterogeneous spatial resolution.

Reviewer Comment 3:

Line 252: How did you treat auxiliary predictors differently from main predictors?
Response to Reviewer Comment 3:

Thank you for raising this point. In addition to the distinction between main and
auxiliary predictors, we would like to further clarify how multicollinearity was handled
and why both air temperature and LST were retained in the final model.

Before modeling, we conducted a comprehensive variance inflation factor (VIF)
analysis for all predictor variables to remove those exhibiting strong multicollinearity.
The results are shown in the Supplementary Figures. As expected, air temperature and
satellite-derived LST showed high collinearity. To determine whether both variables
should be retained, we performed a comparative modeling experiment using two
predictor combinations:

(1) Air temperature + other predictors

(2) Air temperature + LST + other predictors

As shown in Supplementary Figure S3 and Figure S4, the second combination (air
temperature + LST + other predictors) consistently produced the best predictive
performance across depths. This indicates that although air temperature and LST are
correlated, they contain complementary thermal information—air temperature captures
large-scale atmospheric conditions, whereas LST provides fine-resolution surface
radiometric temperature signals.

Therefore, despite their statistical collinearity, both variables were retained in the final
model to maximize predictive accuracy. This rationale has been added to Section 2.3.1

of the revised manuscript.

Here are the revisions, supplemented in the Appendix (L5-L20):
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Reviewer Comment 4:

Line 268: Change "fig. 3" to "fig. 2"

Response to Reviewer Comment 4:

Thank you for your correction. We have updated the figure citation accordingly in the
revised manuscript.

Reviewer Comment 5:

Line 300: "Such differences are particularly important in complex ecosystems such as
forests, where canopy structure and biological processes substantially influence
thermal dynamics (Liu et al., 2025)." I'm not quite understanding this sentence and its
connection to the context, can you explain a bit or rephrase?

Response to Reviewer Comment 5:

Thank you for pointing out the lack of clarity in this sentence. We agree that the original
description did not clearly convey its intended meaning nor its connection to the context.
The purpose of this sentence was to justify why both daily mean LST and air
temperature were retained despite their high VIF values, by emphasizing their physical
differences and complementary thermal information. To improve clarity, we have
rewritten the sentence in the revised manuscript.

Revised Text (L.285-L.297):
Although the daily mean LST (LST mean) and air temperature exhibit high collinearity
(VIF > 10; Fig. S2), we chose to retain both variables because they represent different
thermal information. LST mean captures high-resolution surface radiative temperature
signals, whereas air temperature reflects broader-scale atmospheric thermal conditions.
In ecosystems with complex canopy structures, such as forests, the canopy can alter
radiative transfer processes and cause LST to deviate from the true subsurface thermal
environment(Liu et al., 2025). Therefore, the two variables provide complementary
thermal information that helps better characterize soil thermal dynamics.In addition, we
compared the model performance under different combinations of predictor variables
(Fig. S3 and Fig. S4). The results show that the combination of air temperature + LST
+ other predictors achieved the best modeling accuracy at the surface soil layers.
Therefore, retaining both air temperature and LST in the final model is reasonable and
necessary.
Reference
Liu X., Li Z.-L., Duan S.-B., Leng P., Si M., 2025. Retrieval of global surface soil and
vegetation temperatures based on multisource data fusion. Remote Sens. Environ.
318, 114564. https://doi.org/10.1016/j.rse.2024.114564

Reviewer Comment 6:

Line 440: Should MAE equation be the difference between prediction and observations
divided by total sample number? Is "2" a typo?

Response to Reviewer Comment 6:

Thank you for pointing this out. You are correct — the denominator should represent
the total number of samples (V). The “2” in the MAE equation was a typographical



error. The correct formulation of the Mean Absolute Error (MAE) is:

N
E. X — V.
MAE:% (1.1)

where X, and Y, denote the observed and predicted values, respectively. We have

corrected this in the revised manuscript.

Reviewer Comment 7:

Fig. 6, 7: There are narrow regions with quite dark color over the eastern coast. Are
these regions with low R-square and RMSE or just the boundary? Please clarify.
Response to Reviewer Comment 7:

Thank you for your observation. The narrow dark regions in Figures 6 and 7 along the
eastern coast correspond to islands and boundary areas, rather than regions with low R?
or high RMSE values. We apologize for any confusion this may have caused.

Reviewer Comment 8:

Line 579: Did you upscale your fine resolution results from XGBoost before comparing
it to other data products?

Response to Reviewer Comment 8:

Thank you for your question. Before comparing with the ERAS5 Land and GLDAS
products, all three datasets were resampled to match the spatial resolution of
ERAS5 Land. This ensured consistency in spatial scale and allowed for a fair and
accurate evaluation.

Reviewer Comment 9:

Section 3.1 and 3.2 both are evaluated at site level, so I suggest merging them.
Response to Reviewer Comment 9:

As you correctly pointed out, both Sections 3.1 and 3.2 focused on model evaluation at
the site level. Accordingly, we have merged the original Sections 3.1 and 3.2 into a
single new Section 3.1 based on your suggestion. In addition, Figure 7 from the former
Section 3.2 has been moved to the Appendix.

Reviewer Comment 10:

section 3.3: Fine resolution product shall be able to reflect the response of Ts to
elevation. I did not see any discussion on this point.

Response to Reviewer Comment 10:

Thank you for this valuable comment. In the revised manuscript, we have expanded our
discussion on how the fine-resolution 75 product captures the response of 7 to elevation.
In this section, we compare our product with other existing datasets and highlight the
advantages of our 1-km 75 estimates in representing spatial variations across different
topographic conditions. Please refer to Section 3.3 of the revised manuscript for the
detailed discussion.



Revised Text (L470-L479):

Figure 9 presents a comparison of the 7s products at the 0 cm depth with the ERAS-
Land and GLDAS 2.1 reanalysis datasets, including both national-scale patterns (Fig.
9a—c) and zoomed-in regional details (Fig. 9d—f). Compared with the two reanalysis
products, our generated 75 dataset exhibits substantially finer spatial resolution,
enabling a clearer representation of localized spatial heterogeneity. As illustrated in the
zoomed-in panels of Figure 9, our 7 product accurately captures terrain- and elevation-
driven temperature gradients in regions with strong topographic variability, such as the
transition zone from the Sichuan Basin to the margins of the QTP. In contrast, the coarse
spatial resolution of ERAS5-Land and GLDAS 2.1 tends to smooth out these fine-scale
topographic effects, resulting in a loss of spatial detail.

Reviewer Comment 11:

Fig. 12: Authors shall improve the figure quality. Lines are too thin and resolution
seems to be low.

Response to Reviewer Comment 11:

Thank you for your helpful comment regarding the figure quality. We have improved
the visualization by increasing the line thickness and rendering resolution. The figure
has been regenerated at higher quality and the updated version has been incorporated
into the revised manuscript. The original Figure 12 has now been updated and is

presented as Figure 11 in the revised manuscript.
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Figure 11. Time series of the Estimated Ocm, Estimated 40cm, Daily mean LST,
and Temperature 2m at four sites from different regions between 2018-2019.



Reviewer Comment 12:

Line 822: Missing soil moisture can also bring substantial error in capturing daily or

sub-daily variations of soil temperature. Authors shall discuss it as well.

Response to Reviewer Comment 12:

Thank you for this insightful comment. We agree that soil moisture plays an important

role in regulating daily and sub-daily soil temperature dynamics, and the absence of

soil moisture information can introduce additional uncertainty in 75 estimation. In the

revised manuscript, we have added a dedicated discussion on this issue, highlighting

how the lack of soil moisture data may affect the model’s performance and the potential

pathways for future improvements. The detailed discussion can be found in Section 4.3.

Revised Text (1L674-1.682):

Short-term changes in soil moisture alter fundamental soil thermal properties, including

heat capacity, thermal conductivity, and thermal diffusivity, which in turn control heat

transfer processes and sub-daily 7s dynamics. (Abu-Hamdeh, 2003; Subin et al., 2013).

Consequently, the absence of soil moisture information may introduce additional

uncertainty when modeling daily and sub-daily 75 dynamics, especially at deeper layers.

Incorporating high-resolution soil moisture datasets in future work would improve the

representation of soil hydrothermal interactions and further enhance 7 estimation

accuracy.

Reference

Abu-Hamdeh, N.H., 2003. Thermal properties of soils as affected by density and water
content. Biosyst. Eng. 86, 97-102.

Subin, Z.M., Koven, C.D., Riley, W.J., Torn, M.S., Lawrence, D.M., Swenson, S.C.,
2013. Effects of soil moisture on the responses of soil temperatures to climate
change in cold regions. J. Clim. 26, 3139-3158.

Reviewer Comment 13:

Line 826: "explained by the physical characteristics of soil temperature". Should this
be "the physical characteristics of soil texture profile"?

Response to Reviewer Comment 13:

Thank you for this helpful clarification. We agree that the original expression was
imprecise. The depth-dependent behavior of 75 is indeed more closely related to the
physical characteristics of the soil profile, including soil texture, bulk density, and
thermal properties, rather than to the “characteristics of soil temperature” itself. We
have revised the manuscript accordingly to replace the phrase with “the physical
characteristics of the soil profile.” This improves both accuracy and clarity.

Revised Text (L663-1.664):

This depth-dependent pattern can be explained by the physical characteristics of the
soil profile.

Reviewer Comment 14:

Line 830: "dampen high-frequency fluctuations and stabilize the relationship between
predictors and Ts". This conclusion is a bit misleading. In relatively deeper soil depth,
"dampen high-frequency fluctuations" is true, but this does not stabilize the predictor -



Is relationship, but reduces the signal of the predictor. Following these reasons,
"thereby improving performance at these depths" is not true. The lower RMSE/R2 is a
consequence of low variability of deeper soil temperature itself, not reflecting a better
performance for deeper soil temperature. Please revise.

Response to Reviewer Comment 14:

We appreciate this insightful comment. We agree that the original wording may have
been misleading. The reduced RMSE and increased R? at intermediate depths do not
necessarily imply that the predictor—75 relationships are stronger at those depths.
Instead, the improved metrics primarily reflect the dampened variability of 75 caused
by thermal buffering and increased heat capacity in mid-soil layers. In the revised
manuscript, we have rewritten the sentence to clarify that the performance metrics at
middle depths are largely a consequence of reduced temporal and spatial fluctuations
in T, rather than inherently better model performance or stronger predictor—response
relationships.

Revised Text (L667-L670):

In contrast, intermediate soil layers buffer high-frequency temperature fluctuations
through thermal diffusion and higher heat capacity. As a result, 7s becomes more stable
with lower natural variability at these depths, leading to lower RMSE and higher R?
values.

Reviewer Comment 15:

Line 832: "At greater depths, however, surface-level errors propagate downward
through the cascading framework, resulting in reduced accuracy—particularly during
summer and winter." Can this be a consequence from uncertain soil texture profile input?
As soil goes deeper, the uncertainty from soil texture will accumulate and becomes
higher,

Response to Reviewer Comment 15:

Thank you for this valuable suggestion. We agree that uncertainty in soil texture inputs
can accumulate with depth and may contribute to the reduced accuracy observed at
deeper soil layers. Although our modeling framework incorporates multi-layer soil
texture information, uncertainties in deep soil texture may propagate through the
cascading prediction structure. We have added this point to Section 4.3 of the
Discussion, acknowledging that soil texture uncertainty is an additional factor
influencing deep-layer 7 errors.

Revised Text (L671-L674):

At deeper layers, prediction accuracy decreases because surface-level errors propagate
downward through the hierarchical modeling framework, and uncertainties in soil
texture inputs gradually accumulate with depth; during periods such as summer and
winter, these combined uncertainties may be further amplified.

Reviewer Comment 16:
Line 836: Another reason is that the LST product reflects the temperature that the
remote sensor observed. So it can be either soil surface temperature, snow temperature



or temperature at canopy top. Please address how this uncertainty source can impact
your results.

Response to Reviewer Comment 16:

We greatly appreciate this important comment. We agree that the LST product
represents the radiometric temperature observed by the satellite sensor, and the specific
temperature it reflects may vary depending on land cover and seasonal conditions. As
a result, LST may correspond to surface 75, snow surface temperature, or canopy-top
temperature. This inherent ambiguity indeed introduces an additional source of
uncertainty in the estimation of 7s. We have added a discussion of this issue in Section
4.3 of the revised manuscript.

Revised Text (1L683-1.703):

Seasonal variations and differences in land cover also contribute to the spatiotemporal
differences in model performance. As shown in Figures 7 and 8, the model performs
better in spring and autumn, whereas its accuracy declines in summer and winter. In
summer, vigorous vegetation growth and canopy closure alter surface—atmosphere
energy exchange processes and weaken the relationship between canopy temperature
and subsurface T, thereby reducing the effectiveness of LST as a proxy for near-surface
Ts (Kropp et al., 2020; Cui et al., 2022). Moreover, because satellite sensors measure
radiometric temperature, LST in densely vegetated regions often represents canopy-top
temperature rather than the surface 7, introducing an additional source of uncertainty.
In winter, snow cover further increases complexity: the high albedo of snow reduces
net radiation (Loranty et al., 2014; Li et al., 2018), and its insulating effect weakens the
soil’s response to cold-air fluctuations (Zhang, 2005; Myers-Smith et al., 2015).
Meanwhile, Meanwhile, freezing of soil water alters soil thermal conductivity and heat
capacity, and frequent freeze-thaw cycles introduce nonlinear dynamics into T,
increasing modeling uncertainty (Li et al., 2023a; Imanian et al., 2024). Although our
multi-source adaptive modeling framework demonstrates robust performance across
varying depths and environmental conditions, it does not explicitly represent the
physical mechanisms governing vertical heat transfer. Future research could
incorporate deep learning models capable of learning complex spatiotemporal
dependencies to enhance the physical interpretability of 75 variations across time, space,
and depth.
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Response to Reviewer5 Comments

Reviewer Comment 1:

The Introduction would benefit from incorporating recent advances in spatial adaptive
modeling using quadtree recursive retrieval, with explicit discussion of the comparative
advantages of the proposed methodology.

Response to Reviewer Comment 1:

Thank you very much for this constructive suggestion. We agree that a more systematic
discussion of recent advances in spatial adaptive modeling based on quadtree recursive
partitioning would strengthen the Introduction. In the revised manuscript, we have
expanded the Introduction to incorporate relevant developments in quadtree-based
spatial modeling and have further clarified the advantages of our proposed rotated-
quadtree framework.

Revised Text (L105-L135):

Recent advances in spatially adaptive modeling have increasingly emphasized the
importance of addressing spatial heterogeneity and uneven sampling density in
environmental datasets. Classical quadtree structures and related hierarchical spatial
data models provide the theoretical foundation for constructing adaptive, variable-sized
spatial partitions, enabling efficient organization of multiscale spatial information
through recursive subdivision (Samet, 1984). Building on this foundation, Lagonigro
et al., (2020) developed the AQuadtree R package, which provides an adaptive spatial
partitioning framework capable of generating variable-sized grid cells according to the
spatial distribution of observations. This adaptive partitioning produces finer grids in
data-dense regions and coarser grids where observations are sparse, ensuring a spatial
structure that better reflects sampling heterogeneity and improves the model’s capacity
to capture localized spatial variability. Extending this idea, we develop a rotated-
quadtree strategy that applies multiple orientation angles during the quadtree
subdivision process. This enhancement allows the model to capture spatial
heterogeneity from multiple directional perspectives, and averaging predictions across
rotation angles substantially reduces the boundary artifacts that may arise from single-
angle grid partitioning, ultimately improving the robustness of local modeling under
complex environmental gradients.

To address the irregular station distribution, and non-stationarity commonly
encountered in large-scale 75 estimation, we construct a spatially adaptive modeling
framework based on the rotated quadtree approach. Within each grid cell, multi-source
environmental predictors are integrated with in situ station records, and 75 is estimated
using XGBoost models. Based on this framework, the objectives of this study are to:
(1) construct a spatially adaptive modeling system; (2) generate a multi-layer 7s dataset
at a daily time-step and one kilometer resolution in China from 2010-2020; and (3)
evaluate the dataset through independent validation with flux tower observations and
benchmarking against widely used 7s products. The proposed methodology could
directly address the scaling challenges induced by spatial heterogeneity and uneven



data distribution. The generated products would provide a robust foundation for high-

resolution environmental modeling, precision agriculture and climate impact

assessments.

Reference

Lagonigro, R., Oller, R., Martori, J.C., 2020. AQuadtree: An R package for quadtree
anonymization of point data.

Samet, H., 1984. The quadtree and related hierarchical data structures. ACM Comput.
Surv. CSUR 16, 187-260.

Reviewer Comment 2:

Additional clarification regarding auxiliary variable selection criteria is warranted.
Beyond literature review, principles such as correlation analysis should be elaborated.
It is recommended to first validate the existence of spatially non-stationary
relationships using bivariate local Morans I, then proceed with spatial partitioning
and predictive modeling via quadtree recursive retrieval.

Response to Reviewer Comment 2:

Thank you very much for your valuable suggestion. We agree that it is necessary to
further clarify the criteria for selecting auxiliary variables and the evaluation of spatial
non-stationarity. In the revised manuscript, we focus on the local form of spatial
association analysis and provide a more detailed explanation of the analytical
procedures used in this study.

Here are the revisions, supplemented in the Appendix (LL23-L50):

To examine whether the relationships between 75 (GST_Avg) and the auxiliary
variables exhibit spatial non-stationarity, we employed the Local Bivariate Moran’s I,
a local statistic within the Local Indicators of Spatial Association (LISA) framework.
This method allows us to reveal localized spatial associations and spatially varying
relationships between the target variable (X) and the spatially lagged auxiliary variable
(Wy). First, we constructed a spatial weights matrix using the K-nearest neighbors
method (K = 8). This configuration is suitable for the irregular spatial distribution of
meteorological stations across China and ensures that each station has a comparable
number of spatial neighbors.

Based on this spatial weights structure, we calculated the Local Bivariate Moran’s I
between GST Avg (X) and elevation (Y), and obtained permutation-based p-values. We
then computed the spatially lagged auxiliary variable (Wy) and classified each station
into one of four significant LISA cluster types (p < 0.05): High—High (red), High-Low
(green), Low—High (purple), and Low—Low (blue). Stations with non-significant local
associations (p > 0.05) are shown in gray. As illustrated in Figure S5, approximately
64% of the stations exhibit statistically significant local spatial associations, and all four
cluster types occur across different regions of China. These spatially heterogeneous
local association patterns clearly indicate pronounced spatial non-stationarity in the 75—
elevation relationship.



These findings further demonstrate the necessity of adopting a spatially adaptive
modeling framework. Accordingly, the rotated quadtree model developed in this study
is well justified, as it can effectively capture localized variations in predictor—response

relationships.
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Figure SS. Spatial patterns of the bivariate Local Moran’s I between GST Avg and
elevation at meteorological stations across China.

Revised Text (L300-L305):

We applied the Local Bivariate Moran’s I analysis to assess the local spatial relationship
between surface 75 (GST Avg) and elevation as an illustrative example (Fig. S5). The
results reveal significant spatial variations in their local association (p < 0.05),
indicating pronounced spatial non-stationarity in the 7s—elevation relationship. These
findings justify the need for a spatially adaptive modeling strategy capable of capturing
localized heterogeneity.

Reviewer Comment 3:

Methodological details concerning quadtree rotation require elaboration: Can this
approach achieve complete coverage of the study area? Is 360-degree rotation
necessary to cover all prediction grids followed by averaging for final predictions?
Supplementary materials illustrating the detailed procedures of the proposed model
would be valuable.

Response to Reviewer Comment 3:

First, the grid cells generated by a single quadtree subdivision may not fully cover the
entire study area and may omit stations located near the domain boundaries. To address
this limitation, we employ six rotated quadtree configurations at different orientation
angles, which collectively ensure complete spatial coverage and prevent potential loss
of edge-area observations caused by a single subdivision. Second, a full 360° rotation



is unnecessary. We selected six representative angles—0°, 15°, 30°, 45°, 60°, and 75°—
which sufficiently cover different directional alignments; additional angles would only
introduce redundancy without improving performance. Third, we average the
predictions obtained from the six rotation angles, which allows the model to capture
spatial heterogeneity from multiple directional perspectives while effectively
mitigating boundary artifacts induced by any single quadtree partition. This ensemble
approach markedly enhances the stability and robustness of the final soil temperature
estimates. Finally, following your recommendation, we have added detailed workflow
diagrams and supplementary materials that illustrate the complete rotated-quadtree
modeling framework, including grid rotation, spatial subdivision, model training, and
prediction integration.

Revised Text (LL306-1.336):

A quadtree is a hierarchical spatial data structure that recursively subdivides a two-
dimensional space into four quadrants, enabling efficient spatial indexing and localized
data organization. In this study, we adopted a bottom-up, rotated quadtree—based spatial
partitioning strategy that adaptively generates finer grids in regions with dense
observations and coarser grids in sparsely sampled areas. Compared with global
modeling or static grid partitioning, this adaptive approach improves regional modeling
fidelity while maintaining computational efficiency. The procedure consists of the
following steps:

(1) Initialization of Minimum Units

The entire study area was first divided into uniform minimum-sized units (leaf nodes),
each representing a basic spatial element that may contain zero or more soil temperature
observations. This initialization provides the base spatial resolution for subsequent
hierarchical construction. An illustration of the quadtree structure and spatial indexing
principles is provided in Fig. S2.

(2) Bottom-up Hierarchical Merging

Starting from the leaf nodes, groups of four adjacent quadrants were recursively merged
into parent nodes if each contained fewer than 30 observation sites (threshold selection
detailed in Fig. S4). The merging process continued upward until no further groups met
the threshold. This approach ensures that each node has sufficient sample size while
achieving spatially adaptive partitioning across the study area. Each subregion is then
assigned a localized 75 prediction model.

(3) Rotation at Multiple Angles

To reduce potential edge effects introduced by static grid boundaries, we implemented
a rotated quadtree partitioning strategy. The quadtree structure was rotated at six angles
(0°, 15°, 30°, 45°, 60°, and 75°), producing distinct sets of spatial partitions for each
orientation (Fig. 3). Independent models were trained for each rotated configuration,
and the final 7 estimates were obtained by averaging the outputs from all six models.
This rotation-based ensemble method improves spatial smoothness and minimizes
discontinuities at partition boundaries.
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Figure 3. Multi-angle adaptive quadtree partitioning of site observations (0°, 15°, 30°,
45°,60°, 75°)

Reviewer Comment 4:

It is recommended to add a section of pseudocode to illustrate the computational
process of spatial adaptive partition method.

Response to Reviewer Comment 4:

Thank you very much for your suggestion regarding improving the transparency and
reproducibility of our method. In response, we have made the complete R
implementation of the rotated-quadtree spatial adaptive partitioning algorithm publicly
available on GitHub. The repository includes all scripts used to construct the six rotated
quadtree partitions, generate the spatial blocks, and export the polygon shapefiles. The
code is openly accessible at: https://github.com/wangxt1314/Rotated-quadtree

This repository also provides detailed documentation and example files, enabling users
to fully reproduce the quadtree construction and subsequent modeling workflow. We
believe that making the full code publicly accessible will substantially enhance the
reproducibility and transparency of our study.

Revised Text (L730-L732):

7. Code availability

The R scripts used to implement the rotated-quadtree spatial adaptive partitioning are
publicly available at: https://github.com/wangxt1314/Rotated-quadtree

Reviewer Comment 5:

Given the simultaneous inclusion of elevation and slope (often derived from elevation)
as auxiliary variables, potential multi-collinearity concerns should be addressed.
Please discuss whether this correlation might affect model predictive performance.
Response to Reviewer Comment 5S:

Thank you very much for raising this important point. As slope is derived from the
digital elevation model (DEM), it is indeed correlated with elevation. To assess whether


https://github.com/wangxt1314/Rotated-quadtree
https://github.com/wangxt1314/Rotated-quadtree

this relationship may introduce multicollinearity issues in our modeling framework, we
conducted a Variance Inflation Factor (VIF) analysis for all auxiliary variables. The
results are presented in Figure S2. Variance Inflation Factor (VIF) of predictor variables
in the Supplementary Materials. The VIF values for both elevation and slope are well
below commonly accepted thresholds (VIF < 10), indicating that their correlation is not
strong enough to compromise model stability. Furthermore, our modeling framework
is based on a tree-based algorithm (XGBoost), which learns through recursive
partitioning driven by information gain. Such models are inherently robust to
correlations among predictor variables and are far less susceptible to multicollinearity
issues than linear regression models, where parameter estimates can become unstable
under collinearity.

Variance Inflation Factor (VIF) for Predictor variables

Temperature 2m 21.84

LST mean 21.45
Solar_radiation
Clay 0 5cm
EVI

Sand 0 5cm

Predictor variables

Elevation

Slope

Precipitation

0 5 10 15 20 25
VIF

Figure S2. Variance Inflation Factor (VIF) of predictor variables

Reviewer Comment 6:

As model predictions and uncertainty typically coexist, and given the high accuracy
demonstrated in validation results, provision of corresponding prediction uncertainty
estimates would strengthen the methodological rigor.

Response to Reviewer Comment 6:

Thank you very much for your valuable comment. We agree that incorporating a
prediction uncertainty assessment further strengthens the scientific rigor of our
methodology. In response to your suggestion, we have added an uncertainty analysis
based on an ensemble of six quadtree models constructed under different rotation angles.

Specifically, each observation station is predicted six times using quadtree partitioning
structures generated at six different rotation angles. We quantify prediction uncertainty
as the standard deviation of these six predicted 7s values, which reflects the stability



and sensitivity of the model predictions to changes in spatial partitioning orientation. A
larger standard deviation indicates substantial divergence among predictions from
different rotations, suggesting higher structural uncertainty caused by spatial
heterogeneity, partition boundary effects, or variation in local sample density.
Conversely, when the six predictions remain highly consistent, the standard deviation
is small, indicating that the model is stable across different partitioning orientations and
exhibits lower uncertainty.

To derive a more robust annual uncertainty estimate, we further average the daily
uncertainty values for each station within each year, resulting in a station-level annual
uncertainty index (Fig.S14). This uncertainty metric serves as a useful complement to
the prediction results by identifying areas where the model exhibits stronger structural
variability or weaker observational support, thereby enhancing the transparency and
credibility of the modeling results.
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Figure S14. Spatial patterns of prediction uncertainty at six soil depths based on the
rotated-quadtree ensemble.

The station-based uncertainty analysis shows that at the 0 cm depth, a substantially
larger proportion of stations exhibit high uncertainty compared with other depths. The
stations with higher uncertainty are mainly concentrated in the Sichuan Basin, the
Yunnan—Guizhou Plateau, and the Qinghai—Tibet Plateau, which are characterized by
complex geological and geomorphological environments. In contrast, the overall
uncertainty levels at the remaining depths are considerably lower and spatially more
stable. We believe that incorporating this improvement will further strengthen the



methodological rigor, enhance the reliability of the results, and provide valuable
guidance for future users of the dataset.



