
Revisions of Manuscript: ESSD-2025-192 

 

Title: Spatially adaptive estimation of multi-layer soil temperature at a daily time-step 

across China during 2010-2020 

 

Author(s): Xuetong Wang, Liang He, Peng Li, Jiageng Ma, Yu Shi, Qi Tian, Gang 

Zhao, Jianqiang He, Hao Feng, Hao Shi, Qiang Yu 

 

Dear Reviewer, 

 

We sincerely thank you for your thoughtful comments and constructive suggestions on 

our manuscript. We have carefully revised the manuscript in response to your feedback, 

with all changes clearly marked using track changes. In the revised manuscript and 

accompanying supplementary materials, modifications are highlighted in blue for ease 

of reference. 

 

Below, we provide a detailed, point-by-point response to each of your comments. For 

clarity, your original remarks are shown in italics, followed by our corresponding 

replies. We have made every effort to address all concerns comprehensively and to 

improve the scientific rigor, clarity, and overall quality of the manuscript. 

 

We sincerely appreciate the time and effort you invested in reviewing our work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Response to Reviewer1_Comments 

 

Reviewer Comment 1: 

In the introduction (lines 92–104), the authors clearly outline two key challenges in 

current research: first, the significant heterogeneity of Ts leads to unclear relationships 

between variables; second, modeling is hindered by data scarcity and uneven 

distribution. However, in lines 106–113, when introducing the objectives and scope of 

this study, the authors do not explain how the study addresses these two challenges. It 

is also unclear what specific methods are used to overcome them, and why these 

methods are effective. It is recommended that the authors restructure this section by 

focusing on the core problems, rather than simply listing the research contents. This 

would improve the clarity and logical flow of the introduction. 

 

Response to Reviewer Comment 1: 

We greatly appreciate your insightful comments and constructive feedback. We agree 

that the introduction should more explicitly link the identified challenges with the 

study’s objectives and methodology. In response, we have revised and reorganized the 

relevant section to clarify how our approach directly addresses the two key challenges 

currently facing Ts prediction. 

 

Revised Text (L105-L121): 

To address the above challenges, this study proposes a spatially adaptive methodology 

based on quadtrees. This approach dynamically partitions the study area into grids of 

varying sizes, with smaller grids in densely observed regions and larger grids in sparsely 

sampled areas, thereby enabling localized modeling that better captures spatial 

heterogeneity across complex environmental gradients. In addition, multi-source 

environmental predictors are integrated, and XGBoost models are applied within each 

grid cell to capture the nonlinear relationships between Ts and its driving factors. 

Importantly, we employ a spatial block cross-validation strategy to evaluate the model’s 

generalization ability in unseen regions. Based on this framework, the objectives of this 

study are to: (1) construct a spatially adaptive modeling system; (2) generate a multi-

layer Ts dataset at a daily time-step and one kilometer resolution in China from 2010-

2020; and (3) evaluate the dataset through independent validation with flux tower 

observations and benchmarking against widely used Ts products. The proposed 

methodology could directly address the scaling challenges induced by spatial 

heterogeneity and uneven data distribution. The generated products would provide a 

robust foundation for high-resolution environmental modeling, precision agriculture 

and climate impact assessments. 

 

Reviewer Comment 2: 

In Section 2.1, the authors describe the use of CMA Ts observational data. However, it 

is unclear how these data were processed. Were the observations directly provided as 

daily averages, or were they aggregated from hourly data? Was any quality control 

applied? How were missing data handled, both in the vertical profile and in the time 



series? Were any filtering or screening steps performed, and if so, what were the specific 

criteria? 

Response to Reviewer Comment 2: 

We appreciate the reviewer’s thoughtful comment. The multi-layer Ts data were 

obtained from the national CMA weather station network, where measurements were 

automatically recorded every 10 minutes and used to compute daily means at each depth. 

Data preprocessing steps are described in Section 2.1. 

 

Revised Text (L125-L133): 

In this study, in-situ Ts observations was measured at six depths: at the surface (0 m), 

and at subsurface levels of 0.05, 0.10, 0.15, 0.20, and 0.40 meters. Data were collected 

through the national weather station network operated by the China Meteorological 

Administration (CMA), in accordance with standardized measurement protocols. At 

each site, Ts was recorded every 10 minutes and automatically uploaded to a central 

server. Daily mean values at each depth were calculated from these high-frequency 

records. We then assessed data completeness for the period 2010–2020 and excluded 

stations with more than 20% missing daily records at any depth. After quality control, 

2,093 stations were retained for model development. 

 

Reviewer Comment 3: 

In lines 186–190, as well as in Section 4.3, the authors provide a brief discussion of the 

study’s limitations. However, it is concerning that the missing land surface temperature 

(LST) data caused by cloud cover were filled using a simple linear interpolation method. 

This approach may be questionable, as the interpolated values represent a theoretical 

cloud-free state, while cloud presence can significantly influence radiative transfer and 

thus impact LST. There are existing interpolation methods that take into account energy 

transfer and energy balance. It is recommended that the authors investigate these 

alternatives and consider adopting a more reliable method. 

 

Response to Reviewer Comment 3: 

We appreciate your comments on the interpolation method used to address LST gaps 

resulting from cloud contamination. Indeed, cloud cover presents a major challenge in 

remote sensing–based LST reconstruction, as it significantly alters surface radiative 

fluxes and interferes with the physical basis of thermal observations. As the reviewer 

correctly noted, linear interpolation does not explicitly account for the thermal effects 

of clouds and may produce overly idealized estimates under cloud-free assumptions. 

 

In this study, we employed a spatiotemporal linear interpolation method primarily due 

to its computational efficiency, simplicity, and suitability for large-scale reconstruction 

of missing data. To further reduce short-term fluctuations and noise introduced during 

interpolation, we applied a Savitzky–Golay filter during the preprocessing stage to 

smooth the time series (Kong et al., 2019; Chen et al., 2021). Notably, this method can 

be readily implemented on the Google Earth Engine (GEE) platform, enabling efficient 

global processing of MODIS LST products and the rapid generation of daily gap-free 



land surface temperature composites. This facilitates scalable model training and Ts 

estimation. 

Nevertheless, we fully acknowledge the limitations of this method in cases of prolonged 

cloud cover. We concur that incorporating physically based interpolation methods could 

enhance the reliability of the reconstructed data. In future work, we plan to explore 

energy balance–based reconstruction techniques, such as incorporating surface energy 

balance system models and diurnal temperature cycle models (Hong et al., 2022; 

Firozjaei et al., 2024; Wang et al., 2024). 

 

Moving forward, we aim to explore hybrid approaches that combine physically based 

models with machine learning algorithms to better capture the effects of cloud cover, 

land surface heterogeneity, and seasonal variability on Ts reconstruction. Additionally, 

we intend to incorporate passive microwave–based land surface temperature products, 

which are less affected by cloud contamination, as supplementary information for gap-

filling. We believe these advancements will help reduce uncertainties in LST 

reconstruction and further enhance the accuracy and robustness of the resulting Ts 

dataset. 
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Reviewer Comment 4: 

In Section 2.3.1, it is suggested to provide further explanation of the Variance Inflation 

Factor (VIF). Specifically, what is its purpose, how is it calculated, and if possible, a 

formula should be included to make the description more complete. 

 

Response to Reviewer Comment 4: 

We appreciate the reviewer’s valuable suggestion. In the revised manuscript, we have 



added a detailed explanation of the purpose, calculation, and interpretation of the 

Variance Inflation Factor (VIF) in Section 2.3.1. The updated text now includes the VIF 

formula and clarifies its role in diagnosing multicollinearity among predictors. 

 

Here are the revisions (L244-L254): 

Multicollinearity among multiple source variables may affect the robustness of the 

models. Therefore, we rigorously evaluated the multicollinearity among the 

independent variables using the variance inflation factor (VIF) before modeling to 

remove highly correlated variables. The VIF is a diagnostic statistic used to quantify 

the degree of multicollinearity by measuring how much the variance of a regression 

coefficient is inflated due to correlations with other predictors (Akinwande et al., 2015). 

It is calculated as: 
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iR is the coefficient of determination obtained by regressing the i -th predictor 

against all other predictors. Variables with VIF exceeding 10 are generally considered 

severely multicollinear and should be removed. 

 

Reference 

Akinwande, M. O., Dikko, H. G., and Samson, A.: Variance inflation factor: As a 

condition for the inclusion of suppressor variable(s) in regression analysis, Open 

J. Stat., 5, 754–767, https://doi.org/10.4236/ojs.2015.57075, 2015. 

 

Reviewer Comment 5: 

In Section 2.3.2, a substantial portion is devoted to the spatial partitioning strategy 

based on a rotated quadtree. I have several questions regarding this part. First, why 

was the quadtree data structure chosen? The manuscript does not clearly explain this. 

Is it intended to address the issue of uneven distribution of observation sites? If so, why 

is the quadtree suitable for this purpose? Second, what was achieved by using the 

quadtree? Was there an effort to ensure that each node contains a roughly equal number 

of sites, for example around 30? Why was 30 selected as the threshold, and what is the 

basis for this value? Lastly, a minor suggestion (optional for consideration): if the goal 

is to achieve a more balanced spatial distribution of stations, a top-down data structure 

such as the K-D tree (with K = 2 in this study) may be more effective than the bottom-

up quadtree. A K-D tree can ensure the difference in the number of points between leaf 

nodes does not exceed one, and can also support rotation operations. 

 

Response to Reviewer Comment 5: 

We thank the reviewer for the insightful and detailed questions. Below we provide 

point-by-point clarifications regarding: 

(1) the rationale for choosing the rotated quadtree; 

(2) the threshold of 30 observation sites; and  



(3) a comparison with the suggested K-D tree approach. 

 

1. Rationale for Choosing the Rotated Quadtree 

As noted in the revised manuscript, our study faced a significant challenge of spatially 

uneven distribution of observation stations. The objective of using a quadtree-based 

partitioning strategy was not to ensure that each grid cell contains an equal number of 

samples, but rather to enable spatial adaptivity. The quadtree recursively subdivides 

space from the bottom up based on a point-count threshold, thereby generating finer 

grids in densely sampled regions and retaining coarser units in sparse areas. This design 

allows the model to accommodate spatial variability in data density, thereby improving 

both its adaptability and predictive accuracy. 

Moreover, since local models are trained separately for each spatial unit, boundary 

effects between neighboring grids may arise due to discontinuities. To mitigate such 

effects, we implemented a rotated quadtree ensemble approach, in which multiple 

quadtree configurations are generated under different rotation angles. Averaging 

predictions across rotated quadtree configurations helps mitigate boundary-related 

artifacts and improves the spatial smoothness and robustness of the final outputs. This 

spatial ensemble strategy is visually illustrated in Figure S4. These methodological 

details and justifications have been incorporated into the revised manuscript in Section 

2.3.2 (L269-L298) and further discussed in Section 4.1 (L516-L564). 

 

2. Justification for Using a Threshold of 30 Sites 

We sincerely thank the reviewer for the insightful comments regarding the design 

rationale of the quadtree-based partitioning strategy. To justify our choice of threshold 

= 30 as the final splitting criterion, we conducted a systematic evaluation of the 

partitioning performance under different thresholds using three key metrics. The 

supporting analysis and figures are included in the Appendix. 

 

Here are the revisions, supplemented in the Appendix (L14-L44): 

We conducted a systematic evaluation of the partitioning performance under different 

thresholds using three key metrics: the coefficient of variation (CV) of point count, the 

CV of point density, and the total number of grid cells. The CV of point count was used 

to evaluate the balance of sample distribution across spatial units under different 

thresholds. Point density was defined as the number of observation stations within a 

grid cell divided by its area. A lower CV of point density indicates that the partitioning 

effectively adjusted grid size according to local station density—i.e., producing smaller 

grids in dense regions and larger grids in sparse areas—thus reflecting a more adaptive 

spatial division. Conversely, a higher CV suggests that the partitioning failed to capture 

the spatial heterogeneity of station density. Therefore, the CV of point density serves as 

a key indicator of the spatial adaptivity of the quadtree partitioning. 

 

The total number of grids corresponds to the number of local models to be trained, and 

thus indirectly reflects the computational and time cost associated with model training. 

As shown in Figure S4 (a–c), we systematically evaluated quadtree performance under 



a series of point-count thresholds (10, 30, 50, 70, 90): Figure S4a shows that the CV of 

point count drops rapidly with increasing threshold, indicating improved balance in 

sample allocation across grids. However, this trend levels off beyond threshold = 30, 

suggesting diminishing returns. Thus, threshold 30 marks an optimal trade-off. Figure 

S4b shows a notable inflection point in the CV of point density near threshold = 30. 

Although not the global minimum, this point represents an optimal trade-off where grid 

subdivision sufficiently reflects sample density variation without causing over- or 

under-segmentation—thereby capturing spatial adaptivity effectively. Figure S4c 

shows that the number of grid cells decreases rapidly as the threshold increases, leading 

to substantial computational savings. However, the rate of reduction slows considerably 

beyond threshold = 30, indicating limited additional benefit from further increases. 

In summary, threshold = 30 achieves a favorable balance among sample distribution 

equity, spatial adaptivity, and computational efficiency, and was therefore selected as 

the final splitting threshold in this study. The detailed results of this threshold evaluation, 

including figures and metric comparisons, have been added to the revised manuscript 

as supplementary material (Appendix, Lines 9–41) to support transparency. 

 
Figure S4. Performance evaluation of quadtree partitioning under different point-

count thresholds. (a) Coefficient of variation (CV) of point count across spatial units. 

(b) CV of point density (point count per unit area). (c) Total number of generated grid 

cells. Dashed vertical line indicates the selected threshold of 30. 

 

3. Comparison with the K-D Tree Approach 

We appreciate the reviewer’s thoughtful suggestion regarding the use of K-D trees for 

achieving a balanced spatial distribution of stations. We agree that K-D trees offer 

precise control over sample counts in each partition and can be advantageous when 

strict sample balance is the primary objective. However, the core objective of our study 

is not to enforce equal sample sizes in each spatial unit, but rather to enhance the 

adaptability and predictive performance of local modeling under spatially 

heterogeneous station distributions. To this end, we adopted a bottom-up quadtree-

based strategy, which recursively subdivides space based on a point-count threshold. 

This enables the generation of finer grids in data-rich areas and larger cells in sparse 

regions, allowing the model structure to adapt to local data density and environmental 



variability. Compared to top-down methods like K-D trees, the quadtree is better suited 

for capturing spatial adaptivity than enforcing uniform sample counts. That said, we 

acknowledge the merits of K-D trees and agree that they represent a promising 

alternative for future work, particularly in applications where sample balance is more 

critical than spatial adaptivity. 

 

Reviewer Comment 6: 

In Section 2.3.3 (lines 285–295), the authors introduce XGBoost as the core machine 

learning algorithm used in the study. They present its advantages and compare it with 

other methods such as SVM, RF, and neural networks. However, the stated advantages 

are not sufficient to demonstrate that XGBoost is superior to the other listed methods. 

Machine learning models differ in structure, number of parameters, optimization 

strategy, and suitability for different tasks. Therefore, the current explanation is not 

enough to justify the model choice. Considering that the algorithm is not the main focus 

of this paper, it is suggested to either include a brief comparative experiment to support 

the claimed superiority or rephrase the section to emphasize the strengths of XGBoost 

without direct comparison to other models. 

 

Response to Reviewer Comment 6: 

We appreciate the reviewer’s constructive comments regarding the justification of our 

model choice. As suggested, to clarify our reasoning, we have elaborated on the key 

considerations below.  

 

Revised Text (L303-L317): 

We adopted the XGBoost (Extreme Gradient Boosting) algorithm as the core regression 

model for Ts estimation due to its strong predictive performance, computational 

efficiency, and scalability across large environmental datasets. XGBoost builds an 

ensemble of regression trees in a stage-wise boosting process, where each tree is trained 

to minimize the residuals from the previous iteration, leading to a robust and optimized 

model (Chen and Guestrin, 2016). A key strength of XGBoost is its ability to handle 

heterogeneous and high-dimensional predictor sets, which are common in geoscience 

applications involving complex terrain, land cover variability, and climatic gradients. 

Recent studies have demonstrated its effectiveness in similar domains, including land 

surface temperature reconstruction (Li et al., 2024), multi-layer soil moisture estimation 

(Karthikeyan and Mishra, 2021), drought event attribution (Wang et al., 2025), and crop 

yield prediction (Li et al., 2023b). Given these proven strengths and the spatially 

nonstationary characteristics of Ts in our study area, XGBoost was selected to train 

localized prediction models within spatial subregions. 
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Reviewer Comment 7: 

In lines 296–297, the validation set is twice the size of the test set. Is this split reasonable, 

and can it effectively evaluate the generalization performance of the model? Why not 

adopt more common ratios such as 8:1:1 or 6:2:2? In addition, the manuscript later 

mentions that five-fold cross-validation was used for evaluation. In this context, what 

are the roles of the two validation sets? Are they used for model selection, parameter 

tuning, or testing? It is recommended that the authors provide a clearer explanation. It 

is also suggested to report the specific sample sizes for each dataset. 

 

Response to Reviewer Comment 7: 

We thank the reviewer for this valuable comment. In the revised manuscript, we have 

refined the data partitioning strategy and provided a clearer explanation of the roles of 

each dataset. 

 

Specifically, to rigorously evaluate the spatial generalization performance of the model 

and avoid potential data leakage, we employed spatial block cross-validation combined 

with GridSearchCV during localized modeling. In this method, observation sites were 

first grouped into spatial blocks based on their geographic locations, and cross-

validation was then conducted across blocks rather than through random splitting at the 

individual site level. This approach ensured that geographically adjacent sites were not 

simultaneously included in both the training and testing subsets, thereby enabling a 

stricter and more realistic assessment of the model’s generalization ability to new 

regions. Based on this revised scheme, we retrained and re-evaluated the XGBoost 

models. The updated results and methodological details are now presented in the 

revised manuscript (L318–336). 

 



As this study involves multiple soil depths and spatial subregions, the exact sample 

sizes vary across cases and are therefore not reported individually in the main text. 

However, we have clearly specified the data partitioning ratios and their purposes to 

ensure methodological transparency and reproducibility. We believe that this revised 

scheme not only aligns with common practice but also provides a stricter and more 

realistic evaluation of the model’s generalization performance. 

 

Revised Text (L318-336): 

To rigorously account for the strong spatial autocorrelation of Ts and avoid potential 

data leakage between training and testing subsets, we employed a spatial block cross-

validation scheme rather than random splitting. Specifically, within each rotated 

quadtree grid, observation sites were grouped into spatial blocks based on their 

geographic coordinates: station latitude and longitude were each divided by 1° and 

floored to integer values, and stations sharing the same index were assigned to the same 

block. This ensured that samples within the same spatial block were not simultaneously 

assigned to both the training and testing subsets, thereby avoiding data leakage due to 

spatial autocorrelation and enabling a more reliable evaluation of the model’s 

generalization capability. 

 

Within each spatial grid, the data were partitioned into training (90%) and testing (10%) 

subsets at the block level. The training subset was further subjected to 10-fold spatial 

block cross-validation using GridSearchCV to optimize three key hyperparameters: the 

number of trees (n_estimators), maximum tree depth (max_depth), and learning rate 

(learning_rate). Detailed parameter settings are provided in Appendix Table S1. The 

hyperparameter set that yielded the lowest average validation error across the ten folds 

was selected as optimal. The final model was retrained on the full training set with the 

optimized parameters and evaluated on the held-out testing set to assess generalization. 

 

 

Reviewer Comment 8: 

The authors produced data at a 1-kilometer resolution for China. How did the authors 

account for the spatial scale difference between point observations of soil temperature 

and the 1-kilometer resolution results? How was it ensured that the dataset constructed 

through point observation training could represent results at the 1-kilometer spatial 

scale? Additionally, regarding the dataset production, I am very interested in the 

subsequent maintenance and updates of the dataset over time. Can the authors' method 

be extended to produce datasets for subsequent years? 

 

Response to Reviewer Comment 8: 

We thank the reviewer for this important and thoughtful comment. It involves two 

critical aspects:  

(1) the scale consistency between point-based observations and gridded predictions at 

a 1 km resolution;  

(2) the potential for dataset maintenance and future updates. We address both issues 



below. 

 

1. Addressing the Scale Difference Between Point Observations and 1 km 

Predictions 

To reconcile the spatial scale mismatch between point-level Ts observations and the 1 

km gridded outputs, we implemented a multi-pronged modeling strategy designed to 

ensure scale compatibility and representativeness: 

(1) Predictor Resolution consistency: 

All input variables used for model training (e.g., MODIS, ERA5-Land, and soil texture 

data) were uniformly resampled to a spatial resolution of 1 kilometer, thereby ensuring 

that the spatial scale of the predictors is consistent with that of the target output. 

(2) Rotated Quadtree-Based Local Modeling:  

As detailed in the revised Section 2.3.2, we employed a spatially adaptive modeling 

strategy based on rotated quadtree partitioning. This approach automatically divides the 

study area into spatial units of varying sizes according to the density of observation 

stations—finer grids in densely sampled areas and coarser grids in sparsely observed 

regions. Within each unit, a localized XGBoost model was trained using in-situ 

observations and 1 km-resolution environmental predictors. To mitigate edge effects 

and directional bias introduced by fixed partition boundaries, we constructed quadtree 

structures under six different rotation angles (0° to 75°). For each soil depth layer, the 

predictions from these rotated models were averaged, thereby reducing boundary 

artifacts and enhancing the spatial continuity and robustness of the final results.  

(3) Robust Evaluation Framework:  

A two-tier validation framework was established to comprehensively assess model 

performance. First, we applied spatial block cross-validation within each rotated 

quadtree grid. In this scheme, observation sites were partitioned into training (90%) and 

testing (10%) subsets at the block level, ensuring that geographically adjacent sites were 

not simultaneously included in both subsets. The training subset was further subjected 

to 10-fold cross-validation for parameter tuning, while the testing subset was used to 

rigorously evaluate spatial generalization. This approach effectively reduced the risk of 

data leakage caused by spatial autocorrelation and enhanced the robustness of the 

evaluation. Second, independent external validation was performed using daily Ts 

observations from 18 flux tower sites of the ChinaFLUX network. The results (Section 

3.1, Figure 5) show that the dataset maintains high accuracy at these independent sites, 

further confirming the reliability and robustness of the evaluation framework. 

(4) Established Precedents:  

The use of point-based observations to train models for gridded prediction has been 

widely applied in related environmental studies, such as land surface temperature and 

soil moisture estimation (Karthikeyan and Mishra, 2021; Song et al., 2022; Yu et al., 

2024). Our method builds on these established practices by incorporating spatial 

adaptivity and ensemble averaging, further enhancing consistency and robustness. 

 

2. Potential for Dataset Extension and Future Updates 

We greatly appreciate the reviewer’s interest in the extensibility and long-term value of 



the dataset. As elaborated in the revised discussion section, the proposed spatially 

adaptive modeling framework is designed to be modular and scalable, making it readily 

applicable to future years. Given access to updated in-situ station observations and 

corresponding environmental predictors (e.g., MODIS and ERA5-Land), the same 

modeling pipeline can be re-applied to retrain the models and generate new products. 

This allows for filling historical data gaps and extending Ts estimates into future periods.  

In addition, we are currently generating Ts estimates for the period 2001–2010, which 

will soon be released through the National Tibetan Plateau Data Center 

(https://data.tpdc.ac.cn). Beyond this, the dataset will be continuously maintained and 

updated, with all future versions openly released on the same platform to ensure free 

and unrestricted access for the global scientific community. We believe these ongoing 

efforts will provide long-term benefits for environmental monitoring, climate research, 

and ecosystem modeling. 
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https://doi.org/10.1109/TGRS.2024.3368707, 2024. 

 

Reviewer Comment 9: 

How did the authors account for the impact of uneven spatial distribution of 

observation data points on the development of the national soil temperature dataset? 

How do factors such as topography, landform, and vegetation cover types influence the 

results and uncertainties of this dataset? 

 

Response to Reviewer Comment 9: 

1. Addressing the Impact of Uneven Spatial Distribution of Observations 

We sincerely thank the reviewer for raising the important issue of uneven spatial 

distribution of Ts observation sites and its implications for national-scale dataset 

development. As noted, Ts stations in China are concentrated in eastern lowland regions, 

with sparse coverage across the western and high-altitude areas. This spatial imbalance 

poses a major challenge to constructing a robust and spatially representative Ts dataset. 

 

To address this, we adopted a spatially adaptive modeling framework based on rotated 

quadtree partitioning approach. This method improves the dataset construction in two 

primary ways. First, it dynamically subdivides the study area into spatial units based on 

https://data.tpdc.ac.cn/


observation density: finer grids are assigned to densely sampled regions to improve 

local precision and avoid overfitting, while coarser grids are used in sparsely sampled 

areas to maintain model stability and statistical representativeness. Within each grid 

cell, a localized XGBoost model is trained to capture nonlinear relationships between 

Ts and relevant environmental drivers, including topography, landforms, climate, and 

vegetation. This strategy mitigates structural biases associated with training a single 

global model on unevenly distributed data. Second, to reduce boundary artifacts caused 

by fixed grid divisions, we generated quadtree structures under multiple rotation angles 

and averaged their predictions. This ensemble strategy enhanced the spatial coherence 

and robustness of the final Ts dataset (see revised Section 2.3 and Section 4.1 for 

detailed explanations). 

 

Revised Text (L270-L298): 

A quadtree is a hierarchical spatial data structure that recursively subdivides a two-

dimensional space into four quadrants, enabling efficient spatial indexing and localized 

data organization. In this study, we adopted a bottom-up, rotated quadtree-based spatial 

partitioning strategy that adaptively generates finer grids in regions with dense samples 

and coarser grids in sparse regions. Compared to global modeling or static grid 

partitioning, this adaptive approach offers improved regional modeling fidelity while 

significantly enhancing computational efficiency. The procedure consists of the 

following steps: 

 

(1) Initialization of Minimum Units 

The entire spatial domain was first divided into uniform, minimum-sized units (leaf 

nodes), each representing a fundamental spatial element. These units may contain zero 

or more in-situ observations. This initial step provides the base resolution for 

subsequent hierarchical construction. The structure and principle of quadtree spatial 

indexing are illustrated in Fig. S2. 

 

(2) Hierarchical Merging 

Starting from the leaf nodes, groups of four adjacent quadrants were recursively merged 

into parent nodes if each contained fewer than 30 observation sites (threshold selection 

detailed in Fig. S3). The merging process continued upward until no further groups met 

the threshold. This approach ensures that each node has sufficient sample size while 

achieving spatially adaptive partitioning across the study area. Each subregion is then 

assigned a localized Ts prediction model. 

 

(3) Rotation at different angles  

To reduce potential edge effects introduced by static grid boundaries, we implemented 

a rotated quadtree partitioning strategy. The quadtree structure was rotated at six angles 

(0°, 15°, 30°, 45°, 60°, and 75°), producing distinct sets of spatial partitions for each 

orientation (see Fig. 2). Independent models were trained for each rotated configuration, 

and the final Ts estimates were obtained by averaging the outputs from all six models. 

This rotation-based ensemble method improves spatial smoothness and minimizes 



discontinuities at partition boundaries. 

 

Revised Text (L516-L564): 

4.1 The advantages of the spatially adaptive model 

Previous studies have explored various approaches for constructing Ts datasets. For 

instance, Wang et al., (2023) created a daily multi-layer Ts dataset for China (1980-

2010) at 0.25° resolution, employing interpolation techniques including the thin-plain 

spline and the angular distance weight interpolation methods with over 2,000 in-situ 

observations. A persistent challenge in building national-scale Ts datasets, however, lies 

in the highly uneven spatial distribution of observation stations—densely clustered in 

eastern lowlands while remaining sparse in western and high-altitude regions. Global 

modeling approaches, which train a single unified function across the entire domain, 

are inherently limited in capturing the nonlinear and non-stationary relationships 

between Ts and its predictors in such heterogeneous landscapes. Specifically, in sparsely 

sampled regions, global models lack sufficient data to learn effectively, resulting in low 

prediction accuracy. In contrast, in densely sampled areas, the model tends to overfit, 

and the training process becomes disproportionately influenced by those regions. This 

imbalance introduces systematic biases and limits model generalizability.  

 

Reanalysis datasets, which synergize data assimilation systems with numerical weather 

prediction and land surface modeling frameworks, provide valuable representations of 

land-atmosphere interactions and subsurface heat transfer processes. These products are 

particularly advantageous for large-scale climate simulations and long-term 

environmental assessments. Yang and Zhang (2018) assessed the Ts accuracy of four 

reanalysis datasets (ERA-Interim/Land, MERRA-2, CFSR, and GLDAS-2.0) in China 

using in-situ monthly mean Ts observations. The results showed that all reanalysis 

datasets consistently underestimated Ts across the country. More recently, the ERA5-

Land and GLDAS 2.1 Ts dataset offers high temporal resolution (hourly/3-hour), but it 

is limited by a spatial resolution of 0.1 or 0.25 degrees. Beyond reanalysis datasets, 

some efforts have focused on constructing empirical Ts products using ML approaches. 

For example, the Global Soil Bioclimatic Variables dataset (Lembrechts et al., 2022), 

derived from Random Forest modeling with 8,519 global sensors, provides only long-

term climatological means, rather than high-resolution daily estimates. 

 

In contrast, the methodological framework proposed in this study addresses both 

accuracy and resolution limitations. The spatially adaptive modeling strategy offers 

significant advantages over traditional interpolation and globally trained ML models. 

Its core strength lies in localized modeling, which accounts for regional variability in 

topography, soil properties, and climate conditions. As shown in Fig. S5, the rotated 

quadtree strategy partitions space at six orientations (0°–75°), enabling a more nuanced 

representation of spatial heterogeneity. By averaging predictions across these rotated 

configurations, the method reduces boundary artifacts often associated with static grids, 

resulting in smoother and more continuous spatial outputs. Moreover, the fine spatial 

resolution (1 km) enables the model to resolve localized thermal patterns that are critical 



for understanding vegetation dynamics and soil biogeochemistry. We also assessed the 

contribution of satellite-derived LST to model performance. As illustrated in Fig. S6, 

incorporating LST significantly improves spatial accuracy—especially in sparsely 

vegetated areas—compared to air temperature inputs, with notable enhancements in 

northwestern China. This highlights the importance of multi-source data fusion in 

boosting the performance of spatially adaptive models under data-scarce conditions. In 

summary, our spatially adaptive local modeling approach offers a more robust and 

scalable solution for large-scale Ts estimation under heterogeneous station distributions 

and complex environmental conditions. 

 

2. Influence of Topography, Climate, and Vegetation on Model Performance and 

Uncertainty 

 

We also thank the reviewer for pointing out the potential influence of environmental 

factors on model uncertainty. As shown in Sections 3.2 and 3.3 of the revised 

manuscript, although the overall accuracy of the dataset is satisfactory, the estimation 

performance exhibits clear spatial and seasonal heterogeneity. To address this, we 

expanded the discussion in Section 4.3 to systematically examine how factors such as 

topography, climate conditions, land cover types, and remote sensing variables may 

affect the stability and accuracy of Ts estimates across different regions and seasons. 

We also proposed future directions for improving model adaptability under complex 

environmental conditions. These revisions aim to clarify how our methodology 

accounts for spatial sampling bias and environmental complexity, and we hope they 

address the reviewer’s concerns comprehensively. 

 

Revised Text (L602-L662): 

Despite the strong performance of our spatially adaptive Ts estimation framework, 

several limitations warrant acknowledgment. As shown in Figures 6 and 7, model 

validation at station level reveals spatial heterogeneity in prediction accuracy, with 

relatively lower performance observed in the YGP and the QTP regions. On the one 

hand, as evidenced by Figure 10, our multi-source modeling framework captures Ts 

variations across different elevations and geomorphic conditions more effectively than 

existing datasets. However, the QTP and YGP are characterized by complex terrain and 

high altitudes, coupled with rapidly changing climatic conditions, which significantly 

complicate Ts estimation. These findings align with previous studies showing that high 

elevations intensify the disconnect between air temperature and LST, thereby increasing 

the uncertainty in thermal modeling (Mo et al., 2025). 

 

MODIS LST serves as a critical input to our modeling framework. However, as an 

optical remote sensing product, it is highly susceptible to cloud contamination, often 

resulting in data gaps. Despite the use of spatiotemporal interpolation and SG filtering, 

residual uncertainties persist in the reconstructed LST data. Future improvements in Ts 

reconstruction can be pursued along two main directions. First, more physically 

grounded LST reconstruction methods can be adopted, such as incorporating surface 



energy balance models and diurnal temperature cycle models (Hong et al., 2022; 

Firozjaei et al., 2024; Wang et al., 2024). These methods apply energy conservation 

principles to estimate Ts during periods of missing or unreliable observations, thereby 

providing more realistic estimates of land surface thermal conditions during periods of 

cloud cover. Second, integrating higher temporal resolution remote sensing 

observations may help overcome the limitations of MODIS. For instance, passive 

microwave satellite data provide all-weather observations and are less sensitive to cloud 

interference (Duan et al., 2017; Wu et al., 2022). In addition, next-generation 

geostationary satellites such as Himawari-8 offer observations at 10-minute intervals, 

substantially enhancing the temporal continuity and quality of surface temperature 

estimates (Yamamoto et al., 2022; You et al., 2024). These enhancements are expected 

to significantly improve the accuracy and temporal continuity of soil temperature 

monitoring. 

 

Our results (Figures 8 and 9) show that model accuracy varies across different soil 

depths, with additional influences from season and land use. Accuracy is relatively 

lower at the surface (0 cm), improves at intermediate depths (5–10 cm), and then 

declines again at greater depths (20–40 cm). This depth-dependent pattern can be 

explained by the physical characteristics of soil temperature. Surface soil temperature 

is highly sensitive to short-term meteorological fluctuations such as radiation, 

precipitation, and evapotranspiration, leading to greater spatiotemporal variability and 

larger prediction errors. In contrast, intermediate soil layers benefit from the buffering 

effects of thermal diffusion and soil heat capacity, which dampen high-frequency 

fluctuations and stabilize the relationship between predictors and Ts, thereby improving 

performance at these depths. At greater depths, however, surface-level errors propagate 

downward through the cascading framework, resulting in reduced accuracy—

particularly during summer and winter. 

 

Seasonal changes and variations in land cover further contribute to differences in 

estimation accuracy. As shown in Figures 8 and 9, the model exhibits higher accuracy 

in spring and autumn, whereas its performance tends to decline during summer and 

winter. During summer, dense vegetation growth and canopy closure reduce the 

influence of surface–atmosphere energy exchanges on Ts, weakening the correlation 

between canopy temperature and subsurface Ts (Kropp et al., 2020; Cui et al., 2022). In 

winter, snow cover introduces a suite of confounding effects: high surface albedo 

reduces net radiation (Loranty et al., 2014; Li et al., 2018), while snow acts as an 

insulator, limiting the soil's response to cold air incursions (Zhang, 2005; Myers-Smith 

et al., 2015). Additionally, low temperatures lead to soil water freezing, which alters the 

soil’s thermal conductivity and heat storage capacity. These factors, together with 

frequent freeze–thaw cycles, introduce complex nonlinear dynamics in Ts that increase 

modeling uncertainty (Li et al., 2023a; Imanian et al., 2024). While our multi-source 

adaptive modeling framework performs well across depths, it does not explicitly 

account for the physical mechanisms of vertical heat transfer. Future research could 

explore deep learning models that are capable of learning complex spatiotemporal 



features and improving the physical interpretability of Ts variations across time, space, 

and depth. 
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Reviewer Comment 10: 

There are also some minor issues that should be addressed. For example, in Figures 6 

and 7, it is recommended to include a color bar legend. As it stands, it is difficult to 

interpret the exact values represented by the orange points. In Equation (2), the 

variables x and y lack subscripts i. In Equation (4), the variable i used for summation 

is not defined. In the references, line 667 and 763 include “others” among the authors—

what does this mean? It is suggested to carefully check the manuscript for such details, 

including grammar, figures, and reference formatting. 

Response to Reviewer Comment 10: 

We thank the reviewer for the careful reading and helpful suggestions. In response: 

1. Figure revisions 

We have redrawn the portion of Figure 1 related to dataset division in the revised 

manuscript to present it more clearly to the readers. Additionally, we have added color 

bar legends to both Figure 6 and Figure 7. This addition clarifies the exact values 



represented by the orange points and enhances the interpretability of the figures. 

 

Revised Text (L342-L344): 

 
Figure 3. Workflow of the proposed method to obtain multi-layer Ts over the China. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Revised Text (L402-L408): 

 

Figure 6. Goodness of R² across China estimated during the model testing phase. 

Performance metrics are calculated between predicted_Ts and in-situ Ts data sets. 

 



 

Figure 7. Goodness of RMSE across China estimated during the model testing phase. 

Performance metrics are calculated between predicted Ts and in-situ Ts data sets. 

 

2. Equation corrections 

 

Revised Text (L352-L359): 

Equation (2) has been corrected to include subscripts i for both x and y, to clearly 

indicate that the RMSE is calculated over paired observations. 
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Equation (4) has been reformulated to explicitly define the summation index i and to 

reflect the mean bias across all samples. 
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3. Reference formatting 

In accordance with the reviewer’s suggestion, we have carefully reviewed and revised 

the entire reference list to ensure formatting accuracy and consistency, fully complying 

with the journal’s citation requirements. 

 

4. Additional Edits 

We carefully reviewed the manuscript to address minor issues in grammar, figure 

annotations, and reference formatting. We are grateful for the reviewer’s attention to 



these important details, which helped us further improve the overall clarity and quality 

of the manuscript. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Response to Reviewer2_Comments 

 

Reviewer Comment 1: 

The method used many data (primarily including in-situ observations and indicator 

variables) to produce soil temperature. By the way, the in-situ in Figure 3 is wrongly 

spelled as in-suit. Since these data are with varying spatial scales, and many 

complicated steps are involved in this procedure to produce the Ts at different depths. I 

just wonder why the outputted Ts is with that good accuracy. Given than even the 

acknowledged MODIS LST (nearly Ts at 0 cm) is 1-2K, and it has been taken as an 

input in this study. 

 

Response to Reviewer Comment 1: 

We sincerely thank the reviewer for this valuable comment. The relatively high 

accuracy of our model can be attributed to the following three aspects: 

1. Complementarity of multi-source information.  

MODIS LST is only one of many predictors and not the dominant determinant. By 

integrating near-surface air temperature, radiation, precipitation, vegetation indices, 

topography, and soil texture, the model captures the key drivers of soil thermal 

dynamics. This multi-source data fusion enables the model to learn complex nonlinear 

relationships, thereby mitigating the influence of errors from any single predictor (e.g., 

LST). 

 

2. Localized modeling based on the rotated quadtree.  

The rotated quadtree adaptively partitions the study domain according to station density, 

allowing local models to better represent regional heterogeneity. This spatially adaptive 

approach avoids systematic bias from scale mismatch and significantly improves the 

model’s applicability and stability across diverse regions. 

 

3. Robust performance under different conditions.  

In subsequent analyses, we compared model performance across seasons and land-use 

types. Results indicate that model accuracy is relatively higher in spring and autumn 

than in summer and winter, and is generally greater over croplands, grasslands, and 

barren lands compared with forests. These patterns further demonstrate that the high 

accuracy is reasonable and reflects the robustness of the model, rather than an artifact 

of overfitting. 

 

We also appreciate the reviewer’s careful note on the spelling issue in Figure 3. We 

have corrected “in-suit” to “in-situ” (L342–344 in the revised manuscript). 



 
Figure 3. Workflow of the proposed method to obtain multi-layer Ts over the China. 

 

Reviewer Comment 2: 

To my knowledge, LST changed very quickly and is seriously affected by cloud. The 

local observation time differ across China, and most regions in the South are covered 

by cloud at most time. How you process these data, and whether the accuracy can be 

guaranteed in your study? 

 

Response to Reviewer Comment 2: 

We greatly appreciate the reviewer’s attention to this issue. To address the cloud-

induced data gaps and temporal mismatch in LST, we implemented the following 

measures: 

 

1. Cloud-induced Data Gaps 

Cloud cover, especially in southern China, is indeed a significant challenge. To mitigate 

this, we reconstructed missing data caused by cloud cover using spatio-temporal 

interpolation combined with neighboring pixel information. We then applied the 

Savitzky-Golay smoothing method to generate continuous daily fields, effectively 

reducing the data gaps caused by cloud interference. 

 



2. Handling MODIS Daytime and Nighttime LST 

We separately processed the instantaneous daytime and nighttime LST from MODIS, 

and calculated the mean of these two values to serve as the daily average LST input 

variable. Compared to instantaneous temperatures, daily mean values are less sensitive 

to missing data, which helps improve the stability of the data. 

 

3. Uncertainty in Using LST as an Input Variable  

We acknowledge that using mean_LST as an input variable may introduce some 

uncertainties, particularly in southern regions where cloud cover leads to more 

significant data gaps. We have discussed the limitations of this approach and future 

improvements in the revised discussion section of the manuscript. Despite these 

uncertainties, considering that mean_LST effectively captures long-term surface 

temperature trends at a large spatial scale, we decided to use it as a feature for modeling. 

 

We hope these clarifications address the reviewer’s concerns regarding cloud effects, 

temporal mismatches, and the uncertainties introduced by the use of LST as an input 

variable. The methods we have implemented are well thought out to ensure the accuracy 

and reliability of the model results. 

 

Revised Text (L601-L662): 

4.3 Limitations and future perspective 

Despite the strong performance of our spatially adaptive Ts estimation framework, 

several limitations warrant acknowledgment. As shown in Figures 6 and 7, model 

validation at station level reveals spatial heterogeneity in prediction accuracy, with 

relatively lower performance observed in the YGP and the QTP regions. On the one 

hand, as evidenced by Figure 10, our multi-source modeling framework captures Ts 

variations across different elevations and geomorphic conditions more effectively than 

existing datasets. However, the QTP and YGP are characterized by complex terrain and 

high altitudes, coupled with rapidly changing climatic conditions, which significantly 

complicate Ts estimation. These findings align with previous studies showing that high 

elevations intensify the disconnect between air temperature and LST, thereby increasing 

the uncertainty in thermal modeling (Mo et al., 2025). 

 

MODIS LST serves as a critical input to our modeling framework. However, as an 

optical remote sensing product, it is highly susceptible to cloud contamination, often 

resulting in data gaps. Despite the use of spatiotemporal interpolation and SG filtering, 

residual uncertainties persist in the reconstructed LST data. Future improvements in Ts 

reconstruction can be pursued along two main directions. First, more physically 

grounded LST reconstruction methods can be adopted, such as incorporating surface 

energy balance models and diurnal temperature cycle models (Hong et al., 2022; 

Firozjaei et al., 2024; Wang et al., 2024). These methods apply energy conservation 

principles to estimate Ts during periods of missing or unreliable observations, thereby 

providing more realistic estimates of land surface thermal conditions during periods of 

cloud cover. Second, integrating higher temporal resolution remote sensing 



observations may help overcome the limitations of MODIS. For instance, passive 

microwave satellite data provide all-weather observations and are less sensitive to cloud 

interference (Duan et al., 2017; Wu et al., 2022). In addition, next-generation 

geostationary satellites such as Himawari-8 offer observations at 10-minute intervals, 

substantially enhancing the temporal continuity and quality of surface temperature 

estimates (Yamamoto et al., 2022; You et al., 2024). These enhancements are expected 

to significantly improve the accuracy and temporal continuity of soil temperature 

monitoring. 

 

Our results (Figures 8 and 9) show that model accuracy varies across different soil 

depths, with additional influences from season and land use. Accuracy is relatively 

lower at the surface (0 cm), improves at intermediate depths (5–10 cm), and then 

declines again at greater depths (20–40 cm). This depth-dependent pattern can be 

explained by the physical characteristics of soil temperature. Surface soil temperature 

is highly sensitive to short-term meteorological fluctuations such as radiation, 

precipitation, and evapotranspiration, leading to greater spatiotemporal variability and 

larger prediction errors. In contrast, intermediate soil layers benefit from the buffering 

effects of thermal diffusion and soil heat capacity, which dampen high-frequency 

fluctuations and stabilize the relationship between predictors and Ts, thereby improving 

performance at these depths. At greater depths, however, surface-level errors propagate 

downward through the cascading framework, resulting in reduced accuracy—

particularly during summer and winter. 

 

Seasonal changes and variations in land cover further contribute to differences in 

estimation accuracy. As shown in Figures 8 and 9, the model exhibits higher accuracy 

in spring and autumn, whereas its performance tends to decline during summer and 

winter. During summer, dense vegetation growth and canopy closure reduce the 

influence of surface–atmosphere energy exchanges on Ts, weakening the correlation 

between canopy temperature and subsurface Ts (Kropp et al., 2020; Cui et al., 2022). In 

winter, snow cover introduces a suite of confounding effects: high surface albedo 

reduces net radiation (Loranty et al., 2014; Li et al., 2018), while snow acts as an 

insulator, limiting the soil's response to cold air incursions (Zhang, 2005; Myers-Smith 

et al., 2015). Additionally, low temperatures lead to soil water freezing, which alters the 

soil’s thermal conductivity and heat storage capacity. These factors, together with 

frequent freeze–thaw cycles, introduce complex nonlinear dynamics in Ts that increase 

modeling uncertainty (Li et al., 2023a; Imanian et al., 2024). While our multi-source 

adaptive modeling framework performs well across depths, it does not explicitly 

account for the physical mechanisms of vertical heat transfer. Future research could 

explore deep learning models that are capable of learning complex spatiotemporal 

features and improving the physical interpretability of Ts variations across time, space, 

and depth. 
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Reviewer Comment 3: 

On the other hand, the seemingly good accuracy is not that strange. Because the 

authors used the same ground measurement to validate the estimated values. Although 

the entire data has been divided into two sections of training and validation. They are 

actually homologous with the similar schemes by CMA. How about validating the 

estimated results with data collected from different sources. 

 

Response to Reviewer Comment 3: 

We sincerely thank the reviewer for this valuable and necessary comment. In the revised 

manuscript, we have strengthened the validation design to address this concern by (1) 

implementing a spatial block cross-validation scheme and (2) incorporating 

independent validation against flux tower observations, thereby enhancing the 

independence and credibility of our evaluation. 

 

First, we acknowledge that the CMA operational network is currently the only 

nationwide source of long-term (≥10 years), large-scale, and multi-layer (0–40 cm) Ts 

observations in China, and thus forms the most comprehensive basis for constructing a 

national Ts dataset. To rigorously account for the strong spatial autocorrelation of Ts 



and avoid potential data leakage between training and testing subsets, we employed a 

spatial block cross-validation scheme rather than random splitting. Observation sites 

were first partitioned into rotated quadtree subregions. Within each subregion, sites 

were further grouped into spatial blocks by flooring their latitude and longitude values 

to integer degrees, such that stations sharing the same integer indices (i.e., falling within 

the same 1° × 1° index) were assigned to the same block. This method ensures that 

samples within the same spatial block are not simultaneously allocated to both the 

training and testing subsets, thereby preventing data leakage caused by spatial 

autocorrelation and providing a more reliable assessment of the model’s generalization 

capability. 

Second, to further strengthen independence, we validated the final dataset against daily 

Ts observations from 18 flux tower sites of the ChinaFLUX network. Measurements at 

0, 5, 10, 15, 20, and 40 cm were retained for consistency. Results (Figure 5; Table S2) 

show that our dataset maintains high accuracy at these independent sites (R² = 0.85–

0.90; RMSE = 3.3–4.2 K), confirming that the accuracy is robust and not merely a 

product of same-source validation. 

 

Taken together, the validation results from both spatial block cross-validation and 

independent flux tower observations demonstrate that the spatially adaptive framework 

we developed achieves strong robustness, reliability, and spatial generalization ability. 

 

 

Revised Text (L318-L326): 

To rigorously account for the strong spatial autocorrelation of Ts and avoid potential 

data leakage between training and testing subsets, we employed a spatial block cross-

validation scheme rather than random splitting. Specifically, within each rotated 

quadtree grid, observation sites were grouped into spatial blocks based on their 

geographic coordinates: station latitude and longitude were each divided by 1° and 

floored to integer values, and stations sharing the same index were assigned to the same 

block. This ensured that samples within the same spatial block were not simultaneously 

assigned to both the training and testing subsets, thereby avoiding data leakage due to 

spatial autocorrelation and enabling a more reliable evaluation of the model’s 

generalization capability. 

 

Within each spatial grid, the data were partitioned into training (90%) and testing (10%) 

subsets at the block level. The training subset was further subjected to 10-fold spatial 

block cross-validation using GridSearchCV to optimize three key hyperparameters: the 

number of trees (n_estimators), maximum tree depth (max_depth), and learning rate 

(learning_rate). Detailed parameter settings are provided in Appendix Table S1. The 

hyperparameter set that yielded the lowest average validation error across the ten folds 

was selected as optimal. The final model, retrained on the full training set with these 

parameters, was then evaluated on the held-out testing blocks to assess its 

generalization ability and examine potential overfitting within each grid. 

 



Revised Text (L372-L381): 

Furthermore, to enhance the independence of the evaluation, we validated the final 

dataset against daily Ts observations from 18 flux tower sites of the ChinaFLUX 

network. For consistency, we retained measurements only at depths of 0, 5, 10, 15, 20, 

and 40 cm. Metadata for these sites is provided in Table S2, and the corresponding 

validation results are presented in Figure 5. The evaluation shows that our dataset 

achieves high accuracy at these independent sites (R² = 0.85–0.90; RMSE = 3.3–4.2 K), 

further demonstrating the robustness of our approach. Taken together, the validation 

results from both spatial block cross-validation and flux tower observations confirm 

that the spatially adaptive model we developed exhibits reliable accuracy and strong 

spatial generalization capability. 

 

Figure 5. Density scatter plots comparing estimated daily Ts with flux tower 

observations at different depths 

 

Table.S2 Metadata of daily Ts observations from flux towers used for validation. 

Site Ecosystem Depth (cm) Time series 

Baotianman Forest Station Forest 0,5,20 2010-2014 

Changling Rice Paddy Station Cropland 5,10,20 2018-2020 

Daan Cropland Station Cropland 0,5,10,15,20 2017-2020 

Damao Grassland Station Grassland 0,5,10,15,20,40 2017-2020 

Danzhou Rubber Plantation 

Station 

Forest 5,10,20 2010 

Haibei Alpine Meadow Station Grassland  5,10,15,20,40 2015-2020 

Haibei Shrubland Station Grassland 0,5,20,40 2016-2018 

Huzhong Boreal Forest Station Forest 5,10,20 2014-2018 

Jinzhou Cropland Station Cropland 5,10,15,20,40 2011-2014 

Lijiang Alpine Meadow Station Grassland 5,10,15,20,40 2013-2020 

Maoershan Forest Station Forest 5 2016-2018 

Panjin Reed Wetland Station Wetland 10,20,40 2018-2020 



Qianyanzhou Plantation Forest 

Station 

Forest 5,10,20 2011-2015 

Ruoergai Alpine Wetland 

Station 

Wetland 0,5,10,20 2013-2020 

Sanjiangyuan Alpine Grassland 

Station 

Grassland 0,5,15 2013-2015 

Taoyuan Cropland Station Cropland 5,10,15,20,40 2010-2014 

Xishuangbanna Rubber 

Plantation Station 

Forest 0,5,20 2010-2014 

Yuanjiang Dry-Hot Valley 

Savanna Station 

Grassland 5,10,20,40 2013-2015 

 

Reviewer Comment 4: 

The authors used on XGBoost, why not try other machine learning algorithms. It is not 

sure that XGBoost perform best. Maybe a balance of multiple algorithms is more 

convincible. 

 

Response to Reviewer Comment 4: 

We thank the reviewer for this valuable comment. We agree that other machine learning 

approaches (e.g., RF, GBDT, LSTM) could in principle be applied to soil temperature 

estimation. However, the main innovation of our study lies not in algorithm comparison, 

but in the spatially adaptive modeling framework (rotated quadtree + local modeling + 

layer-wise cascading), which addresses the challenges posed by spatial non-stationarity 

and uneven observation distribution in nationwide Ts estimation. 

 

We selected XGBoost because it offers clear advantages over alternative methods for 

large-scale mapping: 

 

1. Compared to RF 

XGBoost converges faster, is more memory-efficient, and yields lighter prediction 

models; 

 

2.Compared to traditional GBDT:  

XGBoost incorporates parallelization, sparse-aware processing, and cache optimization, 

leading to much higher efficiency on large datasets; 

 

3. Compared to LSTM and deep learning models:  

XGBoost has lower computational complexity, less dependence on GPUs, and runs 

efficiently on CPUs, making it more practical for nationwide, daily, decade-long 

mapping tasks. 

 

Therefore, in the revised manuscript, we emphasized the novelty of the spatially 

adaptive framework and cited relevant literature to highlight the widespread use of 

XGBoost in large-scale mapping. The focus of this work is the framework itself rather 



than a benchmarking exercise among algorithms. For details, please refer to the revised 

manuscript. 

Revised Text (L303-L317): 

We adopted the XGBoost (Extreme Gradient Boosting) algorithm as the core regression 

model for Ts estimation due to its strong predictive performance, computational 

efficiency, and scalability across large environmental datasets. XGBoost builds an 

ensemble of regression trees in a stage-wise boosting process, where each tree is trained 

to minimize the residuals from the previous iteration, leading to a robust and optimized 

model (Chen and Guestrin, 2016). A key strength of XGBoost is its ability to handle 

heterogeneous and high-dimensional predictor sets, which are common in geoscience 

applications involving complex terrain, land cover variability, and climatic gradients. 

Recent studies have demonstrated its effectiveness in similar domains, including land 

surface temperature reconstruction (Li et al., 2024), multi-layer soil moisture estimation 

(Karthikeyan and Mishra, 2021), drought event attribution (Wang et al., 2025), and crop 

yield prediction (Li et al., 2023). Given these proven strengths and the spatially 

nonstationary characteristics of Ts in our study area, XGBoost was selected to train 

localized prediction models within spatial subregions. 
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Reviewer Comment 5: 

Like many other overabundant pure machine learning articles, the present study lacks 

of innovation, but eligible as a data description paper. Reanalysis data such as ERA5-

Land also have Ts at multiple layers, except for the finer spatial resolution (they can 

also do that if they want), what are the advantages of your data? Why do you think a 



user should consider your data? 

 

Response to Reviewer Comment 5: 

We sincerely thank the reviewer for raising the important issue of innovation. The 

novelty of this study lies in two main aspects: methodology and data products. 

 

 

1. On the methodological side, the core improvements include: 

(1) A rotated quadtree–based local modeling framework, which effectively addresses 

the challenges of spatial non-stationarity and uneven station distribution in nationwide 

soil temperature estimation; 

 

(2) A layer-wise cascading prediction strategy, which takes the estimated shallow-layer 

temperature as input for deeper layers, explicitly incorporating the continuity of soil 

heat conduction and thereby improving both the accuracy and consistency of multi-

depth soil temperature estimation. 

 

 

2. On the data-product side, our dataset offers several distinct advantages over 

existing reanalysis products (e.g., ERA5-Land, GLDAS): 

(1) Higher spatial resolution — ERA5-Land provides a resolution of ~9 km, while our 

dataset achieves 1 km daily resolution, making it more suitable for agricultural and 

regional ecosystem applications. 

 

(2) Finer vertical structure — reanalysis products (e.g., ERA5-Land) generally provide 

soil temperature at relatively broad layers (e.g., 0–7 cm, 7–28 cm, 28–100 cm, 100–289 

cm), whereas our dataset delivers a more detailed profile at 0, 5, 10, 15, 20, and 40 cm, 

which better captures near-surface soil thermal dynamics critical for agriculture and 

ecosystem studies. 

 

(3) Extensibility — The proposed spatially adaptive framework is modular and scalable, 

allowing the dataset to be readily extended both backward and forward in time as long 

as in-situ observations and corresponding environmental predictors are available. We 

are currently extending the dataset to cover 2001–2009 and plan to provide continuous 

annual updates in the future, with all versions to be openly released through the National 

Tibetan Plateau Data Center. 

 

(4) Uniqueness — to the best of our knowledge, this is currently the only nationwide Ts 

dataset that combines high spatial resolution, multi-layer vertical profiles, and long-

term temporal coverage. 

 

In summary, this study not only introduces a new spatially adaptive modeling 

framework, but also delivers a nationwide Ts dataset that is unique in its resolution, 

depth coverage, and temporal span. We believe this dataset will provide significant 



value for agricultural production, ecosystem modeling, carbon budget assessments, and 

climate change research, and will serve a broad scientific and applied user community. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Response to Reviewer3_Comments 

 

Reviewer Comment 1: 

The authors state that the sites were randomly split into training (70%), validation 

(20%), and test (10%) sets. For geospatial data like soil temperature, which exhibits 

strong spatial autocorrelation, this random splitting is a critical methodological flaw. 

It almost certainly leads to "data leakage", where test sites are geographically close to 

training sites. Consequently, the model can achieve high performance on the test set 

even though it did not learn the true underlying relationships between predictors and 

Ts. This means the model's ability to generalize to new, un-sampled areas is not being 

properly evaluated. The reported performance metrics (e.g., R² > 0.93 in Fig. 5) are 

therefore very likely to be significantly inflated and overly optimistic.  

 

The authors should implement a more rigorous validation scheme that accounts for 

spatial autocorrelation. A spatial block cross-validation approach is strongly 

recommended. 

 

Response to Reviewer Comment 1: 

We sincerely thank the reviewer for this insightful comment. We fully agree that 

random splitting of sites into training, validation, and test sets may lead to spatial data 

leakage due to the strong spatial autocorrelation of soil temperature. This could indeed 

result in overly optimistic performance metrics and an inaccurate assessment of the 

model’s spatial generalization ability. 

 

In response, we have revised our methodology by adopting a spatial block cross-

validation scheme to partition the data. Specifically, observation sites were grouped into 

spatial blocks, and the cross-validation was conducted across these blocks rather than 

through random splits. This approach ensures that geographically adjacent sites are not 

simultaneously included in both training and testing subsets, thereby providing a more 

rigorous and realistic evaluation of model generalization to un-sampled regions. 

 

We have retrained and re-evaluated the XGBoost models using this revised validation 

strategy. The updated results, along with a detailed description of the method, are now 

presented in the manuscript. 

 

Revised Text (L318–336): 

To rigorously account for the strong spatial autocorrelation of Ts and avoid potential 

data leakage between training and testing subsets, we employed a spatial block cross-

validation scheme rather than random splitting. Specifically, within each rotated 

quadtree grid, observation sites were grouped into spatial blocks based on their 

geographic coordinates: station latitude and longitude were each divided by 1° and 

floored to integer values, and stations sharing the same index were assigned to the same 

block. This ensured that samples within the same spatial block were not simultaneously 

assigned to both the training and testing subsets, thereby avoiding data leakage due to 



spatial autocorrelation and enabling a more reliable evaluation of the model’s 

generalization capability. 

Within each spatial grid, the data were partitioned into training (90%) and testing (10%) 

subsets at the block level. The training subset was further subjected to 10-fold spatial 

block cross-validation using GridSearchCV to optimize three key hyperparameters: the 

number of trees (n_estimators), maximum tree depth (max_depth), and learning rate 

(learning_rate). Detailed parameter settings are provided in Appendix Table S1. The 

hyperparameter set that yielded the lowest average validation error across the ten folds 

was selected as optimal. The final model, retrained on the full training set with these 

parameters, was then evaluated on the held-out testing blocks to assess its 

generalization ability and examine potential overfitting within each grid. 

 

 

Reviewer Comment 2: 

The manuscript claims that the generated dataset accurately captures the spatial 

distribution of Ts. However, the evidence provided is the high R² (and low RMSE) of the 

daily time series at individual stations. These temporal variations are heavily 

dominated by the seasonal cycle, which is easy for any model to capture using 

predictors like air temperature. A high temporal R² does not prove that the model 

correctly reproduces the spatial gradients across China. I suggest the authors conduct 

a spatial-only validation, using mean Ts (for the whole year and for specific seasons) 

across the sites. 

Response to Reviewer Comment 2: 

We thank the reviewer for this constructive suggestion. We agree that high temporal R² 

at individual stations mainly reflects the ability to capture seasonal variations and may 

not sufficiently demonstrate the model’s capacity to reproduce spatial gradients. 

Following the reviewer’s advice, we conducted a spatial-only validation using annual 

mean Ts across all stations. The results are presented in Figure 1, which compares the 

estimated and observed annual mean Ts at depths from 0–40 cm. Each point represents 

the annual mean Ts at a single site. The results indicate high correlations (R² = 0.995–

0.997) and low errors (RMSE = 0.26–0.37 K; MAE = 0.19–0.28 K), demonstrating that 

the generated dataset reliably captures the spatial distribution of Ts across sites. These 

additional analyses provide strong evidence that our dataset reproduces both temporal 

dynamics and spatial gradients of Ts across China. 



 

Figure 1. Validation of spatial patterns of annual mean Ts at different soil depths 

across China. 

 

 

Reviewer Comment 3: 

The results indicate that model performance is worse at the surface (0 cm) and improves 

at intermediate depths (e.g., 5-20 cm), as shown in Figures 4-7. This is a counter-

intuitive result given the layer-cascading methodology, where the prediction for a 

deeper layer depends on the prediction from the layer above. This structure implies that 

errors from the surface prediction should propagate downwards, theoretically leading 

to a degradation of performance with depth. This apparent paradox should be discussed.  

 

Response to Reviewer Comment 3: 

As the reviewer correctly noted, our revised modeling results reveal clear depth-

dependent variations in prediction accuracy. Overall, acceptable performance was 

achieved across all depths. Errors were relatively larger at the 0 cm surface layer, 

whereas predictions at 5 cm and 10 cm depths showed improved accuracy compared to 

the surface. With further increases in depth (20–40 cm), errors tended to accumulate, 

and this pattern was particularly evident in summer and winter. 

 

This phenomenon can be explained by the physical characteristics of soil temperature 

dynamics. The surface layer is strongly influenced by high-frequency environmental 

disturbances such as radiation, precipitation, and evapotranspiration, which elevate the 

noise level and complicate accurate prediction. In contrast, intermediate layers benefit 

from the buffering effects of thermal diffusion and soil heat capacity, which dampen 

short-term fluctuations and make temperature variations more stable and thus more 

predictable. At greater depths, however, cascading errors are gradually propagated and 



amplified, resulting in reduced accuracy. We have revised the manuscript to include a 

detailed discussion on the rationale behind this result. 

 

Revised Text (L632-662): 

Our results (Figures 8 and 9) show that model accuracy varies across different soil 

depths, with additional influences from season and land use. Accuracy is relatively 

lower at the surface (0 cm), improves at intermediate depths (5–10 cm), and then 

declines again at greater depths (20–40 cm). This depth-dependent pattern can be 

explained by the physical characteristics of soil temperature. Surface soil temperature 

is highly sensitive to short-term meteorological fluctuations such as radiation, 

precipitation, and evapotranspiration, leading to greater spatiotemporal variability and 

larger prediction errors. In contrast, intermediate soil layers benefit from the buffering 

effects of thermal diffusion and soil heat capacity, which dampen high-frequency 

fluctuations and stabilize the relationship between predictors and Ts, thereby improving 

performance at these depths. At greater depths, however, surface-level errors propagate 

downward through the cascading framework, resulting in reduced accuracy—

particularly during summer and winter. 

 

Seasonal changes and variations in land cover further contribute to differences in 

estimation accuracy. As shown in Figures 8 and 9, the model exhibits higher accuracy 

in spring and autumn, whereas its performance tends to decline during summer and 

winter. During summer, dense vegetation growth and canopy closure reduce the 

influence of surface–atmosphere energy exchanges on Ts, weakening the correlation 

between canopy temperature and subsurface Ts (Kropp et al., 2020; Cui et al., 2022). In 

winter, snow cover introduces a suite of confounding effects: high surface albedo 

reduces net radiation (Loranty et al., 2014; Li et al., 2018), while snow acts as an 

insulator, limiting the soil's response to cold air incursions (Zhang, 2005; Myers-Smith 

et al., 2015). Additionally, low temperatures lead to soil water freezing, which alters the 

soil’s thermal conductivity and heat storage capacity. These factors, together with 

frequent freeze–thaw cycles, introduce complex nonlinear dynamics in Ts that increase 

modeling uncertainty (Li et al., 2023a; Imanian et al., 2024). While our multi-source 

adaptive modeling framework performs well across depths, it does not explicitly 

account for the physical mechanisms of vertical heat transfer. Future research could 

explore deep learning models that are capable of learning complex spatiotemporal 

features and improving the physical interpretability of Ts variations across time, space, 

and depth. 
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Reviewer Comment 4: 

In the VIF analysis (Fig. S1), sand, silt, and clay percentages were included. As these 

three variables are compositional and should sum to a constant (100%), they are 

perfectly collinear by definition. This should result in an infinite (or extremely large) 

VIF values. However, the reported VIFs are relatively low (5.6 to 10). This discrepancy 

is concerning and suggests a methodological error.  

 

Response to Reviewer Comment 4: 

We thank the reviewer for pointing out this important issue. The reviewer is correct that 

sand, silt, and clay percentages are compositional variables that sum to 100% and are 

therefore perfectly collinear by definition. When variables are perfectly collinear, VIF 

cannot be correctly computed, as the underlying regression matrix becomes singular. 

Including all three variables simultaneously in the VIF analysis was therefore 

inappropriate, and we acknowledge that this led to misleading values (5.6–10) instead 

of extremely high or infinite VIFs. 

 

In the revised manuscript, we have addressed this issue by excluding silt from the VIF 

analysis, since the three variables contain redundant information. This adjustment 

removes perfect collinearity and allows the VIF analysis to be correctly applied. The 

updated VIF results are now reported in the Supplementary Material (Fig. S2), and the 

corresponding text has been revised accordingly. 

 

We further retrained the XGBoost models using the revised set of predictor variables 

and a spatial block cross-validation data partitioning strategy, and regenerated new data 

products to ensure the consistency and robustness of the analysis results. We sincerely 

appreciate the reviewer’s suggestion, which has enabled us to improve the 

methodological rigor and reliability of our study. 



 

Figure S2. Variance Inflation Factor (VIF) of predictor variables 

 

Revised Text (L244-254): 

Multicollinearity among multiple source variables may affect the robustness of the 

models. Therefore, we rigorously evaluated the multicollinearity among the 

independent variables using the variance inflation factor (VIF) before modeling to 

remove highly correlated variables. The VIF is a diagnostic statistic used to quantify 

the degree of multicollinearity by measuring how much the variance of a regression 

coefficient is inflated due to correlations with other predictors (Akinwande et al., 2015). 

It is calculated as: 

 2

1

1
i

i

VIF
R

=
−

  (4) 

where
2

iR is the coefficient of determination obtained by regressing the i -th predictor 

against all other predictors. Variables with VIF exceeding 10 are generally considered 

severely multicollinear and should be removed. 

 

Reference 

Akinwande, M. O., Dikko, H. G., and Samson, A.: Variance inflation factor: As a condition 

for the inclusion of suppressor variable(s) in regression analysis, Open J. Stat., 5, 754–

767, https://doi.org/10.4236/ojs.2015.57075, 2015. 

 

Reviewer Comment 5: 

The model uses solar radiation as a predictor but omits downward longwave radiation 

(LWD). Considering that LWD is a critical driver of the surface energy balance 



(particularly for nighttime and winter temperatures) and that LWD has been identified 

as a main driver of Ts trends in process-based models (Peng et al., 2016, 

https://doi.org/10.5194/tc-10-179-2016), I suggest the authors include LWD as a 

predictor, or provide a strong justification for its exclusion. 

 

Response to Reviewer Comment 5: 

We thank the reviewer for this valuable suggestion. Following the reviewer’s comment, 

we incorporated downward longwave radiation (LWD) from ERA5 as a candidate 

predictor and evaluated its multicollinearity with other variables. The analysis revealed 

that LWD is highly collinear with solar radiation (revised Fig. S1). Considering that our 

study focused on daily mean Ts, the additional contribution of LWD was limited at the 

daily scale, as its effect on the surface energy balance was already largely captured by 

solar radiation. For these reasons, we excluded LWD from the final modeling to avoid 

redundancy and potential instability in the regression framework. Importantly, the 

inclusion or exclusion of LWD did not materially change the results or conclusions of 

our study. 

 

This clarification has been added to the revised manuscript, and the updated figure 

illustrating the collinearity analysis is provided in the Supplementary Material. 

 

Revised Text (L158-164): 

In addition, both net solar radiation and downward longwave radiation (LWD) were 

considered. Net solar radiation directly represents the shortwave energy absorbed by 

the land surface and serves as the primary driver of the daytime surface energy budget, 

whereas LWD plays a particularly important role under nighttime and winter conditions 

by regulating surface heat loss through the longwave radiation balance. Together, they 

jointly control the surface energy balance and directly drive the spatiotemporal 

dynamics of Ts (Peng et al., 2016). 

 

Revised Text (L255-268): 

Based on the VIF analysis, we applied the following adjustments to the predictor set. 

Accordingly, some variables were excluded due to severe multicollinearity or 

redundancy. Specifically, sand, silt, and clay are compositional variables whose 

proportions sum to 100%, leading to perfect collinearity. To reduce redundancy, we 

removed silt while retaining sand and clay. In addition, LWD was found to be highly 

correlated with net solar radiation at the daily mean scale (Fig. S1) and was therefore 

excluded from the final modeling. 

 

In contrast, although the daily mean LST (LST_mean) and air temperature also 

exhibited strong collinearity, with VIF values exceeding 10 (Fig. S2), we decided to 

retain both. This decision reflects their physical distinctness and complementary 

information: LST_mean provides higher spatial resolution (1 km), whereas air 

temperature offers broader meteorological consistency (9 km). Such differences are 

particularly important in complex ecosystems such as forests, where canopy structure 



and biological processes substantially influence thermal dynamics (Liu et al., 2025). 

 

Figure S1. Variance Inflation Factor (VIF) of predictor variables (with LWD) 

 

Reference 

Liu X., Li Z.-L., Duan S.-B., Leng P., and Si M.: Retrieval of global surface soil and vegetation 

temperatures based on multisource data fusion, Remote Sens. Environ., 318, 114564, 

https://doi.org/10.1016/j.rse.2024.114564, 2025. 

Peng, S., Ciais, P., Krinner, G., Wang, T., Gouttevin, I., McGuire, A. D., Lawrence, D., Burke, 

E., Chen, X., Decharme, B., and others: Simulated high-latitude soil thermal dynamics 

during the past 4 decades, The Cryosphere, 10, 179–192, 2016. 

 

Reviewer Comment 6: 

Line 490 “Notably, RMSE at the surface (0 cm) is slightly lower than at 40 cm, possibly 

due to stronger direct influences from surface cover and meteorological conditions.” – 

This is not the case for Fig. 12 cd. Furthermore, making this statement based on only a 

few sites is not adequate. 

 

Response to Reviewer Comment 6: 

We thank the reviewer for the valuable observation. We agree that the RMSE at 0 cm 

is not consistently lower than at 40 cm across all stations. Our original statement was 

overly generalized based on a limited number of sites and may have caused confusion. 

We have revised the text accordingly to avoid overinterpretation.  

 

Revised Text (L505-506): 

Site-level accuracy was evaluated using RMSE, which ranged from 0.84 K to 1.80 K 



across both depths, indicating strong agreement between predicted and observed values. 

 

 

Reviewer Comment 7: 

Line 535 “Figure. S5 demonstrates that LST is more effective than air temperature in 

detecting spatial variations in surface Ts in sparsely vegetated areas” – I do not see 

how this conclusion can be derived from Fig. S5. 

 

Response to Reviewer Comment 7: 

We thank the reviewer for this valuable comment. We agree that Fig. S5 alone does not 

provide direct evidence that LST is more advantageous than air temperature in sparsely 

vegetated areas. In response, we have revised the text in the manuscript, removed the 

description related to Fig. S5, and added supporting evidence from Figs. S7 and S8 to 

more robustly substantiate this conclusion. 

 

Revised Text (L556-560): 

As shown in Figs. S7 and S8, incorporating LST as an input variable, relative to using 

only air temperature, significantly enhances overall modeling accuracy and improves 

performance across sites with different land cover types, with the most pronounced 

improvements observed in barren land areas. 

 

Figure S7. Comparison of Modeling Accuracy with Different Feature Variables 

(Feature1 represents using both air temperature and LST together with other feature 

variables, while Feature 2 represents using only air temperature together with other 

feature variables) 

 



 

Figure S8. Differences in model accuracy across land cover types under different 

feature variable combinations. (Feature1 represents using both air temperature and 

LST together with other feature variables, while Feature 2 represents using only air 

temperature together with other feature variables) 

 

 


