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Dear Reviewer, 

 

We sincerely thank you for your thoughtful comments and constructive suggestions on 

our manuscript. We have carefully revised the manuscript in response to your feedback, 

with all changes clearly marked using track changes. In the revised manuscript and 

accompanying supplementary materials, modifications are highlighted in blue for ease 

of reference. 

 

Below, we provide a detailed, point-by-point response to each of your comments. For 

clarity, your original remarks are shown in italics, followed by our corresponding 

replies. We have made every effort to address all concerns comprehensively and to 

improve the scientific rigor, clarity, and overall quality of the manuscript. 

 

We sincerely appreciate the time and effort you invested in reviewing our work, and we 

believe the revisions have significantly improved the manuscript. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Reviewer Comment 1: 

The method used many data (primarily including in-situ observations and indicator 

variables) to produce soil temperature. By the way, the in-situ in Figure 3 is wrongly 

spelled as in-suit. Since these data are with varying spatial scales, and many 

complicated steps are involved in this procedure to produce the Ts at different depths. I 

just wonder why the outputted Ts is with that good accuracy. Given than even the 

acknowledged MODIS LST (nearly Ts at 0 cm) is 1-2K, and it has been taken as an 

input in this study. 

 

Response to Reviewer Comment 1: 

We sincerely thank the reviewer for this valuable comment. The relatively high 

accuracy of our model can be attributed to the following three aspects: 

1. Complementarity of multi-source information.  

MODIS LST is only one of many predictors and not the dominant determinant. By 

integrating near-surface air temperature, radiation, precipitation, vegetation indices, 

topography, and soil texture, the model captures the key drivers of soil thermal 

dynamics. This multi-source data fusion enables the model to learn complex nonlinear 

relationships, thereby mitigating the influence of errors from any single predictor (e.g., 

LST). 

 

2. Localized modeling based on the rotated quadtree.  

The rotated quadtree adaptively partitions the study domain according to station density, 

allowing local models to better represent regional heterogeneity. This spatially adaptive 

approach avoids systematic bias from scale mismatch and significantly improves the 

model’s applicability and stability across diverse regions. 

 

3. Robust performance under different conditions.  

In subsequent analyses, we compared model performance across seasons and land-use 

types. Results indicate that model accuracy is relatively higher in spring and autumn 

than in summer and winter, and is generally greater over croplands, grasslands, and 

barren lands compared with forests. These patterns further demonstrate that the high 

accuracy is reasonable and reflects the robustness of the model, rather than an artifact 

of overfitting. 

 

We also appreciate the reviewer’s careful note on the spelling issue in Figure 3. We 

have corrected “in-suit” to “in-situ” (L342–344 in the revised manuscript). 



 
Figure 3. Workflow of the proposed method to obtain multi-layer Ts over the China. 

 

Reviewer Comment 2: 

To my knowledge, LST changed very quickly and is seriously affected by cloud. The 

local observation time differ across China, and most regions in the South are covered 

by cloud at most time. How you process these data, and whether the accuracy can be 

guaranteed in your study? 

 

Response to Reviewer Comment 2: 

We greatly appreciate the reviewer’s attention to this issue. To address the cloud-

induced data gaps and temporal mismatch in LST, we implemented the following 

measures: 

 

1. Cloud-induced Data Gaps 

Cloud cover, especially in southern China, is indeed a significant challenge. To mitigate 

this, we reconstructed missing data caused by cloud cover using spatio-temporal 

interpolation combined with neighboring pixel information. We then applied the 

Savitzky-Golay smoothing method to generate continuous daily fields, effectively 

reducing the data gaps caused by cloud interference. 

 



2. Handling MODIS Daytime and Nighttime LST 

We separately processed the instantaneous daytime and nighttime LST from MODIS, 

and calculated the mean of these two values to serve as the daily average LST input 

variable. Compared to instantaneous temperatures, daily mean values are less sensitive 

to missing data, which helps improve the stability of the data. 

 

3. Uncertainty in Using LST as an Input Variable  

We acknowledge that using mean_LST as an input variable may introduce some 

uncertainties, particularly in southern regions where cloud cover leads to more 

significant data gaps. We have discussed the limitations of this approach and future 

improvements in the revised discussion section of the manuscript. Despite these 

uncertainties, considering that mean_LST effectively captures long-term surface 

temperature trends at a large spatial scale, we decided to use it as a feature for modeling. 

 

We hope these clarifications address the reviewer’s concerns regarding cloud effects, 

temporal mismatches, and the uncertainties introduced by the use of LST as an input 

variable. The methods we have implemented are well thought out to ensure the accuracy 

and reliability of the model results. 

 

Revised Text (L601-L662): 

4.3 Limitations and future perspective 

Despite the strong performance of our spatially adaptive Ts estimation framework, 

several limitations warrant acknowledgment. As shown in Figures 6 and 7, model 

validation at station level reveals spatial heterogeneity in prediction accuracy, with 

relatively lower performance observed in the YGP and the QTP regions. On the one 

hand, as evidenced by Figure 10, our multi-source modeling framework captures Ts 

variations across different elevations and geomorphic conditions more effectively than 

existing datasets. However, the QTP and YGP are characterized by complex terrain and 

high altitudes, coupled with rapidly changing climatic conditions, which significantly 

complicate Ts estimation. These findings align with previous studies showing that high 

elevations intensify the disconnect between air temperature and LST, thereby increasing 

the uncertainty in thermal modeling (Mo et al., 2025). 

 

MODIS LST serves as a critical input to our modeling framework. However, as an 

optical remote sensing product, it is highly susceptible to cloud contamination, often 

resulting in data gaps. Despite the use of spatiotemporal interpolation and SG filtering, 

residual uncertainties persist in the reconstructed LST data. Future improvements in Ts 

reconstruction can be pursued along two main directions. First, more physically 

grounded LST reconstruction methods can be adopted, such as incorporating surface 

energy balance models and diurnal temperature cycle models (Hong et al., 2022; 

Firozjaei et al., 2024; Wang et al., 2024). These methods apply energy conservation 

principles to estimate Ts during periods of missing or unreliable observations, thereby 

providing more realistic estimates of land surface thermal conditions during periods of 

cloud cover. Second, integrating higher temporal resolution remote sensing 



observations may help overcome the limitations of MODIS. For instance, passive 

microwave satellite data provide all-weather observations and are less sensitive to cloud 

interference (Duan et al., 2017; Wu et al., 2022). In addition, next-generation 

geostationary satellites such as Himawari-8 offer observations at 10-minute intervals, 

substantially enhancing the temporal continuity and quality of surface temperature 

estimates (Yamamoto et al., 2022; You et al., 2024). These enhancements are expected 

to significantly improve the accuracy and temporal continuity of soil temperature 

monitoring. 

 

Our results (Figures 8 and 9) show that model accuracy varies across different soil 

depths, with additional influences from season and land use. Accuracy is relatively 

lower at the surface (0 cm), improves at intermediate depths (5–10 cm), and then 

declines again at greater depths (20–40 cm). This depth-dependent pattern can be 

explained by the physical characteristics of soil temperature. Surface soil temperature 

is highly sensitive to short-term meteorological fluctuations such as radiation, 

precipitation, and evapotranspiration, leading to greater spatiotemporal variability and 

larger prediction errors. In contrast, intermediate soil layers benefit from the buffering 

effects of thermal diffusion and soil heat capacity, which dampen high-frequency 

fluctuations and stabilize the relationship between predictors and Ts, thereby improving 

performance at these depths. At greater depths, however, surface-level errors propagate 

downward through the cascading framework, resulting in reduced accuracy—

particularly during summer and winter. 

 

Seasonal changes and variations in land cover further contribute to differences in 

estimation accuracy. As shown in Figures 8 and 9, the model exhibits higher accuracy 

in spring and autumn, whereas its performance tends to decline during summer and 

winter. During summer, dense vegetation growth and canopy closure reduce the 

influence of surface–atmosphere energy exchanges on Ts, weakening the correlation 

between canopy temperature and subsurface Ts (Kropp et al., 2020; Cui et al., 2022). In 

winter, snow cover introduces a suite of confounding effects: high surface albedo 

reduces net radiation (Loranty et al., 2014; Li et al., 2018), while snow acts as an 

insulator, limiting the soil's response to cold air incursions (Zhang, 2005; Myers-Smith 

et al., 2015). Additionally, low temperatures lead to soil water freezing, which alters the 

soil’s thermal conductivity and heat storage capacity. These factors, together with 

frequent freeze–thaw cycles, introduce complex nonlinear dynamics in Ts that increase 

modeling uncertainty (Li et al., 2023a; Imanian et al., 2024). While our multi-source 

adaptive modeling framework performs well across depths, it does not explicitly 

account for the physical mechanisms of vertical heat transfer. Future research could 

explore deep learning models that are capable of learning complex spatiotemporal 

features and improving the physical interpretability of Ts variations across time, space, 

and depth. 
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Reviewer Comment 3: 

On the other hand, the seemingly good accuracy is not that strange. Because the 

authors used the same ground measurement to validate the estimated values. Although 

the entire data has been divided into two sections of training and validation. They are 

actually homologous with the similar schemes by CMA. How about validating the 

estimated results with data collected from different sources. 

 

Response to Reviewer Comment 3: 

We sincerely thank the reviewer for this valuable and necessary comment. In the revised 

manuscript, we have strengthened the validation design to address this concern by (1) 

implementing a spatial block cross-validation scheme and (2) incorporating 

independent validation against flux tower observations, thereby enhancing the 

independence and credibility of our evaluation. 

 

First, we acknowledge that the CMA operational network is currently the only 

nationwide source of long-term (≥10 years), large-scale, and multi-layer (0–40 cm) Ts 

observations in China, and thus forms the most comprehensive basis for constructing a 

national Ts dataset. To rigorously account for the strong spatial autocorrelation of Ts 



and avoid potential data leakage between training and testing subsets, we employed a 

spatial block cross-validation scheme rather than random splitting. Observation sites 

were first partitioned into rotated quadtree subregions. Within each subregion, sites 

were further grouped into spatial blocks by flooring their latitude and longitude values 

to integer degrees, such that stations sharing the same integer indices (i.e., falling within 

the same 1° × 1° index) were assigned to the same block. This method ensures that 

samples within the same spatial block are not simultaneously allocated to both the 

training and testing subsets, thereby preventing data leakage caused by spatial 

autocorrelation and providing a more reliable assessment of the model’s generalization 

capability. 

Second, to further strengthen independence, we validated the final dataset against daily 

Ts observations from 18 flux tower sites of the ChinaFLUX network. Measurements at 

0, 5, 10, 15, 20, and 40 cm were retained for consistency. Results (Figure 5; Table S2) 

show that our dataset maintains high accuracy at these independent sites (R² = 0.85–

0.90; RMSE = 3.3–4.2 K), confirming that the accuracy is robust and not merely a 

product of same-source validation. 

 

Taken together, the validation results from both spatial block cross-validation and 

independent flux tower observations demonstrate that the spatially adaptive framework 

we developed achieves strong robustness, reliability, and spatial generalization ability. 

 

 

Revised Text (L318-L326): 

To rigorously account for the strong spatial autocorrelation of Ts and avoid potential 

data leakage between training and testing subsets, we employed a spatial block cross-

validation scheme rather than random splitting. Specifically, within each rotated 

quadtree grid, observation sites were grouped into spatial blocks based on their 

geographic coordinates: station latitude and longitude were each divided by 1° and 

floored to integer values, and stations sharing the same index were assigned to the same 

block. This ensured that samples within the same spatial block were not simultaneously 

assigned to both the training and testing subsets, thereby avoiding data leakage due to 

spatial autocorrelation and enabling a more reliable evaluation of the model’s 

generalization capability. 

 

Within each spatial grid, the data were partitioned into training (90%) and testing (10%) 

subsets at the block level. The training subset was further subjected to 10-fold spatial 

block cross-validation using GridSearchCV to optimize three key hyperparameters: the 

number of trees (n_estimators), maximum tree depth (max_depth), and learning rate 

(learning_rate). Detailed parameter settings are provided in Appendix Table S1. The 

hyperparameter set that yielded the lowest average validation error across the ten folds 

was selected as optimal. The final model, retrained on the full training set with these 

parameters, was then evaluated on the held-out testing blocks to assess its 

generalization ability and examine potential overfitting within each grid. 

 



Revised Text (L372-L381): 

Furthermore, to enhance the independence of the evaluation, we validated the final 

dataset against daily Ts observations from 18 flux tower sites of the ChinaFLUX 

network. For consistency, we retained measurements only at depths of 0, 5, 10, 15, 20, 

and 40 cm. Metadata for these sites is provided in Table S2, and the corresponding 

validation results are presented in Figure 5. The evaluation shows that our dataset 

achieves high accuracy at these independent sites (R² = 0.85–0.90; RMSE = 3.3–4.2 K), 

further demonstrating the robustness of our approach. Taken together, the validation 

results from both spatial block cross-validation and flux tower observations confirm 

that the spatially adaptive model we developed exhibits reliable accuracy and strong 

spatial generalization capability. 

 

Figure 5. Density scatter plots comparing estimated daily Ts with flux tower 

observations at different depths 

 

Table.S2 Metadata of daily Ts observations from flux towers used for validation. 

Site Ecosystem Depth (cm) Time series 

Baotianman Forest Station Forest 0,5,20 2010-2014 

Changling Rice Paddy Station Cropland 5,10,20 2018-2020 

Daan Cropland Station Cropland 0,5,10,15,20 2017-2020 

Damao Grassland Station Grassland 0,5,10,15,20,40 2017-2020 

Danzhou Rubber Plantation 

Station 

Forest 5,10,20 2010 

Haibei Alpine Meadow Station Grassland  5,10,15,20,40 2015-2020 

Haibei Shrubland Station Grassland 0,5,20,40 2016-2018 

Huzhong Boreal Forest Station Forest 5,10,20 2014-2018 

Jinzhou Cropland Station Cropland 5,10,15,20,40 2011-2014 

Lijiang Alpine Meadow Station Grassland 5,10,15,20,40 2013-2020 

Maoershan Forest Station Forest 5 2016-2018 

Panjin Reed Wetland Station Wetland 10,20,40 2018-2020 



Qianyanzhou Plantation Forest 

Station 

Forest 5,10,20 2011-2015 

Ruoergai Alpine Wetland 

Station 

Wetland 0,5,10,20 2013-2020 

Sanjiangyuan Alpine Grassland 

Station 

Grassland 0,5,15 2013-2015 

Taoyuan Cropland Station Cropland 5,10,15,20,40 2010-2014 

Xishuangbanna Rubber 

Plantation Station 

Forest 0,5,20 2010-2014 

Yuanjiang Dry-Hot Valley 

Savanna Station 

Grassland 5,10,20,40 2013-2015 

 

Reviewer Comment 4: 

The authors used on XGBoost, why not try other machine learning algorithms. It is not 

sure that XGBoost perform best. Maybe a balance of multiple algorithms is more 

convincible. 

 

Response to Reviewer Comment 4: 

We thank the reviewer for this valuable comment. We agree that other machine learning 

approaches (e.g., RF, GBDT, LSTM) could in principle be applied to soil temperature 

estimation. However, the main innovation of our study lies not in algorithm comparison, 

but in the spatially adaptive modeling framework (rotated quadtree + local modeling + 

layer-wise cascading), which addresses the challenges posed by spatial non-stationarity 

and uneven observation distribution in nationwide Ts estimation. 

 

We selected XGBoost because it offers clear advantages over alternative methods for 

large-scale mapping: 

 

1. Compared to RF 

XGBoost converges faster, is more memory-efficient, and yields lighter prediction 

models; 

 

2.Compared to traditional GBDT:  

XGBoost incorporates parallelization, sparse-aware processing, and cache optimization, 

leading to much higher efficiency on large datasets; 

 

3. Compared to LSTM and deep learning models:  

XGBoost has lower computational complexity, less dependence on GPUs, and runs 

efficiently on CPUs, making it more practical for nationwide, daily, decade-long 

mapping tasks. 

 

Therefore, in the revised manuscript, we emphasized the novelty of the spatially 

adaptive framework and cited relevant literature to highlight the widespread use of 

XGBoost in large-scale mapping. The focus of this work is the framework itself rather 



than a benchmarking exercise among algorithms. For details, please refer to the revised 

manuscript. 

Revised Text (L303-L317): 

We adopted the XGBoost (Extreme Gradient Boosting) algorithm as the core regression 

model for Ts estimation due to its strong predictive performance, computational 

efficiency, and scalability across large environmental datasets. XGBoost builds an 

ensemble of regression trees in a stage-wise boosting process, where each tree is trained 

to minimize the residuals from the previous iteration, leading to a robust and optimized 

model (Chen and Guestrin, 2016). A key strength of XGBoost is its ability to handle 

heterogeneous and high-dimensional predictor sets, which are common in geoscience 

applications involving complex terrain, land cover variability, and climatic gradients. 

Recent studies have demonstrated its effectiveness in similar domains, including land 

surface temperature reconstruction (Li et al., 2024), multi-layer soil moisture estimation 

(Karthikeyan and Mishra, 2021), drought event attribution (Wang et al., 2025), and crop 

yield prediction (Li et al., 2023). Given these proven strengths and the spatially 

nonstationary characteristics of Ts in our study area, XGBoost was selected to train 

localized prediction models within spatial subregions. 
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Reviewer Comment 5: 

Like many other overabundant pure machine learning articles, the present study lacks 

of innovation, but eligible as a data description paper. Reanalysis data such as ERA5-

Land also have Ts at multiple layers, except for the finer spatial resolution (they can 

also do that if they want), what are the advantages of your data? Why do you think a 



user should consider your data? 

 

Response to Reviewer Comment 5: 

We sincerely thank the reviewer for raising the important issue of innovation. The 

novelty of this study lies in two main aspects: methodology and data products. 

 

 

1. On the methodological side, the core improvements include: 

(1) A rotated quadtree–based local modeling framework, which effectively addresses 

the challenges of spatial non-stationarity and uneven station distribution in nationwide 

soil temperature estimation; 

 

(2) A layer-wise cascading prediction strategy, which takes the estimated shallow-layer 

temperature as input for deeper layers, explicitly incorporating the continuity of soil 

heat conduction and thereby improving both the accuracy and consistency of multi-

depth soil temperature estimation. 

 

 

2. On the data-product side, our dataset offers several distinct advantages over 

existing reanalysis products (e.g., ERA5-Land, GLDAS): 

(1) Higher spatial resolution — ERA5-Land provides a resolution of ~9 km, while our 

dataset achieves 1 km daily resolution, making it more suitable for agricultural and 

regional ecosystem applications. 

 

(2) Finer vertical structure — reanalysis products (e.g., ERA5-Land) generally provide 

soil temperature at relatively broad layers (e.g., 0–7 cm, 7–28 cm, 28–100 cm, 100–289 

cm), whereas our dataset delivers a more detailed profile at 0, 5, 10, 15, 20, and 40 cm, 

which better captures near-surface soil thermal dynamics critical for agriculture and 

ecosystem studies. 

 

(3) Extensibility — The proposed spatially adaptive framework is modular and scalable, 

allowing the dataset to be readily extended both backward and forward in time as long 

as in-situ observations and corresponding environmental predictors are available. We 

are currently extending the dataset to cover 2001–2009 and plan to provide continuous 

annual updates in the future, with all versions to be openly released through the National 

Tibetan Plateau Data Center. 

 

(4) Uniqueness — to the best of our knowledge, this is currently the only nationwide Ts 

dataset that combines high spatial resolution, multi-layer vertical profiles, and long-

term temporal coverage. 

 

In summary, this study not only introduces a new spatially adaptive modeling 

framework, but also delivers a nationwide Ts dataset that is unique in its resolution, 

depth coverage, and temporal span. We believe this dataset will provide significant 



value for agricultural production, ecosystem modeling, carbon budget assessments, and 

climate change research, and will serve a broad scientific and applied user community. 


