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Dear Reviewer, 

 

We sincerely thank you for your thoughtful comments and constructive suggestions on 

our manuscript. We have carefully revised the manuscript in response to your feedback, 

with all changes clearly marked using track changes. In the revised manuscript and 

accompanying supplementary materials, modifications are highlighted in blue for ease 

of reference. 

 

Below, we provide a detailed, point-by-point response to each of your comments. For 

clarity, your original remarks are shown in italics, followed by our corresponding 

replies. We have made every effort to address all concerns comprehensively and to 

improve the scientific rigor, clarity, and overall quality of the manuscript. 

 

We sincerely appreciate the time and effort you invested in reviewing our work, and we 

believe the revisions have significantly improved the manuscript. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Reviewer Comment 1: 

The authors state that the sites were randomly split into training (70%), validation 

(20%), and test (10%) sets. For geospatial data like soil temperature, which exhibits 

strong spatial autocorrelation, this random splitting is a critical methodological flaw. 

It almost certainly leads to "data leakage", where test sites are geographically close to 

training sites. Consequently, the model can achieve high performance on the test set 

even though it did not learn the true underlying relationships between predictors and 

Ts. This means the model's ability to generalize to new, un-sampled areas is not being 

properly evaluated. The reported performance metrics (e.g., R² > 0.93 in Fig. 5) are 

therefore very likely to be significantly inflated and overly optimistic.  

 

The authors should implement a more rigorous validation scheme that accounts for 

spatial autocorrelation. A spatial block cross-validation approach is strongly 

recommended. 

 

Response to Reviewer Comment 1: 

We sincerely thank the reviewer for this insightful comment. We fully agree that 

random splitting of sites into training, validation, and test sets may lead to spatial data 

leakage due to the strong spatial autocorrelation of soil temperature. This could indeed 

result in overly optimistic performance metrics and an inaccurate assessment of the 

model’s spatial generalization ability. 

 

In response, we have revised our methodology by adopting a spatial block cross-

validation scheme to partition the data. Specifically, observation sites were grouped into 

spatial blocks, and the cross-validation was conducted across these blocks rather than 

through random splits. This approach ensures that geographically adjacent sites are not 

simultaneously included in both training and testing subsets, thereby providing a more 

rigorous and realistic evaluation of model generalization to un-sampled regions. 

 

We have retrained and re-evaluated the XGBoost models using this revised validation 

strategy. The updated results, along with a detailed description of the method, are now 

presented in the manuscript. 

 

Revised Text (L318–336): 

To rigorously account for the strong spatial autocorrelation of Ts and avoid potential 

data leakage between training and testing subsets, we employed a spatial block cross-

validation scheme rather than random splitting. Specifically, within each rotated 

quadtree grid, observation sites were grouped into spatial blocks based on their 

geographic coordinates: station latitude and longitude were each divided by 1° and 

floored to integer values, and stations sharing the same index were assigned to the same 

block. This ensured that samples within the same spatial block were not simultaneously 

assigned to both the training and testing subsets, thereby avoiding data leakage due to 

spatial autocorrelation and enabling a more reliable evaluation of the model’s 

generalization capability. 



Within each spatial grid, the data were partitioned into training (90%) and testing (10%) 

subsets at the block level. The training subset was further subjected to 10-fold spatial 

block cross-validation using GridSearchCV to optimize three key hyperparameters: the 

number of trees (n_estimators), maximum tree depth (max_depth), and learning rate 

(learning_rate). Detailed parameter settings are provided in Appendix Table S1. The 

hyperparameter set that yielded the lowest average validation error across the ten folds 

was selected as optimal. The final model, retrained on the full training set with these 

parameters, was then evaluated on the held-out testing blocks to assess its 

generalization ability and examine potential overfitting within each grid. 

 

 

Reviewer Comment 2: 

The manuscript claims that the generated dataset accurately captures the spatial 

distribution of Ts. However, the evidence provided is the high R² (and low RMSE) of the 

daily time series at individual stations. These temporal variations are heavily 

dominated by the seasonal cycle, which is easy for any model to capture using 

predictors like air temperature. A high temporal R² does not prove that the model 

correctly reproduces the spatial gradients across China. I suggest the authors conduct 

a spatial-only validation, using mean Ts (for the whole year and for specific seasons) 

across the sites. 

Response to Reviewer Comment 2: 

We thank the reviewer for this constructive suggestion. We agree that high temporal R² 

at individual stations mainly reflects the ability to capture seasonal variations and may 

not sufficiently demonstrate the model’s capacity to reproduce spatial gradients. 

Following the reviewer’s advice, we conducted a spatial-only validation using annual 

mean Ts across all stations. The results are presented in Figure 1, which compares the 

estimated and observed annual mean Ts at depths from 0–40 cm. Each point represents 

the annual mean Ts at a single site. The results indicate high correlations (R² = 0.995–

0.997) and low errors (RMSE = 0.26–0.37 K; MAE = 0.19–0.28 K), demonstrating that 

the generated dataset reliably captures the spatial distribution of Ts across sites. These 

additional analyses provide strong evidence that our dataset reproduces both temporal 

dynamics and spatial gradients of Ts across China. 



 

Figure 1. Validation of spatial patterns of annual mean Ts at different soil depths 

across China. 

 

 

Reviewer Comment 3: 

The results indicate that model performance is worse at the surface (0 cm) and improves 

at intermediate depths (e.g., 5-20 cm), as shown in Figures 4-7. This is a counter-

intuitive result given the layer-cascading methodology, where the prediction for a 

deeper layer depends on the prediction from the layer above. This structure implies that 

errors from the surface prediction should propagate downwards, theoretically leading 

to a degradation of performance with depth. This apparent paradox should be discussed.  

 

Response to Reviewer Comment 3: 

As the reviewer correctly noted, our revised modeling results reveal clear depth-

dependent variations in prediction accuracy. Overall, acceptable performance was 

achieved across all depths. Errors were relatively larger at the 0 cm surface layer, 

whereas predictions at 5 cm and 10 cm depths showed improved accuracy compared to 

the surface. With further increases in depth (20–40 cm), errors tended to accumulate, 

and this pattern was particularly evident in summer and winter. 

 

This phenomenon can be explained by the physical characteristics of soil temperature 

dynamics. The surface layer is strongly influenced by high-frequency environmental 

disturbances such as radiation, precipitation, and evapotranspiration, which elevate the 

noise level and complicate accurate prediction. In contrast, intermediate layers benefit 

from the buffering effects of thermal diffusion and soil heat capacity, which dampen 

short-term fluctuations and make temperature variations more stable and thus more 

predictable. At greater depths, however, cascading errors are gradually propagated and 



amplified, resulting in reduced accuracy. We have revised the manuscript to include a 

detailed discussion on the rationale behind this result. 

 

Revised Text (L632-662): 

Our results (Figures 8 and 9) show that model accuracy varies across different soil 

depths, with additional influences from season and land use. Accuracy is relatively 

lower at the surface (0 cm), improves at intermediate depths (5–10 cm), and then 

declines again at greater depths (20–40 cm). This depth-dependent pattern can be 

explained by the physical characteristics of soil temperature. Surface soil temperature 

is highly sensitive to short-term meteorological fluctuations such as radiation, 

precipitation, and evapotranspiration, leading to greater spatiotemporal variability and 

larger prediction errors. In contrast, intermediate soil layers benefit from the buffering 

effects of thermal diffusion and soil heat capacity, which dampen high-frequency 

fluctuations and stabilize the relationship between predictors and Ts, thereby improving 

performance at these depths. At greater depths, however, surface-level errors propagate 

downward through the cascading framework, resulting in reduced accuracy—

particularly during summer and winter. 

 

Seasonal changes and variations in land cover further contribute to differences in 

estimation accuracy. As shown in Figures 8 and 9, the model exhibits higher accuracy 

in spring and autumn, whereas its performance tends to decline during summer and 

winter. During summer, dense vegetation growth and canopy closure reduce the 

influence of surface–atmosphere energy exchanges on Ts, weakening the correlation 

between canopy temperature and subsurface Ts (Kropp et al., 2020; Cui et al., 2022). In 

winter, snow cover introduces a suite of confounding effects: high surface albedo 

reduces net radiation (Loranty et al., 2014; Li et al., 2018), while snow acts as an 

insulator, limiting the soil's response to cold air incursions (Zhang, 2005; Myers-Smith 

et al., 2015). Additionally, low temperatures lead to soil water freezing, which alters the 

soil’s thermal conductivity and heat storage capacity. These factors, together with 

frequent freeze–thaw cycles, introduce complex nonlinear dynamics in Ts that increase 

modeling uncertainty (Li et al., 2023a; Imanian et al., 2024). While our multi-source 

adaptive modeling framework performs well across depths, it does not explicitly 

account for the physical mechanisms of vertical heat transfer. Future research could 

explore deep learning models that are capable of learning complex spatiotemporal 

features and improving the physical interpretability of Ts variations across time, space, 

and depth. 
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Reviewer Comment 4: 

In the VIF analysis (Fig. S1), sand, silt, and clay percentages were included. As these 

three variables are compositional and should sum to a constant (100%), they are 

perfectly collinear by definition. This should result in an infinite (or extremely large) 

VIF values. However, the reported VIFs are relatively low (5.6 to 10). This discrepancy 

is concerning and suggests a methodological error.  

 

Response to Reviewer Comment 4: 

We thank the reviewer for pointing out this important issue. The reviewer is correct that 

sand, silt, and clay percentages are compositional variables that sum to 100% and are 

therefore perfectly collinear by definition. When variables are perfectly collinear, VIF 

cannot be correctly computed, as the underlying regression matrix becomes singular. 

Including all three variables simultaneously in the VIF analysis was therefore 

inappropriate, and we acknowledge that this led to misleading values (5.6–10) instead 

of extremely high or infinite VIFs. 

 

In the revised manuscript, we have addressed this issue by excluding silt from the VIF 

analysis, since the three variables contain redundant information. This adjustment 

removes perfect collinearity and allows the VIF analysis to be correctly applied. The 

updated VIF results are now reported in the Supplementary Material (Fig. S2), and the 

corresponding text has been revised accordingly. 

 

We further retrained the XGBoost models using the revised set of predictor variables 

and a spatial block cross-validation data partitioning strategy, and regenerated new data 

products to ensure the consistency and robustness of the analysis results. We sincerely 

appreciate the reviewer’s suggestion, which has enabled us to improve the 

methodological rigor and reliability of our study. 



 

Figure S2. Variance Inflation Factor (VIF) of predictor variables 

 

Revised Text (L244-254): 

Multicollinearity among multiple source variables may affect the robustness of the 

models. Therefore, we rigorously evaluated the multicollinearity among the 

independent variables using the variance inflation factor (VIF) before modeling to 

remove highly correlated variables. The VIF is a diagnostic statistic used to quantify 

the degree of multicollinearity by measuring how much the variance of a regression 

coefficient is inflated due to correlations with other predictors (Akinwande et al., 2015). 

It is calculated as: 
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where
2

iR is the coefficient of determination obtained by regressing the i -th predictor 

against all other predictors. Variables with VIF exceeding 10 are generally considered 

severely multicollinear and should be removed. 
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Reviewer Comment 5: 

The model uses solar radiation as a predictor but omits downward longwave radiation 

(LWD). Considering that LWD is a critical driver of the surface energy balance 



(particularly for nighttime and winter temperatures) and that LWD has been identified 

as a main driver of Ts trends in process-based models (Peng et al., 2016, 

https://doi.org/10.5194/tc-10-179-2016), I suggest the authors include LWD as a 

predictor, or provide a strong justification for its exclusion. 

 

Response to Reviewer Comment 5: 

We thank the reviewer for this valuable suggestion. Following the reviewer’s comment, 

we incorporated downward longwave radiation (LWD) from ERA5 as a candidate 

predictor and evaluated its multicollinearity with other variables. The analysis revealed 

that LWD is highly collinear with solar radiation (revised Fig. S1). Considering that our 

study focused on daily mean Ts, the additional contribution of LWD was limited at the 

daily scale, as its effect on the surface energy balance was already largely captured by 

solar radiation. For these reasons, we excluded LWD from the final modeling to avoid 

redundancy and potential instability in the regression framework. Importantly, the 

inclusion or exclusion of LWD did not materially change the results or conclusions of 

our study. 

 

This clarification has been added to the revised manuscript, and the updated figure 

illustrating the collinearity analysis is provided in the Supplementary Material. 

 

Revised Text (L158-164): 

In addition, both net solar radiation and downward longwave radiation (LWD) were 

considered. Net solar radiation directly represents the shortwave energy absorbed by 

the land surface and serves as the primary driver of the daytime surface energy budget, 

whereas LWD plays a particularly important role under nighttime and winter conditions 

by regulating surface heat loss through the longwave radiation balance. Together, they 

jointly control the surface energy balance and directly drive the spatiotemporal 

dynamics of Ts (Peng et al., 2016). 

 

Revised Text (L255-268): 

Based on the VIF analysis, we applied the following adjustments to the predictor set. 

Accordingly, some variables were excluded due to severe multicollinearity or 

redundancy. Specifically, sand, silt, and clay are compositional variables whose 

proportions sum to 100%, leading to perfect collinearity. To reduce redundancy, we 

removed silt while retaining sand and clay. In addition, LWD was found to be highly 

correlated with net solar radiation at the daily mean scale (Fig. S1) and was therefore 

excluded from the final modeling. 

 

In contrast, although the daily mean LST (LST_mean) and air temperature also 

exhibited strong collinearity, with VIF values exceeding 10 (Fig. S2), we decided to 

retain both. This decision reflects their physical distinctness and complementary 

information: LST_mean provides higher spatial resolution (1 km), whereas air 

temperature offers broader meteorological consistency (9 km). Such differences are 

particularly important in complex ecosystems such as forests, where canopy structure 



and biological processes substantially influence thermal dynamics (Liu et al., 2025). 

 

Figure S1. Variance Inflation Factor (VIF) of predictor variables (with LWD) 

 

Reference 

Liu X., Li Z.-L., Duan S.-B., Leng P., and Si M.: Retrieval of global surface soil and vegetation 

temperatures based on multisource data fusion, Remote Sens. Environ., 318, 114564, 

https://doi.org/10.1016/j.rse.2024.114564, 2025. 

Peng, S., Ciais, P., Krinner, G., Wang, T., Gouttevin, I., McGuire, A. D., Lawrence, D., Burke, 

E., Chen, X., Decharme, B., and others: Simulated high-latitude soil thermal dynamics 

during the past 4 decades, The Cryosphere, 10, 179–192, 2016. 

 

Reviewer Comment 6: 

Line 490 “Notably, RMSE at the surface (0 cm) is slightly lower than at 40 cm, possibly 

due to stronger direct influences from surface cover and meteorological conditions.” – 

This is not the case for Fig. 12 cd. Furthermore, making this statement based on only a 

few sites is not adequate. 

 

Response to Reviewer Comment 6: 

We thank the reviewer for the valuable observation. We agree that the RMSE at 0 cm 

is not consistently lower than at 40 cm across all stations. Our original statement was 

overly generalized based on a limited number of sites and may have caused confusion. 

We have revised the text accordingly to avoid overinterpretation.  

 

Revised Text (L505-506): 

Site-level accuracy was evaluated using RMSE, which ranged from 0.84 K to 1.80 K 



across both depths, indicating strong agreement between predicted and observed values. 

 

 

Reviewer Comment 7: 

Line 535 “Figure. S5 demonstrates that LST is more effective than air temperature in 

detecting spatial variations in surface Ts in sparsely vegetated areas” – I do not see 

how this conclusion can be derived from Fig. S5. 

 

Response to Reviewer Comment 7: 

We thank the reviewer for this valuable comment. We agree that Fig. S5 alone does not 

provide direct evidence that LST is more advantageous than air temperature in sparsely 

vegetated areas. In response, we have revised the text in the manuscript, removed the 

description related to Fig. S5, and added supporting evidence from Figs. S7 and S8 to 

more robustly substantiate this conclusion. 

 

Revised Text (L556-560): 

As shown in Figs. S7 and S8, incorporating LST as an input variable, relative to using 

only air temperature, significantly enhances overall modeling accuracy and improves 

performance across sites with different land cover types, with the most pronounced 

improvements observed in barren land areas. 

 

Figure S7. Comparison of Modeling Accuracy with Different Feature Variables 

(Feature1 represents using both air temperature and LST together with other feature 

variables, while Feature 2 represents using only air temperature together with other 

feature variables) 

 



 

Figure S8. Differences in model accuracy across land cover types under different 

feature variable combinations. (Feature1 represents using both air temperature and 

LST together with other feature variables, while Feature 2 represents using only air 

temperature together with other feature variables) 

 


