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Abstract. Polar Mesoscale Cyclones (PMCs), particularly their intense subset known as Polar Lows 

(PLs), characterized by short lifespans of 3-36 hours and horizontal scales below 1,000 km, pose 

significant hazards to polar maritime activities due to extreme winds exceeding 15 m s⁻¹ and wave heights 

surpassing 11 meters. These intense weather systems play a critical role in modulating sea-ice dynamics 

and ocean-atmosphere heat exchange. However, current understanding remains constrained by sparse 20 

observational records and an overreliance on single data sources (e.g., remote sensing or reanalysis). To 

address these gaps, this study presents the Integrated Multi-source Polar Mesoscale Cyclone Tracks 

(IMPMCT) dataset, a comprehensive 24-year (2001-2024) record of wintertime (November-April) 

PMCs for the Nordic Seas. The IMPMCT dataset was created by combining vortex-tracking algorithms 

applied to ERA5 reanalysis data with a deep learning-based method for detecting cyclonic cloud features 25 

in Advanced Very High-Resolution Radiometer (AVHRR) infrared imagery. It also incorporates near-

surface wind data from Advanced Scatterometer (ASCAT) and Quick Scatterometer (QuikSCAT) 

measurements. The dataset contains 1,110 vortex tracks, 16,001 cyclonic cloud features including length, 

width, position and morphological characteristics (spiral/comma shape), and 4,472 wind speed records 

(wind vector imagery and cyclone maximum winds). Corresponding ERA5-derived hourly vortex tracks 30 

are also provided, including 850 hPa vorticity and proximate sea-level pressure minima. Validation 

demonstrates statistical agreement with existing PLs track datasets while providing more complete 

cyclone life cycle trajectories, more intuitive cloud imagery visualization, and a richer set of parameters 

compared to previous datasets. As the most comprehensive PMCs archive for the Nordic Seas, the 

IMPMCT dataset provides fundamental data for advancing our understanding of the genesis and 35 

intensification mechanisms, enables the development of enhanced monitoring and early warning systems, 

supports the validation and refinement of polar numerical weather prediction models, and facilitates 

improved risk assessment and safety protocols for maritime operations. The dataset is available at 

https://doi.org/10.5281/zenodo.17142448 (Fang et al., 2025). 
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1 Introduction 

Polar Mesoscale Cyclones (PMCs) are mesoscale cyclonic weather systems that frequently occur 

over open waters or sea-ice edges in regions poleward of the main polar front zones (Condron et al., 2006; 

Rasmussen and Turner, 2003). They are often identified on satellite imagery by comma-shaped or spiral 45 

cloud patterns. PMCs occur in all seasons but are most active in winter, with a lifespan of approximately 

one day and horizontal scales of less than 1,000 km (Harold et al., 1999). The most intense subset of 

these cyclonic systems, termed Polar Lows (PLs), are major hazardous weather phenomena in polar 

regions, characterized by average maximum wind speeds exceeding 15 m s-1 and extreme values 

surpassing 30 m s-1. They can generate significant wave heights over 11 meters (Rojo et al., 2019), posing 50 

severe threats to human activities and maritime safety in high-latitude regions (Harrold and Browning, 

1969; Orimolade et al., 2016). Additionally, PLs induce rapid sea-ice changes and intensify ocean-deep 

convection through dynamic and thermodynamic effects, producing complex regional climatic impacts 

(Clancy et al., 2022; Condron and Renfrew, 2013; Parkinson and Comiso, 2013). The Nordic Seas 

(encompassing the Greenland, Norwegian, and Barents Seas) form a critical oceanic gateway between 55 

the Arctic and Atlantic Oceans. This region is a primary convergence zone for Arctic and Atlantic water 

masses and plays a key role in global ocean circulation and climate (Smedsrud et al., 2022). The complex 

meteorological and oceanographic conditions in this area make it the most frequent PLs occurrence 

region (Stoll, 2022). Consequently, research on mesoscale cyclones in the Nordic Seas is critical for 

improving Arctic maritime safety and understanding regional climate change impacts.  60 

Cyclonic cloud morphology and surface wind fields derived from remote sensing data serve as the 

primary criteria for distinguishing and categorizing PMCs and PLs (Rasmussen and Turner, 2003). The 

former can be manually identified through visible or infrared imageries from passive radiometers (e.g., 

Fig. 1), while the latter can be estimated using scatterometer or microwave data. While PLs exhibit higher 

destructive potential and detection feasibility compared to broader PMCs, current dataset development 65 

efforts have predominantly targeted PLs, leaving PMCs relatively underrepresented in existing 

observational records. Blechschmidt et al. (2008) combined Advanced Very High-Resolution Radiometer 

(AVHRR) infrared imagery (Kalluri et al., 2021) with wind speed data derived from the Hamburg Ocean 

Atmosphere Parameters and Fluxes from Satellite Data (HOAPS, Andersson et al., 2010) to manually 

identify 90 PLs occurring in the Nordic Seas between 2004 and 2005. Noer et al. (2011) utilized AVHRR 70 

infrared imagery, Advanced Scatterometer (ASCAT), and Quick Scatterometer (QUIKSCAT) wind data 

to detect 121 PLs in the Nordic Seas over a decade (2000–2009). Smirnova et al. (2015) identified 637 

PLs between 1995 and 2009 using Special Sensor Microwave/Imager (SSM/I) data for atmospheric total 

water vapor (TWV) content fields, near-surface wind speed fields, and AVHRR infrared imagery. 

Golubkin et al. (2021) employed Moderate Resolution Imaging Spectroradiometer (MODIS) and ASCAT 75 

data to identify PLs over the North Atlantic, compiling a catalog of 131 PLs between 2015 and 2017. In 

all PL lists derived from remote sensing data, the Rojo list (Rojo et al., 2015, 2019) is currently the 

longest temporally spanning remote sensing-derived PLs track dataset, providing tracks of 420 PLs 
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occurring in the Nordic Seas from 1999 to 2019. It includes basic information such as cyclone location, 

size, type, development stage, and maximum 10 m wind speed. The manually tracked datasets described 80 

above have provided valuable PLs information, contributing to ongoing research efforts. However, the 

unique high-latitude geography of polar regions creates significant observational challenges. Polar-

orbiting satellites typically observe these regions at intervals ranging from tens of minutes to several 

hours, resulting in temporal gaps that make it difficult for manual tracking datasets to capture complete 

cyclone life cycles. Additionally, some PLs forming near sea-ice edges may exhibit distinct cyclonic 85 

cloud features exclusively during their transition over moisture-rich open waters (Bromwich, 1991), 

implying that remote sensing datasets could potentially miss capturing the initial developmental stages 

of such PLs. Consequently, while the Rojo list provides developmental pattern annotations for individual 

PLs, the objectivity and quantitative reliability of these annotations remain constrained by the inherent 

limitations of remote sensing in achieving comprehensive characterization of PL evolution throughout 90 

their complete lifecycle. Furthermore, the occurrence of polar night, coupled with low contrast between 

sea-ice/snow surfaces and overlying clouds, further limits the detection capabilities of remote sensing 

(particularly visible-band remote sensing) methods for PLs. 

 

Figure 1: Two AVHRR satellite images. (a) A PMC in Barents Sea. (b) A PL in Norwegian Sea. The yellow 95 
stars mark the centers of these two cyclones. 

With the improved resolution of reanalysis datasets, their ability to characterize PLs has 

progressively advanced (Laffineur et al., 2014; Smirnova and Golubkin, 2017), making them an 

increasingly critical data source for constructing PLs track datasets. Researchers have employed various 

combinations of identification criteria to detect PLs. For instance, Zappa et al. (2014) utilized the 100 

difference between 500 hPa temperature and near-surface temperature to represent cold air outbreak 

characteristics during PLs formation, while utilizing maximum near-surface wind speed to indicate PLs 

intensity, and 850 hPa relative vorticity to capture their cyclonic properties. Subsequent studies adopted 

or adapted these criteria (Stoll et al., 2018; Terpstra et al., 2016; Yanase et al., 2016). Building on the 

fifth-generation European Centre for Medium-Range Weather Forecasts Reanalysis (ERA5, Hersbach et 105 

al., 2020), Stoll (2022) established a four-criteria linear-based combination defining PLs as intense 
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mesoscale cyclones forming within polar oceanic air masses northward of the polar front. This approach 

successfully reproduced 60-80 % of PLs from five manual PL lists, validating ERA5’s robust capability 

in PLs representation. However, ERA5 significantly underestimates near-surface wind speeds within PL-

affected regions (Gurvich et al., 2022; Haakenstad et al., 2021), attributed in part to insufficient 110 

representation of transient wind variability, surface divergence, and unresolved mesoscale features 

(Belmonte Rivas and Stoffelen, 2019). This limits its ability to objectively capture PLs’ high-wind 

characteristics, thereby introducing notable limitations. 

In summary, remote sensing and reanalysis datasets provide complementary perspectives on PLs’ 

characteristics, with the former capturing cloud morphology and the latter resolving meteorological field 115 

distributions, highlighting their respective advantages. This complementary nature motivates the 

integration of both data types to construct more comprehensive PL tracking datasets—a key objective of 

this study. Furthermore, existing datasets primarily focus on PLs, while weaker PMCs that share similar 

cyclonic cloud features and environmental conditions lack comprehensive publicly available track 

datasets. This disparity likely stems from the fact that PMCs generally have smaller average intensities, 120 

shorter lifespans, and smaller scales compared to PLs, making them more difficult to detect. Although 

some researchers have proposed PMC track datasets using either remote sensing (Verezemskaya et al., 

2017) or reanalysis data (Michel et al., 2018; Pezza et al., 2016; Watanabe et al., 2016), these approaches 

face significant limitations. Remote sensing-based datasets often have inadequate temporal coverage or 

lack critical near-surface wind speed records (Condron et al., 2006), while reanalysis-based datasets 125 

encounter challenges in developing effective identification criteria without remote sensing validation. As 

a result, no universally accepted PMC identification standards currently exist (Michel et al., 2018). 

Notably, while PLs have been well-documented in relation to large-scale circulation patterns such as the 

North Atlantic Oscillation (Claud et al., 2007) and Scandinavian blocking (Mallet et al., 2013), the 

climatic impacts of PMCs remain insufficiently investigated (Michel et al., 2018). These knowledge gaps 130 

highlight the critical need to establish a more comprehensive tracking dataset capable of capturing PMCs 

throughout their lifecycle. Such a dataset would enable the complete characterization of these weaker 

polar mesoscale systems, representing another key motivation for this study. 

Based on the above analysis, this study aims to comprehensively integrate the advantages of 

reanalysis datasets in characterizing the dynamical and thermodynamic structures of polar mesoscale 135 

weather systems and remote sensing data in capturing cloud morphology to establish a long-term PMCs 

(hereafter, “PMCs” when used alone include “PLs”) track dataset in the Nordic Seas encompassing the 

extended winter seasons (November-April) between 2001 and 2024. This dataset will contain the tracks 

of the PMCs in reanalysis fields and remote sensing imagery, as well as multi-dimensional attributes such 

as intensity, cloud morphology, and near-surface wind features. The objective is to provide a long-term, 140 

multi-attribute catalog of PMCs, offering reliable data support for atmospheric and oceanic research in 

the Nordic Seas. 

2 Data 

2.1 AVHRR data 
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The Advanced Very High-Resolution Radiometer (AVHRR) (Kalluri et al., 2021) is mounted on 145 

NOAA series meteorological satellites and MetOp series satellites. Since its launch with the TIROS-N 

satellite in 1979, the sensor has continuously performed multiple daily observations of the Earth’s surface. 

It measures reflected and emitted radiation from the Earth and its atmosphere, providing detailed 

information about surface characteristics, clouds, and atmospheric properties. AVHRR is an across-track 

scanning system with five spectral bands as shown in Table 1. It has a nadir spatial resolution of 150 

approximately 1.1 kilometers and a ±55.4° scan angle on the satellite, covering a ground swath width of 

2,800 km. However, the effective resolution depends on the scan angle, with optimal image quality 

provided within the ±15° range. 

In this study, infrared imagery used to observe cyclonic cloud features is derived from two Level 

1B data products of the AVHRR (Kalluri et al., 2021): the GAC (Global Area Coverage) and LAC (Local 155 

Area Coverage) forth-band data. The GAC product provides down-sampled imagery (approximately 4 

km resolution) after onboard processing, selecting every third scan line and averaging every fifth adjacent 

sample along the scan line. This resampling aims to ensure continuous global coverage. In contrast, the 

LAC product records AVHRR data at its native resolution (1.1 km) without resampling over specific 

orbital regions (primarily Europe and Africa), offering higher spatial resolution. All AVHRR data utilized 160 

herein are obtained from NOAA’s Comprehensive Large Array-data Stewardship System 

(https://www.aev.class.noaa.gov/ (accessed on 18 July 2024)). 

Table 1: AVHRR radiometer channel information. 

Channel Wavelength(μm) Satellite Application 

1 0.58-0.68 ALL satellites Surface albedo estimation 

2 0.725-1.00 ALL satellites Water body delineation 

3A 1.58-1.64 
NOAA15-

19/MetOP A-C  
Snow and ice cover identification 

3B 3.55-3.93 
NOAA8-

19/MetOP A-C 

low-level clouds identification and surface 

temperature 

4 10.3-11.30 ALL satellites Cloud-top temperature and surface temperature 

5 11.50-12.5 
NOAA8-

19/MetOP A-C 
Cloud-top temperature and surface temperature 

2.2 ERA5 data 

ERA5 is the fifth-generation global reanalysis dataset produced by the European Centre for 165 

Medium-Range Weather Forecasts (ECMWF), designed to provide high-quality, consistent estimates of 

atmospheric, land, and ocean climate variables from 1950 to the present. It replaces the previous ERA-

Interim dataset (Dee et al., 2011) and is currently one of the most widely used reanalysis products. ERA5 

offers hourly data with a horizontal spectral truncation of T639, corresponding to a global grid of 

approximately 31 km. The atmosphere is resolved vertically using 137 levels extending from the surface 170 

to 80 km in height (Han and Ullrich, 2025). 

ERA5 reanalysis dataset demonstrates robust performance in representing meteorological fields 

over the Nordic Seas, such as sea level pressure, air temperature, and humidity (Graham et al., 2019; 

https://www.aev.class.noaa.gov/
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Moreno-Ibáñez et al., 2023; Yao et al., 2021). Most notably, its effective characterization of cold air 

outbreaks has been proven to correlate closely with the timing and location of PLs (Meyer et al., 2021). 175 

However, beyond the previously mentioned underestimation of near-surface strong winds in Sect. 1, 

Wang et al. (2019) found ERA5 data exhibits a warm bias over Arctic sea ice during winter and spring, 

which makes it difficult to accurately simulate the frequently occurring strongly stable boundary layers 

prevalent in winter and early spring. Consequently, the intensity of PMCs near the sea ice edge might be 

overestimated. Nevertheless, more accurate total precipitation and snowfall data in ERA5 (Wang et al., 180 

2019) significantly benefits the representation of enhanced latent heat release mechanisms associated 

with PLs (Moreno-Ibáñez et al., 2021). 

In this study, we utilize ERA5 reanalysis data spanning 2001-2024 during the extended winter 

period (November-April), on a spatial grid of 0.25° × 0.25°, covering the domain 50° N-85° N in latitude 

and 40° W-80° E in longitude. This dataset is employed to track vortices and compute their evolutionary 185 

characteristics such as intensity and size. 

2.3 QuikSCAT/ASCAT data 

This study further leverages QuikSCAT and ASCAT data to examine near-surface wind field 

properties within the cyclone core and its surrounding ambient conditions. QuikSCAT, a NASA-

developed Earth-observing satellite, employs a Ku-band SeaWinds microwave scatterometer to provide 190 

global measurements of ocean surface wind vectors. Similarly, ASCAT features a C-band microwave 

scatterometer aboard EUMETSAT-operated MetOp polar-orbiting meteorological satellites. These 

advanced instruments are specifically engineered to deliver accurate (e.g., ASCAT-A zonal/meridional 

wind component error standard deviations of ~0.37/0.51 m s-1 and ASCAT-B of ~0.39/0.44 m s-1, 

Vogelzang and Stoffelen 2022), high-resolution, continuous wind vector measurements under all weather 195 

conditions, offering comprehensive global coverage of near-surface wind patterns. 

We utilize Level 2 near-surface wind vector retrieval products from both instruments to analyze 

wind field characteristics during cyclone development, with both datasets featuring a 12.5 km resolution. 

For QuikSCAT, a slice-based compositing technique integrates high-resolution measurements derived 

from Level 1B data into 12.5 km wind vector cells. In contrast, ASCAT employs a spatial box filter to 200 

minimize land contamination of microwave signals and enhance retrieval accuracy in coastal regions. 

Both datasets are sourced from NASA’s Physical Oceanography DAAC (podaac.jpl.nasa.gov/ (accessed 

on 28 November 2024)). For the two products, QuikSCAT is available from 1999 to 2009, whereas 

ASCAT start providing since 2010. To ensure comprehensive temporal coverage across the track dataset, 

the two products are utilized in their respective operational periods to ensure comprehensive temporal 205 

coverage. 

3 Methodology  

To establish a more comprehensive cyclone track dataset in the Nordic Seas, we first utilize ERA5 

reanalysis data which exploits the evolving global observing system to obtain all vortex tracks. In this 

process, a lower vorticity maxima criterion is applied to extract vorticity perturbations within the 210 

https://podaac.jpl.nasa.gov/dataset/QSCAT_LEVEL_2B_OWV_COMP_12_KUSST_LCRES_4.1
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reanalysis data. Subsequently, vortex tracks and their merging and splitting processes are identified based 

on spatial and boundary changes of vortices across consecutive time steps. For each vortex with available 

AVHRR data, we generate Vortex-Centered Infrared (VCI, mentioned in the following text) images to 

identify corresponding cyclonic cloud features with a cyclone-detection deep-learning model. Finally, 

near-surface wind fields derived from QuikSCAT/ASCAT are matched to characterize cyclones’ core 215 

wind speed. The algorithm workflow is outlined in Fig. 2, with methodological details provided in 

subsequent subsections. 

  
Figure 2: The workflow diagram. In the diagram, all methodologies are enclosed in dashed circular outlines, 

while derived datasets are framed in solid rectangular boxes. The title of each swimlane denotes the data 220 
utilized by all methods within that swimlane. 

3.1 Objective algorithm for identifying and tracking vortices 

Sea-level pressure (Laffineur et al., 2014; Michel et al., 2018) and low-level relative vorticity (Day 

et al., 2018; Stoll et al., 2021; Watanabe et al., 2016; Zappa et al., 2014) are the two most common tracer 

variables for PMCs in reanalysis datasets. Existing studies demonstrate that high values of low-level 225 

relative vorticity, compared to sea-level lows which are susceptible to synoptic scale pressure fields, are 

more closely associated with actual cyclone positions and exhibit smaller biases in cyclone detection and 

intensity estimation (Stoll, 2022; Stoll et al., 2020; Zappa et al., 2014). Therefore, we apply an objective 

mesoscale vortices-tracking algorithm to the 850 hPa relative vorticity fields in ERA5 data to obtain 
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hourly-resolution vortex tracks. This algorithm was first proposed by Shimizu and Uyeda (2012) to track 230 

convective cells prone to merging and splitting, and has since been developed and improved for PMC 

tracking (Watanabe et al., 2016; Stoll et al., 2021). It specifically comprises two components: hourly 

vortices identification and connection of continuous time step vortices. 

3.1.1 Hourly vortices identification  

When multiple vortices coexist within the same region of cyclonic shear flow, they often manifest 235 

as a contiguous positive vorticity zone in the vorticity field (hereafter referred to as an unpartitioned-

vortex in the algorithm). The major challenge in vortex identification within vorticity fields is how to 

partition such regions (as exemplified in Fig. 3) into distinct isolated vortex regions. 

 

Figure 3: (a) 850 hPa relative vorticity field obtained by ERA5 data. (b) AVHRR infrared imagery concurrent 240 
with the time step in (a). The shading represents 850 hPa relative vorticity smoothed over a uniform 60 km 

radius and local vorticity maxima are marked by green star symbols, while regions enclosed by solid black 

contours denote the unpartitioned-vortex zone. 

First, a uniform 60 km smoothing radius is applied to hourly 850 hPa relative vorticity to disconnect 

weak continuity zones and eliminate minor perturbation maxima, which may arise from assimilation 245 

increments (Belmonte Rivas and Stoffelen, 2019). Subsequently, in the smoothed vorticity field, regions 

enclosed by closed contour lines exceeding a minimum threshold 𝜁𝑚𝑖𝑛0 are identified as unpartitioned 

vortices. Thereafter, each unpartitioned-vortex (e.g., the area within the thick black solid line in Fig. 4) 

is subjected to isolated vortex extraction via the following procedure: 

Step 1: Identify local vorticity maxima exceeding the threshold 𝜁𝑚𝑎𝑥0, designated as vortex peaks with 250 

relative vorticity values 𝜁𝑚𝑎𝑥 (e.g., in Fig. 4, three local vorticity maxima satisfy 𝑏 > 𝑎 > 𝑐). Contour 

lines (gray thin solid lines) are then drawn at 10-6 s-1 intervals. Subsequently, the outermost contour line 

enclosing each individual or combined peak (s) is identified as the valley-line (black thin solid lines, e.g., 

ζmin1≈ζmin2<ζmin3≈ζmin4 in Fig. 4). These valley-lines enable the separation of distinct vortex regions 

containing single or multiple peaks. 255 

Step2: The isolation status of each vortex region is determined by assessing the relative disparity between 

each valley-line and its internal maximum peak. As illustrated in Fig. 4: peak 𝑎 represents the strongest 

peak within its associated valley-line ζmin4, peak 𝑏 corresponds to the maximum within two valley-line-

enclosed areas ζmin1 and ζmin3, and peak 𝑐 is the dominant peak within its respective valley-line ζmin2. 
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The assessment proceeds systematically through vortex regions in descending order of their valley-line 260 

vorticity magnitude (ζmin): for the maximum peak with relative vorticity value ζmax within the valley-

line-enclosed vortex region, if the criterion (ζmax - ζmin) ζmax⁄  > 𝛾  is satisfied (where 𝛾  denotes the 

isolation vortex threshold), the area centered on this peak and bounded by the valley-line is classified as 

an isolated vortex region. If a vortex region contains only one such isolated vortex region, the isolated 

vortex will be expanded to encompass the entire domain. (in Fig. 4, the vortex region enclosed by ζmin4 265 

associated with peak 𝑎  fails to meet the isolation criterion. Conversely, peaks 𝑏  and 𝑐  forming two 

distinct isolated vortex regions bounded by their respective valley-lines ζmin1 and ζmin2). 

Step3: For all vortex points located within each unpartitioned-vortex but outside the isolated vortex 

regions, each point is assigned to the nearest isolated vortex based on geographical distance. Finally, all 

isolated vortices in the each unpartitioned-vortex region are mutually designated as adjacent vortices 270 

(e.g., vortices 𝑏 and 𝑐), serving as inputs for subsequent analysis of merging or splitting events. The 

area of each vortex is defined by its corresponding allocated isolated vortex region. 

 

Figure 4: Vortex identification algorithm example. The black thick solid lines ζmin0  represent the 

unpartitioned-vortex border. The vorticity peaks 𝒂, 𝒃, and 𝒄 are three detected local vorticity maxima 275 
within this unpartitioned-vortex. The thin black solid lines from ζmin1 to ζmin4 in Step 1 denote vortex valley-

lines that divide single or multiple peak regions. After vortex isolation assessment in Step 2, the retained valley 

lines ζmin1  and ζmin2 for peaks 𝒃 and 𝒄 form the initial boundaries of their respective isolated vortices, 

while vortex 𝒂 is classified as non-isolated, with its boundary shown as a dashed line. In Step 3, the pale pink 

regions outside the isolated vortices are further allocated to vortices 𝒃 and 𝒄.  280 

3.1.2 Connection of continuous time step vortices 

Based on the results of hourly vortices identification, the introduction of steering wind is employed 

to estimate the movement of vortices. The steering wind is computed by averaging wind fields within a 

450 km radius around the vortex center at 550 hPa, 700 hPa, and 850 hPa, which is statistically proven 

to have minimal bias (Yan et al., 2023). Specifically, for a vortex at a given time step, its ideal point after 285 

experiencing a time step under the steering wind influence is first calculated. A search radius of 180 km 

is then applied around this estimated location to facilitate vortex tracking in subsequent time steps. 

Subsequently, the (a) nearest neighbor principle or (b) maximum area overlap principle (as shown in Fig. 

5) is applied to connect vortices between two consecutive time steps, when vortices exist within the 
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estimated region, the nearest vortex is connected; otherwise, the vortex with the largest area overlap 290 

within the region is selected for connection. Finally, if the distance between the centers of vortices to be 

connected in adjacent time steps exceeds 200 km and the vorticity of the vortex center at next time step 

is less than 1.5 × 10-4 s-1, the connection is terminated to minimize spurious connections. 

 

Figure 5: Schematics of continuous time step vortices connection 295 

Additionally, If no spatially connectable vortices are identified in adjacent time steps, the vortex is 

classified as being terminate. Under the assumption of constant centroid positions during splitting and 

merging (Shimizu and Uyeda, 2012), if a vortex is contiguous to other vortices at its start (end) track 

point, it is considered to have been generated (terminated) via splitting (merging). As shown in Fig. 6, in 

two simplified vortex motion scenarios, vortex 𝑏 begins splitting and merging at the t3 time step. 300 

 

Figure 6: The schematic diagram illustrates two vortices splitting and merging processes. The t1 to t4 

represent four consecutive time steps. The red/ blue arrow indicates the direction corresponding to the 

splitting/ merging process of two vortices. The colored regions and solid lines represent isolated vortex regions 

and their boundaries. Gray solid lines show contour lines of the 850 hPa relative vorticity field, and black 305 
solid lines indicate the unpartitioned-vortex boundaries. The blue dashed line indicates that the vortex 𝒃 is 

not yet an isolated vortex at time t2. 

3.1.3 Sensitivity experiments of vortex identification parameters 

To evaluate the sensitivity of vortex identification parameters, we conducted three sensitivity 

experiments with the following configurations, each designed to test the impact of varying key thresholds 310 

𝜁𝑚𝑎𝑥0 (𝜁𝑚𝑖𝑛0) and 𝛾 on vortex detection: 

1) Experiment a (lenient thresholds): 𝜁𝑚𝑎𝑥0 = 1.2×10-4 s-¹, 𝜁𝑚𝑖𝑛0 = 1.0×10-4 s-¹, 𝛾 = 0.15; 

2) Experiment b (intermediate thresholds): 𝜁𝑚𝑎𝑥0 = 1.2×10-4 s-¹, 𝜁𝑚𝑖𝑛0 = 1.0×10-4 s-¹, 𝛾 = 0.25;  

3) Experiment c (strict thresholds, following Stoll et al. 2021): 𝜁𝑚𝑎𝑥0 = 1.5×10-4 s-¹, 𝜁𝑚𝑖𝑛0  = 

1.2×10-4 s-¹, 𝛾 = 0.25 315 

The influence of threshold variations on vortex detection characteristics was systematically 

evaluated by analyzing differences in the number of identified vortex tracks, their lifespans, and their 
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vorticity across the three experiments. As shown in Fig. 7, threshold adjustments predominantly affected 

vortices exhibiting maximum vorticity (ζₜᵣₘₐₓ) less than 2×10⁻⁴ s⁻¹. The principal findings are: 

First, focusing on the impact of 𝜁𝑚𝑎𝑥0 (by comparing Experiment b, which uses a lenient 𝜁𝑚𝑎𝑥0, 320 

with Experiment c, which uses a strict 𝜁𝑚𝑎𝑥0 ), we found that the lenient threshold in Experiment b 

captured an additional 8,077 weak-vorticity tracks (with ζₜᵣₘₐₓ < 1.5×10⁻⁴ s⁻¹). This adjustment also 

extended the mean lifespan of detected vortices by approximately 3 hours. Under the 6-hour minimum 

lifespan criterion—used to filter transient disturbances—this extension nearly doubled the detection rate 

of moderately weak vortices (1.5×10⁻⁴ s⁻¹ < ζₜᵣₘₐₓ < 2×10⁻⁴ s⁻¹), highlighting the importance of 𝜁𝑚𝑎𝑥0 in 325 

capturing less intense but persistent systems. 

Second, examining the role of 𝛾  (by comparing Experiment a, which uses a lenient 𝛾 , with 

Experiment b, which uses an intermediate 𝛾 ) revealed that the lenient 𝛾  threshold in Experiment a 

increased the count of weak-to-moderate vortices (1.5×10⁻⁴ s⁻¹ < ζₜᵣₘₐₓ < 3×10⁻⁴ s⁻¹). This increase was 

attributed to enhanced sensitivity to vortex splitting events, and it came with a trade-off: the mean lifespan 330 

of detected vortices was reduced by approximately 2 hours, likely due to more frequent identification of 

short-lived sub-vortices during splitting 

Given the objective of constructing a comprehensive dataset capturing the full spectrum of PMCs, 

including weaker systems potentially omitted by stricter criteria, the parameter set from Experiment a 

was ultimately selected. This configuration yielded the highest number of vortex tracks, thereby ensuring 335 

the inclusion of marginally intense or transient PMCs and providing a more robust foundation for 

subsequent analysis. Validation of these results against established polar low datasets is presented in Sect. 

4. 

 

 340 
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Figure 7 Sensitivity analysis of vortex identification parameters across different maximum track vorticity 

groups: (a) number of identified tracks, (b) mean track lifetime. 

3.2 Matching SLP minimum 

While vortices often fail to produce closed isobars in SLP fields due to interference from 

background pressure gradients, their atmospheric influence can still be quantified through detectable SLP 345 

minima. Notably, certain polar lows originate within upper-level cold-core systems (known as “cold low 

types”) frequently generate deep convection and produce substantial near-surface impacts (Rasmussen, 

1981; Businger and Reed, 1989). To systematically capture SLP characteristics, the SLP field is first 

smoothed using Gaussian filtering with a radius of 50 km to suppress noise. Subsequently, the SLP 

minimum point located within a 150 km radius of the nearest vortex centroid is designated as the SLP 350 

center for that vortex. 

3.3 Detection and extraction of cyclonic cloud characteristics 

Building upon the lenient vorticity identification criteria previously constructed, a substantial 

population of vortex tracks have been identified using reanalysis data, including not only cyclonic 

systems but also low-pressure troughs, and small-scale atmospheric disturbances. To assess whether these 355 

vortices represent PMCs, AVHRR infrared imagery is used for comparative validation. This process 

begins with temporal matching of satellite overpasses to vortex track timesteps, followed by generation 

of Vortex-Centered Infrared (VCI) images through linear interpolation of infrared data onto a 

geographically-referenced 801×801 grid coordinate with 2 km resolution, centered on each vortex center 

(Fig. 8c and Fig. 8d). The coordinate transformation employs the formulas: 360 

𝑙𝑎𝑡(𝑥, 𝑦) =
𝑦

2𝜋𝑅
+ 𝑣𝑜𝑟𝑡𝑙𝑎𝑡  , 𝑥, 𝑦 ∈ {−800, −798, … ,798,800}     (1) 

𝑙𝑜𝑛(𝑥, 𝑦) =
𝑥

2𝜋𝑅∙𝑐𝑜𝑠(𝑣𝑜𝑟𝑡𝑙𝑎𝑡)
+ 𝑣𝑜𝑟𝑡𝑙𝑜𝑛 , 𝑥, 𝑦 ∈ {−800, −798, … ,798,800}   (2) 

The coordinate transformation utilizes vortlon and vortlat as the longitude and latitude of the original 

coordinate grid, corresponding to either the vortex center at the given timestep. This approach 

implements a conformal projection that provides a first-order approximation of geographic coordinates 365 

within the vicinity of the origin point. 

The VCI images enable comprehensive analysis of cloud features within a 1600 km×1600 km 

domain centered on each tracked vortex position, providing an optimal spatial scale that captures the 

majority of PMCs while simultaneously accommodating larger-scale extratropical systems advected into 

Arctic regions. By transitioning from broad-scale satellite observations to these precisely localized 370 

domains, this imagery method significantly enhances the spatial correspondence between vorticity-

derived tracks and cloud features, with particular sensitivity improvement for smaller-scale and shallower 

cyclones. Meanwhile, the georeferenced framework of VCI images provides two critical analytical 

capabilities: first, it enables direct quantification of cyclone dimensions through the standardized 

geographic grid; second, it allows precise measurement of positional discrepancies between observed 375 

cloud systems and modeled vortices through center-to-center displacement vectors. Furthermore, VCI 

images are also generated for two-time steps before the start and after the end of each vortex track. This 

allows us to capture the initial formation and dissipation stages of PMCs that are not adequately 
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represented in vorticity fields, enabling users to better evaluate the representation of PMCs. 

 380 

Figure 8: Two examples of VCI image generation. For the two vortices shown in (a), the AVHRR IR image 

(b) reveals a polar low located to the east of vortex 1 and vortex 2. This polar low exists simultaneously in the 

VCI images centered on vortex 1 and vortex 2 (c, d). The shading in (a) represents 850 hPa relative vorticity 

smoothed over a uniform 60 km radius, with gray contour lines indicating sea-level pressure at 10 hPa 

intervals. The centers of vortex 1, vortex 2, and the polar low are respectively marked by green, red, and 385 
yellow stars. 

To further extract cyclonic cloud features corresponding to vortices from the vast collection of VCI 

images, the YOLO (You Only Look Once) object detection algorithm is employed to automate this 

process. Object detection is a computer vision task that uses neural networks to locate and classify objects 

within images. The YOLO series of algorithms (Redmon et al., 2016), characterized by high efficiency 390 

and accuracy, has become prominent in real-time object detection tasks across various fields, from 

agriculture to healthcare. In this track dataset construction, the YOLOv8 framework is adopted to 

automatically extract cyclonic cloud morphology features, including cloud type classification (spiral 

cloud or comma-shaped cloud), center coordinates, and an oriented bounding box enclosing the cyclone. 

Fig. 9 illustrates typical cyclonic cloud morphologies, the most common comma-shaped cloud 395 

structure is shown in Fig. 9a, where the head is typically composed of a tall and smooth cirrus shield 

surrounding a dark, nearly cloud-free center. Ripple-like wave patterns sometimes appear at the edge of 

the head, indicating significant wind shear within the cyclone. Fig. 9d presents the typical spiral cloud 

morphology, characterized by one or more convective cloud spiral bands encircling the circulation center. 
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These spiral bands are occasionally predominantly composed of cellular clouds. Intermediate baroclinic 400 

forms illustrated in Fig. 9b and Fig. 9c represent transitional stages between comma and spiral types, 

sharing structural similarities with occluded extratropical cyclones but at reduced horizontal scales, and 

are consequently classified within the spiral category. The centers of comma cloud and spiral cloud 

configurations in our research were visually determined following Forbes and Lottes (1985), based on 

the characteristic curvature and convergence of cloud bands surrounding the circulation core as identified 405 

in satellite imagery. Additionally, the analytical framework of oriented bounding box is also introduced 

that provide quantitative measures of cyclone scale, with the long axis aligned parallel to the tail cloud 

band and the short axis tangent to the cloud head. While conventional approaches estimate cyclone size 

using the mean axis length (Smirnova et al., 2015), this dataset provides separate measurements of both 

axes to account for potential overestimation caused by the connection of tail cloud band of cyclones and 410 

long cloud bands of mesoscale-front, thereby enabling researchers to make more precise assessments of 

true cloud coverage dimensions. 

 

Figure 9: Different cyclonic cloud morphologies in four VCI images: (a) comma-shaped cloud; (b), (c) and (d) 

spiral clouds. The yellow/blue bounding boxes and stars respectively denote the oriented bounding boxes and 

center positions of comma-shaped/spiral cyclones. 

 

To identify the aforementioned cyclonic cloud features, the YOLOv8-obb-pose model is configured 

using the YOLOv8 model framework (Jocher et al., 2023), which combines oriented object detection 

(obb) and keypoint detection (pose). Specifically, a branch for keypoint prediction is added to the 415 

decoupled head module of the YOLOv8-obb model. This enables the new YOLOv8-obb-pose model to 

simultaneously perform automatic detection of cyclone type, center position, and oriented bounding box. 

The network architecture of the YOLOv8-obb-pose model comprises three main components: Backbone 
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for multi-dimensional feature extraction, Neck for enabling multiscale feature fusion, and Head for 

extracting cyclone type, center coordinates, and oriented bounding box parameters (e.g., length, 420 

orientation). As shown in Fig. 10, the YOLOv8-obb-pose model successfully detects two spiral clouds 

(Fig. 10a) and two comma-shaped clouds (Fig. 10b) in VCI images, with oriented bounding 

boxes,cyclone type and center points marked. 

During the model training process, we first construct a manually annotated dataset to train the 

YOLOv8-obb-pose model. To ensure prediction stability, particular emphasis is placed on maintaining 425 

consistent oriented bounding box annotations and center point positions across similar evolutionary 

phases of cyclonic cloud morphologies. To optimize the trade-off between detection efficiency and 

accuracy, we implement an iterative training protocol involving successive cycles of prediction, manual 

correction, and retraining using VCI images. As detailed in Table S1, the model achieves competitive 

performance metrics on the validation set following this optimization process. The final YOLOv8-obb-430 

pose implementation demonstrates robust capabilities in both cyclone detection and center localization 

tasks, satisfying requirements for practical applications. 

For each detected cyclone, the center coordinates and the four vertices of the oriented bounding box 

are converted back to geodetic coordinates using the inverse of Eq. (1) and (2). The lengths of the four 

sides of the bounding box are calculated using the haversine formula, with the cyclone's length (width) 435 

defined as the mean size of the two long (short) sides of the rectangle. The geographic coordinates of the 

cyclone center are then used for subsequent matching with vortex centers. 

 

Figure 10: Examples of cyclonic cloud detection using the YOLOv8-obb-pose model: (a) two spiral clouds 

detected in a VCI image and (b) two comma-shaped clouds detected in a VCI image. The oriented bounding 440 
boxes for spiral clouds are shown in purple, and for comma-shaped clouds in blue. The centers of the cyclones 

are marked with green points. The cyclone type and detection confidence are displayed above each bounding 

box. 

3.4 Validation of the vortex tracks  

Each series of VCI images based on vortex track provides spatiotemporal neighboring local infrared 445 

cloud imagery that follows the vortex’s movement. After extracting cyclonic features from VCI images, 
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whether a vortex track corresponds to a cyclone evolution process is determined by proximity matching 

between the cyclone center detected in each VCI image and the vortex center. The following steps ensure 

that each VCI image only retains a cyclone uniquely matched to a vortex track point: 

Ⅰ Uniqueness: As illustrated in Fig. 8, spatially proximate vortices in reanalysis data can result in multiple 450 

detections of the same cyclone across corresponding VCI images. To remove duplicate records, we 

implement a selection criterion: for any cluster of detections from the same AVHRR infrared scan (with 

cyclone centers <50 km apart), only the detection whose center is nearest to the VCI image center is 

retained. 

Ⅱ Proximity: Each VCI image retains only the cyclone whose center is nearest to the VCI image center 455 

and within 250 km of it.  

Further, we extend the point-to-point matching to the track-to-track. When points of a vortex track 

are continuously matched with a series of cyclones in VCI images over four hour or longer time-steps 

with an average matching distance less than 150 km, the vortex track is preliminarily identified as a PMC 

track associated with the cyclone evolution process (as shown in Fig. 11) 460 

 

Figure 11: (a) A matched vortex track and cyclone track and (b) partial corresponding VCI images. For (a), 

blue solid line represents the vortex track at hourly resolution, while grey solid line with green points depicts 

the cyclone track points formed in VCI images that correspond one-to-one with vortex points. The color of 

the track points indicates the magnitude of relative vorticity at each vortex point. For (b), the cyclone develops 465 
sequentially from left to right and top to bottom, with scan intervals between images approximately six hours 

apart. 

3.5 Matching cyclone-related max wind and environmental near near-surface wind 

When cyclonic cloud features are identified in VCI imagery, near-surface wind speeds over the 

ocean are matched to assess cyclone intensity. Based on established criteria (Rasmussen and Turner, 470 

2003), PLs are generally associated with high near-surface wind speeds exceeding 15 m s⁻¹ (gale force), 

concentrated in narrow cloud bands connected to the eye wall or intense convective regions surrounding 

the center. In contrast, weaker PMCs often do not penetrate the temperature inversion above the marine 

mixed layer, resulting in lower near-surface wind speeds (Noer et al., 2011). It is noteworthy that some 

PMCs occurring during cold air outbreaks may exhibit wind speed maxima surpassing 15 m s⁻¹ due to 475 

background environmental wind advection. To prevent misclassifying such systems as PLs, careful 

subjective analysis has traditionally been applied (Wilhelmsen, 1985). This highlights that what is 
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retrieved from scatterometer wind measurements may not always reflect cyclone-induced circulation, but 

could also include contributions from large-scale advective winds. 

In this study, near-surface wind speed matching is performed using ASCAT/QuikSCAT data 480 

selected when the time difference from the VCI image is within 30 minutes. This tolerance is considered 

acceptable given that most PLs move at speeds below 13 m s⁻¹ (Rojo et al., 2015; Smirnova et al., 2015), 

making the associated representative error negligible. To estimate the maximum wind speed associated 

with the cyclone core, a cloud-scale-based search radius is applied. The search radius is defined as the 

distance from the cyclone center to the nearest short edge of its oriented bounding box. This confines the 485 

wind search to the high-wind region near the cyclone’s core, with the maximum value within this area 

taken as the system’s maximum wind speed.  

It is important for users to recognize that scatterometer-derived wind speeds may include significant 

contributions from environmental advection and do not solely represent cyclonically organized winds. 

For instance, Fig. 12a illustrates a system with a well-defined cyclonic circulation where the high wind 490 

speeds at its head are clearly associated with the cyclone itself. In contrast, Fig. 12b shows a case where 

the wind field is largely straight and convergent in the ambient flow, lacking organized cyclonic 

circulation despite the presence of a cloud vortex. Thus, while only the maximum wind speed from the 

search radius is provided, users should remain aware that this value may reflect both cyclone-generated 

winds and advective background winds. 495 
 

 

Figure 12: VCI images overlaid with near-surface wind speeds for cyclones exhibiting strong (a) and weak (b) 

cyclonic near-surface wind patterns. Color shading represents QuickSCAT-measured 10m near-surface wind 

speeds, with green arrows indicating corresponding wind vectors. Yellow borders denote the cyclones’ 500 
bounding oriented box. Blue circular border represents the search range. Yellow and red stars indicate the 

cyclone center and maximum wind speed point locations. 

4 Results and discussion 

Our analysis began by applying a vortex tracking algorithm to reanalysis data, which identified 

59,975 vortex tracks. Validation against VCI imagery confirmed 1,110 cyclone-related vortex tracks, 505 
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encompassing 16,001 distinct cyclone cloud features. Subsequent analysis of surface wind speed 

characteristics revealed 4,472 instances with measurable wind patterns, among which 794 tracks 

exhibited maximum wind speeds exceeding the 15 m s⁻¹ threshold. These validated 1,110 vortex tracks, 

along with their corresponding remote-sensing images, form the IMPMTC track dataset. The accuracy 

of IMPMTC was rigorously evaluated through comprehensive comparisons with existing track datasets 510 

derived from manual identification and reanalysis products. 

First, to validate the accuracy of the vortex track datasets obtained from the vortices tracking 

algorithm, they are compared with the manually identified PL lists published by Noer et al. (2011), Rojo 

et al. (2019), and the objectively derived PL track datasets from reanalysis data by Stoll (2022). All 

reference datasets are spatially and temporally co-located with our derived tracks, retaining only those 515 

persisting for ≥3 hours. We applied the following matching criteria: a vortex track is considered matched 

with a PL track if more than 50 % of temporally coincident track points (within ±1 hour) fall within a 

150 km radius (applying an 80 % threshold for Stoll’s dataset). To avoid spurious matches of short-lived 

spurious tracks, only vortex tracks with lifespans exceeding 60% of the corresponding reference PL 

track’s duration were included. A single vortex track was permitted to match multiple PL tracks from 520 

reference datasets, provided that these PL tracks did not overlap temporally and each was uniquely paired 

with its nearest vortex track. As presented in Table 2, the validation results demonstrate strong agreement 

with Stoll’s dataset, confirming the robustness of our vortex tracking algorithm. Moreover we achieve 

higher matching rates with manual PL lists by using lower vortex identification thresholds, which further 

underscores the improved capability of ERA5 reanalysis data in representing PL characteristics. 525 

Additional validation using tracks from the sensitivity experiment (Sect. 3.1) revealed a critical insight: 

vortex tracks derived under lenient thresholds consistently produced higher matching rates when 

compared against established PL datasets (Table S2). This suggests that some PLs exhibit weaker 

vorticity signals in the lower atmosphere, highlighting intrinsic intensity diversity that stricter thresholds 

may fail to capture. 530 

To further investigate the mismatches between reanalysis-derived tracks and existing PL datasets, 

we conducted a nearest-point matching analysis (Table 2). A match was considered successful when a 

PL center from any reference dataset had at least one temporally coincident vortex center within a 120 

km radius (60 km for the Stoll dataset). Track-level mismatches were found to originate primarily from 

these point-level discrepancies. The variation across datasets can be largely attributed to methodological 535 

differences: while the Noer list derives from numerically modeled and AVHRR-assimilated hourly 

positions (typical of operational forecasting systems), the Rojo list relies on direct AVHRR identification 

at irregular temporal intervals, leading to greater deviation from ERA5 representations. Furthermore, the 

Rojo compilation includes numerous secondary PL centers, which are features inherently less resolved 

by reanalysis data (Stoll, 2022), whereas Noer focuses primarily on dominant PLs of operational 540 

significance. This distinction is clearly reflected in our results: major PL centers (n = 2,527) showed an 

80% matching rate, compared to only 54% for secondary centers (n = 1,115), thereby lowering the overall 

match rate for the Rojo dataset.  

For the Stoll dataset, we also computed a vortex matching rate (Table 2), defined as the proportion 

of Stoll centers falling within the spatial extent of the nearest co-temporal vortex. This measure helps 545 
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account for positional discrepancies caused by misalignment of vorticity peaks, which appear to stem 

from differences in smoothing techniques (see Fig. S1). Our algorithm applies stronger uniform 

smoothing compared to Stoll’s approach, explaining why more lenient identification thresholds improve 

track matching with Stoll’s dataset. This finding offers valuable insight for algorithm application : 

although the algorithm is not highly sensitive to the specific input vorticity fields, provided their grid 550 

spacing is sufficient to capture mesoscale vortices, the choice of smoothing method significantly 

influences identification outcomes, alongside the threshold parameters examined in the sensitivity 

experiments (Sect. 3.1.1). The smoothing strategy should be tailored to the assimilation noise and 

effective resolution of the input vorticity field. For example, Gaussian smoothing may be better suited 

for model data with lower noise levels, as it better preserves the spatial coherence of vortex cores. 555 

Table 2: the matching rate of the reanalysis-based track dataset for IMPMCT generation compared to other 

PL track datasets. 

PL tracks 
Time 

period 

Tracks  

in Nordic 

Sea (>3hr) 

Track 

matched 

fraction(%) 

Points 

Nearest points 

matched 

fraction(%) 

Vortex 

matched 

fraction 

Noer 2002-2011 114 87.72 1670 85 - 

Rojo 2000-2019 370 69.73 3642 71 - 

Stoll 2000-2020 3179 93.68 75650 93 99 

 

After excluding vortex tracks with over 60% land coverage (resulting in an approximately 20% 

reduction), 47,167 tracks remained eligible for AVHRR matching. The matching procedure required: (1) 560 

complete spatial coverage within a 200-km radius for individual vortex points, and (2) at least two 

temporally matched points within ±3 hours of peak vorticity, along with a minimum of six matched points 

over the track’s lifetime. Figure 13 presents the matching statistics for the winter months (November to 

April): on average, 43% of points and 61% of tracks were successfully matched. However, only about 

3% of the matched tracks were ultimately incorporated into the IMPMCT dataset. This low inclusion rate 565 

can be attributed to several factors: frequent cloud obstruction, limitations in cloud–ice contrast, temporal 

resolution constraints, and inherent detection methodology (e.g., the higher inclusion rate in 2001 reflects 

meticulous manual identification, whereas the lower rate in 2023 resulted from incidental post-

publication discoveries). Importantly, the proportion of cyclones in IMPMCT likely underestimates the 

true prevalence of polar mesoscale cyclones (PMCs), as many systems with low cloud cover lack 570 

discernible vortex structures. In cases where AVHRR data are unavailable, an alternative approach using 

hourly wind field data calibrated with scatterometer measurements may provide a more robust method 
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for validating ERA5-derived vortex tracks (Furevik et al., 2015). 

 

Figure 13 Annual winter (November-April) time series: (a) ERA5-derived vortex points (green), available 575 
AVHRR files (red), and AVHRR-matched vortex points (blue), (b) ratio of AVHRR-matched vortex tracks 

to ERA5-derived tracks (yellow), and ratio of IMPMCT tracks to AVHRR-match tracks (purple). Note: Bars 

represent distinct categories (not stacked) 

We further assess the reliability of vortex properties in IMPMCT by comparing three key parameters 

(850 hPa relative vorticity, SLP minima, and vortex equivalent diameter), with the corresponding values 580 

from Stoll’s dataset, in addition to evaluating the spatial distance between vortex centers. From this 

comparison, 638 matched tracks were identified between IMPMCT and Stoll’s dataset. As shown in Fig. 

14a, among the matched tracks, 90 % of vortex points remain within 50 km of each other at the same 

time step. The mean absolute differences of the three vortex properties at these proximate track points 

remain small: 1.11 × 10-5 s-1 for relative vorticity, 0.43 hPa for sea-level pressure, and 22.79 km for vortex 585 

equivalent diameter. Furthermore, these property discrepancies exhibit a positive correlation with 

separation distance, suggesting that differences between IMPMCT and Stoll’s tracks primarily arise from 

their respective identification thresholds. 

To demonstrate that these discrepancies reflect divergent tracking methodologies rather than 

detection errors, we calculated the standard deviation of each vortex property over three consecutive time 590 

steps for every track and then averaged these values across each track. Low amplitude in these local 

variations implies consistent feature identification by a given method. Figures 14b–d present the track-

averaged local standard deviations of the three properties for both datasets. Importantly, the magnitudes 

of these short-term variabilities are generally comparable between IMPMCT and Stoll’s tracks. This 
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consistency indicates that the increasing property differences at larger separations stem from intrinsic 595 

peak misalignments due to differing detection logics, rather than fundamental errors in either tracking 

approach. In fact, the IMPMCT dataset often exhibits slightly smoother variability, which is consistent 

with its specific algorithmic configuration.  

 

Figure 14: Distribution of differences in three vortex properties and their track-averaged local standard 600 
deviations at co-located hourly track points between matched IMPMCT and Stoll tracks. The boxplot in (a) 

shows property differences as a function of spatial deviation distance between matched track points. The red 

numbers above the x-axis indicate the count of track point pairs in each distance bin. Each boxplot’s y-axis 

scale corresponds to the color of its respective property (green: relative vorticity, blue: sea-level pressure, red: 

vortex diameter). Frequency histograms and fitted curves of track-averaged local standard deviations for the 605 
three properties are displayed in (b) relative vorticity, (c) sea-level pressure, and (d) vortex diameter. 

IMPMCT uses hourly-resolution vortex tracks from reanalysis data as a basis for cyclone tracks. 

The correspondence between vortex and cyclone tracks is established exclusively via continuous 

spatiotemporal matching of their respective centers. To ensure the accuracy of this correspondence, we 

perform subjective validation to confirm that each cyclone track does not incorporate irrelevant cyclonic 610 

processes. Notably, while the average matching distance between vortex and cyclone tracks is 

constrained within 150 km, approximately 95 % of track pairs have average matching distances below 

100 km (as shown in Fig. 15), demonstrating strong consistency between cyclone and vortex tracks. 



22 

 

  

Figure 15: Probability distribution of distances between matched cyclone-vortex points (green) and track-615 
average distances (blue). 

The cyclone properties in IMPMCT include cyclone scales and maximum core near-surface wind 

speeds. These properties are validated through comparison with the Rojo list. For scale validation, we 

compare the diameter from the Rojo list with the approximate cyclone scale in the IMPMCT dataset 

(calculated as the average of cyclone width and length). We matched cyclone tracks between IMPMCT 620 

and Rojo list based on the following criteria: the nearest cyclone centers are matched if their distance is 

less than 120 km and their overpass times fell within 60 minutes of each other. A cyclone track pair was 

deemed matched if more than 50% of the points in a Rojo track were matched. Using this approach, 1424 

cyclone centers from the Rojo list (corresponding to 139 distinct tracks) were matched to tracks in 

IMPMCT. It is worth noting that although the maximum permitted matching distance was 120 km, the 625 

90th percentile of all actual matching distances was only 56 km. This indicates that cyclone center 

identification remained consistent even when exact temporal alignment was not achieved. 

Comparisons of cyclone cloud scale and maximum wind speeds between the matched time periods 

are shown in Fig. 16. When cyclone center identification errors are small, the discrepancies in diameter 

relative to the Rojo list arise not only from methodological differences in measurement, but also 630 

significantly from subjective interpretation. The frequent presence of frontal cloud bands associated with 

cyclones makes consistent measurement of the long axis highly subjective. Moreover, when a cyclone is 

adjacent to other cloud systems, its boundaries often become ambiguous, leading to variability in extent 

estimation. Therefore, a standard deviation of up to 120 km in diameter is still considered acceptable. 

Furthermore, as the dataset includes corresponding remote sensing images, users can readily examine the 635 

visual context of each cyclone and adjust the properties according to their specific research needs. 
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Figure 16: Frequency distribution of bias in (a) Track-max near-surface wind speed and (b) diameter between 

matched cyclones in the Rojo and IMPMCT datasets (Rojo minus IMPMCT). The cyclone diameter in 

IMPMCT is calculated as the average of the width and length of the bounding box enclosing the cyclone. 640 

To statistically evaluate the agreement between IMPMCT and the reference datasets (Stoll, 2022, 

and Rojo et al.), we applied Bland–Altman analysis (Bland and Altman, 1999). This method quantifies 

the agreement between two measurement techniques by estimating the mean difference (bias) and the 

95% limits of agreement (LoA), defined as the mean difference ± 1.96 standard deviations of the 

differences. A summary of the Bland–Altman results for key vortex and cyclone properties is provided 645 

in Table 3, while the corresponding plots of differences versus averages are included in Supplementary 

Fig. S2. As indicated in Table 3, vortex properties derived from ERA5 reanalysis show a small systematic 

bias relative to the other datasets, which is likely due to differences in computational algorithms or 

processing workflows. Importantly, the Bland–Altman results demonstrate strong agreement between the 

datasets: approximately 95% of the differences for each property fall within the respective 95% limits of 650 

agreement (final column of Table 3), supporting the overall consistency and reliability of IMPMCT 

Table 3  Property difference between IMPMCT and other PLs list 

Property 
Matched 

number 

Mean 

Difference 

Standard Deviation of 

Differences 

% Points 

within LoA 

850 hPa relative vorticity 

(10-5 s-1) 
20294 0.6 2.1 95.1 

SLP (hPa) 13929 0.3 0.8 95.7 

vortex equivalent 

diameter (km) 
20294 -6.8 39.2 93.7 

track-max near-surface 

wind speed (m s-1) 
51 -1.07 5.0 94.1 

cyclone cloud diameter 

(km) 
1145 8.8 120 94.5 

For most newly identified mesoscale cyclones not documented in existing PL databases, direct 

validation can be performed by applying objectively derived identification thresholds from previous 

studies to independently verify three essential characteristics: polar origin, mesoscale size, and cyclonic 655 

intensity: 

1) Polar-front criterion: As PMCs are defined as mesoscale cyclones forming north of the polar 

front (Rasmussen and Turner, 2003), we employ two indicators to distinguish polar air masses 

from extratropical air masses: tropopause potential temperature (θₜᵣₒₚ) and the maximum 
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poleward value of 200 hPa wind speed (U200,p). For each cyclone, we compute the track-660 

averaged θₜᵣₒₚ averaged within a 250 km radius of the cyclone center and the track-averaged 

U200,p within a longitudinal band of ±1.0° great-circle distance. Following Stoll (2022), θₜᵣₒₚ < 

300.8 K is used to identify polar air mass origin. This threshold effectively distinguishes PLs 

from extratropical cyclones, retaining 76% of systems across subjective archives while 

capturing 90% of known PLs. Han and Ullrich (2025) employed U200,p < 25 m s⁻¹ to position 665 

PLs north of the polar jet, achieving an approximately 80% hit rate for PL classification with a 

miss rate of only 11.9%. 

2) Mesoscale-size criterion: Vortex radius, derived from the vorticity field, is used to exclude 

extratropical cyclones penetrating polar regions and large-scale frontal structures. In Stoll 

(2022), a maximum vortex diameter of 430 km (representing the 90th percentile across all PL 670 

lists) was applied, excluding approximately 24% of non-PL vortices. As we employ the same 

vorticity boundary threshold (1.0×10⁻⁴ s⁻¹) for vortex definition, this criterion remains valid for 

our dataset. 

3) Cyclonic intensity criterion: A robust measure of mesoscale cyclone intensity is the pressure 

anomaly (pdef), defined as the difference between the SLP minima and the mean SLP within a 675 

110 km radius (pdef = 𝑆𝐿𝑃̅̅ ̅̅
1̅10𝑘𝑚 − 𝑆𝐿𝑃𝑚𝑖𝑛 ). Stoll (2018) demonstrated that high pdef values 

(with 90% of PLs exceeding 0.4 hPa) highlight the anomalous intensity of the local low-pressure 

centre relative to its environment, signifying a steep pressure gradient near the core, indicative 

of small, deep low-pressure systems typical of PLs. We calculate the maximum pdef based on 

the SLP centre for each vortex track. For tracks where no SLP centre is identified, pdef is set to 680 

0. 

All discriminatory features for IMPMCT tracks are computed from ERA5 data. The quantiles of 

these features and the proportion of tracks meeting each criterion are presented in Table 4. Notably, 88.4% 

of tracks satisfy the polar-front criterion, 90% meet the mesoscale criterion, and 84% fulfill the cyclonic 

intensity criterion. It should be noted that these thresholds were originally developed specifically for the 685 

PLs. For the broader spectrum of PMCs, the thresholds for θₜᵣoₚ and pdef are inherently stricter, as they 

reflect the conditions of cold-air outbreaks and the stronger destructive potential typically associated with 

PLs. Nevertheless, the vast majority of tracks in the IMPMCT dataset satisfy these criteria, supporting 

their robustness as mesoscale cyclone tracks. 

Table 4: Quantiles of discriminatory features and proportion of IMPMCT tracks meeting validation criteria. 690 

criterion Track feature 
percentage Proportion  

meeting the criterion (%) 50% 75% 90% 

Polar front 

θₜᵣₒₚ < 301 K 

or 

U200,p < 25 m s-1 

θₜᵣₒₚ (K) 298.9 304.1 310.0 

88.4 
U200,p (m s-1) 18.4 23.7 29.7 
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Mesoscale 

r< 215 km 
r (km) 137.1 176.9 213.5 90.6 

Cyclonic 

pdef > 0.4 hPa 
pdef (hPa) 1.4 2.3 3.2 84.1 

 

The comprehensiveness of the dataset is constrained by the cyclone representation capabilities of 

ERA5 reanalysis and the availability of remote sensing data. Since the number of in-orbit satellites 

carrying the AVHRR sensor peaked around 2013, the IMPMCT track dataset includes the highest number 

of tracks during this period. Additionally, due to the use of more lenient identification thresholds, 695 

IMPMCT tracks typically include longer life compared to the Stoll dataset. The extended portions of 

these tracks may include: weak vorticity periods during the early/late stages of cyclone development or 

the vortices pass over land/sea-ice, or redevelopment processes of vortices after interacting with blocked 

extropical cyclones or frontal zones. If users require only the core development phases of tracks, they 

should select segments based on vortex properties or cyclone images that represent the system’s core 700 

development. The dataset also includes some tracks with high vorticity at their start/end points, which 

may arise from splitting/merging events or jumps of the vortex center position during tracking. It is 

noteworthy that while this study demonstrates ERA5 reanalysis data’s enhanced capability in capturing 

PMCs and PLs, it does not reflect ERA5’s predictive skill for such systems. This predictive capability 

should be evaluated by testing ERA5 background states in characterizing PLs/PMCs, thereby isolating 705 

the influence of real-time assimilated data—particularly scatterometer measurements (Furevik et al., 

2015). 

The dataset does not explicitly distinguish between PMCs and PLs due to the time-sparse wind 

speed data, particularly when the cyclone’s wind speed at a given time step falls below the 15 m s-1 

threshold. In such cases, it is difficult to determine whether the cyclone is a PMC or merely in a weaker 710 

phase of a PL. In such cases, a more reliable validation method may be provided by the hourly bias-

corrected sea surface wind product from the E.U. Copernicus Marine Service Information 

(https://doi.org/10.48670/moi-00185). Such product systematically corrects ECMWF ERA5 model fields 

using scatterometer observations to reduce persistent biases and includes uncertainty estimates. Due to 

the low resolution of AVHRR infrared images at scan edges, a significant portion of VCI images appear 715 

blurred. However, these images are retained as long as cyclonic features remain recognizable, prioritizing 

the preservation of high temporal resolution for cyclone track records. Additionally, while the YOLOv8-

obb-pose model facilitates detection and feature extraction of cyclonic cloud characteristics in VCI 

images, the process still involves subjective steps to ensure continuity in cyclone features (e.g., size, type, 

and position). This implies that objective methods for constructing multi-parameter PMC track datasets 720 

remain underdeveloped. Consequently, cyclone-evolution-aware deep-learning tracking algorithms 

could further enhance the efficiency of track construction. 

5 Code and data availability 

The IMPMCT dataset described in this paper is freely accessible on Zenodo via the following link: 

https://doi.org/10.48670/moi-00185
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https://doi.org/10.5281/zenodo.17142448 (Fang et al., 2025), accompanied by comprehensive 725 

documentation. All code is developed in Python and stored at: https://github.com/thebluewind/IMPMCT.  

6 Conclusion 

The Integrated Multi-source Polar Mesoscale Cyclone Track (IMPMCT) dataset represents a major 

advancement in the study of polar mesoscale cyclonic systems. By integrating ERA5 reanalysis, AVHRR 

infrared imagery, and QuikSCAT/ASCAT wind data, this dataset provides a comprehensive record of 730 

1110 vortex tracks, 16,001 cyclonic cloud features, and 4472 wind speed observations across the Nordic 

Seas (2001-2024). This integrated approach overcomes key limitations of previous single-source datasets 

by enhancing detection sensitivity for weaker polar mesoscale cyclones (PMCs), capturing complete 

lifecycle evolution from genesis to dissipation, and providing simultaneous cloud morphology and wind 

fields observations. Rigorous validation against established datasets (Stoll, 2022 and Rojo et al. , 2019)  735 

confirms IMPMCT’s accuracy, demonstrating 90 % spatial consistency with track points cyclone centers 

alignments within 50 km (60 km for cyclone centers) and minimal parameter discrepancies including a 

1.11 × 10-5 s-1 mean absolute difference in relative vorticity and 0.43 hPa mean absolute difference in 

sea-level pressure. 

The IMPMCT dataset serves as a critical benchmark for evaluating high-latitude numerical weather 740 

prediction model performance, while simultaneously functioning as a unique case library for comparative 

studies of PLs and PMCs concerning their formation mechanisms, intensity thresholds, and sea-ice 

interaction dynamics. Furthermore, it constitutes an essential resource for enhancing polar maritime 

hazard forecasting. The repository of cyclone cloud morphology facilitates automated identification of 

model-undetected systems. This is enabled by advanced deep learning frameworks, enabling systematic 745 

evaluation of model representation fidelity for PLs/PMCs. From a climatological perspective, this 

resource permits establishment of comprehensive objective identification criteria based on reanalysis 

data, thereby enabling robust analysis of climate-scale trends and genesis potential shifts in PL/PMC 

activity (Stoll, 2022; Zhang et al., 2023). 
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