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Abstract. Polar Mesoscale Cyclones (PMCs), particularly their intense subset known as Polar Lows
(PLs), characterized by short lifespans of 3-36 hours and horizontal scales below 1,000 km, pose
significant hazards to polar maritime activities due to extreme winds exceeding 15 m s and wave
heights surpassing 11 meters. These intense weather systems play a critical role in modulating sea-ice
dynamics and ocean-atmosphere heat exchange. However, current understanding remains constrained
by sparse observational records and an overreliance on single data sources (e.g., remote sensing or
reanalysis). To address these gaps, this study presents the Integrated Multi-source Polar Mesoscale
Cyclone Tracks (IMPMCT) dataset, a comprehensive 24-year (2001-2024) record of wintertime
(November-April) PMCs for the Nordic Seas. The IMPMCT dataset was created by combining
vortex-tracking algorithms applied to ERAS reanalysis data with a deep learning-based method for
detecting cyclonic cloud features in Advanced Very High-Resolution Radiometer (AVHRR) infrared
imagery. It also incorporates near-surface wind data from Advanced Scatterometer (ASCAT) and Quick
Scatterometer (QuikSCAT) measurements. The dataset contains 1,110 vortex tracks, 16,001 cyclonic
cloud features including length, width, position and morphological characteristics (spiral/comma shape),
and 4,472 wind speed records (wind vector imagery and cyclone maximum winds). Corresponding
ERAS5-derived hourly vortex tracks are also provided, including 850 hPa vorticity and proximate
sea-level pressure minima. Validation demonstrates statistical agreement with existing PLs track
datasets while providing more complete cyclone life cycle trajectories, more intuitive cloud imagery
visualization, and a richer set of parameters compared to previous datasets. As the most comprehensive
PMCs archive for the Nordic Seas, the IMPMCT dataset provides fundamental data for advancing our
understanding of the genesis and intensification mechanisms, enables the development of enhanced
monitoring and early warning systems, supports the validation and refinement of polar numerical
weather prediction models, and facilitates improved risk assessment and safety protocols for maritime

operations. The dataset is available at https://doi.org/10.5281/zenodo.17142448 (Fang et al., 2025).
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1 Introduction

Polar Mesoscale Cyclones (PMCs) are mesoscale cyclonic weather systems that frequently occur
over open waters or sea-ice edges in regions poleward of the main polar front zones (Condron et al.,
2006; Rasmussen and Turner, 2003). They are often identified on satellite imagery by comma-shaped
or spiral cloud patterns. PMCs occur in all seasons but are most active in winter, with a lifespan of
approximately one day and horizontal scales of less than 1,000 km (Harold et al., 1999). The most
intense subset of these cyclonic systems, termed Polar Lows (PLs), are major hazardous weather
phenomena in polar regions, characterized by average maximum wind speeds exceeding 15 m s™! and
extreme values surpassing 30 m s™'. They can generate significant wave heights over 11 meters (Rojo et
al., 2019), posing severe threats to human activities and maritime safety in high-latitude regions
(Harrold and Browning, 1969; Orimolade et al., 2016). Additionally, PLs induce rapid sea-ice changes
and intensify ocean-deep convection through dynamic and thermodynamic effects, producing complex
regional climatic impacts (Clancy et al., 2022; Condron and Renfrew, 2013; Parkinson and Comiso,
2013). The Nordic Seas (encompassing the Greenland, Norwegian, and Barents Seas) form a critical
oceanic gateway between the Arctic and Atlantic Oceans. This region is a primary convergence zone
for Arctic and Atlantic water masses and plays a key role in global ocean circulation and climate
(Smedsrud et al., 2022). The complex meteorological and oceanographic conditions in this area make it
the most frequent PLs occurrence region (Stoll, 2022). Consequently, research on mesoscale cyclones
in the Nordic Seas is critical for improving Arctic maritime safety and understanding regional climate
change impacts.

Cyclonic cloud morphology and surface wind fields derived from remote sensing data serve as the
primary criteria for distinguishing and categorizing PMCs and PLs (Rasmussen and Turner, 2003). The
former can be manually identified through visible or infrared imageries from passive radiometers (e.g.,
Fig. 1), while the latter can be estimated using scatterometer or microwave data. While PLs exhibit
higher destructive potential and detection feasibility compared to broader PMCs, current dataset
development efforts have predominantly targeted PLs, leaving PMCs relatively underrepresented in
existing observational records. Blechschmidt et al. (2008) combined Advanced Very High-Resolution
Radiometer (AVHRR) infrared imagery (Kalluri et al., 2021) with wind speed data derived from the
Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data (HOAPS, Andersson et al.,
2010) to manually identify 90 PLs occurring in the Nordic Seas between 2004 and 2005. Noer et al.
(2011) utilized AVHRR infrared imagery, Advanced Scatterometer (ASCAT), and Quick Scatterometer
(QUIKSCAT) wind data to detect 121 PLs in the Nordic Seas over a decade (2000—2009). Smirnova et
al. (2015) identified 637 PLs between 1995 and 2009 using Special Sensor Microwave/Imager (SSM/I)
data for atmospheric total water vapor (TWYV) content fields, near-surface wind speed fields, and
AVHRR infrared imagery. Golubkin et al. (2021) employed Moderate Resolution Imaging
Spectroradiometer (MODIS) and ASCAT data to identify PLs over the North Atlantic, compiling a
catalog of 131 PLs between 2015 and 2017. In all PL lists derived from remote sensing data, the Rojo
list (Rojo et al., 2015, 2019) is currently the longest temporally spanning remote sensing-derived PLs
track dataset, providing tracks of 420 PLs occurring in the Nordic Seas from 1999 to 2019. It includes
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basic information such as cyclone location, size, type, development stage, and maximum 10 m wind
speed. The manually tracked datasets described above have provided valuable PLs information,
contributing to ongoing research efforts. However, the unique high-latitude geography of polar regions
creates significant observational challenges. Polar-orbiting satellites typically observe these regions at
intervals ranging from tens of minutes to several hours, resulting in temporal gaps that make it difficult
for manual tracking datasets to capture complete cyclone life cycles. Additionally, some PLs forming
near sea-ice edges may exhibit distinct cyclonic cloud features exclusively during their transition over
moisture-rich open waters (Bromwich, 1991), implying that remote sensing datasets could potentially
miss capturing the initial developmental stages of such PLs. Consequently, while the Rojo list provides
developmental pattern annotations for individual PLs, the objectivity and quantitative reliability of
these annotations remain constrained by the inherent limitations of remote sensing in achieving
comprehensive characterization of PL evolution throughout their complete lifecycle. Furthermore, the
occurrence of polar night, coupled with low contrast between sea-ice/snow surfaces and overlying
clouds, further limits the detection capabilities of remote sensing (particularly visible-band remote

sensing) methods for PLs.

(a) a sample of PMCs (b) a sample of PLs

210 220 230 240 250 260 270 280
AVHRR channel 4(K)

‘ Figure 1,Two AVHRR satellite images. (a) A PMC in Barents Sea. (b) A PL in Norwegian Sea. The yellow

stars mark the centers of these two cyclones.

With the improved resolution of reanalysis datasets, their ability to characterize PLs has
progressively advanced (Laffineur et al., 2014; Smirnova and Golubkin, 2017), making them an
increasingly critical data source for constructing PLs track datasets. Researchers have employed
various combinations of identification criteria to detect PLs. For instance, Zappa et al. (2014) utilized
the difference between 500 hPa temperature and near-surface temperature to represent cold air outbreak
characteristics during PLs formation, while utilizing maximum near-surface wind speed to indicate PLs
intensity, and 850 hPa relative vorticity to capture their cyclonic properties. Subsequent studies adopted
or adapted these criteria (Stoll et al., 2018; Terpstra et al., 2016; Yanase et al., 2016). Building on the
fifth-generation European Centre for Medium-Range Weather Forecasts Reanalysis (ERAS, Hersbach

et al., 2020), Stoll (2022) established a four-criteria linear-based combination defining PLs as intense
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mesoscale cyclones forming within polar oceanic air masses northward of the polar front. This
approach successfully reproduced 60-80 % of PLs from five manual PL lists, validating ERAS’s robust
capability in PLs representation. However, ERAS significantly underestimates near-surface wind
speeds within PL-affected regions (Gurvich et al., 2022; Haakenstad et al., 2021), attributed in part to
insufficient representation of transient wind variability, surface divergence, and unresolved mesoscale
features (Belmonte Rivas and Stoffelen, 2019). This limits its ability to objectively capture PLs’
high-wind characteristics, thereby introducing notable limitations.

In summary, remote sensing and reanalysis datasets provide complementary perspectives on PLs’
characteristics, with the former capturing cloud morphology and the latter resolving meteorological
field distributions, highlighting their respective advantages. This complementary nature motivates the
integration of both data types to construct more comprehensive PL tracking datasets—a key objective
of this study. Furthermore, existing datasets primarily focus on PLs, while weaker PMCs that share
similar cyclonic cloud features and environmental conditions lack comprehensive publicly available
track datasets. This disparity likely stems from the fact that PMCs generally have smaller average
intensities, shorter lifespans, and smaller scales compared to PLs, making them more difficult to detect.
Although some researchers have proposed PMC track datasets using either remote sensing
(Verezemskaya et al., 2017) or reanalysis data (Michel et al., 2018; Pezza et al., 2016; Watanabe et al.,
2016), these approaches face significant limitations. Remote sensing-based datasets often have
inadequate temporal coverage or lack critical near-surface wind speed records (Condron et al., 2006),
while reanalysis-based datasets encounter challenges in developing effective identification criteria
without remote sensing validation. As a result, no universally accepted PMC identification standards
currently exist (Michel et al., 2018). Notably, while PLs have been well-documented in relation to
large-scale circulation patterns such as the North Atlantic Oscillation (Claud et al., 2007) and
Scandinavian blocking (Mallet et al., 2013), the climatic impacts of PMCs remain insufficiently
investigated (Michel et al., 2018). These knowledge gaps highlight the critical need to establish a more
comprehensive tracking dataset capable of capturing PMCs throughout their lifecycle. Such a dataset
would enable the complete characterization of these weaker polar mesoscale systems, representing
another key motivation for this study.

Based on the above analysis, this study aims to comprehensively integrate the advantages of
reanalysis datasets in characterizing the dynamical and thermodynamic structures of polar mesoscale
weather systems and remote sensing data in capturing cloud morphology to establish a long-term PMCs
(hereafter, “PMCs” when used alone include “PLs”) track dataset in the Nordic Seas encompassing the
extended winter seasons (November-April) between 2001 and 2024. This dataset will contain the tracks
of the PMCs in reanalysis fields and remote sensing imagery, as well as multi-dimensional attributes
such as intensity, cloud morphology, and near-surface wind features. The objective is to provide a
long-term, multi-attribute catalog of PMCs, offering reliable data support for atmospheric and oceanic

research in the Nordic Seas.

2 Data



2.1 AVHRR data

The Advanced Very High-Resolution Radiometer (AVHRR) (Kalluri et al., 2021) is mounted on

NOAA series meteorological satellites and MetOp series satellites. Since its launch with the TIROS-N
satellite in 1979, the sensor has continuously performed multiple daily observations of the Earth’s

150 surface. It measures reflected and emitted radiation from the Earth and its atmosphere, providing
detailed information about surface characteristics, clouds, and atmospheric properties. AVHRR is an

across-track scanning system with five spectral bands as shown in Table 1. It has a nadir spatial

‘ Deleted[Fang RunZhuo [2]]: Table 1Table 1
resolution of approximately 1.1 kilometers and a £55.4° scan angle on the satellite, covering a ground

swath width of 2,800 km. However, the effective resolution depends on the scan angle, with optimal
155 image quality provided within the £15° range.
In this study, infrared imagery used to observe cyclonic cloud features is derived from two Level
1B data products of the AVHRR (Kalluri et al., 2021): the GAC (Global Area Coverage) and LAC
(Local Area Coverage) forth-band data. The GAC product provides down-sampled imagery
(approximately 4 km resolution) after onboard processing, selecting every third scan line and averaging
160 every fifth adjacent sample along the scan line. This resampling aims to ensure continuous global
coverage. In contrast, the LAC product records AVHRR data at its native resolution (1.1 km) without
resampling over specific orbital regions (primarily Europe and Africa), offering higher spatial
resolution. All AVHRR data utilized herein are obtained from NOAA’s Comprehensive Large
Array-data Stewardship System (https://www.aev.class.noaa.gov/ (accessed on 18 July 2024)).

165 Table 1, AVHRR radiometer channel information.
- — ‘ Deleted[Fang RunZhuo]: :
Channel Wavelength(um) Satellite Application
1 0.58-0.68 ALL satellites Surface albedo estimation
2 0.725-1.00 ALL satellites Water body delineation
3A 1.58-1.64 I:%AA 15-19/MetOP Snow and ice cover identification
B 355.3.93 NOAAS8-19/MetOP  low-level clouds identification and surface
A-C temperature
4 10.3-11.30 ALL satellites Cloud-top temperature and surface temperature
5 11.50-12.5 NOAAS-19/MetOP Cloud-top temperature and surface temperature

A-C

2.2 ERAS data

ERAS is the fifth-generation global reanalysis dataset produced by the European Centre for
Medium-Range Weather Forecasts (ECMWF), designed to provide high-quality, consistent estimates of
atmospheric, land, and ocean climate variables from 1950 to the present. It replaces the previous

170 ERA-Interim dataset (Dee et al., 2011) and is currently one of the most widely used reanalysis products.
ERAS offers hourly data with a horizontal spectral truncation of T639, corresponding to a global grid
of approximately 31 km. The atmosphere is resolved vertically using 137 levels extending from the
surface to 80 km in height (Han and Ullrich, 2025).

ERAS reanalysis dataset demonstrates robust performance in representing meteorological fields
5
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over the Nordic Seas, such as sea level pressure, air temperature, and humidity (Graham et al., 2019;
Moreno-Ibaiiez et al., 2023; Yao et al., 2021). Most notably, its effective characterization of cold air
outbreaks has been proven to correlate closely with the timing and location of PLs (Meyer et al., 2021).
However, beyond the previously mentioned underestimation of near-surface strong winds in Sect. 1,
Wang et al. (2019) found ERAS data exhibits a warm bias over Arctic sea ice during winter and spring,
which makes it difficult to accurately simulate the frequently occurring strongly stable boundary layers
prevalent in winter and early spring. Consequently, the intensity of PMCs near the sea ice edge might
be overestimated. Nevertheless, more accurate total precipitation and snowfall data in ERAS (Wang et
al.,, 2019) significantly benefits the representation of enhanced latent heat release mechanisms
associated with PLs (Moreno-Ibafiez et al., 2021).

In this study, we utilize ERAS reanalysis data spanning 2001-2024 during the extended winter
period (November-April), on a spatial grid of 0.25° x 0.25°, covering the domain 50° N-85° N in
latitude and 40° W-80° E in longitude. This dataset is employed to track vortices and compute their

evolutionary characteristics such as intensity and size.

2.3 QuikSCAT/ASCAT data

This study further leverages QuikSCAT and ASCAT data to examine near-surface wind field
properties within the cyclone core and its surrounding ambient conditions. QuikSCAT, a
NASA-developed Earth-observing satellite, employs a Ku-band SeaWinds microwave scatterometer to
provide global measurements of ocean surface wind vectors. Similarly, ASCAT features a C-band
microwave scatterometer aboard EUMETSAT-operated MetOp polar-orbiting meteorological satellites.
These advanced instruments are specifically engineered to deliver accurate (e.g., ASCAT-A
zonal/meridional wind component error standard deviations of ~0.37/0.51 m s and ASCAT-B of
~0.39/044 m s, Vogelzang and Stoffelen 2022), high-resolution, continuous wind vector
measurements under all weather conditions, offering comprehensive global coverage of near-surface

wind patterns._The full potential of these measurements extends to their spatial derivatives, specifically

vorticity and divergence, which are closely associated with deep moist convection and cyclonic activity

(King et al., 2022).

We utilize Level 2 near-surface wind vector retrieval products from both instruments to analyze
wind field characteristics during cyclone development, with both datasets featuring a 12.5 km
resolution. For QuikSCAT, a slice-based compositing technique integrates high-resolution
measurements derived from Level 1B data into 12.5 km wind vector cells. In contrast, ASCAT employs
a spatial box filter to minimize land contamination of microwave signals and enhance retrieval
accuracy in coastal regions. Both datasets are sourced from NASA’s Physical Oceanography DAAC
(podaac.jpl.nasa.gov/ (accessed on 28 November 2024)). For the two products, QuikSCAT is available

from 1999 to 2009, whereas ASCAT start providing since 2010. To ensure comprehensive temporal
coverage across the track dataset, the two products are utilized in their respective operational periods to

ensure comprehensive temporal coverage.
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3 Methodology

To establish a more comprehensive cyclone track dataset in the Nordic Seas, we first utilize ERAS
reanalysis data which exploits the evolving global observing system to obtain all vortex tracks. In this
process, a lower vorticity maxima criterion is applied to extract vorticity perturbations within the
reanalysis data. Subsequently, vortex tracks and their merging and splitting processes are identified
based on spatial and boundary changes of vortices across consecutive time steps. For each vortex with
available AVHRR data, we generate Vortex-Centered Infrared (VCI, mentioned in the following text)
images to identify corresponding cyclonic cloud features with a cyclone-detection deep-learning model.
Finally, near-surface wind fields derived from QuikSCAT/ASCAT are matched to characterize cyclones’
core wind speed. The algorithm workflow is outlined in Fig. 2, with methodological details provided in

subsequent subsections.

ERAS data AVHRR IR imageries

1 Hourly vortices identification ! VClimage 1
1

VCI image 2

—

Ii 3
ey VCI image
R —

VCI image m

i

Detection and extraction of
vortice n | cyclonic cloud characteristics

e validate
I Connection of continuous | — The cyclone track related
' _ _ _ time-step vortices 1 with the vortices track
The vortices track and | AURLI Ll
splited/merged info
pmmmmmm l _______ N g Matching cyclone-related
N Matching slp minimum : max wind
. J
Y
Vortices parameters in ERAS Cyclone parameters
data in remote sensing data
IMPMCT

‘ Figure 2, The workflow diagram. In the diagram, all methodologies are enclosed in dashed circular outlines,

while derived datasets are framed in solid rectangular boxes. The title of each swimlane denotes the data
utilized by all methods within that swimlane.

3.1 Objective algorithm for identifying and tracking vortices

Sea-level pressure (Laffineur et al., 2014; Michel et al., 2018) and low-level relative vorticity
(Day et al., 2018; Stoll et al., 2021; Watanabe et al., 2016; Zappa et al., 2014) are the two most
common tracer variables for PMCs in reanalysis datasets. Existing studies demonstrate that high values

7
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of low-level relative vorticity, compared to sea-level lows which are susceptible to synoptic scale
pressure fields, are more closely associated with actual cyclone positions and exhibit smaller biases in
cyclone detection and intensity estimation (Stoll, 2022; Stoll et al., 2020; Zappa et al., 2014). Therefore,
we apply an objective mesoscale vortices-tracking algorithm to the 850 hPa relative vorticity fields in
ERAS data to obtain hourly-resolution vortex tracks. This algorithm was first proposed by Shimizu and
Uyeda (2012) to track convective cells prone to merging and splitting, and has since been developed
and improved for PMC tracking (Watanabe et al., 2016; Stoll et al., 2021). It specifically comprises two

components: hourly vortices identification and connection of continuous time step vortices.

3.1.1 Hourly vortices identification

When multiple vortices coexist within the same region of cyclonic shear flow, they often manifest
as a contiguous positive vorticity zone in the vorticity field (hereafter referred to as an
unpartitioned-vortex in the algorithm). The major challenge in vortex identification within vorticity

fields is how to partition such regions (as exemplified in Fig. 3) into distinct isolated vortex regions.

(a) Relative vorticity at 850hPa (b) AVHRR infrared image

vorticity peaks

unpartitioned-vortex border

1.0 1.4 1.8 2.2 2.6 3.0 34 3.8 210 220 230 240 250 260 270 280
Csmingso (1074s7) AVHRR channel 4(K)

Figure 3, (a) 850 hPa relative vorticity field obtained by ERAS data. (b) AVHRR infrared imagery

concurrent with the time step in (a). The shading represents 850 hPa relative vorticity smoothed over a
uniform 60 km radius and local vorticity maxima are marked by green star symbols, while regions enclosed
by solid black contours denote the unpartitioned-vortex zone.

First, a uniform 60 km smoothing radius is applied to hourly 850 hPa relative vorticity to
disconnect weak continuity zones and eliminate minor perturbation maxima, which may arise from
assimilation increments (Belmonte Rivas and Stoffelen, 2019). Subsequently, in the smoothed vorticity
field, regions enclosed by closed contour lines exceeding a minimum threshold o are identified as
unpartitioned vortices. Thereafter, each unpartitioned-vortex (e.g., the area within the thick black solid
line in Fig. 4) is subjected to isolated vortex extraction via the following procedure:

Step 1: Identify local vorticity maxima exceeding the threshold 0, designated as vortex peaks with
relative vorticity values (e.g., in Fig. 4, three local vorticity maxima satisfy > > ).
Contour lines (gray thin solid lines) are then drawn at 10 s*! intervals. Subsequently, the outermost
contour line enclosing each individual or combined peak (s) is identified as the valley-line (black thin
solid lines, e.g., {nint ={minz <min3 ={mina in Fig. 4). These valley-lines enable the separation of

distinct vortex regions containing single or multiple peaks.
8

‘ Deleted[Fang RunZhuo]: :



265

270

275

Step2: The isolation status of each vortex region is determined by assessing the relative disparity
between each valley-line and its internal maximum peak. As illustrated in Fig. 4: peak  represents the
strongest peak within its associated valley-line {4, peak  corresponds to the maximum within two
valley-line-enclosed areas {j;n; and {3, and peak is the dominant peak within its respective
valley-line {jn2. The assessment proceeds systematically through vortex regions in descending order
of their valley-line vorticity magnitude ({,,): for the maximum peak with relative vorticity value ¢y
within the valley-line-enclosed vortex region, if the criterion ({pay - {min)/ {max > 1 satisfied (where
denotes the isolation vortex threshold), the area centered on this peak and bounded by the valley-line
is classified as an isolated vortex region. If a vortex region contains only one such isolated vortex
region, the isolated vortex will be expanded to encompass the entire domain. (in Fig. 4, the vortex
region enclosed by {4 associated with peak fails to meet the isolation criterion. Conversely,
peaks and  forming two distinct isolated vortex regions bounded by their respective valley-lines
$minz and {pinz).
Step3: For all vortex points located within each unpartitioned-vortex but outside the isolated vortex
regions, each point is assigned to the nearest isolated vortex based on geographical distance. Finally, all
isolated vortices in the each unpartitioned-vortex region are mutually designated as adjacent vortices
(e.g., vortices  and ), serving as inputs for subsequent analysis of merging or splitting events. The

area of each vortex is defined by its corresponding allocated isolated vortex region.

Step 1

280 ‘ Figure 4, Vortex identification algorithm example. The black thick solid lines {0 represent the

285

290

unpartitioned-vortex border. The vorticity peaks , , and are three detected local vorticity maxima
within this unpartitioned-vortex. The thin black solid lines from {yjn; to {ying in Step 1 denote vortex
valley-lines that divide single or multiple peak regions. After vortex isolation assessment in Step 2, the
retained valley lines {y; and {2 for peaks and form the initial boundaries of their respective
isolated vortices, while vortex is classified as non-isolated, with its boundary shown as a dashed line. In
Step 3, the pale pink regions outside the isolated vortices are further allocated to vortices  and

3.1.2 Connection of continuous time step vortices

Based on the results of hourly vortices identification, the introduction of steering wind is
employed to estimate the movement of vortices. The steering wind is computed by averaging wind

fields within a 450 km radius around the vortex center at 550 hPa, 700 hPa, and 850 hPa, which is
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statistically proven to have minimal bias (Yan et al., 2023). Specifically, for a vortex at a given time
step, its ideal point after experiencing a time step under the steering wind influence is first calculated.
A search radius of 180 km is then applied around this estimated location to facilitate vortex tracking in
subsequent time steps. Subsequently, the (a) nearest neighbor principle or (b) maximum area overlap
principle (as shown in Fig. 5) is applied to connect vortices between two consecutive time steps, when
vortices exist within the estimated region, the nearest vortex is connected; otherwise, the vortex with
the largest area overlap within the region is selected for connection. Finally, if the distance between the
centers of vortices to be connected in adjacent time steps exceeds 200 km and the vorticity of the
vortex center at next time step is less than 1.5 x 10* s!, the connection is terminated to minimize

spurious connections.

(a) Nearest neighbor connection (b) Maximum overlap area connection

e
o-

Figure 5, Schematics of continuous time step vortices connection

Additionally, If no spatially connectable vortices are identified in adjacent time steps, the vortex is
classified as being terminate. Under the assumption of constant centroid positions during splitting and
merging (Shimizu and Uyeda, 2012), if a vortex is contiguous to other vortices at its start (end) track
point, it is considered to have been generated (terminated) via splitting (merging). As shown in Fig. 6,

in two simplified vortex motion scenarios, vortex  begins splitting and merging at the t3 time step.

Split Merge

Figure 6, The schematic diagram illustrates two vortices splitting and merging processes. The t1 to t4

represent four consecutive time steps. The red/ blue arrow indicates the direction corresponding to the

splitting/ merging process of two vortices. The colored regions and solid lines represent isolated vortex

regions and their boundaries. Gray solid lines show contour lines of the 850 hPa relative vorticity field, and

black solid lines indicate the unpartitioned-vortex boundaries. The blue dashed line indicates that the vortex
is not yet an isolated vortex at time t2.

3.1.3 Sensitivity experiments of vortex identification parameters

To evaluate the sensitivity of vortex identification parameters, we conducted three sensitivity
experiments with the following configurations, each designed to test the impact of varying key

thresholds o( o)and on vortex detection:

10
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1)  Experiment a (Ienient thresholds): o =1.2x10%s7, o =1.0x10%s?,  =0.15;

2)  Experiment b (intermediate thresholds): o = 1.2x10* s, o = L0x10%*s!, =
0.25;

3)  Experiment c (strict thresholds, following Stoll et al. 2021): 0= 1.5x10* s, 0o =
1.2x10%s7, =0.25

The influence of threshold variations on vortex detection characteristics was systematically
evaluated by analyzing differences in the number of identified vortex tracks, their lifespans, and their
vorticity across the three experiments. As shown in Fig. 7, threshold adjustments predominantly
affected vortices exhibiting maximum vorticity ({emax) less than 2x107* s™*. The principal findings are:

First, focusing on the impact of o (by comparing Experiment b, which uses a lenient 0»
with Experiment ¢, which uses a strict o), we found that the lenient threshold in Experiment b
captured an additional 8,077 weak-vorticity tracks (with (emax < 1.5%107* s71). This adjustment also
extended the mean lifespan of detected vortices by approximately 3 hours. Under the 6-hour minimum

lifespan criterion_which is used to filter transient disturbances, this extension nearly doubled the

detection rate of moderately weak vortices (1.5%107* s7! < Cymax < 2%107* s7'), highlighting the
importance of o in capturing less intense but persistent systems.

Second, examining the role of (by comparing Experiment a, which uses a lenient , with
Experiment b, which uses an intermediate ) revealed that the lenient  threshold in Experiment a
increased the count of weak-to-moderate vortices (1.5%107* s7! < {max < 3x107* s71). This increase was
attributed to enhanced sensitivity to vortex splitting events, and it came with a trade-off: the mean
lifespan of detected vortices was reduced by approximately 2 hours, likely due to more frequent
identification of short-lived sub-vortices during splitting.

Given the objective of constructing a comprehensive dataset capturing the full spectrum of PMCs,
including weaker systems potentially omitted by stricter criteria, the parameter set from Experiment a
was ultimately selected. This configuration yielded the highest number of vortex tracks, thereby
ensuring the inclusion of marginally intense or transient PMCs and providing a more robust foundation
for subsequent analysis. Validation of these results against established polar low datasets is presented in

Sect. 4.

11
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Figure 7 Sensitivity analysis of vortex identification parameters across different maximum track vorticity
groups: (a) number of identified tracks, (b) mean track lifetime.

3.2 Matching SLP minimum

While vortices often fail to produce closed isobars in SLP fields due to interference from
background pressure gradients, their atmospheric influence can still be quantified through detectable
SLP minima. Notably, certain polar lows originate within upper-level cold-core systems (known as
“cold low types”) frequently generate deep convection and produce substantial near-surface impacts
(Rasmussen, 1981; Businger and Reed, 1989). To systematically capture SLP characteristics, the SLP
field is first smoothed using Gaussian filtering with a radius of 50 km to suppress noise. Subsequently,
the SLP minimum point located within a 150 km radius of the nearest vortex centroid is designated as

the SLP center for that vortex.

3.3 Detection and extraction of cyclonic cloud characteristics

Building upon the lenient vorticity identification criteria previously constructed, a substantial
population of vortex tracks have been identified using reanalysis data, including not only cyclonic
systems but also low-pressure troughs, and small-scale atmospheric disturbances. To assess whether
these vortices represent PMCs, AVHRR infrared imagery is used for comparative validation. This
process begins with temporal matching of satellite overpasses to vortex track timesteps, followed by
generation of Vortex-Centered Infrared (VCI) images through linear interpolation of infrared data onto
a geographically-referenced 801x801 grid coordinate with 2 km resolution, centered on each vortex
center (Fig. 8¢ and Fig. 8d). The coordinate transformation employs the formulas:

(. )=+ ., {-800,— 798, ..,798,800} (1)
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The coordinate transformation utilizes vort,,, and vort,, as the longitude and latitude of the original
coordinate grid, corresponding to either the vortex center at the given timestep. This approach
implements a conformal projection that provides a first-order approximation of geographic coordinates
within the vicinity of the origin point.

The VCI images enable comprehensive analysis of cloud features within a 1600 kmx1600 km
domain centered on each tracked vortex position, providing an optimal spatial scale that captures the
majority of PMCs while simultaneously accommodating larger-scale extratropical systems advected
into Arctic regions. By transitioning from broad-scale satellite observations to these precisely localized
domains, this imagery method significantly enhances the spatial correspondence between
vorticity-derived tracks and cloud features, with particular sensitivity improvement for smaller-scale
and shallower cyclones. Meanwhile, the georeferenced framework of VCI images provides two critical
analytical capabilities: first, it enables direct quantification of cyclone dimensions through the
standardized geographic grid; second, it allows precise measurement of positional discrepancies
between observed cloud systems and modeled vortices through center-to-center displacement vectors.
Furthermore, VCI images are also generated for two-time steps before the start and after the end of
each vortex track. This allows us to capture the initial formation and dissipation stages of PMCs that
are not adequately represented in vorticity fields, enabling users to better evaluate the representation of

PMCs.
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Figure & Two examples of VCI image generation. For the two vortices shown in (a), the AVHRR IR image 1

(b) reveals a polar low located to the east of vortex 1 and vortex 2. This polar low exists simultaneously in
the VCI images centered on vortex 1 and vortex 2 (c, d). The shading in (a) represents 850 hPa relative
vorticity smoothed over a uniform 60 km radius, with gray contour lines indicating sea-level pressure at 10
hPa intervals. The centers of vortex 1, vortex 2, and the polar low are respectively marked by green, red,
and yellow stars.

Fig. 9 illustrates typical cyclonic cloud morphologies, the most common comma-shaped cloud

structure is shown in Fig. 9a, where the head is typically composed of a tall and smooth cirrus shield
surrounding a dark, nearly cloud-free center. Ripple-like wave patterns sometimes appear at the edge of
the head, indicating significant wind shear within the cyclone. Fig. 9d presents the typical spiral cloud
morphology, characterized by one or more convective cloud spiral bands encircling the circulation
center. These spiral bands are occasionally predominantly composed of cellular clouds. Intermediate
baroclinic forms illustrated in Fig. 9b and Fig. 9c represent transitional stages between comma and
spiral types, sharing structural similarities with occluded extratropical cyclones but at reduced
horizontal scales, and are consequently classified within the spiral category. The centers of comma
cloud and spiral cloud configurations in our research were visually determined following Forbes and
Lottes (1985), based on the characteristic curvature and convergence of cloud bands surrounding the
circulation core as identified in satellite imagery. Additionally, the analytical framework of oriented
bounding box is also introduced that provide quantitative measures of cyclone scale, with the long axis

aligned parallel to the tail cloud band and the short axis tangent to the cloud head. While conventional
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approaches estimate cyclone size using the mean axis length (Smirnova et al., 2015), this dataset
provides separate measurements of both axes to account for potential overestimation caused by the
connection of tail cloud band of cyclones and long cloud bands of mesoscale-front, thereby enabling

researchers to make more precise assessments of true cloud coverage dimensions.

(a) comma (b) baroclinic

(d) spiral

Figure 9, Different cyclonic cloud morphologies in four VCI images: (a) comma-shaped cloud; (b), (¢) and

(d) spiral clouds. The yellow/blue bounding boxes and stars respectively denote the oriented bounding boxes
and center positions of comma-shaped/spiral cyclones.

To extract such cyclonic cloud features corresponding to vortices from the vast collection of VCI

images, the YOLO (You Only Look Once) object detection algorithm is employed to automate this

process. Object detection is a computer vision task that uses neural networks to locate and classify

objects within images. The YOLO series of algorithms (Redmon et al., 2016), characterized by high

efficiency and accuracy, has become prominent in real-time object detection tasks across various fields.

In this track dataset construction, the YOLOv8 framework (Jocher et al., 2023) is adopted to

automatically extract cyclonic cloud morphology features, including cloud type classification (spiral

cloud or comma-shaped cloud). center coordinates, and an oriented bounding box enclosing the

cyclone, The YOLOv8-obb-pose model is configured using the YOLOvS model framework, which

combines oriented object detection (obb) and keypoint detection (pose). Specifically, a branch for
keypoint prediction is added to the decoupled head module of the YOLOv8-obb model. This enables
the new YOLOVS8-obb-pose model to simultancously perform automatic detection of cyclone type,
center position, and oriented bounding box. The network architecture of the YOLOv8-obb-pose model
comprises three main components: Backbone for multi-dimensional feature extraction, Neck for

enabling multiscale feature fusion, and Head for extracting cyclone type, center coordinates, and
15
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oriented bounding box parameters (e.g., length, orientation). As shown in Fig. 10, the
YOLOv8-obb-pose model successfully detects two spiral clouds (Fig. 10a) and two comma-shaped
clouds (Fig. 10b) in VCI images, with oriented bounding boxes,cyclone type and center points marked.

During the model training process, we first construct a manually annotated dataset to train the
YOLOv8-obb-pose model. To ensure prediction stability, particular emphasis is placed on maintaining
consistent oriented bounding box annotations and center point positions across similar evolutionary
phases of cyclonic cloud morphologies. To optimize the trade-off between detection efficiency and
accuracy, we implement an iterative training protocol involving successive cycles of prediction, manual
correction, and retraining using VCI images. As detailed in Table S1, the model achieves competitive
performance metrics on the validation set following this optimization process. The final
YOLOv8-obb-pose implementation demonstrates robust capabilities in both cyclone detection and
center localization tasks, satisfying requirements for practical applications.

For each detected cyclone, the center coordinates and the four vertices of the oriented bounding
box are converted back to geodetic coordinates using the inverse of Eq. (1) and (2). The lengths of the
four sides of the bounding box are calculated using the haversine formula, with the cyclone’s length
(width) defined as the mean size of the two long (short) sides of the rectangle. The geographic

coordinates of the cyclone center are then used for subsequent matching with vortex centers.

(a) detected spiral clouds (b) detected comma clouds

comma 0.62

comma 0.80)

N

Figure 10, Examples of cyclonic cloud detection using the YOLOv8-obb-pose model: (a) two spiral clouds 1

detected in a VCI image and (b) two comma-shaped clouds detected in a VCI image. The oriented bounding
boxes for spiral clouds are shown in purple, and for comma-shaped clouds in blue. The centers of the
cyclones are marked with green points. The cyclone type and detection confidence are displayed above each
bounding box.

3.4 Validation of the vortex tracks

Each series of VCI images based on vortex track provides spatiotemporal neighboring local
infrared cloud imagery that follows the vortex’s movement. After extracting cyclonic features from
VCI images, whether a vortex track corresponds to a cyclone evolution process is determined by

proximity matching between the cyclone center detected in each VCI image and the vortex center. The
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following steps ensure that each VCI image only retains a cyclone uniquely matched to a vortex track
point:

I Uniqueness: As illustrated in Fig. 8, spatially proximate vortices in reanalysis data can result in
multiple detections of the same cyclone across corresponding VCI images. To remove duplicate records,
we implement a selection criterion: for any cluster of detections from the same AVHRR infrared scan
(with cyclone centers <50 km apart), only the detection whose center is nearest to the VCI image center
is retained.

II Proximity: Each VCI image retains only the cyclone whose center is nearest to the VCI image center
and within 250 km of it. Further, we extend the point-to-point matching to the track-to-track. When
points of a vortex track are continuously matched with a series of cyclones in VCI images over four
hour or longer time-steps with an average matching distance less than 150 km, the vortex track is
preliminarily identified as a PMC track associated with the cyclone evolution process (as shown in Fig.

11)

(a) matching of a vortice track and cyclone track b) VCI images for matching
30 60°E
80°N,

@gp 80°N
vortices track &% - %‘%&-ﬁo

—— cyclones track & oo

1.0 1.5 2.0 2.5 3.0 35 4.0 4.5
Csmthgso (1074 s7")

\ Figure 11,(a) A matched vortex track and cyclone track and (b) partial corresponding VCI images. For (a),

blue solid line represents the vortex track at hourly resolution, while grey solid line with green points
depicts the cyclone track points formed in VCI images that correspond one-to-one with vortex points. The
color of the track points indicates the magnitude of relative vorticity at each vortex point. For (b), the
cyclone develops sequentially from left to right and top to bottom, with scan intervals between images
approximately six hours apart.

3.5 Matching cyclone-related max wind and environmental near near-surface wind

When cyclonic cloud features are identified in VCI imagery, near-surface wind speeds over the
ocean are matched to assess cyclone intensity. Based on established criteria (Rasmussen and Turner,
2003), PLs are generally associated with high near-surface wind speeds exceeding 15 m s™' (gale force),
concentrated in narrow cloud bands connected to the eye wall or intense convective regions
surrounding the center. In contrast, weaker PMCs often do not penetrate the temperature inversion
above the marine mixed layer, resulting in lower near-surface wind speeds (Noer et al., 2011). J[n this
study, near-surface wind speed matching is performed using ASCAT/QuikSCAT data selected when the
time difference from the VCI image is within 30 minutes. This tolerance is considered acceptable given
that most PLs move at speeds below 13 m s (Rojo et al., 2015; Smirnova et al., 2015), making the

associated representative error negligible. To estimate the maximum wind speed associated with the
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cyclone core, a cloud-scale-based search radius is applied. The search radius is defined as the distance
from the cyclone center to the nearest short edge of its oriented bounding box. This confines the wind
search to the high-wind region near the cyclone’s core, with the maximum value within this area taken
as the system’s maximum wind speed.

It is important to recognize that scatterometer wind speeds may not always reflect

cyclone-induced circulation and could include contributions from large-scale advective wind. Some

PMCs occurring during cold air outbreaks may exhibit wind speed maxima surpassing 15 m s™* due to

background environmental wind advection. To prevent misclassifying such systems as PLs, careful

subjective analysis has traditionally been applied (Wilhelmsen, 1985). This highlights that what is

retrieved from scatterometer wind measurements may not always reflect cyclone-induced circulation,

but could also include contributions from large-scale advective winds. By using the spatial derivatives

from scatterometer wind vector fields, vortical structures or divergent flows near the surface associated

with PLs/PMCs may become easily visible (King et al., 2022). For instance, Fig. 12a illustrates a

system with a well-defined cyclonic circulation where the high wind speeds at its head are clearly

associated with the cyclone itself. The fine-scale and complex structure of the corresponding vorticity

field exhibits a strong and organized vorticity signature coincident with the cloud vortex, confirming
the presence of an intense mesoscale vortex and a trailing shear line. In contrast, Fig. 12b shows a case

where the wind field is largely straight and convergent in the ambient flow, accompanied by only a

weak vorticity signal (1x10* s!') localized near the cloud eye and lacking any broader organized

cyclonic_structure, suggesting that the surface circulation appears to be either not yet formed or

obscured. Due to technical constraints, additional parameters such as vorticity and divergence are not

rovided alongside wind speed. Nevertheless, they retain substantial application potential, as evidenced

by the vorticity structures revealed in Fig. 12, which demonstrate the value of scatterometer spatial

derivatives in elucidating the complex dynamical features of mesoscale systems

(a) Distinct cyclonic near-surface wind (b) No distinct cyclonic near-surface wind

NOAA-17 19:41

'Wind Speed (m/s)

Figure 12,VCI images overlaid with near-surface wind speeds for cyclones exhibiting strong (a) and weak (b)

cyclonic near-surface wind patterns. Color shading represents QuickSCAT-measured 10m near-surface
wind speeds, with green arrows indicating corresponding wind vectors. Yellow borders denote the cyclones’
18
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bounding oriented box. Blue circular border represents the search range. Yellow and red stars indicate the
cyclone center and maximum wind speed point locations._The vorticity calculated from the wind fields is
shown as white-to-red contours. with units of 10 s,

4 Results and discussion

Our analysis began by applying a vortex tracking algorithm to reanalysis data, which identified
59,975 vortex tracks. Validation against VCI imagery confirmed 1,110 cyclone-related vortex tracks,
encompassing 16,001 distinct cyclone cloud features. Subsequent analysis of surface wind speed
characteristics revealed 4,472 instances with measurable wind patterns, among which 794 tracks
exhibited maximum wind speeds exceeding the 15 m s™* threshold. These validated 1,110 vortex tracks,

along with their corresponding remote-sensing images, form the IMPMCT, track dataset. The accuracy

of IMPMCT, was rigorously evaluated through comprehensive comparisons with existing track datasets

derived from manual identification and reanalysis products.

First, to validate the accuracy of the vortex track datasets obtained from the vortices tracking
algorithm, they are compared with the manually identified PL lists published by Noer et al. (2011),
Rojo et al. (2019), and the objectively derived PL track datasets from reanalysis data by Stoll (2022).
All reference datasets are spatially and temporally co-located with our derived tracks, retaining only
those persisting for >3 hours. We applied the following matching criteria: a vortex track is considered
matched with a PL track if more than 50 % of temporally coincident track points (within +1 hour) fall
within a 150 km radius (applying an 80 % threshold for Stoll’s dataset). To avoid spurious matches of
short-lived spurious tracks, only vortex tracks with lifespans exceeding 60% of the corresponding
reference PL track’s duration were included. A single vortex track was permitted to match multiple PL
tracks from reference datasets, provided that these PL tracks did not overlap temporally and each was

uniquely paired with its nearest vortex track. As presented in Table 2, the validation results

demonstrate strong agreement with Stoll’s dataset, confirming the robustness of our vortex tracking
algorithm. Moreover we achieve higher matching rates with manual PL lists by using lower vortex

identification thresholds, which further underscores the improved capability of ERAS reanalysis data in

representing PL characteristics. Additional validation using tracks from the sensitivity experiment (Sect.

3.1) revealed a critical insight: vortex tracks derived under lenient thresholds consistently produced
higher matching rates when compared against established PL datasets (Table S2). This suggests that
some PLs exhibit weaker vorticity signals in the lower atmosphere, highlighting intrinsic intensity
diversity that stricter thresholds may fail to capture.

To further investigate the mismatches between reanalysis-derived tracks and existing PL datasets,
we conducted a nearest-point matching analysis (Table 2). A match was considered successful when a
PL center from any reference dataset had at least one temporally coincident vortex center within a 120
km radius (60 km for the Stoll dataset). Track-level mismatches were found to originate primarily from
these point-level discrepancies. The variation across datasets can be largely attributed to
methodological differences: while the Noer list derives from numerically modeled and
AVHRR -assimilated hourly positions (typical of operational forecasting systems), the Rojo list relies on

direct AVHRR identification at irregular temporal intervals, leading to greater deviation from ERAS
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representations. Furthermore, the Rojo compilation includes numerous secondary PL centers, which are
features inherently less resolved by reanalysis data (Stoll, 2022), whereas Noer focuses primarily on
dominant PLs of operational significance. This distinction is clearly reflected in our results: major PL
centers (n = 2,527) showed an 80% matching rate, compared to only 54% for secondary centers (n =
1,115), thereby lowering the overall match rate for the Rojo dataset.

For the Stoll dataset, we also computed a vortex matching rate (Table 2), defined as the proportion
of Stoll centers falling within the spatial extent of the nearest co-temporal vortex. This measure helps
account for positional discrepancies caused by misalignment of vorticity peaks, which appear to stem
from differences in smoothing techniques (see Fig. S1). Our algorithm applies stronger uniform
smoothing compared to Stoll’s approach, explaining why more lenient identification thresholds
improve track matching with Stoll’s dataset. This finding offers valuable insight for algorithm
application : although the algorithm is not highly sensitive to the specific input vorticity fields,
provided their grid spacing is sufficient to capture mesoscale vortices, the choice of smoothing method
significantly influences identification outcomes, alongside the threshold parameters examined in the
sensitivity experiments (Sect. 3.1.1). The smoothing strategy should be tailored to the assimilation
noise and effective resolution of the input vorticity field. For example, Gaussian smoothing may be
better suited for model data with lower noise levels, as it better preserves the spatial coherence of

vortex cores.

Table 2, the matching rate of the reanalysis-based track dataset for IMPMCT generation compared to other ‘

PL track datasets.
Tracks Track Nearest points Vortex
PL tracks ~ Time period  in Nordic matched Points matched matched
Sea (>3hr) fraction(%) fraction(%) fraction
Noer 2002-2011 114 87.72 1670 85 -
Rojo 2000-2019 370 69.73 3642 71 -
Stoll 2000-2020 3179 93.68 75650 93 99

After excluding vortex tracks with over 60% land coverage (resulting in an approximately 20%
reduction), 47,167 tracks remained eligible for AVHRR matching. The matching procedure required: (1)
complete spatial coverage within a 200-km radius for individual vortex points, and (2) at least two
temporally matched points within +3 hours of peak vorticity, along with a minimum of six matched
points over the track’s lifetime. Figure 13 presents the matching statistics for the winter months
(November to April): on average, 43% of points and 61% of tracks were successfully matched.
However, only about 3% of the matched tracks were ultimately incorporated into the IMPMCT dataset.
This low inclusion rate can be attributed to several factors: frequent cloud obstruction, limitations in
cloud—ice contrast, temporal resolution constraints, and inherent detection methodology (e.g., the
higher inclusion rate in 2001 reflects meticulous manual identification, whereas the lower rate in 2023

resulted from incidental post-publication discoveries). Importantly, the proportion of cyclones in
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IMPMCT likely underestimates the true prevalence of polar mesoscale cyclones (PMCs), as many
systems with low cloud cover lack discernible vortex structures. In cases where AVHRR data are
unavailable, an alternative approach using hourly wind field data calibrated with scatterometer
measurements may provide a more robust method for validating ERAS-derived vortex tracks (Furevik

et al., 2015).
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Figure 13 Annual winter (November-April) time series: (a) ERAS-derived vortex points (green), available
AVHRR files (red), and AVHRR-matched vortex points (blue), (b) ratio of AVHRR-matched vortex tracks
to ERAS-derived tracks (yellow), and ratio of IMPMCT tracks to AVHRR-match tracks (purple). Note:
Bars represent distinct categories (not stacked)

We further assess the reliability of vortex properties in IMPMCT by comparing three key
parameters (850 hPa relative vorticity, SLP minima, and vortex equivalent diameter), with the
corresponding values from Stoll’s dataset, in addition to evaluating the spatial distance between vortex
centers. From this comparison, 638 matched tracks were identified between IMPMCT and Stoll’s
dataset. As shown in Fig. 14a, among the matched tracks, 90 % of vortex points remain within 50 km
of each other at the same time step. The mean absolute differences of the three vortex properties at
these proximate track points remain small: 1.11 x 10~ s*! for relative vorticity, 0.43 hPa for sea-level
pressure, and 22.79 km for vortex equivalent diameter. Furthermore, these property discrepancies
exhibit a positive correlation with separation distance, suggesting that differences between IMPMCT
and Stoll’s tracks primarily arise from their respective identification thresholds.

To demonstrate that these discrepancies reflect divergent tracking methodologies rather than
detection errors, we calculated the standard deviation of each vortex property over three consecutive
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time steps for every track and then averaged these values across each track. Low amplitude in these
local variations implies consistent feature identification by a given method. Figures 14b—d present the
track-averaged local standard deviations of the three properties for both datasets. Importantly, the
magnitudes of these short-term variabilities are generally comparable between IMPMCT and Stoll’s
tracks. This consistency indicates that the increasing property differences at larger separations stem
from intrinsic peak misalignments due to differing detection logics, rather than fundamental errors in
either tracking approach. In fact, the IMPMCT dataset often exhibits slightly smoother variability,

which is consistent with its specific algorithmic configuration.

I °s  (a) Parameterization diff (IMPMCT-Stoll) hpa km (b) {smthsso local std distribution
|| = Gmenaso o Lao T B IMPMCT
| sLp T 120 3 Stoll

| vort diameter

T
IS

200

104 —4 —200

154 =6 —300

15387 3971 703 205
10, 10) [10, 50) 150, 100) [100, 200) :
km std(le™3s71)

(c) SLP local std distribution (d) Vort diameter local std distribution

[ IMPMCT
1 [ Stoll
[\

-8 L—400

704 B IMPMCT
3 Stoll

604

504

404

%00 0.25 0.50 075 100 125 180 175 E 15
std(hPa) std(km)

10

Figure 14, Distribution of differences in three vortex properties and their track-averaged local standard 1

deviations at co-located hourly track points between matched IMPMCT and Stoll tracks. The boxplot in (a)
shows property differences as a function of spatial deviation distance between matched track points. The
red numbers above the x-axis indicate the count of track point pairs in each distance bin. Each boxplot’s
y-axis scale corresponds to the color of its respective property (green: relative vorticity, blue: sea-level
pressure, red: vortex diameter). Frequency histograms and fitted curves of track-averaged local standard
deviations for the three properties are displayed in (b) relative vorticity, (c) sea-level pressure, and (d)
vortex diameter.

IMPMCT uses hourly-resolution vortex tracks from reanalysis data as a basis for cyclone tracks.
The correspondence between vortex and cyclone tracks is established exclusively via continuous
spatiotemporal matching of their respective centers. To ensure the accuracy of this correspondence, we
perform subjective validation to confirm that each cyclone track does not incorporate irrelevant
cyclonic processes. Notably, while the average matching distance between vortex and cyclone tracks is
constrained within 150 km, approximately 95 % of track pairs have average matching distances below

100 km (as shown in Fig. 15), demonstrating strong consistency between cyclone and vortex tracks.
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The cyclone properties in IMPMCT include cyclone scales and maximum core near-surface wind
speeds. These properties are validated through comparison with the Rojo list. For scale validation, we
compare the diameter from the Rojo list with the approximate cyclone scale in the IMPMCT dataset
(calculated as the average of cyclone width and length). We matched cyclone tracks between IMPMCT

640 and Rojo list based on the following criteria: the nearest cyclone centers are matched if their distance is
less than 120 km and their overpass times fell within 60 minutes of each other. A cyclone track pair was
deemed matched if more than 50% of the points in a Rojo track were matched. Using this approach,
1424 cyclone centers from the Rojo list (corresponding to 139 distinct tracks) were matched to tracks in
IMPMCT. It is worth noting that although the maximum permitted matching distance was 120 km, the

645 90th percentile of all actual matching distances was only 56 km. This indicates that cyclone center
identification remained consistent even when exact temporal alignment was not achieved.

Comparisons of cyclone cloud scale and maximum wind speeds between the matched time
periods are shown in Fig. 16. When cyclone center identification errors are small, the discrepancies in
diameter relative to the Rojo list arise not only from methodological differences in measurement, but

650 also significantly from subjective interpretation. The frequent presence of frontal cloud bands
associated with cyclones makes consistent measurement of the long axis highly subjective. Moreover,
when a cyclone is adjacent to other cloud systems, its boundaries often become ambiguous, leading to
variability in extent estimation. Therefore, a standard deviation of up to 120 km in diameter is still
considered acceptable. Furthermore, as the dataset includes corresponding remote sensing images,

655 users can readily examine the visual context of each cyclone and adjust the properties according to their

specific research needs.
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Figure 16, Frequency distribution of bias in (a) Track-max near-surface wind speed and (b) diameter ‘

between matched cyclones in the Rojo and IMPMCT datasets (Rojo minus IMPMCT). The cyclone
diameter in IMPMCT is calculated as the average of the width and length of the bounding box enclosing the
cyclone.

To statistically evaluate the agreement between IMPMCT and the reference datasets (Stoll, 2022,
and Rojo et al.), we applied Bland—Altman analysis (Bland and Altman, 1999). This method quantifies
the agreement between two measurement techniques by estimating the mean difference (bias) and the
95% limits of agreement (LoA), defined as the mean difference = 1.96 standard deviations of the
differences. A summary of the Bland—Altman results for key vortex and cyclone properties is provided
in Table 3, while the corresponding plots of differences versus averages are included in Supplementary
Fig. S2. As indicated in Table 3, vortex properties derived from ERAS reanalysis show a small
systematic bias relative to the other datasets, which is likely due to differences in computational
algorithms or processing workflows. Importantly, the Bland—Altman results demonstrate strong

agreement between the datasets: approximately 94% of the differences for each property fall within the

respective 95% limits of agreement (final column of Table 3), supporting the overall consistency and

reliability of IMPMCT

Table 3 Property difference between IMPMCT and other PLs list

Prope Matched Mean Standard Deviation of % Points
perty number Difference Differences within LoA
850 hPa (r L (lf_‘susv_?)“’mc“y 20294 0.6 2.1 95.1
SLP (hPa) 13929 0.3 0.8 95.7
vortex equivalent diameter
20294 -6.8 39.2 93.7
(km) |
track-max near-surface wind 51 107 50 94 1
speed (m s™)
cyclone cloud diameter 114
5 8.8 120 94.5
(km)

For most newly identified mesoscale cyclones not documented in existing PL databases, direct
validation can be performed by applying objectively derived identification thresholds from previous
studies to independently verify three essential characteristics: polar origin, mesoscale size, and cyclonic
intensity:

1) Polar-front criterion: As PMCs are defined as mesoscale cyclones forming north of the polar

front (Rasmussen and Turner, 2003), we employ two indicators to distinguish polar air masses

from extratropical air masses: tropopause potential temperature (Buwop) and the maximum
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poleward value of 200 hPa wind speed (Uaxp). For each cyclone, we compute the
track-averaged 0., averaged within a 250 km radius of the cyclone center and the
track-averaged Uzoop within a longitudinal band of +1.0° great-circle distance. Following Stoll
(2022), Ouwop < 300.8 K is used to identify polar air mass origin. This threshold effectively
distinguishes PLs from extratropical cyclones, retaining 76% of systems across subjective
archives while capturing 90% of known PLs. Han and Ullrich (2025) employed U200,p < 25

1

m s to position PLs north of the polar jet, achieving an approximately 80% hit rate for PL

classification with a miss rate of only 11.9%.

2) Mesoscale-size criterion: Vortex radius, derived from the vorticity field, is used to exclude
extratropical cyclones penetrating polar regions and large-scale frontal structures. In Stoll
(2022), a maximum vortex diameter of 430 km (representing the 90th percentile across all PL
lists) was applied, excluding approximately 24% of non-PL vortices. As we employ the same
vorticity boundary threshold (1.0x10* s~ ) for vortex definition, this criterion remains valid

for our dataset.

3) Cyclonic intensity criterion: A robust measure of mesoscale cyclone intensity is the pressure
anomaly (pqer), defined as the difference between the SLP minima and the mean SLP within a
110 km radius (paer = 110 — ). Stoll (2018) demonstrated that high par values
(with 90% of PLs exceeding 0.4 hPa) highlight the anomalous intensity of the local
low-pressure centre relative to its environment, signifying a steep pressure gradient near the
core, indicative of small, deep low-pressure systems typical of PLs. We calculate the
maximum pqer based on the SLP centre for each vortex track. For tracks where no SLP centre

is identified, pder is set to 0.

All discriminatory features for IMPMCT tracks are computed from ERAS data. The quantiles of
these features and the proportion of tracks meeting each criterion are presented in Table 4. Notably,
88.4% of tracks satisfy the polar-front criterion, 90% meet the mesoscale criterion, and 84% fulfill the
cyclonic intensity criterion. It should be noted that these thresholds were originally developed
specifically for the PLs. For the broader spectrum of PMCs, the thresholds for i, and peer are
inherently stricter, as they reflect the conditions of cold-air outbreaks and the stronger destructive
potential typically associated with PLs. Nevertheless, the vast majority of tracks in the IMPMCT

dataset satisfy these criteria, supporting their robustness as mesoscale cyclone tracks.

Table 4 Quantiles of discriminatory features and proportion of IMPMCT tracks meeting validation criteria.

o percentage Proportion
criterion Track feature 50% 75% 90% meeting the criterion (%)
Polar front Btrop (K) 298.9 304.1 310.0
Orop <301 K
B 88.4
or U200, (m s7) 18.4 23.7 29.7
Uzo0p<25ms!
Mesoscale
<215 km r (km) 137.1 176.9 2135 90.6
Cyclonic pder (hPa) 1.4 2.3 3.2 84.1
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The comprehensiveness of the dataset is constrained by the cyclone representation capabilities of
ERAS reanalysis and the availability of remote sensing data. Since the number of in-orbit satellites
carrying the AVHRR sensor peaked around 2013, the IMPMCT track dataset includes the highest
number of tracks during this period. Additionally, due to the use of more lenient identification
thresholds, IMPMCT tracks typically include longer life compared to the Stoll dataset. The extended
portions of these tracks may include: weak vorticity periods during the early/late stages of cyclone
development or the vortices pass over land/sea-ice, or redevelopment processes of vortices after
interacting with blocked extropical cyclones or frontal zones. If users require only the core
development phases of tracks, they should select segments based on vortex properties or cyclone
images that represent the system’s core development. The dataset also includes some tracks with high
vorticity at their start/end points, which may arise from splitting/merging events or jumps of the vortex
center position during tracking. It is noteworthy that while this study demonstrates ERAS reanalysis
data’s enhanced capability in capturing PMCs and PLs, it does not reflect ERAS’s predictive skill for
such systems. This predictive capability should be evaluated by testing ERAS background states in
characterizing PLs/PMCs, thereby isolating the influence of real-time assimilated data—particularly
scatterometer measurements (Furevik et al., 2015).

The dataset does not explicitly distinguish between PMCs and PLs due to the time-sparse wind
speed data, particularly when the cyclone’s wind speed at a given time step falls below the 15 m s
threshold. In such cases, it is difficult to determine whether the cyclone is a PMC or merely in a weaker
phase of a PL. In such cases, a more reliable validation method may be provided by the hourly
bias-corrected sea surface wind product from the E.U. Copernicus Marine Service Information

(CMEMS, https://doi.org/10.48670/moi-00185). Such product systematically corrects ECMWF ERAS

model fields using scatterometer observations to reduce persistent biases and includes uncertainty

estimates. Furthermore, the L3 scatterometer products available through CMEMS. which contain the

spatial derivatives of the wind vector fields (vorticity and divergence), offer a more direct

characterization of the dynamical core of mesoscale systems. These observed fields hold significant
potential for refining objective identification criteria, moving beyond a reliance on wind speed

thresholds alone. Due to the low resolution of AVHRR infrared images at scan edges, a significant

portion of VCI images appear blurred. However, these images are retained as long as cyclonic features
remain recognizable, prioritizing the preservation of high temporal resolution for cyclone track records.
Additionally, while the YOLOv8-obb-pose model facilitates detection and feature extraction of
cyclonic cloud characteristics in VCI images, the process still involves subjective steps to ensure
continuity in cyclone features (e.g., size, type, and position). This implies that objective methods for
constructing multi-parameter PMC track datasets remain underdeveloped. Consequently,
cyclone-evolution-aware deep-learning tracking algorithms could further enhance the efficiency of

track construction.

5 Code and data availability
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The IMPMCT dataset described in this paper is freely accessible on Zenodo via the following link:

https://doi.org/10.5281/zenodo.17142448 (Fang et al., 2025), accompanied by comprehensive

documentation. All code is developed in Python and stored at:

https://github.com/thebluewind/IMPMCT.

6 Conclusion

The Integrated Multi-source Polar Mesoscale Cyclone Track (IMPMCT) dataset represents a
major advancement in the study of polar mesoscale cyclonic systems. By integrating ERAS reanalysis,
AVHRR infrared imagery, and QuikSCAT/ASCAT wind data, this dataset provides a comprehensive
record of 1110 vortex tracks, 16,001 cyclonic cloud features, and 4472 wind speed observations across
the Nordic Seas (2001-2024). This integrated approach overcomes key limitations of previous
single-source datasets by enhancing detection sensitivity for weaker polar mesoscale cyclones (PMCs),
capturing complete lifecycle evolution from genesis to dissipation, and providing simultaneous cloud
morphology and wind fields observations. Rigorous validation against established datasets (Stoll, 2022
and Rojo et al. , 2019) confirms IMPMCT’s accuracy, demonstrating 90 % spatial consistency with
track points cyclone centers alignments within 50 km (60 km for cyclone centers) and minimal
parameter discrepancies including a 1.11 x 10~ s”! mean absolute difference in relative vorticity and
0.43 hPa mean absolute difference in sea-level pressure.

The IMPMCT dataset serves as a critical benchmark for evaluating high-latitude numerical
weather prediction model performance, while simultaneously functioning as a unique case library for
comparative studies of PLs and PMCs concerning their formation mechanisms, intensity thresholds,
and sea-ice interaction dynamics. Furthermore, it constitutes an essential resource for enhancing polar
maritime hazard forecasting. The repository of cyclone cloud morphology facilitates automated
identification of model-undetected systems. This is enabled by advanced deep learning frameworks,

enabling systematic evaluation of model representation fidelity for PLs/PMCs. ,

Author contributions

RF conceived the experimental design and authored the manuscript. WG contributed to refining
the methodologies. XL and HD conducted the research investigations and managed data collection. ZC
and CZ contributed to the interpretation of the results. JD and LL provided critical guidance, reviewed,

and revised the initial draft. All the authors contributed to the discussions and paper revision.

Competing interests

The contact author has declared that none of the authors has any competing interests.

Acknowledgements
The work has been jointly financially by the project of National Key R&D Program of China

(Project 2021 YFC2802501) and NSF of China (No. 42476205).
27

Deleted[Fang RunZhuo]: From a climatological perspective,
this resource permits establishment of comprehensive
objective identification criteria based on reanalysis data,
thereby enabling robust analysis of climate-scale trends and
genesis potential shifts in PL/PMC activity (Stoll, 2022; Zhang
etal., 2023).


https://doi.org/10.5281/zenodo.15355602
https://github.com/thebluewind/IMPMCT

790

795

800

805

810

815

820

825

830

References

Andersson, A., Fennig, K., Klepp, C., Bakan, S., Gra}l, H., and Schulz, J.: The hamburg ocean
atmosphere parameters and fluxes from satellite data — HOAPS-3, Earth Syst. Sci. Data, 2, 215-234,
https://doi.org/10.5194/essd-2-215-2010, 2010.

Belmonte Rivas, M. and Stoffelen, A.: Characterizing ERA-interim and ERAS surface wind biases
using ASCAT, Ocean Sci., 15, 831-852, https://doi.org/10.5194/0s-15-831-2019, 2019,

Businger, S. and Steven Businger, R. J. R.: Cyclogenesis in cold air masses, Wea. Forecasting, 4,
133-156, https://doi.org/10.1175/1520-0434(1989)004<0133:cicam>2.0.co;2, 1989.

Bromwich, D. H.: Mesoscale cyclogenesis over the southwestern ross sea linked to strong katabatic
winds, Mon. Wea. Rev., 119, 1736-1753,
https://doi.org/10.1175/1520-0493(1991)119<1736:MCOTSR>2.0.CO;2, 1991.

Bland, J. M. and Altman, D. G.: Measuring agreement in method comparison studies, Stat Methods
Med Res., 8(2), 135-60, https://doi.org/10.1177/096228029900800204, 1999.

Blechschmidt, A. -M.: A 2-year climatology of polar low events over the Nordic Seas from satellite
remote sensing, Geophys. Res. Lett., 35, L09815, https://doi.org/10.1029/2008GL033706, 2008.

Belmonte Rivas, M. and Stoffelen, A.: Characterizing ERA-interim and ERAS surface wind biases
using ASCAT, Ocean Sci., 15, 831-852, https://doi.org/10.5194/0s-15-831-2019, 2019.

Condron, A., Bigg, G. R., and Renfrew, 1. A.: Polar Mesoscale Cyclones in the Northeast Atlantic:
Comparing Climatologies from ERA-40 and Satellite Imagery, Mon. Weather Rev., 134, 1518-1533,
https://doi.org/10.1175/MWR3136.1, 2006.

Claud, C., Duchiron, B., and Terray, P.: Associations between large-scale atmospheric circulation and
polar low developments over the north atlantic during winter, J. Geophys. Res., 112, D1201,
https://doi.org/10.1029/2006JD008251, 2007.

Condron, A. and Renfrew, I. A.: The impact of polar mesoscale storms on northeast atlantic ocean
circulation, Nature Geosci, 6, 34-37, https://doi.org/10.1038/ngeo1661, 2013.

Clancy, R., Bitz, C. M., Blanchard-Wrigglesworth, E., McGraw, M. C., and Cavallo, S. M.: A
cyclone-centered perspective on the drivers of asymmetric patterns in the atmosphere and sea ice
during Arctic cyclones, J. Clim., 1-47, https://doi.org/10.1175/JCLI-D-21-0093.1, 2022.

Dee, D. P.,, Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U.,
Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., Van De Berg, L., Bidlot, J.,
Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach,
H., Hélm, E. V., Isaksen, L., Kéllberg, P., Kéhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B.
M., Morcrette, J. -J., Park, B. -K., Peubey, C., De Rosnay, P., Tavolato, C., Thépaut, J. -N., and Vitart,
F.: The ERA-interim reanalysis: Configureuration and performance of the data assimilation system,
Quart J Royal Meteoro Soc, 137, 553-597, https://doi.org/10.1002/q;.828, 2011.

Day, J. J., Holland, M. M., and Hodges, K. I.: Seasonal differences in the response of Arctic cyclones to
climate change in CESMI, Clim Dyn, 50, 3885-3903, https://doi.org/10.1007/s00382-017-3767-x,
2018.

Fang, R., Ding, J.: IMPMCT: A Dataset of Integrated Multi-source Polar Meso-Cyclone Tracks,
Zenodo[data set], https://doi.org/10.5281/zenodo.17142448, 2025.

Forbes, G. S. and Lottes, W. D.: Classification of mesoscale vortices in polar airstreams and the
influence of the large-scale environment on their evolutions, Tellus A, 37A, 132-155,
https://doi.org/10.1111/j.1600-0870.1985.tb00276.x, 1985.

Furevik, B. R., Schyberg, H., Noer, G., Tveter, F., and Rohrs, J.: ASAR and ASCAT in polar low
situations,  Journal =~ of  Atmospheric and  Oceanic  Technology, 32,  783-792,
28

‘ Deleted[Fang RunZhuo]:


https://doi.org/10.5281/zenodo.15355602

835

840

845

850

855

860

865

870

875

https://doi.org/10.1175/JTECH-D-14-00154.1, 2015.

Graham, R. M., Hudson, S. R., and Maturilli, M.: Improved performance of ERAS in arctic gateway
relative to four global atmospheric reanalyses, Geophys. Res. Lett. , 46, 6138-6147,
https://doi.org/10.1029/2019g1082781, 2019.

Golubkin, P., Smirnova, J., and Bobylev, L.: Satellite-Derived Spatio-Temporal Distribution and
Parameters of North Atlantic Polar Lows for 2015-2017, ATMOSPHERE-BASEL, 12, 224,
https://doi.org/10.3390/atmos 12020224, 2021.

Gurvich, 1., Pichugin, M., and Baranyuk, A.: Satellite multi-sensor data analysis of unusually strong
polar lows over the chukchi and beaufort seas in october 2017, Remote Sensing, 15, 120,
https://doi.org/10.3390/rs15010120, 2022.

Haakenstad, H., Breivik, @., Furevik, B. R., Reistad, M., Bohlinger, P., and Aarnes, O. J.: NORA3: A
nonhydrostatic high-resolution hindcast of the north sea, the norwegian sea, and the barents sea, J
APPL METEOROL CLIM, 60, 1443—1464, https://doi.org/10.1175/JAMC-D-21-0029.1, 2021.

Harrold, T. W. and Browning, K. A.: The polar low as a baroclinic disturbance, Quart J Royal Meteoro
Soc, 95, 710-723, https://doi.org/10.1002/qj.49709540605, 1969.

Harold, J. M., Bigg, G. R., and Turner, J.: Mesocyclone activity over the north-cast atlantic. Part 1:
Vortex distribution and variability, Int. 1. Climatol., 19, 1187-1204,
https://doi.org/10.1002/(SICI)1097-0088(199909)19:11<1187::AID-JOC419>3.0.CO;2-Q, 1999.

Han, Y., & Ullrich, P. A. The system for classification of low-pressure systems (SyCLoPS): An
all-in-one objective framework for large-scale data sets. JGR Atmospheres, 130, ¢2024JD041287.
https://doi.org/10.1029/2024JD041287,2025

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A., Mufioz-Sabater, J., Nicolas, J., Peubey,
C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani,
R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Holm, E.,
Janiskova, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., De Rosnay, P., Rozum, I.,
Vamborg, F., Villaume, S., and Thépaut, J.: The ERAS5 global reanalysis, Quart J Royal Meteoro Soc,
146, 1999-2049, https://doi.org/10.1002/q;j.3803, 2020.

Jocher, G., Chaurasia, A., Qiu, J.: Ultralytics YOLO (Version 8.0.0), GitHub[code]
https://github.com/ultralytics/ultralytics, 2023

Kalluri, S., Cao, C., Heidinger, A., Ignatov, A., Key, J., and Smith, T.: The advanced very high
resolution radiometer: Contributing to earth observations for over 40 years, Bulletin of the American
Meteorological Society, 102, E351-E366, https://doi.org/10.1175/BAMS-D-20-0088.1, 2021.

King, G. P., Portabella, M., Lin, W., and Stoffelen, A.: Correlating extremes in wind divergence with

extremes in rain over the tropical atlantic, Remote Sensing, 14, 1147,
https://doi.org/10.3390/rs14051147, 2022.

Laffineur, T., Claud, C., Chaboureau, J.-P., and Noer, G.: Polar lows over the nordic seas: Improved
representation in ERA-interim compared to ERA-40 and the impact on downscaled simulations, Mon.
Weather Rev., 142, 2271-2289, https://doi.org/10.1175/MWR-D-13-00171.1, 2014.

Meyer, M., Polkova, 1., Modali, K. R., Schaffer, L., Bachr, J., Olbrich, S., and Rautenhaus, M.:
Interactive 3-D visual analysis of ERAS data: improving diagnostic indices for marine cold air
outbreaks and polar lows, Weather Clim. Dynam., 2, 867-891, https://doi.org/10.5194/wcd-2-867-2021,
2021.

Moreno-Ibaiiez, M., Laprise, R., and Gachon, P.: Recent advances in polar low research: current
knowledge, challenges and  future  perspectives, Tellus:  Series A, 73, 1-31,
https://doi.org/10.1080/16000870.2021.1890412, 2021.

Moreno-Ibaiiez, M., Laprise, R., and Gachon, P.: Assessment of simulations of a polar low with the

29


https://doi.org/10.1029/2024JD041287
https://github.com/ultralytics/ultralytics

880

885

890

895

900

905

910

915

920

canadian regional climate model, PLoS ONE, 18, €0292250,
https://doi.org/10.1371/journal.pone.0292250, 2023.

Mallet, P., Claud, C., Cassou, C., Noer, G., and Kodera, K.: Polar lows over the nordic and labrador
seas: Synoptic circulation patterns and associations with north atlantic-europe wintertime weather
regimes, JGR Atmospheres, 118, 2455-2472, https://doi.org/10.1002/jgrd.50246, 2013.

Michel, C., Terpstra, A., and Spengler, T.: Polar Mesoscale Cyclone Climatology for the Nordic Seas
Based on ERA-Interim, Journal of Climate, 31, 2511-2532, https://doi.org/10.1175/JCLI-D-16-0890.1,
2018.

Noer, G., Saetra, 0., Lien, T., and Gusdal, Y.: A climatological study of polar lows in the Nordic Seas,
Quart J Royal Meteoro Soc, 137, 1762—1772, https://doi.org/10.1002/qj.846, 2011.

Orimolade, A. P., Furevik, B. R., Noer, G., Gudmestad, O. T., and Samelson, R. M.: Waves in polar
lows, JGR Oceans, 121, 6470-6481, https://doi.org/10.1002/2016JC012086, 2016.

Parkinson, C. L. and Comiso, J. C.: On the 2012 record low Arctic sea ice cover: Combined impact of
preconditioning and an  August storm, Geophys. Res. Lett, 40, 1356-1361,
https://doi.org/10.1002/grl.50349, 2013.

Pezza, A., Sadler, K., Uotila, P., Vihma, T., Mesquita, M. D. S., and Reid, P.: Southern hemisphere
strong polar mesoscale cyclones in high-resolution datasets, Clim Dyn, 47, 1647-1660,
https://doi.org/10.1007/s00382-015-2925-2, 2016.

Rasmussen, E.: An investigation of a polar low with a spiral cloud structure, J. Atmos. Sci., 38,
17851792, https://doi.org/10.1175/1520-0469(1981)038<1785:aioapl>2.0.co;2, 1981.

Rasmussen, E. A. and Turner, J. (Eds.): Polar Lows: Mesoscale Weather Systems in the Polar Regions,
Cambridge University Press, Cambridge, UK; New York, 612 pp., 978-0-521-62430-5, 2003.

Rojo, M., Claud, C., Mallet, P.-E., Noer, G., Carleton, A. M., and Vicomte, M.: Polar low tracks over
the Nordic Seas: a  14-winter climatic analysis, TELLUS A, 67, 24660,
https://doi.org/10.3402/tellusa.v67.24660, 2015.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.: You only look once: Unified, real-time object
detection, arXiv [preprint], http://arxiv.org/abs/1506.02640, 9 May 2016.

Rojo, M., Claud, C., Noer, G., and Carleton, A. M.: In Situ Measurements of Surface Winds, Waves,
and Sea State in Polar Lows Over the North Atlantic, JGR Atmospheres, 124, 700-718,
https://doi.org/10.1029/2017JD028079, 2019.

Shimizu, S. and Uyeda, H.: Algorithm for the identification and tracking of convective cells based on
constant and adaptive threshold methods using a new cell-merging and -splitting scheme, J
METEOROL SOC JPN, 90, 869-889, https://doi.org/10.2151/jmsj.2012-602, 2012.

Smirnova, J. E., Golubkin, P. A., Bobylev, L. P., Zabolotskikh, E. V., and Chapron, B.: Polar low
climatology over the Nordic and Barents seas based on satellite passive microwave data, Geophysical
Research Letters, 42, 5603—5609, https://doi.org/10.1002/2015GL063865, 2015.

Smirnova, J. and Golubkin, P.: Comparing polar lows in atmospheric reanalyses: Arctic system
reanalysis versus ERA-interim, Mon. Weather Rev., 145, 2375-2383,
https://doi.org/10.1175/MWR-D-16-0333.1, 2017.

Stoll, P. J., Graversen, R. G., Noer, G., and Hodges, K.: An objective global climatology of polar lows
based on reanalysis data, Quart J Royal Meteoro Soc, 144, 2099-2117, https://doi.org/10.1002/qj.3309,
2018.

Stoll, P. J., Valkonen, T. M., Graversen, R. G., and Noer, G.: A well-observed polar low analysed with a
regional and a global weather-prediction model, Quart J Royal Meteoro Soc, 146, 1740-1767,
https://doi.org/10.1002/qj.3764, 2020.

Stoll, P. J., Spengler, T., Terpstra, A., and Graversen, R. G.: Polar lows — moist-baroclinic cyclones
developing in four different vertical wind shear environments, Polar lows, 2021.

30



925

930

935

940

945

950

955

960

Stoll, P. J.: A global climatology of polar lows investigated for local differences and wind-shear
environments, Weather Clim. Dynam., 3, 483-504, https://doi.org/10.5194/wcd-3-483-2022, 2022.

Smedsrud, L. H., Muilwijk, M., Brakstad, A., Madonna, E., Lauvset, S. K., Spensberger, C., Born, A.,
Eldevik, T., Drange, H., Jeansson, E., Li, C., Olsen, A., Skagseth, @., Slater, D. A., Stranco, F., Vage,
K., and Arthun, M.: Nordic seas heat loss, atlantic inflow, and arctic sea ice cover over the last century,
Reviews of Geophysics, 60, €2020RG000725, https://doi.org/10.1029/2020RG000725, 2022.

Terpstra, A., Michel, C., and Spengler, T.: Forward and Reverse Shear Environments during Polar Low
Genesis over the Northeast Atlantic, Monthly Weather Review, 144, 1341-1354,
https://doi.org/10.1175/MWR-D-15-0314.1, 2016.

Verezemskaya, P., Tilinina, N., Gulev, S., Renfrew, I. A., and Lazzara, M.: Southern ocean
mesocyclones and polar lows from manually tracked satellite mosaics, GEOPHYS RES LETT, 44,
7985-7993, https://doi.org/10.1002/2017GL074053, 2017.

Wang, C., Graham, R. M., Wang, K., Gerland, S., and Granskog, M. A.: Comparison of ERA5 and
ERA-interim near-surface air temperature, snowfall and precipitation over arctic sea ice: Effects on sea
ice thermodynamics and evolution, The Cryosphere, 13, 1661-1679,
https://doi.org/10.5194/tc-13-1661-2019, 2019.

Watanabe, S. 1., Niino, H., and Yanase, W.: Climatology of Polar Mesocyclones over the Sea of Japan
Using a New Objective Tracking Method, Mon. Weather Rev., 144, 2503-2515,
https://doi.org/10.1175/MWR-D-15-0349.1, 2016.

Wilhelmsen, K.: Climatological study of gale-producing polar lows near norway, Tellus A, 37A,
451-459, https://doi.org/10.1111/j.1600-0870.1985.tb00443.x, 1985.

Yanase, W., Niino, H., Watanabe, S. 1., Hodges, K., Zahn, M., Spengler, T., and Gurvich, 1. A.:
Climatology of polar lows over the sea of japan using the JRA-55 reanalysis, Journal of Climate, 29,
419-437, https://doi.org/10.1175/JCLI-D-15-0291.1, 2016.

Yan, Z., Wang, Z., Peng, M., and Ge, X.: Polar Low Motion and Track Characteristics over the North
Atlantic, Journal of Climate, 36, 45594569, https://doi.org/10.1175/JCLI-D-22-0547.1, 2023.

Yao, L., Lu, J.,, Xia, X., Jing, W., and Liu, Y.: Evaluation of the ERAS sea surface temperature around
the pacific and the atlantic, IEEE Access, 9, 12067-12073,
https://doi.org/10.1109/ACCESS.2021.3051642, 2021.

Zappa, G., Shaffrey, L., and Hodges, K.: Can Polar Lows be Objectively Identified and Tracked in the
ECMWF Operational Analysis and the ERA-Interim Reanalysis?, Mon. Weather Rev., 142, 2596-2608,
https://doi.org/10.1175/MWR-D-14-00064.1, 2014.

Zhang, X., Tang, H., Zhang, J., Walsh, J. E., Roesler, E. L., Hillman, B., Ballinger, T. J., and Weijer, W.:
Arctic cyclones have become more intense and longer-lived over the past seven decades, Commun
Earth Environ, 4, 348, https://doi.org/10.1038/s43247-023-01003-0, 2023.

31



	1 Introduction
	2 Data
	2.1 AVHRR data
	2.2 ERA5 data
	2.3 QuikSCAT/ASCAT data

	3 Methodology 
	3.1 Objective algorithm for identifying and tracki
	3.1.1 Hourly vortices identification 
	3.1.2 Connection of continuous time step vortices
	3.1.3 Sensitivity experiments of vortex identifica

	3.2 Matching SLP minimum
	3.3 Detection and extraction of cyclonic cloud cha
	3.4 Validation of the vortex tracks 
	3.5 Matching cyclone-related max wind and environm

	4 Results and discussion
	5 Code and data availability
	6 Conclusion
	Author contributions
	Competing interests
	References

