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Abstract. Polar Mesoscale Cyclones (PMCs), particularly their intense subset known as Polar Lows

(PLs), characterized by short lifespans of 3-36 hours and horizontal scales below 1,000 km, pose

significant hazards to polar maritime activities due to extreme winds exceeding 15 m s⁻¹ and wave

heights surpassing 11 meters. These intense weather systems play a critical role in modulating sea-ice

dynamics and ocean-atmosphere heat exchange. However, current understanding remains constrained20
by sparse observational records and an overreliance on single data sources (e.g., remote sensing or

reanalysis). To address these gaps, this study presents the Integrated Multi-source Polar Mesoscale

Cyclone Tracks (IMPMCT) dataset, a comprehensive 24-year (2001-2024) record of wintertime

(November-April) PMCs for the Nordic Seas. The IMPMCT dataset was created by combining

vortex-tracking algorithms applied to ERA5 reanalysis data with a deep learning-based method for25
detecting cyclonic cloud features in Advanced Very High-Resolution Radiometer (AVHRR) infrared

imagery. It also incorporates near-surface wind data from Advanced Scatterometer (ASCAT) and Quick

Scatterometer (QuikSCAT) measurements. The dataset contains 1,110 vortex tracks, 16,001 cyclonic

cloud features including length, width, position and morphological characteristics (spiral/comma shape),

and 4,472 wind speed records (wind vector imagery and cyclone maximum winds). Corresponding30
ERA5-derived hourly vortex tracks are also provided, including 850 hPa vorticity and proximate

sea-level pressure minima. Validation demonstrates statistical agreement with existing PLs track

datasets while providing more complete cyclone life cycle trajectories, more intuitive cloud imagery

visualization, and a richer set of parameters compared to previous datasets. As the most comprehensive

PMCs archive for the Nordic Seas, the IMPMCT dataset provides fundamental data for advancing our35
understanding of the genesis and intensification mechanisms, enables the development of enhanced

monitoring and early warning systems, supports the validation and refinement of polar numerical

weather prediction models, and facilitates improved risk assessment and safety protocols for maritime

operations. The dataset is available at https://doi.org/10.5281/zenodo.17142448 (Fang et al., 2025).
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1 Introduction

Polar Mesoscale Cyclones (PMCs) are mesoscale cyclonic weather systems that frequently occur

over open waters or sea-ice edges in regions poleward of the main polar front zones (Condron et al.,

2006; Rasmussen and Turner, 2003). They are often identified on satellite imagery by comma-shaped

or spiral cloud patterns. PMCs occur in all seasons but are most active in winter, with a lifespan of45
approximately one day and horizontal scales of less than 1,000 km (Harold et al., 1999). The most

intense subset of these cyclonic systems, termed Polar Lows (PLs), are major hazardous weather

phenomena in polar regions, characterized by average maximum wind speeds exceeding 15 m s-1 and

extreme values surpassing 30 m s-1. They can generate significant wave heights over 11 meters (Rojo et

al., 2019), posing severe threats to human activities and maritime safety in high-latitude regions50
(Harrold and Browning, 1969; Orimolade et al., 2016). Additionally, PLs induce rapid sea-ice changes

and intensify ocean-deep convection through dynamic and thermodynamic effects, producing complex

regional climatic impacts (Clancy et al., 2022; Condron and Renfrew, 2013; Parkinson and Comiso,

2013). The Nordic Seas (encompassing the Greenland, Norwegian, and Barents Seas) form a critical

oceanic gateway between the Arctic and Atlantic Oceans. This region is a primary convergence zone55
for Arctic and Atlantic water masses and plays a key role in global ocean circulation and climate

(Smedsrud et al., 2022). The complex meteorological and oceanographic conditions in this area make it

the most frequent PLs occurrence region (Stoll, 2022). Consequently, research on mesoscale cyclones

in the Nordic Seas is critical for improving Arctic maritime safety and understanding regional climate

change impacts.60
Cyclonic cloud morphology and surface wind fields derived from remote sensing data serve as the

primary criteria for distinguishing and categorizing PMCs and PLs (Rasmussen and Turner, 2003). The

former can be manually identified through visible or infrared imageries from passive radiometers (e.g.,

Fig. 1), while the latter can be estimated using scatterometer or microwave data. While PLs exhibit

higher destructive potential and detection feasibility compared to broader PMCs, current dataset65
development efforts have predominantly targeted PLs, leaving PMCs relatively underrepresented in

existing observational records. Blechschmidt et al. (2008) combined Advanced Very High-Resolution

Radiometer (AVHRR) infrared imagery (Kalluri et al., 2021) with wind speed data derived from the

Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data (HOAPS, Andersson et al.,

2010) to manually identify 90 PLs occurring in the Nordic Seas between 2004 and 2005. Noer et al.70
(2011) utilized AVHRR infrared imagery, Advanced Scatterometer (ASCAT), and Quick Scatterometer

(QUIKSCAT) wind data to detect 121 PLs in the Nordic Seas over a decade (2000–2009). Smirnova et

al. (2015) identified 637 PLs between 1995 and 2009 using Special Sensor Microwave/Imager (SSM/I)

data for atmospheric total water vapor (TWV) content fields, near-surface wind speed fields, and

AVHRR infrared imagery. Golubkin et al. (2021) employed Moderate Resolution Imaging75
Spectroradiometer (MODIS) and ASCAT data to identify PLs over the North Atlantic, compiling a

catalog of 131 PLs between 2015 and 2017. In all PL lists derived from remote sensing data, the Rojo

list (Rojo et al., 2015, 2019) is currently the longest temporally spanning remote sensing-derived PLs

track dataset, providing tracks of 420 PLs occurring in the Nordic Seas from 1999 to 2019. It includes
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basic information such as cyclone location, size, type, development stage, and maximum 10 m wind80
speed. The manually tracked datasets described above have provided valuable PLs information,

contributing to ongoing research efforts. However, the unique high-latitude geography of polar regions

creates significant observational challenges. Polar-orbiting satellites typically observe these regions at

intervals ranging from tens of minutes to several hours, resulting in temporal gaps that make it difficult

for manual tracking datasets to capture complete cyclone life cycles. Additionally, some PLs forming85
near sea-ice edges may exhibit distinct cyclonic cloud features exclusively during their transition over

moisture-rich open waters (Bromwich, 1991), implying that remote sensing datasets could potentially

miss capturing the initial developmental stages of such PLs. Consequently, while the Rojo list provides

developmental pattern annotations for individual PLs, the objectivity and quantitative reliability of

these annotations remain constrained by the inherent limitations of remote sensing in achieving90
comprehensive characterization of PL evolution throughout their complete lifecycle. Furthermore, the

occurrence of polar night, coupled with low contrast between sea-ice/snow surfaces and overlying

clouds, further limits the detection capabilities of remote sensing (particularly visible-band remote

sensing) methods for PLs.

95
Figure 1 Two AVHRR satellite images. (a) A PMC in Barents Sea. (b) A PL in Norwegian Sea. The yellow
stars mark the centers of these two cyclones.

With the improved resolution of reanalysis datasets, their ability to characterize PLs has

progressively advanced (Laffineur et al., 2014; Smirnova and Golubkin, 2017), making them an

increasingly critical data source for constructing PLs track datasets. Researchers have employed100
various combinations of identification criteria to detect PLs. For instance, Zappa et al. (2014) utilized

the difference between 500 hPa temperature and near-surface temperature to represent cold air outbreak

characteristics during PLs formation, while utilizing maximum near-surface wind speed to indicate PLs

intensity, and 850 hPa relative vorticity to capture their cyclonic properties. Subsequent studies adopted

or adapted these criteria (Stoll et al., 2018; Terpstra et al., 2016; Yanase et al., 2016). Building on the105
fifth-generation European Centre for Medium-Range Weather Forecasts Reanalysis (ERA5, Hersbach

et al., 2020), Stoll (2022) established a four-criteria linear-based combination defining PLs as intense
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mesoscale cyclones forming within polar oceanic air masses northward of the polar front. This

approach successfully reproduced 60-80 % of PLs from five manual PL lists, validating ERA5’s robust

capability in PLs representation. However, ERA5 significantly underestimates near-surface wind110
speeds within PL-affected regions (Gurvich et al., 2022; Haakenstad et al., 2021), attributed in part to

insufficient representation of transient wind variability, surface divergence, and unresolved mesoscale

features (Belmonte Rivas and Stoffelen, 2019). This limits its ability to objectively capture PLs’

high-wind characteristics, thereby introducing notable limitations.

In summary, remote sensing and reanalysis datasets provide complementary perspectives on PLs’115
characteristics, with the former capturing cloud morphology and the latter resolving meteorological

field distributions, highlighting their respective advantages. This complementary nature motivates the

integration of both data types to construct more comprehensive PL tracking datasets—a key objective

of this study. Furthermore, existing datasets primarily focus on PLs, while weaker PMCs that share

similar cyclonic cloud features and environmental conditions lack comprehensive publicly available120
track datasets. This disparity likely stems from the fact that PMCs generally have smaller average

intensities, shorter lifespans, and smaller scales compared to PLs, making them more difficult to detect.

Although some researchers have proposed PMC track datasets using either remote sensing

(Verezemskaya et al., 2017) or reanalysis data (Michel et al., 2018; Pezza et al., 2016; Watanabe et al.,

2016), these approaches face significant limitations. Remote sensing-based datasets often have125
inadequate temporal coverage or lack critical near-surface wind speed records (Condron et al., 2006),

while reanalysis-based datasets encounter challenges in developing effective identification criteria

without remote sensing validation. As a result, no universally accepted PMC identification standards

currently exist (Michel et al., 2018). Notably, while PLs have been well-documented in relation to

large-scale circulation patterns such as the North Atlantic Oscillation (Claud et al., 2007) and130
Scandinavian blocking (Mallet et al., 2013), the climatic impacts of PMCs remain insufficiently

investigated (Michel et al., 2018). These knowledge gaps highlight the critical need to establish a more

comprehensive tracking dataset capable of capturing PMCs throughout their lifecycle. Such a dataset

would enable the complete characterization of these weaker polar mesoscale systems, representing

another key motivation for this study.135
Based on the above analysis, this study aims to comprehensively integrate the advantages of

reanalysis datasets in characterizing the dynamical and thermodynamic structures of polar mesoscale

weather systems and remote sensing data in capturing cloud morphology to establish a long-term PMCs

(hereafter, “PMCs” when used alone include “PLs”) track dataset in the Nordic Seas encompassing the

extended winter seasons (November-April) between 2001 and 2024. This dataset will contain the tracks140
of the PMCs in reanalysis fields and remote sensing imagery, as well as multi-dimensional attributes

such as intensity, cloud morphology, and near-surface wind features. The objective is to provide a

long-term, multi-attribute catalog of PMCs, offering reliable data support for atmospheric and oceanic

research in the Nordic Seas.

2 Data145
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2.1 AVHRR data

The Advanced Very High-Resolution Radiometer (AVHRR) (Kalluri et al., 2021) is mounted on

NOAA series meteorological satellites and MetOp series satellites. Since its launch with the TIROS-N

satellite in 1979, the sensor has continuously performed multiple daily observations of the Earth’s

surface. It measures reflected and emitted radiation from the Earth and its atmosphere, providing150
detailed information about surface characteristics, clouds, and atmospheric properties. AVHRR is an

across-track scanning system with five spectral bands as shown in Table 1. It has a nadir spatial

resolution of approximately 1.1 kilometers and a ±55.4° scan angle on the satellite, covering a ground

swath width of 2,800 km. However, the effective resolution depends on the scan angle, with optimal

image quality provided within the ±15° range.155
In this study, infrared imagery used to observe cyclonic cloud features is derived from two Level

1B data products of the AVHRR (Kalluri et al., 2021): the GAC (Global Area Coverage) and LAC

(Local Area Coverage) forth-band data. The GAC product provides down-sampled imagery

(approximately 4 km resolution) after onboard processing, selecting every third scan line and averaging

every fifth adjacent sample along the scan line. This resampling aims to ensure continuous global160
coverage. In contrast, the LAC product records AVHRR data at its native resolution (1.1 km) without

resampling over specific orbital regions (primarily Europe and Africa), offering higher spatial

resolution. All AVHRR data utilized herein are obtained from NOAA’s Comprehensive Large

Array-data Stewardship System (https://www.aev.class.noaa.gov/ (accessed on 18 July 2024)).

Table 1 AVHRR radiometer channel information.165
Channel Wavelength(μm) Satellite Application

1 0.58-0.68 ALL satellites Surface albedo estimation

2 0.725-1.00 ALL satellites Water body delineation

3A 1.58-1.64 NOAA15-19/MetOP
A-C Snow and ice cover identification

3B 3.55-3.93 NOAA8-19/MetOP
A-C

low-level clouds identification and surface
temperature

4 10.3-11.30 ALL satellites Cloud-top temperature and surface temperature

5 11.50-12.5 NOAA8-19/MetOP
A-C Cloud-top temperature and surface temperature

2.2 ERA5 data

ERA5 is the fifth-generation global reanalysis dataset produced by the European Centre for

Medium-Range Weather Forecasts (ECMWF), designed to provide high-quality, consistent estimates of

atmospheric, land, and ocean climate variables from 1950 to the present. It replaces the previous

ERA-Interim dataset (Dee et al., 2011) and is currently one of the most widely used reanalysis products.170
ERA5 offers hourly data with a horizontal spectral truncation of T639, corresponding to a global grid

of approximately 31 km. The atmosphere is resolved vertically using 137 levels extending from the

surface to 80 km in height (Han and Ullrich, 2025).

ERA5 reanalysis dataset demonstrates robust performance in representing meteorological fields

Table 1Table 1Deleted[Fang RunZhuo [2]]:
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over the Nordic Seas, such as sea level pressure, air temperature, and humidity (Graham et al., 2019;175
Moreno-Ibáñez et al., 2023; Yao et al., 2021). Most notably, its effective characterization of cold air

outbreaks has been proven to correlate closely with the timing and location of PLs (Meyer et al., 2021).

However, beyond the previously mentioned underestimation of near-surface strong winds in Sect. 1,

Wang et al. (2019) found ERA5 data exhibits a warm bias over Arctic sea ice during winter and spring,

which makes it difficult to accurately simulate the frequently occurring strongly stable boundary layers180
prevalent in winter and early spring. Consequently, the intensity of PMCs near the sea ice edge might

be overestimated. Nevertheless, more accurate total precipitation and snowfall data in ERA5 (Wang et

al., 2019) significantly benefits the representation of enhanced latent heat release mechanisms

associated with PLs (Moreno-Ibáñez et al., 2021).

In this study, we utilize ERA5 reanalysis data spanning 2001-2024 during the extended winter185
period (November-April), on a spatial grid of 0.25° × 0.25°, covering the domain 50° N-85° N in

latitude and 40° W-80° E in longitude. This dataset is employed to track vortices and compute their

evolutionary characteristics such as intensity and size.

2.3 QuikSCAT/ASCAT data

This study further leverages QuikSCAT and ASCAT data to examine near-surface wind field190
properties within the cyclone core and its surrounding ambient conditions. QuikSCAT, a

NASA-developed Earth-observing satellite, employs a Ku-band SeaWinds microwave scatterometer to

provide global measurements of ocean surface wind vectors. Similarly, ASCAT features a C-band

microwave scatterometer aboard EUMETSAT-operated MetOp polar-orbiting meteorological satellites.

These advanced instruments are specifically engineered to deliver accurate (e.g., ASCAT-A195
zonal/meridional wind component error standard deviations of ~0.37/0.51 m s-1 and ASCAT-B of

~0.39/0.44 m s-1, Vogelzang and Stoffelen 2022), high-resolution, continuous wind vector

measurements under all weather conditions, offering comprehensive global coverage of near-surface

wind patterns. The full potential of these measurements extends to their spatial derivatives, specifically

vorticity and divergence, which are closely associated with deep moist convection and cyclonic activity200
(King et al., 2022).

We utilize Level 2 near-surface wind vector retrieval products from both instruments to analyze

wind field characteristics during cyclone development, with both datasets featuring a 12.5 km

resolution. For QuikSCAT, a slice-based compositing technique integrates high-resolution

measurements derived from Level 1B data into 12.5 km wind vector cells. In contrast, ASCAT employs205
a spatial box filter to minimize land contamination of microwave signals and enhance retrieval

accuracy in coastal regions. Both datasets are sourced from NASA’s Physical Oceanography DAAC

(podaac.jpl.nasa.gov/ (accessed on 28 November 2024)). For the two products, QuikSCAT is available

from 1999 to 2009, whereas ASCAT start providing since 2010. To ensure comprehensive temporal

coverage across the track dataset, the two products are utilized in their respective operational periods to210

ensure comprehensive temporal coverage.

https://podaac.jpl.nasa.gov/dataset/QSCAT_LEVEL_2B_OWV_COMP_12_KUSST_LCRES_4.1
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3 Methodology

To establish a more comprehensive cyclone track dataset in the Nordic Seas, we first utilize ERA5

reanalysis data which exploits the evolving global observing system to obtain all vortex tracks. In this

process, a lower vorticity maxima criterion is applied to extract vorticity perturbations within the215
reanalysis data. Subsequently, vortex tracks and their merging and splitting processes are identified

based on spatial and boundary changes of vortices across consecutive time steps. For each vortex with

available AVHRR data, we generate Vortex-Centered Infrared (VCI, mentioned in the following text)

images to identify corresponding cyclonic cloud features with a cyclone-detection deep-learning model.

Finally, near-surface wind fields derived from QuikSCAT/ASCAT are matched to characterize cyclones’220
core wind speed. The algorithm workflow is outlined in Fig. 2, with methodological details provided in

subsequent subsections.

Figure 2 The workflow diagram. In the diagram, all methodologies are enclosed in dashed circular outlines,
while derived datasets are framed in solid rectangular boxes. The title of each swimlane denotes the data225
utilized by all methods within that swimlane.

3.1 Objective algorithm for identifying and tracking vortices

Sea-level pressure (Laffineur et al., 2014; Michel et al., 2018) and low-level relative vorticity

(Day et al., 2018; Stoll et al., 2021; Watanabe et al., 2016; Zappa et al., 2014) are the two most

common tracer variables for PMCs in reanalysis datasets. Existing studies demonstrate that high values230

:Deleted[Fang RunZhuo]:
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of low-level relative vorticity, compared to sea-level lows which are susceptible to synoptic scale

pressure fields, are more closely associated with actual cyclone positions and exhibit smaller biases in

cyclone detection and intensity estimation (Stoll, 2022; Stoll et al., 2020; Zappa et al., 2014). Therefore,

we apply an objective mesoscale vortices-tracking algorithm to the 850 hPa relative vorticity fields in

ERA5 data to obtain hourly-resolution vortex tracks. This algorithm was first proposed by Shimizu and235
Uyeda (2012) to track convective cells prone to merging and splitting, and has since been developed

and improved for PMC tracking (Watanabe et al., 2016; Stoll et al., 2021). It specifically comprises two

components: hourly vortices identification and connection of continuous time step vortices.

3.1.1 Hourly vortices identification

When multiple vortices coexist within the same region of cyclonic shear flow, they often manifest240
as a contiguous positive vorticity zone in the vorticity field (hereafter referred to as an

unpartitioned-vortex in the algorithm). The major challenge in vortex identification within vorticity

fields is how to partition such regions (as exemplified in Fig. 3) into distinct isolated vortex regions.

Figure 3 (a) 850 hPa relative vorticity field obtained by ERA5 data. (b) AVHRR infrared imagery245
concurrent with the time step in (a). The shading represents 850 hPa relative vorticity smoothed over a
uniform 60 km radius and local vorticity maxima are marked by green star symbols, while regions enclosed
by solid black contours denote the unpartitioned-vortex zone.

First, a uniform 60 km smoothing radius is applied to hourly 850 hPa relative vorticity to

disconnect weak continuity zones and eliminate minor perturbation maxima, which may arise from250
assimilation increments (Belmonte Rivas and Stoffelen, 2019). Subsequently, in the smoothed vorticity

field, regions enclosed by closed contour lines exceeding a minimum threshold ����0 are identified as

unpartitioned vortices. Thereafter, each unpartitioned-vortex (e.g., the area within the thick black solid

line in Fig. 4) is subjected to isolated vortex extraction via the following procedure:

Step 1: Identify local vorticity maxima exceeding the threshold ����0, designated as vortex peaks with255

relative vorticity values ���� (e.g., in Fig. 4, three local vorticity maxima satisfy � > � > � ).

Contour lines (gray thin solid lines) are then drawn at 10-6 s-1 intervals. Subsequently, the outermost

contour line enclosing each individual or combined peak (s) is identified as the valley-line (black thin

solid lines, e.g., ζmin1 ≈ ζmin2 < ζmin3 ≈ ζmin4 in Fig. 4). These valley-lines enable the separation of

distinct vortex regions containing single or multiple peaks.260

:Deleted[Fang RunZhuo]:
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Step2: The isolation status of each vortex region is determined by assessing the relative disparity

between each valley-line and its internal maximum peak. As illustrated in Fig. 4: peak � represents the

strongest peak within its associated valley-line ζmin4, peak � corresponds to the maximum within two

valley-line-enclosed areas ζmin1 and ζmin3 , and peak � is the dominant peak within its respective

valley-line ζmin2 . The assessment proceeds systematically through vortex regions in descending order265

of their valley-line vorticity magnitude (ζmin): for the maximum peak with relative vorticity value ζmax

within the valley-line-enclosed vortex region, if the criterion (ζmax - ζmin) ζmax > � is satisfied (where

� denotes the isolation vortex threshold), the area centered on this peak and bounded by the valley-line

is classified as an isolated vortex region. If a vortex region contains only one such isolated vortex

region, the isolated vortex will be expanded to encompass the entire domain. (in Fig. 4, the vortex270

region enclosed by ζmin4 associated with peak � fails to meet the isolation criterion. Conversely,

peaks � and � forming two distinct isolated vortex regions bounded by their respective valley-lines

ζmin1 and ζmin2).

Step3: For all vortex points located within each unpartitioned-vortex but outside the isolated vortex

regions, each point is assigned to the nearest isolated vortex based on geographical distance. Finally, all275
isolated vortices in the each unpartitioned-vortex region are mutually designated as adjacent vortices

(e.g., vortices � and �), serving as inputs for subsequent analysis of merging or splitting events. The

area of each vortex is defined by its corresponding allocated isolated vortex region.

Figure 4 Vortex identification algorithm example. The black thick solid lines ζmin0 represent the280
unpartitioned-vortex border. The vorticity peaks � , � , and � are three detected local vorticity maxima
within this unpartitioned-vortex. The thin black solid lines from ζmin1 to ζmin4 in Step 1 denote vortex
valley-lines that divide single or multiple peak regions. After vortex isolation assessment in Step 2, the
retained valley lines ζmin1 and ζmin2 for peaks � and � form the initial boundaries of their respective
isolated vortices, while vortex � is classified as non-isolated, with its boundary shown as a dashed line. In285
Step 3, the pale pink regions outside the isolated vortices are further allocated to vortices � and �.

3.1.2 Connection of continuous time step vortices

Based on the results of hourly vortices identification, the introduction of steering wind is

employed to estimate the movement of vortices. The steering wind is computed by averaging wind

fields within a 450 km radius around the vortex center at 550 hPa, 700 hPa, and 850 hPa, which is290
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statistically proven to have minimal bias (Yan et al., 2023). Specifically, for a vortex at a given time

step, its ideal point after experiencing a time step under the steering wind influence is first calculated.

A search radius of 180 km is then applied around this estimated location to facilitate vortex tracking in

subsequent time steps. Subsequently, the (a) nearest neighbor principle or (b) maximum area overlap

principle (as shown in Fig. 5) is applied to connect vortices between two consecutive time steps, when295
vortices exist within the estimated region, the nearest vortex is connected; otherwise, the vortex with

the largest area overlap within the region is selected for connection. Finally, if the distance between the

centers of vortices to be connected in adjacent time steps exceeds 200 km and the vorticity of the

vortex center at next time step is less than 1.5 × 10-4 s-1, the connection is terminated to minimize

spurious connections.300

Figure 5 Schematics of continuous time step vortices connection

Additionally, If no spatially connectable vortices are identified in adjacent time steps, the vortex is

classified as being terminate. Under the assumption of constant centroid positions during splitting and

merging (Shimizu and Uyeda, 2012), if a vortex is contiguous to other vortices at its start (end) track305
point, it is considered to have been generated (terminated) via splitting (merging). As shown in Fig. 6,

in two simplified vortex motion scenarios, vortex � begins splitting and merging at the t3 time step.

Figure 6 The schematic diagram illustrates two vortices splitting and merging processes. The t1 to t4
represent four consecutive time steps. The red/ blue arrow indicates the direction corresponding to the310
splitting/ merging process of two vortices. The colored regions and solid lines represent isolated vortex
regions and their boundaries. Gray solid lines show contour lines of the 850 hPa relative vorticity field, and
black solid lines indicate the unpartitioned-vortex boundaries. The blue dashed line indicates that the vortex
� is not yet an isolated vortex at time t2.

3.1.3 Sensitivity experiments of vortex identification parameters315

To evaluate the sensitivity of vortex identification parameters, we conducted three sensitivity

experiments with the following configurations, each designed to test the impact of varying key

thresholds ����0 (����0) and � on vortex detection:

:Deleted[Fang RunZhuo]:
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1) Experiment a (lenient thresholds): ����0 = 1.2×10-4 s-¹, ����0 = 1.0×10-4 s-¹, � = 0.15;

2) Experiment b (intermediate thresholds): ����0 = 1.2×10-4 s-¹, ����0 = 1.0×10-4 s-¹, � =320
0.25;

3) Experiment c (strict thresholds, following Stoll et al. 2021): ����0= 1.5×10-4 s-¹, ����0 =

1.2×10-4 s-¹, � = 0.25

The influence of threshold variations on vortex detection characteristics was systematically

evaluated by analyzing differences in the number of identified vortex tracks, their lifespans, and their325
vorticity across the three experiments. As shown in Fig. 7, threshold adjustments predominantly

affected vortices exhibiting maximum vorticity (ζₜᵣₘₐₓ) less than 2×10⁻⁴ s⁻¹. The principal findings are:

First, focusing on the impact of ����0 (by comparing Experiment b, which uses a lenient ����0 ,

with Experiment c, which uses a strict ����0 ), we found that the lenient threshold in Experiment b

captured an additional 8,077 weak-vorticity tracks (with ζₜᵣₘₐₓ < 1.5×10⁻⁴ s⁻¹). This adjustment also330
extended the mean lifespan of detected vortices by approximately 3 hours. Under the 6-hour minimum

lifespan criterion which is used to filter transient disturbances, this extension nearly doubled the

detection rate of moderately weak vortices (1.5×10⁻⁴ s⁻¹ < ζₜᵣₘₐₓ < 2×10⁻⁴ s⁻¹), highlighting the

importance of ����0 in capturing less intense but persistent systems.

Second, examining the role of � (by comparing Experiment a, which uses a lenient � , with335

Experiment b, which uses an intermediate � ) revealed that the lenient � threshold in Experiment a

increased the count of weak-to-moderate vortices (1.5×10⁻⁴ s⁻¹ < ζₜᵣₘₐₓ < 3×10⁻⁴ s⁻¹). This increase was

attributed to enhanced sensitivity to vortex splitting events, and it came with a trade-off: the mean

lifespan of detected vortices was reduced by approximately 2 hours, likely due to more frequent

identification of short-lived sub-vortices during splitting.340
Given the objective of constructing a comprehensive dataset capturing the full spectrum of PMCs,

including weaker systems potentially omitted by stricter criteria, the parameter set from Experiment a

was ultimately selected. This configuration yielded the highest number of vortex tracks, thereby

ensuring the inclusion of marginally intense or transient PMCs and providing a more robust foundation

for subsequent analysis. Validation of these results against established polar low datasets is presented in345
Sect. 4.
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Figure 7 Sensitivity analysis of vortex identification parameters across different maximum track vorticity
groups: (a) number of identified tracks, (b) mean track lifetime.350

3.2 Matching SLPminimum

While vortices often fail to produce closed isobars in SLP fields due to interference from

background pressure gradients, their atmospheric influence can still be quantified through detectable

SLP minima. Notably, certain polar lows originate within upper-level cold-core systems (known as

“cold low types”) frequently generate deep convection and produce substantial near-surface impacts355
(Rasmussen, 1981; Businger and Reed, 1989). To systematically capture SLP characteristics, the SLP

field is first smoothed using Gaussian filtering with a radius of 50 km to suppress noise. Subsequently,

the SLP minimum point located within a 150 km radius of the nearest vortex centroid is designated as

the SLP center for that vortex.

3.3 Detection and extraction of cyclonic cloud characteristics360

Building upon the lenient vorticity identification criteria previously constructed, a substantial

population of vortex tracks have been identified using reanalysis data, including not only cyclonic

systems but also low-pressure troughs, and small-scale atmospheric disturbances. To assess whether

these vortices represent PMCs, AVHRR infrared imagery is used for comparative validation. This

process begins with temporal matching of satellite overpasses to vortex track timesteps, followed by365
generation of Vortex-Centered Infrared (VCI) images through linear interpolation of infrared data onto

a geographically-referenced 801×801 grid coordinate with 2 km resolution, centered on each vortex

center (Fig. 8c and Fig. 8d). The coordinate transformation employs the formulas:

��� �, � = �
2��

+ ������� , �, � ∈ −800, − 798, …, 798,800 (1)
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��� �, � = �
2��∙��� �������

+ �������, �, � ∈ −800, − 798, …, 798,800 (2)370

The coordinate transformation utilizes vortlon and vortlat as the longitude and latitude of the original

coordinate grid, corresponding to either the vortex center at the given timestep. This approach

implements a conformal projection that provides a first-order approximation of geographic coordinates

within the vicinity of the origin point.

The VCI images enable comprehensive analysis of cloud features within a 1600 km×1600 km375
domain centered on each tracked vortex position, providing an optimal spatial scale that captures the

majority of PMCs while simultaneously accommodating larger-scale extratropical systems advected

into Arctic regions. By transitioning from broad-scale satellite observations to these precisely localized

domains, this imagery method significantly enhances the spatial correspondence between

vorticity-derived tracks and cloud features, with particular sensitivity improvement for smaller-scale380
and shallower cyclones. Meanwhile, the georeferenced framework of VCI images provides two critical

analytical capabilities: first, it enables direct quantification of cyclone dimensions through the

standardized geographic grid; second, it allows precise measurement of positional discrepancies

between observed cloud systems and modeled vortices through center-to-center displacement vectors.

Furthermore, VCI images are also generated for two-time steps before the start and after the end of385
each vortex track. This allows us to capture the initial formation and dissipation stages of PMCs that

are not adequately represented in vorticity fields, enabling users to better evaluate the representation of

PMCs.
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Figure 8 Two examples of VCI image generation. For the two vortices shown in (a), the AVHRR IR image390
(b) reveals a polar low located to the east of vortex 1 and vortex 2. This polar low exists simultaneously in
the VCI images centered on vortex 1 and vortex 2 (c, d). The shading in (a) represents 850 hPa relative
vorticity smoothed over a uniform 60 km radius, with gray contour lines indicating sea-level pressure at 10
hPa intervals. The centers of vortex 1, vortex 2, and the polar low are respectively marked by green, red,
and yellow stars.395

Fig. 9 illustrates typical cyclonic cloud morphologies, the most common comma-shaped cloud

structure is shown in Fig. 9a, where the head is typically composed of a tall and smooth cirrus shield

surrounding a dark, nearly cloud-free center. Ripple-like wave patterns sometimes appear at the edge of

the head, indicating significant wind shear within the cyclone. Fig. 9d presents the typical spiral cloud

morphology, characterized by one or more convective cloud spiral bands encircling the circulation400
center. These spiral bands are occasionally predominantly composed of cellular clouds. Intermediate

baroclinic forms illustrated in Fig. 9b and Fig. 9c represent transitional stages between comma and

spiral types, sharing structural similarities with occluded extratropical cyclones but at reduced

horizontal scales, and are consequently classified within the spiral category. The centers of comma

cloud and spiral cloud configurations in our research were visually determined following Forbes and405
Lottes (1985), based on the characteristic curvature and convergence of cloud bands surrounding the

circulation core as identified in satellite imagery. Additionally, the analytical framework of oriented

bounding box is also introduced that provide quantitative measures of cyclone scale, with the long axis

aligned parallel to the tail cloud band and the short axis tangent to the cloud head. While conventional
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approaches estimate cyclone size using the mean axis length (Smirnova et al., 2015), this dataset410
provides separate measurements of both axes to account for potential overestimation caused by the

connection of tail cloud band of cyclones and long cloud bands of mesoscale-front, thereby enabling

researchers to make more precise assessments of true cloud coverage dimensions.

Figure 9 Different cyclonic cloud morphologies in four VCI images: (a) comma-shaped cloud; (b), (c) and
(d) spiral clouds. The yellow/blue bounding boxes and stars respectively denote the oriented bounding boxes
and center positions of comma-shaped/spiral cyclones.

To extract such cyclonic cloud features corresponding to vortices from the vast collection of VCI

images, the YOLO (You Only Look Once) object detection algorithm is employed to automate this415
process. Object detection is a computer vision task that uses neural networks to locate and classify

objects within images. The YOLO series of algorithms (Redmon et al., 2016), characterized by high

efficiency and accuracy, has become prominent in real-time object detection tasks across various fields.

In this track dataset construction, the YOLOv8 framework (Jocher et al., 2023) is adopted to

automatically extract cyclonic cloud morphology features, including cloud type classification (spiral420
cloud or comma-shaped cloud), center coordinates, and an oriented bounding box enclosing the

cyclone. The YOLOv8-obb-pose model is configured using the YOLOv8 model framework, which

combines oriented object detection (obb) and keypoint detection (pose). Specifically, a branch for

keypoint prediction is added to the decoupled head module of the YOLOv8-obb model. This enables

the new YOLOv8-obb-pose model to simultaneously perform automatic detection of cyclone type,425
center position, and oriented bounding box. The network architecture of the YOLOv8-obb-pose model

comprises three main components: Backbone for multi-dimensional feature extraction, Neck for

enabling multiscale feature fusion, and Head for extracting cyclone type, center coordinates, and
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oriented bounding box parameters (e.g., length, orientation). As shown in Fig. 10, the

YOLOv8-obb-pose model successfully detects two spiral clouds (Fig. 10a) and two comma-shaped430
clouds (Fig. 10b) in VCI images, with oriented bounding boxes,cyclone type and center points marked.

During the model training process, we first construct a manually annotated dataset to train the

YOLOv8-obb-pose model. To ensure prediction stability, particular emphasis is placed on maintaining

consistent oriented bounding box annotations and center point positions across similar evolutionary

phases of cyclonic cloud morphologies. To optimize the trade-off between detection efficiency and435
accuracy, we implement an iterative training protocol involving successive cycles of prediction, manual

correction, and retraining using VCI images. As detailed in Table S1, the model achieves competitive

performance metrics on the validation set following this optimization process. The final

YOLOv8-obb-pose implementation demonstrates robust capabilities in both cyclone detection and

center localization tasks, satisfying requirements for practical applications.440
For each detected cyclone, the center coordinates and the four vertices of the oriented bounding

box are converted back to geodetic coordinates using the inverse of Eq. (1) and (2). The lengths of the

four sides of the bounding box are calculated using the haversine formula, with the cyclone’s length

(width) defined as the mean size of the two long (short) sides of the rectangle. The geographic

coordinates of the cyclone center are then used for subsequent matching with vortex centers.445

Figure 10 Examples of cyclonic cloud detection using the YOLOv8-obb-pose model: (a) two spiral clouds
detected in a VCI image and (b) two comma-shaped clouds detected in a VCI image. The oriented bounding
boxes for spiral clouds are shown in purple, and for comma-shaped clouds in blue. The centers of the
cyclones are marked with green points. The cyclone type and detection confidence are displayed above each450
bounding box.

3.4 Validation of the vortex tracks

Each series of VCI images based on vortex track provides spatiotemporal neighboring local

infrared cloud imagery that follows the vortex’s movement. After extracting cyclonic features from

VCI images, whether a vortex track corresponds to a cyclone evolution process is determined by455
proximity matching between the cyclone center detected in each VCI image and the vortex center. The
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following steps ensure that each VCI image only retains a cyclone uniquely matched to a vortex track

point:

Ⅰ Uniqueness: As illustrated in Fig. 8, spatially proximate vortices in reanalysis data can result in

multiple detections of the same cyclone across corresponding VCI images. To remove duplicate records,460
we implement a selection criterion: for any cluster of detections from the same AVHRR infrared scan

(with cyclone centers <50 km apart), only the detection whose center is nearest to the VCI image center

is retained.

Ⅱ Proximity: Each VCI image retains only the cyclone whose center is nearest to the VCI image center

and within 250 km of it. Further, we extend the point-to-point matching to the track-to-track. When465
points of a vortex track are continuously matched with a series of cyclones in VCI images over four

hour or longer time-steps with an average matching distance less than 150 km, the vortex track is

preliminarily identified as a PMC track associated with the cyclone evolution process (as shown in Fig.

11)

470
Figure 11 (a) A matched vortex track and cyclone track and (b) partial corresponding VCI images. For (a),
blue solid line represents the vortex track at hourly resolution, while grey solid line with green points
depicts the cyclone track points formed in VCI images that correspond one-to-one with vortex points. The
color of the track points indicates the magnitude of relative vorticity at each vortex point. For (b), the
cyclone develops sequentially from left to right and top to bottom, with scan intervals between images475
approximately six hours apart.

3.5 Matching cyclone-related max wind and environmental near near-surface wind

When cyclonic cloud features are identified in VCI imagery, near-surface wind speeds over the

ocean are matched to assess cyclone intensity. Based on established criteria (Rasmussen and Turner,

2003), PLs are generally associated with high near-surface wind speeds exceeding 15 m s⁻¹ (gale force),480
concentrated in narrow cloud bands connected to the eye wall or intense convective regions

surrounding the center. In contrast, weaker PMCs often do not penetrate the temperature inversion

above the marine mixed layer, resulting in lower near-surface wind speeds (Noer et al., 2011). In this

study, near-surface wind speed matching is performed using ASCAT/QuikSCAT data selected when the

time difference from the VCI image is within 30 minutes. This tolerance is considered acceptable given485
that most PLs move at speeds below 13 m s⁻¹ (Rojo et al., 2015; Smirnova et al., 2015), making the

associated representative error negligible. To estimate the maximum wind speed associated with the
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cyclone core, a cloud-scale-based search radius is applied. The search radius is defined as the distance

from the cyclone center to the nearest short edge of its oriented bounding box. This confines the wind

search to the high-wind region near the cyclone’s core, with the maximum value within this area taken490
as the system’s maximum wind speed.

It is important to recognize that scatterometer wind speeds may not always reflect

cyclone-induced circulation and could include contributions from large-scale advective wind. Some

PMCs occurring during cold air outbreaks may exhibit wind speed maxima surpassing 15 m s⁻¹ due to

background environmental wind advection. To prevent misclassifying such systems as PLs, careful495
subjective analysis has traditionally been applied (Wilhelmsen, 1985). This highlights that what is

retrieved from scatterometer wind measurements may not always reflect cyclone-induced circulation,

but could also include contributions from large-scale advective winds. By using the spatial derivatives

from scatterometer wind vector fields, vortical structures or divergent flows near the surface associated

with PLs/PMCs may become easily visible (King et al., 2022). For instance, Fig. 12a illustrates a500
system with a well-defined cyclonic circulation where the high wind speeds at its head are clearly

associated with the cyclone itself. The fine-scale and complex structure of the corresponding vorticity

field exhibits a strong and organized vorticity signature coincident with the cloud vortex, confirming

the presence of an intense mesoscale vortex and a trailing shear line. In contrast, Fig. 12b shows a case

where the wind field is largely straight and convergent in the ambient flow, accompanied by only a505
weak vorticity signal (1×10⁻⁴ s⁻¹) localized near the cloud eye and lacking any broader organized

cyclonic structure, suggesting that the surface circulation appears to be either not yet formed or

obscured. Due to technical constraints, additional parameters such as vorticity and divergence are not

provided alongside wind speed. Nevertheless, they retain substantial application potential, as evidenced

by the vorticity structures revealed in Fig. 12, which demonstrate the value of scatterometer spatial510
derivatives in elucidating the complex dynamical features of mesoscale systems.

Figure 12 VCI images overlaid with near-surface wind speeds for cyclones exhibiting strong (a) and weak (b)
cyclonic near-surface wind patterns. Color shading represents QuickSCAT-measured 10m near-surface
wind speeds, with green arrows indicating corresponding wind vectors. Yellow borders denote the cyclones’515

It is noteworthy thatDeleted[Fang RunZhuo]:

sDeleted[Fang RunZhuo]:

Deleted[Fang RunZhuo]:

scatterometer-derived wind speeds

may include significant contributions from environmental

advection and do not solely represent cyclonically organized

winds.

Deleted[Fang RunZhuo]:

,Deleted[Fang RunZhuo]:

lacking organized cyclonic

circulation despite the presence of a cloud vort

Deleted[Fang RunZhuo]:

exDeleted[Fang RunZhuo]:

Thus, while only the maximum

wind speed from the search radius is provided, users should

remain aware that this value may reflect both

cyclone-generated winds and advective background winds.

Deleted[Fang RunZhuo]:

:Deleted[Fang RunZhuo]:



19

bounding oriented box. Blue circular border represents the search range. Yellow and red stars indicate the
cyclone center and maximum wind speed point locations. The vorticity calculated from the wind fields is
shown as white-to-red contours, with units of 10-4 s⁻¹.

4 Results and discussion

Our analysis began by applying a vortex tracking algorithm to reanalysis data, which identified520
59,975 vortex tracks. Validation against VCI imagery confirmed 1,110 cyclone-related vortex tracks,

encompassing 16,001 distinct cyclone cloud features. Subsequent analysis of surface wind speed

characteristics revealed 4,472 instances with measurable wind patterns, among which 794 tracks

exhibited maximum wind speeds exceeding the 15 m s⁻¹ threshold. These validated 1,110 vortex tracks,

along with their corresponding remote-sensing images, form the IMPMCT track dataset. The accuracy525
of IMPMCT was rigorously evaluated through comprehensive comparisons with existing track datasets

derived from manual identification and reanalysis products.

First, to validate the accuracy of the vortex track datasets obtained from the vortices tracking

algorithm, they are compared with the manually identified PL lists published by Noer et al. (2011),

Rojo et al. (2019), and the objectively derived PL track datasets from reanalysis data by Stoll (2022).530
All reference datasets are spatially and temporally co-located with our derived tracks, retaining only

those persisting for ≥3 hours. We applied the following matching criteria: a vortex track is considered

matched with a PL track if more than 50 % of temporally coincident track points (within ±1 hour) fall

within a 150 km radius (applying an 80 % threshold for Stoll’s dataset). To avoid spurious matches of

short-lived spurious tracks, only vortex tracks with lifespans exceeding 60% of the corresponding535
reference PL track’s duration were included. A single vortex track was permitted to match multiple PL

tracks from reference datasets, provided that these PL tracks did not overlap temporally and each was

uniquely paired with its nearest vortex track. As presented in Table 2, the validation results

demonstrate strong agreement with Stoll’s dataset, confirming the robustness of our vortex tracking

algorithm. Moreover we achieve higher matching rates with manual PL lists by using lower vortex540
identification thresholds, which further underscores the improved capability of ERA5 reanalysis data in

representing PL characteristics. Additional validation using tracks from the sensitivity experiment (Sect.

3.1) revealed a critical insight: vortex tracks derived under lenient thresholds consistently produced

higher matching rates when compared against established PL datasets (Table S2). This suggests that

some PLs exhibit weaker vorticity signals in the lower atmosphere, highlighting intrinsic intensity545
diversity that stricter thresholds may fail to capture.

To further investigate the mismatches between reanalysis-derived tracks and existing PL datasets,

we conducted a nearest-point matching analysis (Table 2). A match was considered successful when a

PL center from any reference dataset had at least one temporally coincident vortex center within a 120

km radius (60 km for the Stoll dataset). Track-level mismatches were found to originate primarily from550
these point-level discrepancies. The variation across datasets can be largely attributed to

methodological differences: while the Noer list derives from numerically modeled and

AVHRR-assimilated hourly positions (typical of operational forecasting systems), the Rojo list relies on

direct AVHRR identification at irregular temporal intervals, leading to greater deviation from ERA5
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representations. Furthermore, the Rojo compilation includes numerous secondary PL centers, which are555
features inherently less resolved by reanalysis data (Stoll, 2022), whereas Noer focuses primarily on

dominant PLs of operational significance. This distinction is clearly reflected in our results: major PL

centers (n = 2,527) showed an 80% matching rate, compared to only 54% for secondary centers (n =

1,115), thereby lowering the overall match rate for the Rojo dataset.

For the Stoll dataset, we also computed a vortex matching rate (Table 2), defined as the proportion560
of Stoll centers falling within the spatial extent of the nearest co-temporal vortex. This measure helps

account for positional discrepancies caused by misalignment of vorticity peaks, which appear to stem

from differences in smoothing techniques (see Fig. S1). Our algorithm applies stronger uniform

smoothing compared to Stoll’s approach, explaining why more lenient identification thresholds

improve track matching with Stoll’s dataset. This finding offers valuable insight for algorithm565
application : although the algorithm is not highly sensitive to the specific input vorticity fields,

provided their grid spacing is sufficient to capture mesoscale vortices, the choice of smoothing method

significantly influences identification outcomes, alongside the threshold parameters examined in the

sensitivity experiments (Sect. 3.1.1). The smoothing strategy should be tailored to the assimilation

noise and effective resolution of the input vorticity field. For example, Gaussian smoothing may be570
better suited for model data with lower noise levels, as it better preserves the spatial coherence of

vortex cores.

Table 2 the matching rate of the reanalysis-based track dataset for IMPMCT generation compared to other
PL track datasets.

PL tracks Time period
Tracks
in Nordic
Sea (>3hr)

Track
matched

fraction(%)
Points

Nearest points
matched

fraction(%)

Vortex
matched
fraction

Noer 2002-2011 114 87.72 1670 85 -

Rojo 2000-2019 370 69.73 3642 71 -

Stoll 2000-2020 3179 93.68 75650 93 99

575
After excluding vortex tracks with over 60% land coverage (resulting in an approximately 20%

reduction), 47,167 tracks remained eligible for AVHRR matching. The matching procedure required: (1)

complete spatial coverage within a 200-km radius for individual vortex points, and (2) at least two

temporally matched points within ±3 hours of peak vorticity, along with a minimum of six matched

points over the track’s lifetime. Figure 13 presents the matching statistics for the winter months580
(November to April): on average, 43% of points and 61% of tracks were successfully matched.

However, only about 3% of the matched tracks were ultimately incorporated into the IMPMCT dataset.

This low inclusion rate can be attributed to several factors: frequent cloud obstruction, limitations in

cloud–ice contrast, temporal resolution constraints, and inherent detection methodology (e.g., the

higher inclusion rate in 2001 reflects meticulous manual identification, whereas the lower rate in 2023585
resulted from incidental post-publication discoveries). Importantly, the proportion of cyclones in
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IMPMCT likely underestimates the true prevalence of polar mesoscale cyclones (PMCs), as many

systems with low cloud cover lack discernible vortex structures. In cases where AVHRR data are

unavailable, an alternative approach using hourly wind field data calibrated with scatterometer

measurements may provide a more robust method for validating ERA5-derived vortex tracks (Furevik590
et al., 2015).

Figure 13 Annual winter (November-April) time series: (a) ERA5-derived vortex points (green), available
AVHRR files (red), and AVHRR-matched vortex points (blue), (b) ratio of AVHRR-matched vortex tracks
to ERA5-derived tracks (yellow), and ratio of IMPMCT tracks to AVHRR-match tracks (purple). Note:595
Bars represent distinct categories (not stacked)

We further assess the reliability of vortex properties in IMPMCT by comparing three key

parameters (850 hPa relative vorticity, SLP minima, and vortex equivalent diameter), with the

corresponding values from Stoll’s dataset, in addition to evaluating the spatial distance between vortex

centers. From this comparison, 638 matched tracks were identified between IMPMCT and Stoll’s600
dataset. As shown in Fig. 14a, among the matched tracks, 90 % of vortex points remain within 50 km

of each other at the same time step. The mean absolute differences of the three vortex properties at

these proximate track points remain small: 1.11 × 10-5 s-1 for relative vorticity, 0.43 hPa for sea-level

pressure, and 22.79 km for vortex equivalent diameter. Furthermore, these property discrepancies

exhibit a positive correlation with separation distance, suggesting that differences between IMPMCT605
and Stoll’s tracks primarily arise from their respective identification thresholds.

To demonstrate that these discrepancies reflect divergent tracking methodologies rather than

detection errors, we calculated the standard deviation of each vortex property over three consecutive



22

time steps for every track and then averaged these values across each track. Low amplitude in these

local variations implies consistent feature identification by a given method. Figures 14b–d present the610
track-averaged local standard deviations of the three properties for both datasets. Importantly, the

magnitudes of these short-term variabilities are generally comparable between IMPMCT and Stoll’s

tracks. This consistency indicates that the increasing property differences at larger separations stem

from intrinsic peak misalignments due to differing detection logics, rather than fundamental errors in

either tracking approach. In fact, the IMPMCT dataset often exhibits slightly smoother variability,615
which is consistent with its specific algorithmic configuration.

Figure 14 Distribution of differences in three vortex properties and their track-averaged local standard
deviations at co-located hourly track points between matched IMPMCT and Stoll tracks. The boxplot in (a)
shows property differences as a function of spatial deviation distance between matched track points. The620
red numbers above the x-axis indicate the count of track point pairs in each distance bin. Each boxplot’s
y-axis scale corresponds to the color of its respective property (green: relative vorticity, blue: sea-level
pressure, red: vortex diameter). Frequency histograms and fitted curves of track-averaged local standard
deviations for the three properties are displayed in (b) relative vorticity, (c) sea-level pressure, and (d)
vortex diameter.625

IMPMCT uses hourly-resolution vortex tracks from reanalysis data as a basis for cyclone tracks.

The correspondence between vortex and cyclone tracks is established exclusively via continuous

spatiotemporal matching of their respective centers. To ensure the accuracy of this correspondence, we

perform subjective validation to confirm that each cyclone track does not incorporate irrelevant

cyclonic processes. Notably, while the average matching distance between vortex and cyclone tracks is630
constrained within 150 km, approximately 95 % of track pairs have average matching distances below

100 km (as shown in Fig. 15), demonstrating strong consistency between cyclone and vortex tracks.
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Figure 15 Probability distribution of distances between matched cyclone-vortex points (green) and
track-average distances (blue).635

The cyclone properties in IMPMCT include cyclone scales and maximum core near-surface wind

speeds. These properties are validated through comparison with the Rojo list. For scale validation, we

compare the diameter from the Rojo list with the approximate cyclone scale in the IMPMCT dataset

(calculated as the average of cyclone width and length). We matched cyclone tracks between IMPMCT

and Rojo list based on the following criteria: the nearest cyclone centers are matched if their distance is640
less than 120 km and their overpass times fell within 60 minutes of each other. A cyclone track pair was

deemed matched if more than 50% of the points in a Rojo track were matched. Using this approach,

1424 cyclone centers from the Rojo list (corresponding to 139 distinct tracks) were matched to tracks in

IMPMCT. It is worth noting that although the maximum permitted matching distance was 120 km, the

90th percentile of all actual matching distances was only 56 km. This indicates that cyclone center645
identification remained consistent even when exact temporal alignment was not achieved.

Comparisons of cyclone cloud scale and maximum wind speeds between the matched time

periods are shown in Fig. 16. When cyclone center identification errors are small, the discrepancies in

diameter relative to the Rojo list arise not only from methodological differences in measurement, but

also significantly from subjective interpretation. The frequent presence of frontal cloud bands650
associated with cyclones makes consistent measurement of the long axis highly subjective. Moreover,

when a cyclone is adjacent to other cloud systems, its boundaries often become ambiguous, leading to

variability in extent estimation. Therefore, a standard deviation of up to 120 km in diameter is still

considered acceptable. Furthermore, as the dataset includes corresponding remote sensing images,

users can readily examine the visual context of each cyclone and adjust the properties according to their655
specific research needs.
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Figure 16 Frequency distribution of bias in (a) Track-max near-surface wind speed and (b) diameter
between matched cyclones in the Rojo and IMPMCT datasets (Rojo minus IMPMCT). The cyclone
diameter in IMPMCT is calculated as the average of the width and length of the bounding box enclosing the660
cyclone.

To statistically evaluate the agreement between IMPMCT and the reference datasets (Stoll, 2022,

and Rojo et al.), we applied Bland–Altman analysis (Bland and Altman, 1999). This method quantifies

the agreement between two measurement techniques by estimating the mean difference (bias) and the

95% limits of agreement (LoA), defined as the mean difference ± 1.96 standard deviations of the665
differences. A summary of the Bland–Altman results for key vortex and cyclone properties is provided

in Table 3, while the corresponding plots of differences versus averages are included in Supplementary

Fig. S2. As indicated in Table 3, vortex properties derived from ERA5 reanalysis show a small

systematic bias relative to the other datasets, which is likely due to differences in computational

algorithms or processing workflows. Importantly, the Bland–Altman results demonstrate strong670
agreement between the datasets: approximately 94% of the differences for each property fall within the

respective 95% limits of agreement (final column of Table 3), supporting the overall consistency and

reliability of IMPMCT

Table 3 Property difference between IMPMCT and other PLs list

Property Matched
number

Mean
Difference

Standard Deviation of
Differences

% Points
within LoA

850 hPa relative vorticity
(10-5 s-1) 20294 0.6 2.1 95.1

SLP (hPa) 13929 0.3 0.8 95.7
vortex equivalent diameter

(km) 20294 -6.8 39.2 93.7

track-max near-surface wind
speed (m s-1) 51 -1.07 5.0 94.1

cyclone cloud diameter
(km) 1145 8.8 120 94.5

For most newly identified mesoscale cyclones not documented in existing PL databases, direct675
validation can be performed by applying objectively derived identification thresholds from previous

studies to independently verify three essential characteristics: polar origin, mesoscale size, and cyclonic

intensity:

1) Polar-front criterion: As PMCs are defined as mesoscale cyclones forming north of the polar

front (Rasmussen and Turner, 2003), we employ two indicators to distinguish polar air masses680
from extratropical air masses: tropopause potential temperature (θₜᵣₒₚ) and the maximum
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poleward value of 200 hPa wind speed (U200,p). For each cyclone, we compute the

track-averaged θₜᵣₒₚ averaged within a 250 km radius of the cyclone center and the

track-averaged U200,p within a longitudinal band of ±1.0° great-circle distance. Following Stoll

(2022), θₜᵣₒₚ < 300.8 K is used to identify polar air mass origin. This threshold effectively685
distinguishes PLs from extratropical cyclones, retaining 76% of systems across subjective

archives while capturing 90% of known PLs. Han and Ullrich (2025) employed U200,p < 25

m s⁻¹ to position PLs north of the polar jet, achieving an approximately 80% hit rate for PL

classification with a miss rate of only 11.9%.

2) Mesoscale-size criterion: Vortex radius, derived from the vorticity field, is used to exclude690
extratropical cyclones penetrating polar regions and large-scale frontal structures. In Stoll

(2022), a maximum vortex diameter of 430 km (representing the 90th percentile across all PL

lists) was applied, excluding approximately 24% of non-PL vortices. As we employ the same

vorticity boundary threshold (1.0×10⁻⁴ s⁻¹) for vortex definition, this criterion remains valid

for our dataset.695

3) Cyclonic intensity criterion: A robust measure of mesoscale cyclone intensity is the pressure

anomaly (pdef), defined as the difference between the SLP minima and the mean SLP within a

110 km radius (pdef = ���� ��� 110�� − ������ ). Stoll (2018) demonstrated that high pdef values

(with 90% of PLs exceeding 0.4 hPa) highlight the anomalous intensity of the local

low-pressure centre relative to its environment, signifying a steep pressure gradient near the700
core, indicative of small, deep low-pressure systems typical of PLs. We calculate the

maximum pdef based on the SLP centre for each vortex track. For tracks where no SLP centre

is identified, pdef is set to 0.

All discriminatory features for IMPMCT tracks are computed from ERA5 data. The quantiles of

these features and the proportion of tracks meeting each criterion are presented in Table 4. Notably,705
88.4% of tracks satisfy the polar-front criterion, 90% meet the mesoscale criterion, and 84% fulfill the

cyclonic intensity criterion. It should be noted that these thresholds were originally developed

specifically for the PLs. For the broader spectrum of PMCs, the thresholds for θₜᵣoₚ and pdef are

inherently stricter, as they reflect the conditions of cold-air outbreaks and the stronger destructive

potential typically associated with PLs. Nevertheless, the vast majority of tracks in the IMPMCT710
dataset satisfy these criteria, supporting their robustness as mesoscale cyclone tracks.

Table 4 Quantiles of discriminatory features and proportion of IMPMCT tracks meeting validation criteria.

criterion Track feature percentage Proportion
meeting the criterion (%)50% 75% 90%

Polar front
θₜᵣₒₚ < 301 K

or
U200,p< 25 m s-1

θₜᵣₒₚ (K) 298.9 304.1 310.0

88.4U200,p (m s-1) 18.4 23.7 29.7

Mesoscale
r< 215 km r (km) 137.1 176.9 213.5 90.6

Cyclonic pdef (hPa) 1.4 2.3 3.2 84.1
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pdef> 0.4 hPa

The comprehensiveness of the dataset is constrained by the cyclone representation capabilities of

ERA5 reanalysis and the availability of remote sensing data. Since the number of in-orbit satellites715
carrying the AVHRR sensor peaked around 2013, the IMPMCT track dataset includes the highest

number of tracks during this period. Additionally, due to the use of more lenient identification

thresholds, IMPMCT tracks typically include longer life compared to the Stoll dataset. The extended

portions of these tracks may include: weak vorticity periods during the early/late stages of cyclone

development or the vortices pass over land/sea-ice, or redevelopment processes of vortices after720
interacting with blocked extropical cyclones or frontal zones. If users require only the core

development phases of tracks, they should select segments based on vortex properties or cyclone

images that represent the system’s core development. The dataset also includes some tracks with high

vorticity at their start/end points, which may arise from splitting/merging events or jumps of the vortex

center position during tracking. It is noteworthy that while this study demonstrates ERA5 reanalysis725
data’s enhanced capability in capturing PMCs and PLs, it does not reflect ERA5’s predictive skill for

such systems. This predictive capability should be evaluated by testing ERA5 background states in

characterizing PLs/PMCs, thereby isolating the influence of real-time assimilated data—particularly

scatterometer measurements (Furevik et al., 2015).

The dataset does not explicitly distinguish between PMCs and PLs due to the time-sparse wind730
speed data, particularly when the cyclone’s wind speed at a given time step falls below the 15 m s-1

threshold. In such cases, it is difficult to determine whether the cyclone is a PMC or merely in a weaker

phase of a PL. In such cases, a more reliable validation method may be provided by the hourly

bias-corrected sea surface wind product from the E.U. Copernicus Marine Service Information

(CMEMS, https://doi.org/10.48670/moi-00185). Such product systematically corrects ECMWF ERA5735
model fields using scatterometer observations to reduce persistent biases and includes uncertainty

estimates. Furthermore, the L3 scatterometer products available through CMEMS, which contain the

spatial derivatives of the wind vector fields (vorticity and divergence), offer a more direct

characterization of the dynamical core of mesoscale systems. These observed fields hold significant

potential for refining objective identification criteria, moving beyond a reliance on wind speed740

thresholds alone. Due to the low resolution of AVHRR infrared images at scan edges, a significant

portion of VCI images appear blurred. However, these images are retained as long as cyclonic features

remain recognizable, prioritizing the preservation of high temporal resolution for cyclone track records.

Additionally, while the YOLOv8-obb-pose model facilitates detection and feature extraction of

cyclonic cloud characteristics in VCI images, the process still involves subjective steps to ensure745
continuity in cyclone features (e.g., size, type, and position). This implies that objective methods for

constructing multi-parameter PMC track datasets remain underdeveloped. Consequently,

cyclone-evolution-aware deep-learning tracking algorithms could further enhance the efficiency of

track construction.

5 Code and data availability750

https://doi.org/10.48670/moi-00185


27

The IMPMCT dataset described in this paper is freely accessible on Zenodo via the following link:

https://doi.org/10.5281/zenodo.17142448 (Fang et al., 2025), accompanied by comprehensive

documentation. All code is developed in Python and stored at:

https://github.com/thebluewind/IMPMCT.

6 Conclusion755

The Integrated Multi-source Polar Mesoscale Cyclone Track (IMPMCT) dataset represents a

major advancement in the study of polar mesoscale cyclonic systems. By integrating ERA5 reanalysis,

AVHRR infrared imagery, and QuikSCAT/ASCAT wind data, this dataset provides a comprehensive

record of 1110 vortex tracks, 16,001 cyclonic cloud features, and 4472 wind speed observations across

the Nordic Seas (2001-2024). This integrated approach overcomes key limitations of previous760
single-source datasets by enhancing detection sensitivity for weaker polar mesoscale cyclones (PMCs),

capturing complete lifecycle evolution from genesis to dissipation, and providing simultaneous cloud

morphology and wind fields observations. Rigorous validation against established datasets (Stoll, 2022

and Rojo et al. , 2019) confirms IMPMCT’s accuracy, demonstrating 90 % spatial consistency with

track points cyclone centers alignments within 50 km (60 km for cyclone centers) and minimal765
parameter discrepancies including a 1.11 × 10-5 s-1 mean absolute difference in relative vorticity and

0.43 hPa mean absolute difference in sea-level pressure.

The IMPMCT dataset serves as a critical benchmark for evaluating high-latitude numerical

weather prediction model performance, while simultaneously functioning as a unique case library for

comparative studies of PLs and PMCs concerning their formation mechanisms, intensity thresholds,770
and sea-ice interaction dynamics. Furthermore, it constitutes an essential resource for enhancing polar

maritime hazard forecasting. The repository of cyclone cloud morphology facilitates automated

identification of model-undetected systems. This is enabled by advanced deep learning frameworks,

enabling systematic evaluation of model representation fidelity for PLs/PMCs.
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From a climatological perspective,
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thereby enabling robust analysis of climate-scale trends and
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