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Abstract. Understanding and mastering the spatiotemporal characteristics of farmland is essential for accurate farmland 

segmentation. The traditional deep learning paradigm that solely relies on labeled data has limitations in representing the 

spatial relationships between farmland elements and the surrounding environment. It struggles to effectively model the 

dynamic temporal evolution and spatial heterogeneity of farmland. Language, as a structured knowledge carrier, can explicitly 

express the spatiotemporal characteristics of farmland, such as its shape, distribution, and surrounding environmental 10 

information. Therefore, a language-driven learning paradigm can effectively alleviate the challenges posed by the 

spatiotemporal heterogeneity of farmland. However, in the field of remote sensing imagery of farmland, there is currently no 

comprehensive benchmark dataset to support this research direction. To fill this gap, we introduced language-based 

descriptions of farmland and developed FarmSeg-VL dataset—the first fine-grained image-text dataset designed for 

spatiotemporal farmland segmentation. Firstly, this article proposed a semi-automatic annotation method that can accurately 15 

assign caption to each image, ensuring high data quality and semantic richness while improving the efficiency of dataset 

construction. Secondly, the FarmSeg-VL exhibits significant spatiotemporal characteristics. In terms of the temporal 

dimension, it covers all four seasons. In terms of the spatial dimension, it covers eight typical agricultural regions across China, 

with a total area of approximately 4,300 km². In addition, in terms of captions, FarmSeg-VL covers rich spatiotemporal 

characteristics of farmland, including its inherent properties, phenological characteristics, spatial distribution, topographic and 20 

geomorphic features, and the distribution of surrounding environments. Finally, we perform a performance analysis of the 

vision language model and a deep learning model that relies only on labels trained on FarmSeg-VL. Models trained on the 

vision language model outperform deep learning models that rely only on labels by 10%-20%, demonstrating its potential as 

a standard benchmark for farmland segmentation. Finally, we present a performance analysis of vision language models and 

the deep learning models that rely solely on labels trained on the FarmSeg-VL, demonstrating its potential as a standard 25 

benchmark for farmland segmentation. The FarmSeg-VL dataset will be publicly released at 

https://doi.org/10.5281/zenodo.15099885(Tao et al., 2025). 



2 

 

1 Introduction 

Farmland has been the foundation of agricultural food security, and accurately monitoring farmland has been crucial for 

implementing policies such as farmland improvement, enhanced supervision, and planning and control (Sishodia et al., 2020). 30 

Currently, the intelligent interpretation of remote sensing images for farmland based on deep learning has become a primary 

method for farmland monitoring(Li et al., 2023; Tu et al., 2024) . 

However, existing farmland remote sensing image segmentation methods mainly follow a label-driven deep learning 

paradigm, which faces significant bottlenecks in both data and model. Specifically, in terms of datasets, although existing 

benchmark datasets have contributed to the advancement of farmland segmentation technology to some extent, they rely solely 35 

on  label-driven deep learning paradigm, which has two main limitations: First, a single label can only drive the model to learn 

shallow visual features of farmland, which fails to reveal the underlying driving mechanisms affecting the spatial distribution 

and temporal evolution of farmland. Additionally, it is difficult to represent the spatial-temporal heterogeneity in complex 

agricultural environments. Specifically, the surface cover of farmland shows seasonal differences in complete coverage, partial 

coverage, and no coverage with the growth cycle of crops, while diverse terrain leads to significant geographical differentiation 40 

in the spatial distribution of farmland and its associations with surrounding features such as water bodies, buildings, and 

vegetation. However, existing datasets cannot represent this kind of spatial-temporal heterogeneity, making it difficult for 

models to establish the inherent relationships between farmland and its surrounding environment. In terms of model, although 

technologies such as convolutional neural networks (CNNs), graph convolutional networks (GCNs), and Transformer have 

significantly enhanced feature representation capabilities, the existing label-driven paradigm inherently has clear theoretical 45 

flaws. First, the existing label-driven paradigm to excessively rely on visual cues and neglect the logical connections between 

farmland and its surrounding environment in complex farmland scenarios. Second, the label struggles to reflect the evolution 

of farmland across seasons and growth stages, severely limiting the model’s generalization ability in spatiotemporal dynamic 

scenarios. Therefore, there is an urgent need to break through the theoretical framework of the traditional label-driven deep 

learning paradigm and explore a new paradigm capable of uncovering the deep semantic logic of farmland. 50 

With the emergence of vision language models (VLMs) and their expanding applications across various fields, studies 

(Devlin et al., 2019; Wu et al., 2025b, a) have shown that language can reveal deeper semantic clues behind visual information. 

These VLMs typically follow a general construction process: first, feature representations are extracted from images through 

a visual encoder, a process aimed at capturing key visual representation in the images. For example, in the LLaVA model (Liu 

et al., 2023), the image representations generated by the fixed visual encoder lay the foundation for subsequent processing. 55 

Next, to establish a connection between vision and language, the model needs to map the extracted visual features to the space 

of the language model, enabling visual representation to be translated into natural language descriptions or understood. The 

LLaVA model precisely utilizes this method, mapping image representations to the prompt space of large language models, 

helping the model understand the relationship between visual representation and linguistic expressions, thereby achieving 

efficient downstream tasks. Furthermore, to enable the model to handle complex tasks, integrating visual perception with 60 
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language understanding becomes a key step. LISA (Lai et al., 2023) is a typical example, it not only combines visual perception 

capabilities but also incorporates in-depth language understanding abilities, allowing it to perform reasoning-based tasks such 

as segmentation tasks. This multimodal information processing capability is one of the important characteristics of VLMs, 

enabling them to consider visual context while understanding and generating language. With the emergence of vision-language 

models (VLMs) and their expanding applications across various fields, studies (Devlin et al., 2019; Liu et al., 2023; Wu et al., 65 

2025)have shown that language can reveal deeper semantic clues behind visual information. This breakthrough makes up for 

the shortcomings of existing farmland datasets that only rely on label-guided models to handle complex spatiotemporal 

heterogeneous farmland scenes, making it possible to mine the complex semantic information in farmland remote sensing 

images and then model the deep inherent logical relationship between farmland and its surroundings. Specifically, language 

can guide models to capture farmland features across multiple dimensions, including shape and boundaries, phenological 70 

characteristics that reflect seasonal changes and crop growth states, spatial layout based on latitude and longitude, and 

geographical features such as terrain and landscape morphology. Additionally, language can describe the relative positional 

relationships between farmland and surrounding features such as water bodies, buildings, and vegetation. By integrating these 

rich semantic cues, VLMs can better understand and interpret the complexity of farmland.  

However, in remote sensing, many existing image-text datasets struggle to provide detailed captions and precise annotations 75 

for specific land features like farmland. As a result, they often fall short of meeting the requirements for high-accuracy farmland 

segmentation. For example, the first large-scale remote sensing image-text pair dataset RS5M (Zhang et al., 2024) and the 

SkyScript dataset (Wang et al., 2024), which contains millions of image-text combinations, although large in scale, provide a 

relatively rough description of farmland and fail to deeply describe the specific characteristics of the farmland. In addition, 

although the manually annotated dataset RSICap (Hu et al., 2023) provides scene-level semantic descriptions, it lacks a refined 80 

depiction of the characteristics of the farmland itself, making it difficult to meet the model's need for deep semantic information 

extraction of the farmland. In contrast to the methods mentioned above, ChatEarthNet (Yuan et al., 2024) seeks to enhance the 

richness of semantic captions for land cover types by employing detailed prompt strategies and leveraging semantic 

segmentation labels from ChatGPT and the WorldCover project. However, due to the inherent randomness of automatically 

generated captions, these captions tend to emphasize the spatial location of farmland within the image while often lacking 85 

detailed information about its inherent attributes. Although these datasets have contributed significantly to advancing image-

text understanding in remote sensing, most focus on general remote sensing tasks, with only a small portion dedicated to 

farmland captions. Moreover, these captions are often neither comprehensive nor in-depth. Existing datasets have not fully 

reflected the complexity of farmland and its changing characteristics over time and space. This is particularly evident in high-

precision farmland segmentation tasks, where there is a lack of deep analysis of farmland characteristics and how they behave 90 

in different scenarios. 

To address the above issues, this paper constructs the FarmSeg-VL dataset, a dedicated image-text dataset focused on 

farmland segmentation, which fully reflects the spatiotemporal characteristics of farmland. FarmSeg-VL covers eight typical 

agricultural regions in China and includes data samples from four seasons, filling the gap of spatial and temporal imbalance in 
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existing datasets. With its extensive geographical coverage and seasonal variations, this dataset ensures effective support for 95 

the learning of various forms of farmland. 

The contributions of this paper are as follows: 

1) This study constructed the first farmland image-text benchmark dataset, filling the gap in remote sensing image-text 

datasets for the farmland-dedicate domain. This dataset includes various types of farmland, and covers a wide spatial and 

temporal range, providing a high-value data foundation for the application research of vision language models in the field 100 

of farmland segmentation. 

2) We summarize 11 key elements for describing farmland’s inherent properties and its surrounding environment, offering 

a comprehensive framework for characterizing farmland from multiple perspectives. Additionally, a text template for 

describing farmland images was designed, providing an important reference for constructing a language dataset focused 

on farmland. 105 

3) This study developed a semi-automated annotation method based on the caption templates constructed in this paper. We 

utilize the semi-automated annotation approach to generate mask and rich captions, significantly reducing labor time while 

enhancing the authenticity and reliability of the annotations. 

4) Extensive experiments have demonstrated that the model trained on the image-text farmland dataset proposed in this paper 

significantly improves farmland segmentation performance and exhibits strong transferability, providing a performance 110 

baseline for vision language models in farmland segmentation. 

2 Review of Existing Remote Sensing Datasets for Farmland Segmentation 

2.1 Non image-text dataset 

Traditional remote sensing dataset for farmland segmentation are mainly annotated with single-label, which can be divided 

into two categories: dedicated dataset and non-dedicated dataset. The detailed information is provided in Table 1 (where SR 115 

refers to Spatial Resolution in meters, and FP refers to Farmland Proportion).  Non-dedicated datasets, such as the scene level 

dataset BigEarthNet (Sumbul et al., 2019),  are not very suitable for pixel level farmland segmentation. Piexel-level dataset, 

such as WorldCover (ESA) (Zanaga et al., 2022), DynamicWorld (DyWorld) (Brown et al., 2022), and LandCover (Karra et 

al., 2021) , primarily focus on large-scale mapping and macro-level analysis, making them less suitable for fine-grained 

farmland segmentation. Moreover, Evlab-SS (Wang et al., 2017) focuses on pixel-level classification, but the proportion of 120 

farmland pixels is relatively low, and it remains limited in data scale and coverage area. Although GID (Tong et al., 2020), 

DeepGlobe-LandCover (Demir et al., 2018), and LoveDA (Wang et al., 2022) cover large farmland areas with relatively high 

pixel proportions, the farmland samples lack diversity. For example, the farmland forms in DeepGlobe-LandCover and 

LoveDA are mostly regular and contiguous, lacking diversity in farmland representation. While these non-dedicated datasets 

provide large amounts of data for farmland segmentation, their annotations are relatively coarse. Specifically, in pixel-level 125 
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farmland segmentation, they struggle to fully cover the complex shapes, distribution patterns, and finer details, such as crop 

growth stages. 

Table 1 Detailed information on non image-text dataset of farmland. 

Type Dataset  Category 

Spatial 

Resolution

SR 

Image size 

Farmland 

Proportion

FP 

Region 

Non- 
dedicated 

datasets 

Evlab-SS 11 0.1-2 4500×4500 8.77 / 

GID 15 4 
56×56,112×11

2,224×224 
30.66 China 

DGLC 7 0.5 2448×2448 57.74 Thailand, Indonesia, India 

LoveDA 7 0.3 1024×1024 26.79 Nanjing,Changzhou,Wuhan,China 

Bigearthnet 43 10-60 120×120 12.41 / 

Dedicated 

datasets 

GFSAD30 3 30 / / Europe,Middle East,Russia and Asia 

VACD 2 0.5 512×512 / Guangdong,China 

WEIMIN 2 0.5-2 512×512 / Hebei,China 

FGFD 2 0.3 512×512 / 
Heilongjiang,Hebei,Shanxi,Guizhou,H

ubei,Jiangxi,Xizang,China 

In contrast, dedicated datasets such as GFSAD30 (Phalke and Özdoğan, 2018), WEIMIN (Hou et al., 2023), VACD (Li et 

al., 2024), and FGFD (Li et al., 2025) are specifically designed for farmland segmentation. These datasets offer high-precision 130 

farmland annotation and cover a broader range of farmland forms, crop distributions, and other relevant information. The 

GFSAD30 dataset has a spatial resolution of 30m, making it suitable for large-scale farmland monitoring, but not for fine-

grained farmland segmentation. By contrary，WEIMIN and VACD offer higher resolutions, however, since WEIMIN only 

covers Hebei and VACD only covers Guangdong in China, the diversity of farmland samples is limited. The FGFD dataset 

includes farmland samples from multiple geographic regions. However, it does not account for the phenological characteristics 135 

of farmland, limiting its ability to capture seasonal variations and crop growth stages. Although these dedicated datasets offer 

high annotation accuracy and support fine-grained regional monitoring, their reliance solely on labels to represent farmland’s 

visual characteristics across different spatiotemporal conditions overlooks its inherent complexity and diversity. As a result, 

they struggle to capture the subtle differences and dynamic changes in farmland driven by seasonal variations and 

environmental factors. 140 

2.2 Image-Text Datasets 

Existing remote sensing image-text paired datasets, such as UCM-Captions (Qu et al., 2016), RSICD (Lu et al., 2018), RS5M, 

NWPU-Captions (Cheng et al., 2022), RSICap, SkyScript, and ChatEarthNet, have been widely used in remote sensing 

research (see Table 2, where CGM denotes Caption Generation Method). However, these datasets are primarily designed for 

tasks such as image captioning, scene classification, or image-text retrieval, with limited applicability to farmland segmentation. 145 

This limitation stems from their insufficient in-depth semantic representations of farmland morphological characteristics, 

spatial distribution patterns, and contextual relationships with surrounding features. Consequently, these datasets cannot meet 

the requirements for fine-grained semantic understanding essential for high-precision farmland segmentation. 
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Specifically, most of these datasets focus on high-level descriptions of images, such as scene level or object level 

characteristics, rather than the detailed semantic annotations needed for fine-grained tasks like farmland segmentation.  For 150 

example, in SkyScript, the image caption "land use of farmland" provides only broad classification information without 

offering specific details about farmland characteristics, such as shape, boundaries, crop growth stages, or surrounding 

environmental features. Similarly, the RS5M dataset provides only brief titles for images, primarily indicating the image source 

and land cover categories, without offering detailed descriptions of farmland. Additionally, while some datasets use automated 

methods to generate large-scale image-text pairs, these automatically generated datasets often suffer from inconsistent quality. 155 

The generated text frequently lacks detail and contains redundant information, reducing its effectiveness for fine-grained 

farmland analysis. For example, in ChatEarthNet, image captions divide each image into four sections—top, bottom, left, and 

right—focusing on the proportions of primary and secondary land cover types in each section rather than providing a dedicated 

description of farmland. Manually annotated datasets, such as UCM-Captions, RSICD, and NWPU-Captions, provide five 

captions per farmland image. However, these descriptions are often repetitive and lack specificity. For example, in UCM-160 

Captions, farmland is described simply as "There is a piece of farmland," while the remaining four descriptions merely rephrase 

this sentence without adding meaningful details. In RSICD, captions are limited to color and location, such as "green" or 

"between two forests." NWPU-Captions expands on this slightly by incorporating shape descriptions, like "rectangular," but 

still lacks deeper insights into farmland characteristics. Although RSICap includes descriptions related to image quality, its 

farmland annotations remain focused on landscape features and surrounding environments, overlooking inherent farmland 165 

attributes. This limited descriptive approach fails to capture farmland’s spatiotemporal complexity, making it hard for precise 

farmland semantic segmentation. 

Table 2. Detailed information on the image-text dataset. 

Dataset Example CGM Number Farmland-related Descriptions 

UCM-

Captions 

 

manual annotation 
2100 images, with 5 

captions per image 

1.There is a piece of farmland. 

2.There is a piece of farmland. 

3.It is a piece of farmland. 

4.It is a piece of farmland. 

5.Here is a piece of farmland. 

RSICD 

 

manual annotation 
10921 images, each 

with 5 captions 

1.the cream colored and aqua farmland is between two forest. 

2.the green and white farmland is between two forest. 

3.the cream colored and aqua farmland is between two forest. 

4.this farmland with light green parts and bald ones mixes up with those 

deep green woods. 

5.some pieces of green farmlands are together. 

RS5M 

 

filtering publicly 

available image-

text paired 

datasets 

5 million images with 

captions 
a satellite image of a farm with a green field 
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NWPU-

Captions 

 

manual annotation 

31500 images, 5 

captions per image 

 

1.Some rectangular farmlands of different colors are neatly lay out on the 

ground. 

2.Many neatly arranged dark green, light green and tan mixed rectangular 

farmlands of different sizes. 

3.There are some green and uncovered rectangular farmland. 

4.There are rectangular farmlands of varying sizes. 

5.There are some green rectangular farmlands distributed neatly. 

RSICap 

 

manual annotation 2585 image-text pair 

This is a low-resolution panchromatic satellite image showing a village 

and farmland. At the bottom of the image, there is a village with dense 

buildings, and above the village is a large area of farmland, divided into 

sections by some dirt roads. There is also a body of water in the middle of 

the farmland. In the image, you can also see an airplane, which was 

probably captured by the satellite when it was flying over the farmland. 

SkyScript 

 

linking remote 

sensing images 

with semantics in 

OSM through 

geographic 

coordinates 

2.6 million image-

text pairs, each image 

corresponding to a 

title describing a 

single object and a 

title describing 

multiple objects 

Single-object text: landuse of farmland, crop of cotton 

Multi-object text: landuse of farmland with crop of cotton 

ChatEarth

Net 

 

automatically 

generate GPT 

through effective 

prompts 

ChatGPT3.5 

generates 163488 

image-text pairs, 

ChatGPT-4v 

generates 10000 

image-text pairs 

containing captions 

The image primarily consists of crop fields, which are most dominant 

across all sections. In the top left, there is a significant expanse of crop 

fields, with a small area of grass and developed land. Moving to the top 

right, crop fields continue to dominate, followed by a smaller developed 

area and grassy patches. In the bottom left, the landscape is mostly 

covered by crop fields, followed by a few trees and a small amount of 

grass. The bottom right also exhibits a large area of crop fields, 

accompanied by a small developed area and a small portion of grass. In 

the middle section, crop fields are again the main feature, with a small 

number of trees and a tiny developed area. Overall, the image depicts a 

landscape predominantly characterized by crop cultivation, with minor 

presence of developed areas, trees, and grass. 

Although these image-text datasets have achieved certain results in large-scale pre-training tasks, their application in the 

semantic segmentation of farmland remote sensing images is greatly limited due to the lack of pixel-level annotation for 170 

semantic segmentation and in-depth description of specific tasks such as farmland segmentation. Therefore, to better support 

farmland segmentation, the dataset needs to be enhanced by including more fine-grained semantic annotations and 

comprehensively covering the complex features of farmland. 

3 FarmSeg-VL: A large-scale image-text dataset benchmark for farmland segmentation 

3.1 Construction of FarmSeg-VL 175 

The construction process of the FarmSeg-VL is shown in Fig. 1, which is mainly divided into three parts: remote sensing image 

acquisition and processing, caption construction, and semi-automatic annotation. In the part1, we collected high-resolution 

images (with a resolution of 0.5m-2m) from various typical agricultural regions in China across four seasons to ensure the 

dataset covers farmland with diverse spatiotemporal features. In the part2, the study synthesized the spatiotemporal 
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characteristics of farmland and summarized 11 key factors related to its inherent properties and the distribution of surrounding 180 

environments. These factors were then used to generate detailed captions, covering aspects such as farmland shape, terrain, 

sowing situation, and the distribution of surrounding water bodies, vegetation, and buildings. In the part3, a semi-automated 

manual annotation method was employed to generate corresponding binary masks and a segment of caption for each remote 

sensing image sample, thus completing the dataset construction. 

 185 

Fig. 1. Dataset construction. 

The FarmSeg-VL dataset, as shown in Fig. 2, consists of three key components: image, mask, and text. Specifically, 

FarmSeg-VL includes image data from eight major agricultural regions across four seasons, and the image features include 

diversity under different imaging conditions. The caption focuses on five attributes of farmland remote sensing images with a 

total of eleven key features: inherent properties (such as shape and boundary pattern), phenological characteristics (such as 190 

season and sowing situation), spatial distribution (such as distribution and geographic location information), topographic and 

geomorphic features (such as terrain and landscape), and distribution of surrounding environments (such as buildings, water 

bodies, and vegetation). 
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Fig. 2. Attribute annotation and spatiotemporal distribution of FarmSeg-VL. 195 

1) RS Image Acquisition and Processing 

China's vast territory, diverse landforms, and complex climate result in significant regional variations in agricultural conditions, 

leading to highly heterogeneous texture features and distribution patterns of farmland in remote sensing imagery. As a result, 

farmlandFarmland exhibits significant spatiotemporal dynamics and fragmented distribution characteristics, and presents 

diverse spatial patterns due to regional differences. For example, the land in the Northeast China Plain is flat and fertile, and 200 

the farmland has the characteristics of concentrated distribution and regular shape, while the Yungui Plateau in China has 

complex terrain and diverse climate, and the farmland has the characteristics of dispersed distribution and fragmented shape. 

The farmland appearance and characteristics of these agricultural areas are unique, which poses different challenges and 

opportunities for farmland segmentation. This study selected representative agricultural regions based on the spatial 

distribution and morphological characteristics of farmland. Specifically, based on the spatial aggregation and morphological 205 

regularity of farmland, the Northeast China Plain and Huang-Huai-Hai Plain were selected as typical regions characterized by 

concentrated and regular-shaped farmland. For areas with sloped farmland distribution, the Northern Arid and Semi-Arid 

Region and the Loess Plateau were chosen as study areas. At the same time, in view of the particularity of farmland morphology, 

such as narrow and long, striped, and sporadic and fragmented, the South China Areas, Sichuan Basin, Yungui Plateau, and 

Yangtze River Middle and Lower Reaches Plain were selected as research areas. The study covers 13 provincial-level 210 

administrative regions, including Heilongjiang, Jilin, Ningxia, Hebei, Henan, Shandong, Shaanxi, Anhui, Hunan, Jiangsu, 
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Guangdong, Sichuan, and Yunnan. These regions provide broad spatial coverage, highlight distinct regional characteristics, 

and are highly representative and typical of China’s diverse agricultural landscapes. 

 

Fig. 3. Demonstration of the diversity of data samples. (a) Farmland samples from different agricultural regions.  (b) Farmland 215 
samples with different shapes(c) Farmland samples with varying distribution patterns. 

The data samples diversity are shown in Fig. 3. Specifically, we utilized Bigemap software to acquire high-resolution Google 

satellite imagery covering China, including the eight major agricultural regions previously mentioned. The spatial resolution 

of images ranges from 0.5m to 2m. Additionally, the software enables us to obtain the shooting time of the image. The total 

coverage area spans approximately 4300 km², ensuring that the dataset covers a broad geographic region and reflects the 220 

diverse characteristics of farmland. The images underwent a series of detailed pre-processing steps, including calibration and 

cropping. During image calibration, we corrected geometric distortions caused by the shooting angle and Earth's curvature, 

ensuring spatial consistency across all images. In the cropping process, irrelevant areas were removed, focusing solely on 

extracting farmland regions. Additionally, to enhance the dataset's quality, we manually filtered out images affected by cloud 

or fog cover, stitching artifacts, or overall poor quality, ensuring only high-quality samples remained for analysis. In order to 225 
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Winter Winter

Winter Winter
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achieve an optimal balance between retaining the detailed features of high-resolution images and improving the efficiency of 

model training, this study adopted a standardized preprocessing process: all images that passed the quality screening were 

uniformly normalized, and a standardized cropping strategy of 512×512 pixels was applied. The size selection was based on 

the following two considerations. First, to preserve spatial resolution and detail, the 512×512 cropping unit can effectively 

balance the complete expression of local ground features (such as farmland boundaries and vegetation textures) and the 230 

efficient allocation of computing resources. Second, to preserve the integrity of spectral information, the cropped images 

strictly retain the three visible light bands—red, green, and blue—to ensure the effective transmission of spectral features in 

the model. This normalization processing scheme significantly improves the efficiency of batch data processing during model 

training by unifying the input data dimensions, while avoiding feature learning bias caused by image size differences. After 

completing these pre-processing steps, a total of 22,605 image samples were selected. These samples span various seasons, 235 

regions, cropping statuses, and feature diverse farmland distributions and shapes, ensuring the comprehensiveness and 

diversity of the dataset. This provides a rich and varied training dataset for the subsequent farmland segmentation. 

2) Caption Construction  

For the caption construction of each farmland sample, this study summarizes 11 key elements for describing farmland: shape, 

boundary morphology, shooting time, sowing conditions, the macro-level distribution of farmland, geographic location 240 

information, topographical features, landscape, the distribution of buildings, water bodies, and vegetation. The spatiotemporal 

characteristics of farmland result from the interaction of multiple factors. (Wang et al., 2022b) Temporally, the variations in 

crop growth stages lead to distinct visual texture differences in farmland across different seasons.(Zhu et al., 2022) Spatially, 

farmland exhibits significant spatial differentiation, with different regions affected by factors such as topography, terrain, and 

water-heat conditions, resulting in noticeable variations in farmland morphology and layout. (Pan and Zhang, 2022) Therefore, 245 

this study considers the issue at multiple spatial scales. At the macro-regional scale, typical farmland images were collected 

from various agricultural regions across China. These regions are not only located in different latitudes and longitudes, but 

also have different terrains and topography. For instance, farmland in the Northeast China Plain is flat and typically follows a 

concentrated distribution pattern with regular shapes, which is reflected in descriptions such as “the farmland primarily exhibits 

concentrated contiguous distribution” and “the shape of the farmland is characterized by blocky.” In contrast, the terrain of 250 

South China is predominantly hilly and mountainous, leading to a more dispersed farmland distribution and irregular shapes, 

which is described in the text as “with the farmland primarily in a dispersed distribution” and “the terrain is undulating.” 

Similarly, farmland in regions like the Loess Plateau and the arid and Semi-Arid Northern Areas often displays terraced or 

sloping patterns. At the same time, the spatial coupling relationships between farmland and surrounding features, such as water 

bodies and buildings, are key factors influencing the distribution and accuracy of farmland identification. (Duan et al., 2022; 255 

Zheng et al., 2022) The relationship between the farmland and surrounding environmental features is expressed, for example, 

as "the water bodies surrounding the farmland mainly consist of scattered blocky ponds," and "the vegetation around the 

farmland mainly consists of scattered trees and scattered forests. " Similarly, the segmentation of farmland relies on boundary 
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and texture information, the shape of the farmland and the boundary morphology, is also crucial for accurate identification of 

farmland. (Xie et al., 2023)  260 

For the caption construction of each farmland sample, this study summarizes key features and keywords for describing 

farmland from both temporal and spatial perspectives. Temporally, the variations in crop growth stages lead to distinct visual 

texture differences in farmland across different seasons. Spatially, this study considers the issue at multiple spatial scales. At 

the macro-regional scale, typical farmland images were collected from various agricultural regions across China. These regions 

are not only located in different latitudes and longitudes, but also have different terrains and topography. For instance, in the 265 

Northeast China Plain, farmland terrain is flat, while in the South China region, the terrain is predominantly hilly and 

mountainous, with farmland exhibiting undulating topography. Furthermore, even within the same region, there are differences 

in landscape features such as the presence of rural areas and towns around the farmland. At the image scale, the spatial 

distribution of farmland varies significantly depending on its geographical location. For instance, in the Northeast China Plain, 

farmland typically follows a concentrated distribution pattern, whereas in South China, farmland tends to be more dispersed. 270 

At the same time, the spatial relationship between farmland and other land features is also very complex. For example, water 

bodies, vegetation, buildings, are all part of the surrounding environment of farmland. Similarly, the shape of the farmland, 

the boundary shape of the farmland, can all be used as key elements to describe the farmland. 

In summary, as shown in Fig. 4, this study categorizes farmland-related attributes into five major aspects: inherent properties, 

phenological characteristics, spatial distribution, topographic and geomorphic features and distribution of surrounding 275 

environments. The inherent properties include the shape of the farmland and the boundary patterns. Phenological 

characteristics encompass season and the sowing situation of the farmland. The spatial distribution of farmland not only reflects 

the geographic location information, but also includes the macro-level distribution of farmland in the image, such as 

concentrated contiguous distribution or dispersed distribution. Farmland shape is a very intuitive and important feature in 

visual interpretation, closely related to other factors such as terrain, topography, and landscape features, including blocky, 280 

striped, or broken. Farmland boundary pattern refers to the spatial shape characteristics of the farmland boundary, primarily 

manifested in whether its contour lines are relatively straight or exhibit a curved form. 



13 

 

 

Fig. 4. Farmland description keywords. 

3) Semi-Automated Annotation 285 

Currently, there are two main approaches for constructing remote sensing image-text datasets: one involves automatically 

generating textual annotations using large language models, while the other relies on manual visual annotation by humans. 

However, both methods face significant challenges in meeting the high-precision requirements of farmland segmentation. 

Relying solely on automatic annotations generated by large language models has clear limitations. This approach often 

struggles to capture the nuanced and accurate correspondence between images and text. The granularity of captions is often 290 

insufficient, resulting in suboptimal accuracy and completeness in the annotation process. While manual annotation can ensure 

high-quality data, it has significant drawbacks. This approach requires domain experts to invest substantial time and effort, 

draining valuable resources and leading to extremely low efficiency. To address these challenges, this study proposes and 

develops a semi-automatic farmland image-text annotation framework. It is important to highlight that this semi-automatic 

annotation framework differs from previous methods. In addition to enabling text annotation, it also generates high-quality 295 

masks, offering more effective data support for farmland segmentation. 
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Fig. 5. Farmland semi-automated annotation framework. 

The semi-automated annotation framework is illustrated in Fig. 5. Specifically, based on keywords related to farmland 

descriptions, this study first developed a set of farmland caption templates, providing a standardized reference for annotating 300 

image samples. To enable semi-automatic text annotation, this study integrated the constructed farmland caption templates 

and corresponding keywords into the open-source annotation software LabelMe. In this way, when annotating the remote 

sensing images of farmland, semi-automatic text annotation can be completed by visually observing the visual features of the 

remote sensing images and combining them with manually selected summarized keywords. In particular, the shooting month 

and longitude and latitude data of the farmland remote sensing images are automatically extracted from the original data. In 305 

addition, due to the limitation of cropping size, some images may not contain any land object categories other than farmland. 

Therefore, when annotating the surrounding environmental attributes using the semi-automated framework, this study requires 

that the presence of relevant land cover types be verified first, to ensure the accuracy of the captions. Finally, in order to quickly 

and accurately obtain high-quality farmland masks, this paper connects the Segment Anything Model (SAM) to LabelMe and 

performs semi-automatic mask annotation on the image to obtain the image label. Through semi-automatic annotation, humans 310 

only need to correct and verify part of the results, which significantly reduces the manpower and time costs compared to 

traditional fully manual annotation methods. At the same time, the semi-automated process combines the consistency of 

algorithms with the precision of manual verification, effectively minimizing subjective errors that can occur in manual 
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annotation and thereby enhancing the accuracy and reliability of the labels. 

3.2 The Spatiotemporal Characteristics Analysis of FarmSeg-VL Based on Multidimensional Statistics 315 

FarmSeg-VL, as the first large-scale farmland image-text dataset covering multiple regions and seasons in China, is valuable 

for reflecting the dynamic characteristics of geographical zoning differences, crop growth cycle variations, and tillage practices. 

This section uses multidimensional statistical methods to analyze the ability of FarmSeg-VL to collaboratively represent spatial 

breadth and temporal continuity, providing a theoretical basis for evaluating its applicability in cross-regional and cross-

seasonal farmland segmentation. 320 

 

Fig. 6. Diversity of data samples. (a) Sample distribution ratio across different agricultural regions. (b) Sample distribution ratio 

for different seasons in each agricultural region. (c) Sample distribution ratio based on different farmland distribution patterns in 

each agricultural region. (d) Sample distribution ratio for different farmland shapes in each agricultural region. Where A represents 

the Northeast China Plain, B represents the Northern Arid and Semi-arid Region, C represents the Huang-Huai-Hai Plain, D 325 
represents the Loess Plateau, E represents the Yangtze River Middle and Lower Reaches Plain, F represents South China Areas, G 

represents the Sichuan Basin, and H represents the Yungui Plateau. 

Fig. 6 reveals the spatiotemporal characteristics of FarmSeg-VL from both spatial and temporal perspectives. In terms of 

the spatial dimension, the sample distribution of agricultural areas in Fig.6(a) shows that FarmSeg-VL fully covers eight 

agricultural areas, ranging from the Northeast Plain to the Southwest Mountains. Notably, the sample count in the Yangtze 330 

River Middle and Lower Reaches Plain is significantly more than in other regions, accurately reflecting the geographical 

characteristics of the area, which is marked by a high degree of farmland fragmentation and notable terrain complexity.  In 

terms of the temporal dimension, the seasonal distribution in Fig.6 (b) shows that samples in the northern agricultural regions 

are concentrated in summer and autumn, while the southern agricultural regions exhibit a more balanced distribution 

(d)(c)

(a) (b)
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throughout the year. This pattern is closely aligned with the differences in crop growth cycles driven by latitude gradients in 335 

China. In addition, Fig.6 (c) and (d) illustrate the distribution patterns and shape characteristics of farmland across eight 

agricultural regions, highlighting the variations between them. Among these, the agricultural areas in the Yangtze River Middle 

and Lower Reaches Plain exhibit the greatest diversity, featuring four distinct distribution patterns and six different shape 

characteristics of farmland. In the Northeast China Plain and the Huang-Huai-Hai Plain, farmland is primarily distributed in 

concentrated areas, with a predominantly blocky form. In other agricultural regions, there is a clear correlation between the 340 

distribution patterns and the shape characteristics of farmland. The diversity and richness of farmland samples across different 

agricultural regions fully reflect the spatiotemporal variability captured by FarmSeg-VL, underscoring its advantages in 

farmland segmentation. 

 

Fig. 7. Word cloud of farmland captions. 345 

To further reveal the spatiotemporal characteristics of FarmSeg- VL, we extracted keywords from its caption and generated 

a word cloud of farmland-related attributes. As shown in Fig. 7, the spatiotemporal characteristics of FarmSeg-VL are further 

illustrated through the keyword cloud. High-frequency spatial attributes (e.g., " latitude" and " longitude") show strong 

semantic associations with temporal attributes (e.g., "January"), indicating that the captions in the FarmSeg-VL dataset 

effectively link temporal and spatial concepts. The spatial differentiation of morphological descriptors such as "concentrated 350 

contiguous" and "dispersed" aligns closely with the statistical results shown in Fig. 6(c) and Fig. 6(d), indicating that text 

annotations can effectively reflect and convey the geographical patterns of farmland morphology. Notably, the prominent 

presence of non-farmland attributes such as "ponds" and "forests" among the keywords suggests that FarmSeg-VL reflect not 

only the characteristics of farmland itself but also emphasizes the logical connections between farmland and its surrounding 

environment. In summary, the composite captions in FarmSeg-VL at both temporal and spatial levels not only reflect the 355 

fundamental characteristics of farmland but also reveal the external driving factors behind its spatiotemporal evolution. 
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3.3 Why is FarmSeg-VL More Suitable as a Dataset Benchmark for Farmland Segmentation? 

Comprehensive spatiotemporal coverage with rich seasonal and regional diversity. The FarmSeg-VL offers extensive 

coverage across both temporal and spatial dimensions, spanning all four seasons—spring, summer, autumn, and winter—while 

also including eight typical agricultural regions of China. The dataset reflects the seasonal differences in agricultural 360 

landscapes, as well as the unique geographic features of each region, such as variations in farmland characteristics and 

surrounding environments. These factors enhance the diversity of the dataset.  

Rich semantic captions capturing comprehensive farmland attributes. Unlike traditional datasets with simple image 

annotations, FarmSeg-VL incorporates detailed language captions summarizing the spatiotemporal features of farmland 

images. Specifically, it covers 11 key descriptive points, including farmland inherent properties, phenological characteristics, 365 

spatial distribution, topographic and geomorphic features, and the distribution of surroundings. The rich semantic captions 

significantly enhance the model's accuracy in farmland segmentation. 

Comprehensive seasonal-regional coverage enhances model robustness. Seasonal and climatic variations significantly 

influence farmland morphology and distribution. Unlike traditional datasets, which typically focus on a single season and limit 

model adaptability, the FarmSeg-VL spans all four seasons, enabling models to better capture seasonal dynamics and varying 370 

crop growth conditions. Additionally, FarmSeg-VL covers diverse agricultural regions across China, reflecting distinct 

differences in farmland characteristics due to climate and geographic variation. The dataset's extensive seasonal and regional 

coverage enhances the model’s robustness, ensuring accurate and efficient farmland segmentation under diverse seasonal and 

climatic conditions. 

4 Experiments 375 

This chapter outlines the experimental setup in Section 4.1. Section 4.2 evaluates the effectiveness of the FarmSeg-VL for 

farmland segmentation by comparing a model fine-tuned on FarmSeg-VL with a vision language model (VLM) trained on a 

general image-text dataset. This comparison aims to verify whether a dedicated farmland image-text dataset can enhance model 

performance in farmland segmentation. In Section 4.3, we assess segmentation performance across different agricultural 

regions, comparing VLMs trained on FarmSeg-VL with the deep learning models that rely solely on labels, including U-Net, 380 

DeepLabV3, FCN, and SegFormer. We also analyze the generalization capability of models trained on FarmSeg-VL in diverse 

agricultural landscapes and their adaptability to spatiotemporal heterogeneity. Section 4.4 investigates the transferability of 

VLMs trained on FarmSeg-VL through comparative experiments with traditional models on public datasets, evaluating their 

cross-dataset generalization and cross-domain potential. Finally, Section 4.5 compares FarmSeg-VL with existing farmland 

datasets in the context of farmland segmentation applications. 385 
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4.1 Experimental Setup 

Dataset Partitioning. To avoid the influence of sample similarity between the training, testing, and validation sets on the 

reliable evaluation of the model's generalization ability and domain transferability, this paper selects samples from different 

agricultural regions for each set. This approach helps reduce spatial homogeneity and ensures a more robust assessment of the 

model's performance. The dataset is divided into training, validation, and test sets in a 7:2:1 ratio. Specifically, the training set 390 

comprises 15,821 samples, the validation set contains 4,512 samples, and the test set includes 2,272 samples. The distribution 

of test set samples across different agricultural regions is as follows: 363 samples from the Northeast China Plain, 531 samples 

from the Huang-Huai-Hai Plain, 146 samples from the Northern Arid and Semi-Arid Region, 16 samples from the Loess 

Plateau, 587 samples from the Yangtze River Middle and Lower Reaches Plain, 152 samples from South China, 156 samples 

from the Sichuan Basin, and 171 samples from the Yungui Plateau. 395 

Evaluation Metrics. To assess model performance, this study uses four widely adopted metrics in farmland segmentation: 

Mean Accuracy (mACC), Mean Intersection over Union (mIoU), Mean Dice Coefficient (mDice), and Recall. Specifically, 

mACC represents the average pixel classification accuracy across all categories, while mIoU quantifies the mean ratio of 

intersection over union, a standard metric in semantic segmentation. mDice measures the similarity between predicted and 

ground-truth segmentation results, and Recall evaluates the proportion of correctly identified positive samples, reflecting the 400 

model’s ability to capture relevant farmland regions. 

4.2 Fine-Tuning General VLMs with FarmSeg-VL: Bridging Domain Gaps and Enhancing Semantic Comprehension 

for Farmland Segmentation 

In order to verify the advantages of the model trained on FarmSeg-VL in farmland segmentation compared to models trained 

on general image-text datasets. This study systematically evaluates the impact of FarmSeg-VL based fine-tuning on farmland 405 

segmentation accuracy across three mainstream vision language segmentation models: LISA (Lai et al., 2023), PixelLM(Ren 

et al., 2024), and LaSagna(Wei et al., 2024). Among them, LISA is a model that integrates a large language model (LLM) with 

segmentation mask generation capabilities, enabling reasoning-driven segmentation based on complex textual prompts. 

LaSagnA extends LISA’s architecture by adopting a unified sequence format to handle more complex queries while enhancing 

perceptual ability through the incorporation of semantic segmentation. This design demonstrates superior performance in 410 

processing intricate prompts and improving reasoning capability. PixelLM, in contrast, is a multimodal model specialized for 

pixel-level reasoning. It addresses the challenge of generating pixel-wise masks for multiple objects by introducing a 

lightweight pixel decoder and a segmentation codebook, which improves both efficiency and granularity in segmentation tasks. 

The experimental results are shown in Table 3. It can be clearly seen that in farmland segmentation, after fine-tuning the 

model using the FarmSeg-VL, the performance of the model has been significantly improved, with an improvement of nearly 415 

30% to 40%. Specifically, across all methods, the fine-tuned models consistently achieve higher mIoU scores compared to 

their non-fine-tuned counterparts, highlighting the effectiveness of FarmSeg-VL in improving segmentation accuracy. This 

result demonstrates that fine-tuning significantly enhances the model's ability to capture and accurately segment relevant 
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features. Notably, the PixelLM model does not produce results in its non-fine-tuned state, as it has not been exposed to 

farmland-related semantic information during pretraining and is therefore incapable of generating effective predictions without 420 

fine-tuning. However, after being trained on the FarmSeg-VL, PixelLM becomes capable of accurately predicting farmland, 

with performance approaching that of the other two VLMs. This further underscores the importance of fine-tuning with a 

domain-dedicated dataset to enhance model performance for specialized tasks. To more intuitively analyze the experimental 

results, this study visualized the segmentation outcomes. As shown in Fig. 8, models that have not undergone fine-tuning tend 

to misclassify large areas of buildings and forests as farmland. This suggests that non-fine-tuned models struggle to accurately 425 

capture inherent properties of farmland, leading to high uncertainty and significant errors in segmentation results, as well as a 

lack of stability and consistency. 

 

Fig. 8. Visualization of partial experimental results fine-tuned on the FarmSeg-VL Dataset. (a) Original image. (b) Ground truth. 

(c) Test results without fine-tuning. (d) Test results after fine-tuning. 430 

Table 3. Comparison of fine-tuning results on the FarmSeg-VL dataset. 

Method 
No Fine Tuning(%) Fine Tuning(%) 

mIoU mACC mDice Recall mIoU mACC mDice Recall 

LISA 46.50 58.42 58.39 58.76 87.71 93.47 93.45 93.46 

PixelLM / / / / 83.65 91.13 91.09 91.16 

LaSagna 32.31 52.00 47.16 56.51 86.95 93.03 93.02 93.00 
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In summary, the FarmSeg-VL offers more precise domain-dedicated knowledge for farmland segmentation, allowing 

models to better capture fine-grained features of farmland. Specifically, FarmSeg-VL contains high-quality farmland 

annotations that cover multiple semantic dimensions, such as farmland shape, distribution, and sowing situation. This 

comprehensive information significantly improves the model’s ability to understand and segment farmland features with 435 

greater accuracy. Compared to general datasets, FarmSeg-VL effectively reduces cross-domain discrepancies, allowing the 

model to focus on farmland features, thereby further enhancing the accuracy of farmland segmentation.  

4.3 Comparing Model Performance Trained on FarmSeg-VL in Different Agricultural Regions 

To explore the application effect of models trained on the FarmSeg- VL in different agricultural regions, this section divides 

the test set into various agricultural regions, including the Northeast China Plain, Huang-Huai-Hai Plain, Northern Arid and 440 

Semi-Arid Region, Loess Plateau, Yangtze River Middle and Lower Reaches Plain, South China, Sichuan Basin, and Yungui 

Plateau. These regions will be tested using both vision-language models (PixelLM, LaSagna, LISA) and the deep learning 

models that rely solely on labels (U-Net, DeepLabV3, FCN, SegFormer). Notably, these models that rely solely on labels do 

not incorporate any language modality, they are trained and tested exclusively using original farmland image and ground truth. 

Figures 11 to 18Tables 4 to 11 display the testing accuracy of the model in different agricultural regions. From the overall 445 

results, both the deep learning models that rely solely on labels and VLMs demonstrated strong testing accuracy in the 

agricultural regions of the Northeast China Plain and the Huang-Huai-Hai Plain. However, in the remaining six agricultural 

regions, the performance differences between the two model types became more pronounced. The primary reason for these 

differences lies in the varying complexity of the spatial structure of farmland across different agricultural regions. In the 

Northeast China Plain and Huang-Huai-Hai Plain, the terrain is relatively flat, and the farmland is distributed in a more regular 450 

and contiguous manner. As a result, both models exhibit strong segmentation performance in these relatively simple scenarios. 

In other agricultural regions, particularly in South China Areas, the farmland generally exhibits scattered and fragmented 

characteristics. Additionally, it shares a high degree of textural similarity with surrounding non-farmland features, such as 

forests and water bodies, which makes it difficult for the model to segment farmland. By incorporating language, VLMs can 

effectively comprehend the spatial distribution of farmland and its surrounding environment, thereby alleviating the 455 

segmentation challenges caused by spatial differentiation and demonstrating advantages in these different agricultural regions. 

To visually illustrate the performance differences among various models in farmland segmentation tasks, Figures 9 19 to 16 

26 present the segmentation results for each agricultural region. From this, it can be observed that in agricultural regions such 

as the Northeast China Plain and the Huang-Huai-Hai Plain, although the overall accuracy is high, the deep learning models 

that rely solely on labels still exhibit certain limitations. For example, this type of model is prone to misjudgment when 460 

encountering terrain features that resemble farmland, such as ponds and grasslands, and often exhibits issues such as boundary 

blurring and discontinuity in the segmentation of farmland. In South China Areas, the highly fragmented nature of farmland, 

with its scattered or narrow distribution, the segmentation challenge is further acerbated. The deep learning models that rely 

solely on labels struggle to effectively identify such atypical farmland, leading to a significant decrease in segmentation 
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accuracy. In contrast, VLMs have demonstrated notable advantages in the aforementioned agricultural regions. By 465 

incorporating farmland-related key words—such as “concentrated buildings” and “narrow strips”, VLMs enhance their 

comprehension of both the inherent properties of farmland and the contextual information of its surrounding environment. 

This enriched understanding contributes to improved completeness and accuracy in farmland segmentation. In addition, this 

advantage is not limited to the aforementioned agricultural regions but is also consistently performance in the segmentation 

results in the other five regions. This further validates the generalization capability and robustness of the VLMs in diverse 470 

agricultural landscapes. 

In summary, compared to the deep learning models that rely solely on labels, VLMs that incorporate caption demonstrate 

significant advantages in farmland segmentation across all agricultural regions. Language information effectively compensates 

for the limitations of the deep learning models that rely solely on labels in complex scenarios, enhancing the model’s 

understanding of farmland morphology and the relationship between farmland and surrounding land cover, thereby 475 

significantly improving farmland segmentation accuracy. 

Table 4. Farmland segmentation results of different methods in Northeast China Plain. 

Evaluation 

Metrics(%) 

The deep learning models that rely solely on labels Vision-Language Model 

U-Net Deeplabv3  FCN SegFormer PixelLM LaSagna LISA 

mACC 82.56 86.75 91.22 91.03 93.16 94.85 95.15 

mIoU 73.52 78.60 84.70 84.91 85.88 89.15 89.75 

mDice 84.40 87.84 91.64 91.76 92.35 94.23 94.57 

Recall 82.56 86.75 91.22 91.03 92.32 94.29 94.56 

Table 5. Farmland segmentation results of different methods in Huang-Huai-Hai Plain. 

Evaluation 

Metrics(%) 

The deep learning models that rely solely on labels Vision-Language Model 

U-Net Deeplabv3  FCN SegFormer PixelLM LaSagna LISA 

mACC 91.38 91.71 94.37 94.32 94.11 95.51 95.97 

mIoU 85.53 84.56 88.35 89.59 88.11 90.79 91.70 

mDice 92.15 91.59 93.79 94.49 93.65 95.16 95.66 

Recall 91.38 91.71 94.37 94.32 93.79 95.27 95.72 

Table 6. Farmland segmentation results of different methods in Northern Arid and Semi-arid Region. 

Evaluation 

Metrics(%) 

The deep learning models that rely solely on labels Vision-Language Model 

U-Net Deeplabv3  FCN SegFormer PixelLM LaSagna LISA 

mACC 81.11 82.59 82.67 86.91 88.37 90.74 90.53 

mIoU 68.30 70.46 70.40 76.97 79.14 83.02 82.70 

mDice 81.15 82.64 82.63 86.98 88.36 90.72 90.53 

Recall 81.11 82.59 82.67 86.91 88.39 90.77 90.52 

 480 
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Table 7. Farmland segmentation results of different methods in Loess Plateau. 

Evaluation 

Metrics(%) 

The deep learning models that rely solely on labels Vision-Language Model 

U-Net Deeplabv3  FCN SegFormer PixelLM LaSagna LISA 

mACC 74.88 83.07 87.24 93.02 92.77 95.11 95.74 

mIoU 58.01 70.74 77.23 87.13 86.50 90.68 91.82 

mDice 73.23 82.86 87.15 93.12 92.76 95.11 95.73 

Recall 74.88 83.07 87.24 93.02 92.76 95.11 95.78 

Table 8. Farmland segmentation results of different methods in Yangtze River Middle and Lower Reaches Plain. 

Evaluation 

Metrics(%) 

The deep learning models that rely solely on labels Vision-Language Model 

U-Net Deeplabv3  FCN SegFormer PixelLM LaSagna LISA 

mACC 84.62 88.59 89.57 89.53 90.20 91.53 92.07 

mIoU 72.26 78.27 80.06 80.08 80.82 83.22 84.14 

mDice 83.75 87.72 88.85 88.86 89.31 90.79 91.33 

Recall 84.26 88.59 89.57 88.35 89.28 90.64 91.39 

Table 9. Farmland segmentation results of different methods in South China Areas. 

Evaluation 

Metrics(%) 

The deep learning models that rely solely on labels Vision-Language Model 

U-Net Deeplabv3  FCN SegFormer PixelLM LaSagna LISA 

mACC 65.86 71.85 79.74 71.64 89.89 91.27 91.48 

mIoU 53.09 62.29 67.37 63.20 71.36 74.07 74.52 

mDice 65.57 74.13 78.95 74.83 82.10 84.13 84.45 

Recall 65.86 71.85 79.74 71.64 81.84 84.80 85.23 

Table 10. Farmland segmentation results of different methods in Sichuan Basin. 

Evaluation 

Metrics(%) 

The deep learning models that rely solely on labels Vision-Language Model 

U-Net Deeplabv3  FCN SegFormer PixelLM LaSagna LISA 

mACC 87.61 89.68 91.50 91.46 93.14 93.66 94.18 

mIoU 72.87 76.82 82.45 82.21 84.45 85.51 86.52 

mDice 84.02 86.66 90.22 90.08 91.43 92.07 92.67 

Recall 87.61 89.68 91.50 91.46 91.24 91.89 92.85 

Table 11. Farmland segmentation results of different methods in Yungui Plateau. 485 

Evaluation 

Metrics(%) 

The deep learning models that rely solely on labels Vision-Language Model 

U-Net Deeplabv3  FCN SegFormer PixelLM LaSagna LISA 

mACC 76.47 82.82 84.98 85.96 87.18 89.04 90.11 

mIoU 62.95 71.50 74.51 75.28 76.52 79.62 81.44 

mDice 77.00 83.25 85.30 85.84 86.64 88.61 89.73 

Recall 76.47 82.82 84.98 85.96 86.76 88.61 89.69 
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Fig. 9. Farmland segmentation results of different methods in Northeast China Plain. (a)Original image. (b)groundtruth. (c)U-Net. 

(d)Deeplabv3. (e)FCN. (f)SegFormer. (g)PixelLM. (h)LaSagna. and (i)LISA. 

 490 

Fig. 10. Farmland segmentation results of different methods in Huang-Huai-Hai Plain . (a)Original image. (b)groundtruth. (c)U-

Net. (d)Deeplabv3. (e)FCN. (f)SegFormer. (g)PixelLM. (h)LaSagna. and (i)LISA. 

 

Fig. 11. Farmland segmentation results of different methods in Northern Arid and Semi-arid Region . (a)Original image. 

(b)groundtruth. (c)U-Net. (d)Deeplabv3. (e)FCN. (f)SegFormer. (g)PixelLM. (h)LaSagna. and (i)LISA. 495 
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Fig. 12. Farmland segmentation results of different methods in Loess Plateau . (a)Original image. (b)groundtruth. (c)U-Net. 

(d)Deeplabv3. (e)FCN. (f)SegFormer. (g)PixelLM. (h)LaSagna. and (i)LISA. 

 

Fig. 13. Farmland segmentation results of different methods in Yangtze River Middle and Lower Reaches Plain . (a)Original 500 
image. (b)groundtruth. (c)U-Net. (d)Deeplabv3. (e)FCN. (f)SegFormer. (g)PixelLM. (h)LaSagna. and (i)LISA. 

 

Fig. 14 Farmland segmentation results of different methods in South China Areas . (a)Original image. (b)groundtruth. (c)U-Net. 

(d)Deeplabv3. (e)FCN. (f)SegFormer. (g)PixelLM. (h)LaSagna. and (i)LISA. 
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 505 

Fig. 15 Farmland segmentation results of different methods in Sichuan Basin . (a)Original image. (b)groundtruth. (c)U-Net. 

(d)Deeplabv3. (e)FCN. (f)SegFormer. (g)PixelLM. (h)LaSagna. and (i)LISA. 

 

Fig. 16 Farmland segmentation results of different methods in Yungui Plateau . (a)Original image. (b)groundtruth. (c)U-Net. 

(d)Deeplabv3. (e)FCN. (f)SegFormer. (g)PixelLM. (h)LaSagna. and (i)LISA. 510 

4.4 Cross-Domain Performance Evaluation of Models Trained on FarmSeg-VL 

In order to evaluate the performance of models trained on the FarmSeg-VL dataset in cross-domain tasks, this paper conducted 

relevant experiments. Specifically, this section presents transfer tests using VLMs (PixelLM, LaSagna, LISA) and the deep 

learning models that rely solely on labels (U-Net, DeepLabV3, FCN, SegFormer) trained on the FarmSeg-VL across multiple 

public datasets. The test datasets include DeepGlobe Land Cover (DGLC), LoveDA, and the Fine-Grained Farmland Dataset 515 

(FGFD). Specifically, the DGLC dataset covers regions in Thailand, Indonesia, and India, while the LoveDA includes areas 

in Nanjing, Changzhou, and Wuhan in China. The FGFD farmland dataset encompasses regions such as Heilongjiang, Hebei, 

Shaanxi, Guizhou, Hubei, Jiangxi, and Tibet in China. The specific details are provided in Table 1. Specifically, to maintain 

consistency with the FarmSeg-VL test set and ensure the data is more suitable for the model, we performed data preprocessing 

on the DGLC and LoveDA. This preprocessing primarily involved cropping the images to a size of 512×512 and merging non-520 

farmland pixel labels, among other steps.  
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Table 412. Farmland segmentation results of different methods on FGFD. 

Evaluation 

Metrics(%) 

The deep learning models that rely solely on labels Vision-Language Model 

U-Net Deeplabv3  FCN SegFormer PixelLM LaSagna LISA 

mACC 72.38 74.76 76.52 76.40 78.59 80.70 83.33 

mIoU 57.48 60.11 62.43 62.34 64.68 66.83 70.58 

mDice 72.71 74.94 76.74 76.66 78.55 80.00 82.65 

Recall 72.38 74.76 76.52 76.40 78.98 80.84 83.87 

Table 513. Farmland segmentation results of different methods on LoveDA. 

Evaluation 

Metrics(%) 

The deep learning models that rely solely on labels Vision-Language Model 

U-Net Deeplabv3  FCN SegFormer PixelLM LaSagna LISA 

mACC 70.83 77.05 73.65 73.78 78.79 80.45 81.76 

mIoU 47.77 63.85 61.41 60.57 60.75 64.03 65.74 

mDice 64.65 77.47 75.22 74.73 74.78 77.54 78.82 

Recall 70.83 77.05 73.65 73.78 77.73 78.87 80.75 

Table 614. Farmland segmentation results of different methods on DGLC. 

Evaluation 

Metrics(%) 

The deep learning models that rely solely on labels Vision-Language Model 

U-Net Deeplabv3  FCN SegFormer PixelLM LaSagna LISA 

mACC 64.60 71.73 69.10 70.32 66.13 71.69 72.23 

mIoU 48.73 55.68 50.17 52.15 49.38 55.78 56.36 

mDice 64.71 71.41 66.81 68.55 66.11 71.59 72.06 

Recall 64.60 71.73 69.10 70.32 69.14 72.22 72.44 

Tables 12-144-6 present the experimental results on the FGFD, LoveDA, and DGLC, respectively. Overall, both the deep 525 

learning models that rely solely on labels and VLMs exhibit strong cross-domain transfer transferability. This can be attributed 

to the FarmSeg-VL dataset’s broad geographic coverage and diverse seasonal variations, which provide a solid foundation for 

cross-domain feature learning. Notably, VLMs demonstrate significantly superior cross-domain transfer performance across 

all three datasets compared to traditional labeled data-dependent deep learning models. This advantage is primarily attributed 

to the fine-grained captions provided by FarmSeg-VL, which inject transferable semantic prior knowledge into the VLMs. For 530 

instance, when caption prompts such as "strip-shaped farmlands in spring" are provided, the models autonomously correlate 

farmland shape characteristics across different regions under spring conditions. This integration of semantic priors enables 

VLMs to overcome the representational limitations inherent in single-modality visual features, thereby maintaining enhanced 

discriminative capabilities in cross-domain scenarios. 

Through the cross-domain experiments, this study has drawn two key conclusions: Firstly, models trained on the FarmSeg-535 

VL exhibit significant cross-domain transferability, fully demonstrating the improvement of model generalization performance 

by the FarmSeg-VL. Secondly, the introduction of captions breaks through the limitations of the deep learning models that 
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rely solely on labels, enabling the model to decouple spatiotemporal heterogeneity interference and effectively improve 

segmentation accuracy in complex farming scenes. 

4.5 Enhanced Model Transferability: Comparative Analysis of FarmSeg-VL and Conventional Farmland Datasets 540 

To verify that the model trained on the FarmSeg-VL outperforms models trained on existing farmland datasets in both 

segmentation accuracy and generalization, we conducted extensive comparative experiments in this section. First, to ensure 

the reliability of the experimental results, this study uses the latest dedicated dataset, FGFD, as a benchmark for comparison. 

Since most existing farmland datasets follow the traditional "Image + Label" format (i.e., a paradigm that solely relies on 

labeled data), four commonly used the deep learning models that rely solely on labels—U-Net, Deeplabv3, FCN, and 545 

SegFormer—are selected to train on the FGFD dataset. For the proposed FarmSeg-VL dataset, three VLMs are selected for 

comparative experiments.  Additionally, to ensure fairness, all trained models are uniformly tested on the LoveDA dataset. 

The experimental results, shown in Table 157, reveal that models trained on the FarmSeg-VL dataset using VLMs 

outperform those trained on the FGFD dataset with the deep learning models that rely solely on labels when tested on the 

LoveDA dataset. Specifically, the mIoU improved by 10% to 40%, and the mAcc increased by 10% to 30%. This gap indicates 550 

that models trained on the FarmSeg- VL dataset with added language modality have significant transferability in farmland 

segmentation compared to models trained on the traditional dataset FGFD. Moreover, FarmSeg-VL reflects multiple aspects 

of farmland characteristics through captions—such as phenological characteristics, spatial distribution, topographic and 

geomorphic features and distribution of surrounding environments—allowing the model to learn rich and comprehensive 

information about farmland. With these detailed captions of farmland, models trained on the FarmSeg-VL not only improve 555 

the accuracy of farmland segmentation but also enhance the model's ability to handle complex scenes. In summary, the 

FarmSeg-VL is a large-scale, high-quality image-text dataset of farmland, it has demonstrated great potential in cross-scenario 

farmland segmentation and provides a strong data foundation for future research in farmland segmentation. 

Table 715. Performance of different datasets and methods on the LoveDA dataset. 

Evaluation 

Metrics(%) 

FGFD FarmSeg-VL 

U-Net Deeplabv3  FCN SegFormer PixelLM LaSagna LISA 

mACC 63.80 57.93 59.19 67.48 78.79 80.45 81.76 

mIoU 38.15 29.78 36.62 50.08 60.75 64.03 65.74 

mDice 55.17 45.33 53.61 66.29 74.78 77.54 78.82 

Recall 63.80 57.93 59.19 67.48 77.73 78.87 80.75 

5 Data availability 560 

The FarmSeg-VL dataset is accessible on the Zenodo data repository at https://doi.org/10.5281/zenodo.15099885(Tao et al., 

2025).The FarmSeg- VL dataset consists of image data, labels, and corresponding farmland text descriptions in JSON files. 
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6 Conclusion 

This study constructs FarmSeg-VL, a high-quality image-text dataset specifically designed for farmland segmentation, with 

key features including high-precision images and masks, extensive spatiotemporal coverage, and refined captions of farmland 565 

characteristics. In the dataset construction process, Google imagery with a resolution of 0.5-2 meters was selected as the image 

data source. Through in-depth analysis of numerous farmland samples, five key attributes were summarized: inherent 

properties, phenological characteristics, spatial distribution, topographic and geomorphic features and distribution of 

surrounding environments. These were further refined into 11 specific descriptive dimensions, covering shape, boundary 

patterns, season, sowing situation, geographic location, distribution, terrain, landscape features, as well as the distribution of 570 

water bodies, buildings, and trees in the surrounding environment. Based on the above keywords, a farmland description 

template was designed, and a semi-automated annotation method was used to generate binary mask labels and their 

corresponding captions for each image. Ultimately, a dedicated dataset consisting of 22,605 image-text pairs was constructed. 

To verify the advantages of the FarmSeg-VL in enhancing farmland segmentation accuracy compared to general image-text 

datasets, this study first conducted fine-tuning experiments on three leading vision language segmentation models: LISA, 575 

PixelLM, and LaSagna. The experimental results demonstrate that the model fine-tuned with the FarmSeg-VL significantly 

outperforms the model trained with general image-text datasets in segmentation performance. Additionally, this study 

compared the VLMs trained on the FarmSeg-VL to a traditional deep learning model that relies solely on labels. The results 

show a 10% to 20% improvement in segmentation accuracy across different agricultural regions and datasets, highlighting that 

language guidance effectively mitigates the impact of spatiotemporal heterogeneity on farmland segmentation. Finally, the 580 

study compared the performance of the traditional deep learning model relies solely on labels trained on the FGFD dataset 

with the models trained using three VLMs on the FarmSeg-VL dataset. The evaluation on the LoveDA dataset showed an 

improvement in test accuracy by approximately 15%. Experimental results show that the model trained on FarmSeg-VL 

significantly improves accuracy and robustness in farmland segmentation. As the first large-scale image-text dataset for 

farmland segmentation, FarmSeg-VL holds significant academic value and application potential. It is expected to advance 585 

research on semantic understanding of farmland in remote sensing imagery, promote the development of more efficient and 

generalized segmentation models, and better serve the diverse needs of agricultural monitoring. 

Appendix 

A More details of farmland texture description in image-text dataset 

As shown in Fig. 9, mainstream remote sensing image-text datasets, such as UCM-Captions, NWPU-Captions, RSICD, 590 

RSICap, and ChatEarthNet, generally adopt scene-level or object-level descriptions. These datasets often lack detailed 

characterization of farmland morphology, temporal features, and environmental context, making them insufficient for farmland 

segmentation tasks that require high-level semantic and structurally rich textual information. 
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For example, UCM-Captions provides only simple and repetitive descriptions like “There is a piece of farmland,” without 

any specific texture or spatial information. NWPU-Captions offers slight improvements by adding color and shape descriptions, 595 

such as “Many dark green circular fields are mixed with yellow rectangular fields,” but still does not include background 

context or agricultural semantics. RSICD focuses only on aggregated forms or land cover components, with descriptions like 

“The little farm is made up of grass and crops,” lacking both temporal cues and environmental context. RSICap provides 

relatively richer descriptions, for example, “In the image, there are many buildings and some farmlands located near a river,” 

which reflects spatial relationships between farmland and buildings or water bodies. However, these descriptions are mostly 600 

static and fail to capture the dynamic properties of farmland over time. ChatEarthNet, designed primarily for land cover 

classification, presents slightly more complex descriptions such as “This image shows a balance between crop and grass areas.”, 

but still lacks detailed information about farmland morphology, terrain, crop types, or surrounding environmental elements. In 

contrast, the proposed FarmSeg-VL dataset is specifically designed for the farmland segmentation task, placing greater 

emphasis on fine-grained semantic information closely tied to the spatiotemporal characteristics of farmland. For each remote 605 

sensing image, the accompanying textual description includes the image capture time, geographic coordinates, and detailed 

references to landform, shape, boundary characteristics, topography, as well as surrounding features such as water bodies, 

vegetation, and buildings. Additionally, the descriptions incorporate attributes such as cropping patterns and spatial layouts, 

providing comprehensive semantic support for accurate and context-aware farmland segmentation. 
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      610 

 

Fig. 9. Details of farmland texture description in general remote sensing image-text dataset. 

B Examples of 5 types of text features for farmland shapes 

To provide readers with a more intuitive understanding of the farmland morphology in the FarmSeg-VL dataset, we present 

five additional examples of farmland shapes in Fig. 10. 615 
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Fig. 10. Example of farmland shape. 

C Farmland segmentation results of different methods in different agricultural areas 

 

Fig. 11. Farmland segmentation results of different methods in Northeast China Plain. 620 

Northeast China Plain
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Fig. 12. Farmland segmentation results of different methods in Huang-Huai-Hai Plain. 

 

Fig. 13. Farmland segmentation results of different methods in Northern Arid and Semi-arid Region. 

Huang-Huai-Hai Plain

Northern Arid and Semi-arid Region
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 625 

Fig. 14. Farmland segmentation results of different methods in Loess Plateau. 

 

Fig. 15. Farmland segmentation results of different methods in Yangtze River Middle and Lower Reaches Plain. 

Loess Plateau

Yangtze River Middle and Lower Reaches Plain
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Fig. 16. Farmland segmentation results of different methods in South China Areas. 630 

 

Fig. 17. Farmland segmentation results of different methods in Sichuan Basin. 

South China Areas

Sichuan Basin
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Fig. 18. Farmland segmentation results of different methods in Yungui Plateau. 

 635 

Fig. 19. Farmland segmentation results of different methods in Northeast China Plain. (a)Original image. (b)groundtruth. (c)U-

Net. (d)Deeplabv3. (e)FCN. (f)SegFormer. (g)PixelLM. (h)LaSagna. and (i)LISA. 

Yungui Plateau
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Fig. 20. Farmland segmentation results of different methods in Huang-Huai-Hai Plain . (a)Original image. (b)groundtruth. (c)U-

Net. (d)Deeplabv3. (e)FCN. (f)SegFormer. (g)PixelLM. (h)LaSagna. and (i)LISA. 640 

 

Fig. 21. Farmland segmentation results of different methods in Northern Arid and Semi-arid Region . (a)Original image. 

(b)groundtruth. (c)U-Net. (d)Deeplabv3. (e)FCN. (f)SegFormer. (g)PixelLM. (h)LaSagna. and (i)LISA. 

 

Fig. 22. Farmland segmentation results of different methods in Loess Plateau . (a)Original image. (b)groundtruth. (c)U-Net. 645 
(d)Deeplabv3. (e)FCN. (f)SegFormer. (g)PixelLM. (h)LaSagna. and (i)LISA. 
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Fig. 23. Farmland segmentation results of different methods in Yangtze River Middle and Lower Reaches Plain . (a)Original 

image. (b)groundtruth. (c)U-Net. (d)Deeplabv3. (e)FCN. (f)SegFormer. (g)PixelLM. (h)LaSagna. and (i)LISA. 

 650 

Fig. 24 Farmland segmentation results of different methods in South China Areas . (a)Original image. (b)groundtruth. (c)U-Net. 

(d)Deeplabv3. (e)FCN. (f)SegFormer. (g)PixelLM. (h)LaSagna. and (i)LISA. 

 

Fig. 25 Farmland segmentation results of different methods in Sichuan Basin . (a)Original image. (b)groundtruth. (c)U-Net. 

(d)Deeplabv3. (e)FCN. (f)SegFormer. (g)PixelLM. (h)LaSagna. and (i)LISA. 655 
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Fig. 26 Farmland segmentation results of different methods in Yungui Plateau . (a)Original image. (b)groundtruth. (c)U-Net. 

(d)Deeplabv3. (e)FCN. (f)SegFormer. (g)PixelLM. (h)LaSagna. and (i)LISA. 

D Quantitative evaluation of semi-automated annotation efficiency 

In order to quantify the annotation efficiency of the semi-automatic annotation framework proposed in this article, comparative 660 

experiments were conducted in this section. Specifically, we randomly selected four annotators and annotated the masks and 

texts on 13 farmland remote sensing images using traditional manual drawing methods and semi-automated annotation 

methods. Finally, we compared the completion time of the annotations. As shown in Fig. 27, after using the semi-automated 

annotation method, the average annotation time was significantly reduced, saving approximately 2 minutes per image, and 

overall efficiency improved by 1.5 times. This result indicates that the annotation tool developed in this article has significantly 665 

improved efficiency and usability. 

 

Fig. 27. Comparison of farmland annotation efficiency. 
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E Cross-Regional Applicability Assessment of FarmSeg-VL. 

To verify the generalization performance of the model trained using FarmSeg-VL on datasets from other countries that have 670 

significant differences in climate or cropping patterns compared to FarmSeg-VL, this paper selects a portion of the region in 

Nordrhein-Westfalen, Germany as the benchmark for testing, test experiments were conducted using the LISA model. 

Specifically, we selected a subset of data from Nordrhein-Westfalen, Germany, and performed several preprocessing steps, 

including image downloading, vector boundary processing, and image and label cropping, to adapt it for our farmland 

segmentation model, the image and label overlay results of the test area are shown in Fig.28. 675 

 

Fig. 28. Example of Fiboa data. 

The experimental results are shown in Table 8, where we compare the cross-domain performance of the LISA model trained 

on the FarmSeg-VL dataset with that of other models evaluated on public datasets in Section 4.4. Specifically, the FGFD and 

LoveDA datasets are from China, while the DGLC dataset covers regions in Thailand, Indonesia, and India. As shown in the 680 

table, the LISA model performs well in cross-domain testing, which can be attributed to the extensive geographical coverage 

and rich seasonal variations of the FarmSeg-VL dataset, providing a solid foundation for cross-domain feature learning. 

Notably, the LISA model outperforms other models on the Fiboa dataset. This is due to the concentrated, contiguous, and well-

defined characteristics of farmland in the Fiboa region, which facilitate the extraction of discriminative features, leading to 

optimal results in this region. Furthermore, the climatic and cropping system differences between the Fiboa dataset and 685 

FarmSeg-VL further validate the applicability and strong generalization capability of the FarmSeg-VL dataset in adapting to 

the diverse agricultural contexts of different countries. This highlights its potential in global, heterogeneous farmland scenarios. 
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Table 8. Farmland segmentation results of different methods on fiboa. 

Evaluation 

Metrics(%) 

LISA 

FGFD LoveDA DGLC Fiboa 

mACC 83.33 81.76 72.23 88.05 

mIoU 70.58 65.74 56.36 78.20 

mDice 82.65 78.82 72.06 87.73 

Recall 83.87 80.75 72.44 87.38 

F Model robustness verification 

To evaluate the robustness of the model under different data partitioning conditions, we conducted additional experiments 690 

using the LISA model on the FarmSeg-VL dataset. Specifically, we first merged the original training, validation, and test sets, 

then randomly split the combined dataset into three new training, validation, and test sets following a 7:2:1 ratio. This random 

splitting procedure was repeated three times to minimize the impact of stochastic variation, and the model was trained and 

evaluated independently for each split. 

Table 9. Farmland segmentation results on different tests. 695 

Evaluation 

Metrics(%) 
Test1 Test2 Test3 Test4 

mACC 87.71 87.27 87.33 87.54 

mIoU 93.47 93.22 93.26 93.37 

mDice 93.45 93.20 93.23 93.36 

Recall 93.46 93.20 93.24 93.34 

Table 9 shows the results of four different random partitions of the test set. Test1–Test4 represent the results of four different 

test sets. As shown in the Table, the variation in test results across the different test sets is minimal, demonstrating the 

robustness of the FarmSeg-VL dataset and the model's robustness. This outcome indicates that the balanced distribution and 

diverse geographical features of the dataset play a crucial role in enhancing the model's stability and generalization capability. 

Specifically, the FarmSeg-VL dataset is characterized by high-quality image and textual annotations, with a broad distribution 700 

that spans different seasons and geographical conditions. This effectively reduces the discrepancies between the datasets, 

thereby improving the model's robustness to variations in data partitions. 
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