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Abstract. Land surface energy, water and carbon fluxes are key for understanding Earth’s climate system, yet global 

continuous high resolution fluxes datasets remain scarce. In this study, we present a global long-term (2000-2020) hourly 10 

dataset of terrestrial water-energy-carbon fluxes, generated by integrating model simulations, in-situ measurements, and 

machine learning with remote sensing and meteorological data. First the integrated STEMMUS-SCOPE model was deployed 

to simulate land surface fluxes over 170 sites with in-situ measurements. The modeled variables include net radiation (Rn), 

latent heat flux (LE), sensible heat flux (H), soil heat flux (G), gross primary productivity (GPP), solar-induced fluorescence 

in 685 nm and 740 nm (SIF685, SIF740). Next optimal interpolation was applied to merge Rn, LE, and H from STEMMUS-15 

SCOPE simulations with eddy covariance observations. The optimal interpolated Rn, LE, H alongside STEMMUS-SCOPE 

simulated G, GPP, SIF685, SIF740 were then used as training data-pairs to develop the emulator using a multivariate 

Random Forest (RF) regression algorithm, referred to as Random Forest with Optimal Interpolation (RF_OI) to predict 

fluxes with global gridded remote sensing and meteorological data. The results demonstrate that RF_OI can estimate land 

surface fluxes with Pearson Correlation Coefficient score (r-score) values higher than 0.88 except for GPP (Rn 0.99, LE 20 

0.88, H 0.92, G 0.92, GPP 0.8, SIF685 0.99, SIF740 0.99). The testing results on independent stations (which were not 

included for developing emulators) show r-score values higher than 0.8. The feature importance indicates that incoming 

shortwave radiation, surface soil moisture, and leaf area index are top predictor variables that determine the prediction 

performance. This terrestrial flux dataset provides a valuable resource for understanding ecosystem responses to climate 

extremes on global scale. 25 

1 Introduction 

Accurate estimation of the water-energy-carbon exchanges between terrestrial ecosystems and atmosphere plays a crucial 

role in understanding ecosystem functioning and climate interactions (Jung et al. 2020; Reich 2010). The ecosystem-

atmosphere water-energy fluxes, including net radiation (Rn), latent heat flux (LE), and sensible heat flux (H), and soil heat 

flux (G), represent the transfer of energy between the land surface and the atmosphere. Rn captures the balance between 30 

incoming and outgoing radiation, providing insights into the availability of energy for ecosystem processes. LE quantifies 
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the energy exchange associated with evapotranspiration, reflecting the loss of energy through the conversion of liquid water 

into water vapor. H characterizes the transfer of heat due to temperature differences, influencing atmospheric stability and 

turbulent mixing processes. G refers to the diurnal transfer of heat flux into and from the subsurface (Gao et al. 2017). 

Alongside these fluxes, carbon fluxes are crucial for understanding the carbon cycle dynamics within the land-atmosphere 35 

system. Gross primary productivity (GPP) is a key variable that represents the total amount of carbon dioxide assimilated by 

plants through photosynthesis. It plays a significant role in ecosystem carbon uptake and storage, affecting the atmospheric 

carbon dioxide concentrations and the overall carbon balance of ecosystems. Beyond GPP, another important indicator of 

photosynthetic activity is solar-induced chlorophyll fluorescence (SIF), which reflects the efficiency of plant photosynthesis 

and carbon uptake (Sun et al. 2017). 40 

By incorporating these seven variables, we can gain a comprehensive understanding of the intricate interplay between water-

energy-carbon fluxes. These variables provide insights into energy distribution, evapotranspiration, photosynthetic activity, 

carbon uptake, water availability, and ecosystem functioning. Consistent datasets of these variables contribute to advancing 

our knowledge of ecosystem functioning and its response to climatic changes, which contribute further to sustainable land 

and water resources management practices and societal adaptation to climate changes. 45 

In-situ measurements can be obtained with the eddy covariance method, which estimates the carbon, water, and energy 

fluxes (Baldocchi 2014). The large-scale measurement network FLUXNET (Pastorello et al. 2020) and the harmonized 

dataset PLUMBER2 (Abramowitz et al. 2024; Ukkola 2020) integrate site-level flux measurements worldwide, providing 

detailed time series data (Baldocchi 2008). However, eddy-covariance measurements are typically conducted at individual 

sites, usually representing areas of less than 1 km2. Estimating these fluxes at regional to global scales requires spatial 50 

upscaling to account for the heterogeneity and variability of these processes across larger areas. Previous efforts to integrate 

FLUXNET measurements with satellite remote sensing, reanalysis data, and machine learning techniques have yielded 

global estimates of land-atmosphere fluxes. An representative example is the FLUXCOM product with a spatial-temporal 

resolution of 0.0833 & 8-daily and 0.5 & daily. These estimates have been extensively used to evaluate land surface 

models, assess water budgets, and investigate land-atmosphere interactions (Jung et al. 2019). 55 

The flux products mentioned above were estimated at coarse temporal resolutions, limiting their ability to capture diurnal 

variability and finer-scale processes (Jung et al. 2019; Jung et al. 2020; Tramontana et al. 2016). However, understanding the 

dynamics of water-energy-carbon fluxes at finer temporal scales is crucial for capturing rapid changes, short-term 

fluctuations, and interactions within the land-atmosphere system. High-frequency flux data allow for a more detailed 

investigation of diurnal patterns, environmental responses, and the interplay between these fluxes, ultimately improving our 60 

understanding of ecosystem processes and its responses to extreme climates. Therefore, there is a pressing need to move 

beyond coarse temporal resolutions and obtain flux estimates at higher temporal resolutions - such as hourly intervals 

comparable to in-situ observations - to accurately capture the temporal dynamics and fully unravel the complexities of the 

land-atmosphere system. This study aims to answer this need by generating global hourly 0.1(9 km) fluxes from 2000 to 

2020. 65 
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2 Data 

2.1 Flux data for training and testing 

PLUMBER2 presented a dataset that includes 170 globally distributed flux tower sites (Figure 1), from FLUXNET2015, and 

complemented from La Thuile, and OzFlux networks (PLUMBER: Protocol for the Analysis of Land Surface Models 

(PALS) Land Surface Model Benchmarking Evaluation Project) (Ukkola et al. 2021). The earliest available in-situ 70 

measurements are from 1992 and a majority of the sites have data available until 2014 (some sites until 2018).  

 

Figure 1. Spatial distribution of PLUMBER2 sites considered in this study and their corresponding climate zones, as well as 

the eight typical regions selected for seasonal comparisons and showing diurnal characteristics of FluxHourly data. 

 75 

The training and testing datasets for Random Forest (RF) algorithm were derived from STEMMUS-SCOPE input and output 

data, and PLUMBER2 in-situ measurements. These datasets comprise 170 observation stations covering 11 distinct IGBP 

land cover types, and have half-hourly temporal resolution. The input variables and target variables are listed in Table 1. 

 

To account for uncertainty information from both the STEMMUS-SCOPE model and PLUMBER2 datasets, optimal 80 

interpolation was applied to merge Rn, LE, and H from STEMMUS-SCOPE simulations with eddy covariance observations. 

It is to note that although PLUMBER2 provides Rn, LE, H, GPP, and G, the metadata on the installation depth for sensors 

measuring G was not provided. As such, only Rn, LE, and H were used for optimal interpolation. The optimal interpolated 

Rn, LE, H alongside STEMMUS-SCOPE simulated G, GPP, SIF685, SIF740 were used as target variables in the training 
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and testing datasets. Prior to the training, the energy-closure based data quality control was implemented (see Supplementary 85 

section 1 for the data preprocessing protocol). 

 

Data splitting was performed based on spatial, temporal, and random criteria. For each IGBP type, 20% of the data was 

reserved for testing in space (34 stations covering 11 IGBP), while the remaining 80% was further split into an 80% training 

and random testing subset and a 20% testing subset based on time. Finally the data was aggregated to hourly from half-90 

hourly to reduce data volume. 

 

2.2 Satellite and meteorological data 

We collected seven aerodynamic predictor variables from European ReAnalysis Land (ERA5-Land, Table 1). ERA5-Land 

describes the evolution of water and energy cycles over land with 69 variables available from 1981 until now in a consistent 95 

manner, which, among others, could be used to analyse trends and anomalies (Muñoz-Sabater et al. 2021). The spatial and 

temporal resolution used in this study is 9 km and hourly. We also collected three canopy related predictor variables and 

CO2 concentration and surface soil moisture. The IGBP land cover type is converted from land cover.  

Table1  Input and output variables. 

abbreviations Full name unit Dataset source 

Input variables 

ea Air vapour pressure hPa ERA5-Land 

p air pressure hPa ERA5-Land 

Rli Incoming longwave radiation W/m2 ERA5-Land 

Rin Incoming shortwave radiation W/m2 ERA5-Land 

Ta Air temperature degree ERA5-Land 

u Wind speed m/s ERA5-Land 

Precip Precipitation mm ERA5-Land 

hc Canopy height m (Lang et al. 2022) 

LAI Leaf area index m2/m2 https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-

lai-fapar?tab=overview 

Vcmax Maximum carboxylation rate µmol/m2/s (Chen et al. 2022) 

CO2 Carbon dioxide concentration mg/m³ https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams

-global-ghg-reanalysis-egg4?tab=overview 
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SSM Surface soil moisture m3/m3 (Han et al. 2023) 

IGBP International Geosphere–

Biosphere Programme 

 https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-

land-cover?tab=overview 

Output variables 

Rn Net radiation W/m2  

LE Latent flux W/m2  

H Sensible flux W/m2  

G Soil heat flux W/m2  

GPP Gross primary productivity µmol/m2/s  

SIF685 Solar-induced chlorophyll 

fluorescence (SIF) at 685 nm 

W/m2/um/sr  

SIF740 Solar-induced chlorophyll 

fluorescence (SIF) at 740 nm 

W/m2/um/sr  

 100 

We used three existing flux datasets and one satellite SIF product for comparison, including FLUXCOM (Jung et al. 2019), 

FLUXFORMER (under review paper), GLEAM (v4.2a) (Miralles et al. 2024), and TROPOMISIF (Guanter et al. 2021). 

3 Methods 

3.1 Compute Platform 

We conducted the whole intensive computing at the Dutch National Supercomputer ‘Snellius’ (https://www.surf.nl/en/dutch-105 

national-supercomputer-snellius), using Dask for parallel computing. The used input data volume is around 1.5 TB per year, 

and output data volume around 0.5 TB per year, with the zarr data format. For producing one month data of FluxHourly, it 

took 7 minutes with the setting of 128 cores and 960 GB memory. Figure 2 presents the whole workflow. 
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Figure 2. Flowchart of producing FluxHourly.  110 

RS-DAT: Remote Sensing Deployable Analysis environment (https://research-software-directory.org/projects/rs-dat) 

3.2 STEMMUS-SCOPE 

The STEMMUS-SCOPE (STEMMUS- Simultaneous Transfer of Energy, Mass, and Momentum in Unsaturated Soil; 

SCOPE - Soil Canopy Observation, Photochemistry and Energy fluxes radiative transfer) integrates radiative transfer, energy 

balance at leaf and canopy scale with the soil water and soil heat dynamics and root development to simulate the exchange of 115 

water, energy, and carbon between the atmosphere, vegetation, and soil (Wang et al. 2021).  It calculates the profiles of soil 

moisture and soil temperature, top-of-canopy outgoing radiation, net radiation components (shortwave, longwave), solar-

induced fluorescence (SIF), and absorbed photosynthetically active radiation (aPAR) as well as turbulent water and carbon 

fluxes (Tol et al. 2009; Yu et al. 2018; Zeng et al. 2011a, b). Additionally, it represents coupled liquid, vapor, dry air, and 

heat transfer in multi-layer unsaturated soil (Zeng et al. 2011a, b). By coordinating carbon assimilation and allocation with 120 

soil water and heat dynamics, STEMMUS-SCOPE provides detailed insights into canopy radiation, soil processes, and land-

atmosphere fluxes, and can be used to produce eco-hydrological datasets across diverse vegetation types (Wang et al. 2021). 

 

3.3 Method ML 

Random Forest (RF) algorithm is an ensemble learning method that outputs a result based on the mean of the many 125 

individual training models (trees) (Breiman 2001). RF follows the Bootstrap Aggregation (Bagging) strategies, i.e. random 

sampling with replacement (Altman and Krzywinski 2017). The RF algorithm was trained to learn the relationship between 
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the 13 input predictor variables and 7 target variables from STEMMUS-SCOPE output (Table 1) and PLUMBER2 

measurements to develop a emulator. 

 130 

3.4 Optimal interpolation 

Optimal interpolation, a simple data assimilation method was employed to merge in-situ measurements and model outputs 

(Oke et al. 2010). This aims to take advantage of consistency of model physics that serves as background (or a prior) and in-

situ observation as independent measurement. As such in-consistencies in in-situ observation due to malfunction of 

instruments and gap filling of missing data can be detected and removed. For in-situ and model output for Rn, LE, H, we 135 

used optimal interpolation to merge each variable separately. For G, SIF685, SIF740, GPP, we used only model output, since 

in-situ measurements are not available. The used optimal interpolation formula is: 

x =  𝑤1 ∗ 𝑥1 +  𝑤2 ∗ 𝑥2   (1) 

where: w1 =  
𝑣𝑎𝑟2

𝑣𝑎𝑟1+𝑣𝑎𝑟2
, w2 =  

𝑣𝑎𝑟1

𝑣𝑎𝑟1+𝑣𝑎𝑟2
, var1 = variance(x1), var2 = variance(x2), x1 is in-situ data, x2 is model output. 

Variance is calculated using 48 values from each day. 140 

3.5 Evaluation metrics 

To assess the performances of RF, we compared predicted fluxes with in-situ measurements, using three commonly used 

statistical evaluation metrics (Entekhabi et al. 2010): the Root Mean Square Error (RMSE), defined in Eq. 2, the Pearson 

Correlation Coefficient (r) score, represented in Eq. 3, as follows.  

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑝𝑟𝑒𝑑,𝑖 − 𝑦𝑟𝑒𝑓,𝑖)

2𝑁
𝑖=1

𝑁
 (2) 

 145 

𝑟 =
∑ (𝑦𝑝𝑟𝑒𝑑,𝑖 − 𝑦𝑝𝑟𝑒𝑑,𝑖)(𝑦𝑟𝑒𝑓,𝑖 − 𝑦𝑟𝑒𝑓,𝑖)

𝑁
𝑖=1

√∑ (𝑦𝑝𝑟𝑒𝑑,𝑖 − 𝑦𝑝𝑟𝑒𝑑,𝑖)
2𝑁

𝑖=1 √∑ (𝑦𝑟𝑒𝑓,𝑖 − 𝑦𝑟𝑒𝑓,𝑖)
2𝑁

𝑖=1

 
(3) 

 

In Eqs. 2 and 3, 𝑦𝑝𝑟𝑒𝑑,𝑖 is the predicted fluxes, 𝑦𝑟𝑒𝑓,𝑖  is in-situ measured fluxes, N is the number of valid pairs of fluxes, 

𝑦𝑝𝑟𝑒𝑑,𝑖 is the mean value of the predicted fluxes, 𝑦𝑟𝑒𝑓,𝑖 is the mean value of in-situ measured fluxes. 
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4 Results 

4.1 Testing on site level 150 

4.1.1 General performance on three testing sets 

The emulator RF_OI was developed by training RF with input data from PLUMBER2, output data from optimal interpolated 

result from STEMMUS-SCOPE simulations and PLUMBER2 measurements. The performance on site level was tested on 

three testing datasets for the emulator: testing_random (for testing the performance of randomly split data during training), 

testing_time (for testing the performance on the period that was not used in training), testing_space (for testing the 155 

performance on the stations that were not used in training).  

 

Table 2 demonstrates the performance of the RF_OI emulator across three testing sets. The results show consistently high 

accuracy for Rn, SIF685 and SIF740, with RMSE values below 36.03 W m⁻² and 0.04 W m⁻² μm⁻¹ sr⁻¹, respectively, and r 

scores reaching 0.99 across all sets. LE, H, G also exhibit good performance, though their RMSE and r score values indicate 160 

slightly lower accuracy, particularly for testing_space set. GPP shows moderate performance with RMSE around 4.30–4.86 

μmol m⁻² s⁻¹ and r scores near 0.80. Overall, RF_OI achieves reliable predictions across variables, with the best performance 

observed for Rn, SIF685 and SIF740. 

Table 2 Performance metrics obtained by the emulator RF_OI on three testing sets 

Target variables  
Testing_random Testing_time Testing_space 

RMSE r score RMSE r score RMSE r score 

Rn (W m-2) 31.85 0.99 31.20 0.99 36.03 0.99 

LE (W m-2) 37.44 0.88 40.56 0.87 39.76 0.80 

H (W m-2) 38.01 0.92 39.42 0.91 51.40 0.89 

G (W m-2) 15.85 0.92 17.05 0.90 18.30 0.86 

GPP (umol m-2 s-1) 4.77 0.80 4.86 0.79 4.30 0.81 

SIF685 (W m-2 um-1 sr-1) 0.01 0.99 0.01 0.99 0.01 0.99 

SIF740 (W m-2 um-1 sr-1) 0.02 0.99 0.03 0.99 0.04 0.99 

 165 

Figure 3 presents key predictor variables in the RF_OI emulator, using permutation importance. Across all seven target 

variables, the most important feature is Rin. For net radiation Rn, Rin, Rli, and Ta are the most important variables, 

underscoring the essential role of radiation and temperature in driving net radiation. For latent heat flux LE, Rin is ranked as 

the most important variable with subsequent importance variables SSM and Ta. From a physical process perspective, both 

SSM and LAI are closely related to latent heat flux, which suggests that both methods account for the physical consistency 170 

of soil-plant processes that influence LE. For sensible heat flux H, the top three variables are Rin, SSM and Ta. In the case of 
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G, Rin is the most important variable, and u and Ta are the second and third important features. Physically, besides Rin, Ta 

and u significantly influence ground heat flux, as they directly affect the temperature gradient between the surface and the 

atmosphere, driving heat transfer from the ground. For gross primary productivity GPP, as well as SIF685 and SIF740, the 

top three predictor variables, namely Rin, LAI, and SSM, reinforces the importance of radiation, vegetation structure, and 175 

soil moisture in these processes. 

 

Figure. 3 permutation feature importance of RF_OI on Rn, LE, H, G, GPP, SIF685, SIF740. 

4.1.2 Dynamic features  

We analyzed the probability density functions (PDFs) of five datasets—in-situ fluxes, FluxHourly, FLUXCOM, GLEAM, 180 

FLUXFORMER—across 34 stations within the testing_space set over the period from 2001 to 2014 (Figure 4). The PDFs 

were computed to assess the distribution characteristics of daily Rn, LE, H and monthly GPP, keeping the same temporal 

resolution for all these datasets. By evaluating the intersection ranges between the PDFs of these datasets and in situ fluxes, 

we assessed their consistency and performance.  

 185 

The overlapping ranges between in-situ measurements and various datasets revealed significant insights into their 

consistency. For Rn, FluxHourly demonstrated a higher degree of agreement with in-situ Rn, covering 95.3% of the shared 

distribution, compared to an 84.4% overlaping area for FLUXCOM. This indicates that FluxHourly aligns more closely with 
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in-situ Rn measurements than FLUXCOM. For LE, FLUXCOM showed a slightly higher degree of agreement with in-situ 

LE at 86.8%, while FluxHourly followed closely with 86.7%. GLEAM also performed well, with an 85.6% agreement. In 190 

the case of H, GLEAM exhibited the highest agreement with in-situ H at 87.6%, slightly outperforming FluxHourly (86.9%) 

and significantly surpassing FLUXCOM (81.7%). For GPP, FLUXFORMER achieved the highest agreement with in-situ 

GPP at 88.4%, while FluxHourly and FLUXCOM showed slightly lower agreement of 86.6% and 85.7%, respectively. 

FLUXCOM and FLUXFORMER overestimated around 6-9 gC/m2/day and underestimated between 0 and 2 gC/m2/day 

while FluxHourly overestimated around 5-12 gC/m2/day. 195 

  

 

Figure 4. PDF of Rn, LE, H, GPP for independent sites (testing_space set) (2001-2014) among in-situ fluxes, FluxHourly, 

GLEAM, FLUXCOM, FLUXFORMER. Note: shaded area indicates the percentage of agreement between a data product 

and in-situ data. 200 

While the analysis of overlapping ranges across 34 testing_space stations provides a comprehensive overview of dataset 

performance, it is also valuable to compare the temporal dynamics of fluxes at individual sites to gain deeper insights. We 
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selected three representative sites for detailed analysis in order to further reveal the temporal variation characteristics of 

fluxes of different ecosystems. These sites include evergreen broadleaf forests (IT-Lav), mixed forests (BE-Vie), and 

permanent wetlands (US-Los), covering key ecosystem types from high-productivity forests to high-water wetlands. By 205 

comparing the time series at these three sites on monthly (Figure S5) and their original temporal resolution of each products 

(Figure 5, also see Figure S6-8), we can have a deeper understanding of the impact of ecosystem types and environmental 

conditions on flux dynamics. To present the data more clearly, we calculated multiple years average and standard deviation 

(std) on monthly scale (Figure S5). For multiple scales comparison, we show several days of data (Figure 5). For hourly 

comparison, we show several days of data in summer and winter respectively (Figure S6-8).  210 

Figure S5 compares monthly multiple years average and std in Rn, LE, H, and GPP across three stations (BE-Vie, IT-Lav, 

and US-Los). 

To highlight the differences in temporal resolution among datasets, we compared the raw time-series data from FluxHourly, 

FLUXCOM, GLEAM, and FLUXFORMER at station BE-Vie. Figure 5 illustrates the high temporal resolution of 

FluxHourly in station BE-Vie. From 12 May to 19 May, FLUXCOM provides 8 values for Rn, LE, and H, while GLEAM 215 

provides 8 values for LE and H. In addition, FLUXCOM and FLUXFORMER provide only one value for GPP during the 

same period. FluxHourly, however, captures diurnal variations and demonstrates strong consistency with in-situ 

measurements, highlighting its ability to capture fine-scale temporal dynamics of carbon fluxes. 

 

 220 
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Figure. 5 Hourly FluxHourly, daily/monthly FLUXCOM and FLUXFORMER, daily GLEAM in station BE-Vie: Rn, LE, H, 

GPP (Time is local time) 

4.2 Global flux products with hourly resolution  

4.2.1 Inter comparison with existing flux datasets on spatial pattern 

FluxHourly is a global hourly 9 km flux dataset between 2000-2020, but FLUXCOM has data only until 2014. As such, we 225 

calculated annual mean of FLUXCOM and FluxHourly in 2014 for fair comparison. For SIF, as TROPOMISIF has data 

from May 2018 until April 2021(Guanter et al. 2021), we conducted the comparison in May 2018. Figures 7 and S8 show the 

spatial pattern and the latitudinal profile. 

 

Figures 6 and S9 illustrates the spatial distribution of Rn, LE, H, GPP and SIF740 across different datasets. High-value 230 

regions for Rn and LE are primarily in the tropics, reflecting the abundance of solar energy and active energy exchanges in 

these areas. In contrast, low-value regions are observed in high-latitude areas. Sensible heat also exhibits notable spatial 

distribution, featuring two peaks: a smaller peak around 15°N latitude and a larger peak around 25°S latitude. This 

distribution aligns with the climatic characteristics of tropical and high-latitude regions, highlighting geographical 

differences in Rn, LE, and H within the global climate system. The latitude profiles further display the differences among the 235 

datasets by each latitude degree, indicating that Rn, LE, and H values are significantly higher in the tropics and considerably 

lower in high latitudes. While FluxHourly and FLUXCOM exhibit similar trends in both Rn and LE, FluxHourly shows a 

lower magnitude of LE compared to the FLUXCOM and GLEAM in the tropics. Additionally, FluxHourly and GLEAM 

demonstrate similar trends for LE between 30°S and 30°N, while the FLUXCOM reveals discrepancies with the other two 

datasets at certain latitudes. While the three datasets exhibit consistent latitude dynamics of H, between the equator and 240 

35°S, GLEAM demonstrates the highest values for H, with FLUXCOM in the middle and FluxHourly showing the lowest 

values across the datasets. 

In Figure S9, global GPP spatial maps illustrate the distribution of GPP across different datasets. High-value regions are 

primarily concentrated in the tropics, indicating abundant photosynthetic activity in these areas. In contrast, significant low-

value regions are observed in high-latitude areas, where GPP approaches zero. The latitude profiles indicate that GPP values 245 

are higher in the tropics, with four notable peaks around 50°N, 20°N, 10°S, and 45°S; however, between 30°N and 60°N, 

both FLUXCOM and FLUXFORMER exhibit lower values. 

Figure S8 illustrates the distribution of SIF across two datasets. High-value regions are primarily located around 45°N and 0° 

to 25°S, indicating abundant photosynthetic activity in these areas. In contrast, significant low-value regions are observed in 

the Sahara Desert, central Asia, the Arctic, and Oceania. The latitude profiles show that FluxHourly and TROPOMI SIF 250 

exhibit similar patterns and trends; however, FluxHourly consistently records higher SIF values compared to TROPOMISIF. 
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Figure 6. Annual mean of predicted hourly 9 km LE by RF_OI, and FLUXCOM, GLEAM in 2014 (FLUXCOM is used as a 

mask for FluxHourly and GLEAM because it has missing data) 

4.2.2 Diurnal and seasonal changes  255 

We investigated FluxHourly’s ability to capture diurnal variations of fluxes across the globe in 2014, since the sub-daily 

resolution is an important feature of the new dataset. We selected eight typical regions based on Köppen–Geiger (KG) 

climate classification system (Figure 1). The KG system classifies the climate based on air temperature and precipitation. 
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The climate is grouped into 5 main classes with 30 sub-types, consisting of tropical, arid, temperate, continental, and polar 

climates (Beck et al. 2018). The eight selected regions cover five main climate zones (Table 3). 260 

Table 3 Detail information of 8 typical regions 

Regions Longitude Latitude Time zone Köppen–Geiger climate 

Amazon 

Rainforest 
-65°W - -55°W -5°S - 0°N UTC-3 Tropical: Af, Am 

Southeast Asia 

Mangroves 
100°E - 105°E 5°N - 10°N UTC+8 Tropical: Am, Af 

Sahara Desert 10°W - 15°E 20°N - 25°N UTC+1 Arid: Bwh 

Alps 6°E - 15°E 45°N - 48°N UTC+1 

Temperate: Cfa,Cfb, 

Continental: Dfb, Dfc,  

Polar: ET 

Siberian Tundra 90°E - 105°E 60°N - 65°N UTC+8 Continental: Dfc 

Himalayas 80°E - 85°E 30°N - 35°N UTC+5 
Polar: ET 

Continental: Dwc 

North American 

Grasslands 

-100°W - -

90°W 
40°N - 45°N UTC-6 Continental: Dfa, Dfb 

Changbai 

Mountain 

Forest 

127°E - 129°E 41°N - 42°N UTC+8 Continental: Dwb, Dwc 

 

As expected, the ensemble diurnal cycles are clearly shown in FluxHourly at all our eight selected locations of the globe 

(Figures 7-8) for LE and GPP. Rn, H, G are in supplementary Figs S10-S12.  

In humid regions like tropical rainforests, Rn and LE remain high and stable throughout the year, driven by abundant solar 265 

radiation and water availability. The diurnal variation is similar for all seasons due to continuous evapotranspiration. In 

contrast, arid regions, such as the Sahara Desert, exhibit strong seasonal and diurnal fluctuations. Cold regions, including 

Siberia and the Himalayas, have low Rn and LE in winter, with brief summer peaks during the growing season. Temperate 

regions, like grasslands, show clear seasonal patterns, with higher values in spring and summer and lower values in winter. H 

and G follow similar trends: in humid regions, H remains low due to dominant evapotranspiration, while in arid regions, H 270 
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increases significantly during the day as heat is transferred from the surface to the atmosphere. Cold regions see a rise in H 

during winter due to reduced evapotranspiration, whereas in temperate regions, H varies seasonally. G remains small and 

stable in humid regions but fluctuates significantly in arid, cold, and temperate regions, with pronounced diurnal variations 

in summer when soil heat transfer is more active. 

 275 

In humid regions, GPP is consistently high due to favorable climate conditions, with peak values during daylight hours. In 

arid regions, it is highly seasonal, occurring mainly during wet periods, while in cold regions, GPP is restricted to the short 

growing season, peaking in summer and nearing zero in winter. Temperate regions show strong seasonal variations, with 

higher GPP in spring and summer and reduced photosynthetic activity in colder months. The seasonal change in diurnal 

cycle of GPP is minimal in humid regions but more pronounced in arid, cold, and temperate regions. 280 
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Figure 7. Diurnal cycles of LE for 8 regions for each month of the year, where each panel refers to a region. The data is 

converted to local time zone. 
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Figure 8. Diurnal cycles of GPP for 8 regions for each month of the year, where each panel refers to a region. The data is 285 

converted to local time zone. 
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5 Discussion 

5.1 Uncertainty prediction 

Although optimal interpolation was used to merge in-situ measurements and model output, it is worthy to mention the model 

output accuracy. STEMMUS-SCOPE exhibited the best performance in Rn. The simulation of LE and H were comparable. 290 

The model exhibited better performance in simulating LE for forest sites characterized by relatively high LAI, while H was 

less accurate for wetlands (WET). Biases in different variables included an underestimation of LE from January to June 

(except for EBF), an overestimation of H in DBF, ENF, and MF, and an underestimation of H in WET. GPP was 

consistently underestimated across all vegetation types (Wang et al. 2025). Additionally, the lack of observation depths for G 

and corresponding soil moisture data made calibration challenging, limiting fair comparisons between observed and 295 

simulated G (Tang et al. 2024). Due to the PLUMBER2 dataset's time span (1992–2018), validating simulated SIF against 

tower-based or high-resolution remote sensing SIF was not feasible. Instead, we examined the correlation between modeled 

SIF and GPP (both observed and modeled), revealing a strong proportionality between them. 

Due to the biases and limitations in STEMMUS-SCOPE simulations, we introduced an uncertainty prediction, where we 

quantified the uncertainty for each timestep and grid using standard deviation (std) derived from our training and testing 300 

samples (see Supplementary Section 1). Specifically, we calculated two kinds of std with two different approaches: daily std 

(RF_std1), and std for the same time step (RF_std2). The testing performance is shown in Table 4-5. Generally RF_std2 

model has better performance than RF_std1 on three testing sets, because data in the same day has more fluctuations than the 

data in the same timestep over the same hemisphere and same IGBP type. 

We also provide a time series example in one testing_space station: AU-GWW (Figure S3-S4), demonstrating that our 305 

FluxHourly not only predicted fluxes, but also computed the uncertainty of the predicted fluxes. The shaded region in Figure 

S3-S4 represents the prediction uncertainty (±1 std). A wider shaded area indicates higher uncertainty, suggesting less 

confidence in the model's prediction for that time period. Larger uncertainty bands, particularly around peak fluxes, suggest 

greater variability in model performance in periods with higher flux values. 

Table 4 Performance metrics obtained by RF_std1 on three testing sets 310 

Target variables  
Testing_random Testing_time Testing_space 

RMSE r score RMSE r score RMSE r score 

Rn (W m-2) 12.42 0.79 15.77 0.63 18.01 0.48 

LE (W m-2) 4.24 0.91 5.75 0.82 5.95 0.68 

H (W m-2) 5.74 0.84 8.14 0.67 10.89 0.43 

G (W m-2) 3.73 0.86 4.73 0.81 5.39 0.47 

GPP (umol m-2 s-1) 0.31 0.94 0.42 0.87 0.47 0.78 

SIF685 (W m-2 um-1 sr-1) 0.006 0.87 0.009 0.75 0.009 0.59 
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SIF740 (W m-2 um-1 sr-1) 0.03 0.88 0.04 0.77 0.05 0.65 

 

Table 5 Performance metrics obtained by RF_std2 on three testing sets 

Target variables  
Testing_random Testing_time Testing_space 

RMSE r score RMSE r score RMSE r score 

Rn (W m-2) 9.18 0.92 9.79 0.91 11.87 0.88 

LE (W m-2) 3.46  0.92 3.90 0.90 5.88 0.79 

H (W m-2) 4.65 0.91 4.93 0.90 6.01 0.88 

G (W m-2) 3.05 0.90 3.22 0.88 4.57 0.70 

GPP (umol m-2 s-1) 0.29 0.93 0.33 0.91 0.47 0.77 

SIF685 (W m-2 um-1 sr-1) 0.005 0.93 0.005 0.92 0.007 0.87 

SIF740 (W m-2 um-1 sr-1) 0.02 0.93 0.03 0.92 0.03 0.87 

5.2 Uncertainty from scale mismatch 

There is a scale mismatch between the gridded meteorological data and in-situ forcing data. Using gridded meteorological 

data in the upscaling introduces additional uncertainties in generating global flux products because the RF model was trained 315 

on site level (Zeng et al. 2020). The additional uncertainty due to gridded meteorological data is assessed using several 

different meteorological forcing products, including in-situ data, ERA5-Land (FluxHourly used it as input), and CERES 

(FLUXCOM used CERES for Rin as input)). CERES has a spatial and temporal resolution of 1 degree and hourly, 

respectively. 

Scale mismatch exists in every predictor variable, in which Rin is the most important predictor variable. Therefore, Rin was 320 

compared among different gridded datasets (ERA5-Land, CERES) and in-situ Rin (Figure 9). This experiment was carried 

out at 57 stations which have data in 2014. We plot  the probability density function (PDF) of difference between ERA5-

Land and in-situ Rin (blue), and difference between CERES and in-situ Rin (red). The PDF of errors indicates that both 

ERA5-Land (blue) and CERES (red) exhibit error distributions centered around zero, suggesting that their deviations from 

observed data are generally small. However, the ERA5-Land distribution is more peaked, with a higher density near zero, 325 

indicating lower variability and more stable errors. In contrast, the CERES error distribution is broader and flatter, 

suggesting a wider range of deviations. Additionally, both distributions exhibit long tails, implying the presence of 

occasional large errors, albeit with low probability. This means the scale mismatch in predictor variables could lead to 

underestimation of fluxes.  
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 330 

Figure 9. Rin from in-situ, ERA5-Land, and CERES in 2014 

6 Conclusion 

This study used STEMMUS-SCOPE output and in-situ measurement data to develop a RF algorithm based emulator and 

generated a global fluxes dataset. First STEMMUS-SCOPE was deployed to simulate land surface fluxes over 170 

PLUMBER2 sites. Despite its ability to simulate consistent fluxes at any selected location and supplement variables that are 335 

missing or not available in in-situ measurements, it is important to acknowledge discrepancies between STEMMUS-SCOPE 

simulations and in-situ measurements. We then used optimal interpolation to merge STEMMUS-SCOPE simulations and 

PLUMBER2 measurements to reduce such discrepancies and to maintain maximal consistency. The optimally interpolated 

results were then used as training and testing data-pairs to develop the STEMMUS-SCOPE emulator RF_OI using 

multivariate RF regression algorithm. Seven target variables were predicted simultaneously on global scale at a spatial and 340 

temporal resolution of 9 km and hourly respectively, including net radiation (Rn), latent heat flux (LE), sensible heat flux 

(H), soil heat flux (G), gross primary productivity (GPP), as well as sun-induced fluorescence at 685 nm and 740 nm 

(SIF685, SIF740). The results show that the generated global land surface fluxes have comparable or better accuracy with 

existing data products, when evaluated at their respective spatial and temporal resolution, but have much better spatial and 

temporal features. Additionally the emulator also provides estimates of uncertainty for each variable. We conclude that this 345 

new global fluxes dataset, named FluxHourly, can serve as a valuable resource for studying ecosystem responses to climate 

extremes on global scale. 
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Data availability and code availability 

FluxHourly is available on https://doi.org/10.11888/Terre.tpdc.302319 (Han et al. 2025). 

The FluxHourly dataset is organized into separate files for each month, with each file being approximately 40 GB in size. 350 

The dataset is referenced to the WGS84 coordinate system and includes seven output variables: Rn_OI (net radiation, Rn), 

LE_OI (latent heat flux, LE), H_OI (sensible heat flux, H), updated_Gtot (ground heat flux, G), Actot (gross primary 

productivity, GPP), SIF685, and SIF740. 

Code is available in github: https://github.com/EcoExtreML/Emulator. 
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