We would like to thank the editor and reviewers very much for the valuable comments
and suggestions that greatly helped us to improve the manuscript. Thank you very much
for your time and efforts. In this revised version, we have addressed all reviewer
comments in detail. Major revisions include: (1) refining the discussion on data
uncertainty and variable importance, especially regarding vegetation features and
anthropogenic drivers; (2) incorporating Partial Dependence Plot (PDP) analyses to
improve the interpretability of the models; (3) clarifying the rationale behind the use of
suitability masks and addressing concerns about land cover assumptions; (4) explaining
the variation in prediction accuracy across species. We believe these revisions have
substantially strengthened the scientific rigor, clarity, and transparency of the
manuscript.

Reviewer #1:

Comment 1. The authors rely on FAOSTAT s national-level livestock statistics as the
primary data source for mapping. While these data span a long temporal range (1961—
2021), their spatial resolution is generally coarse. Deriving gridded datasets primarily
based on these national statistics may introduce substantial spatial uncertainty, as
livestock distributions exhibit strong intra-national heterogeneity
(https://doi.org/10.1016/j.oneear.2023.08.012;
https://doi.org/10.1016/j.rse.2019.111301). And this issue could be particularly
pronounced in large, transhumant livestock nations such as the United States, China,
Brazil, and India.

Response: Thanks for the comment. We agree that national-level statistics, such as
those from FAOSTAT, are spatially coarse and do not capture intra-national
heterogeneity. To mitigate this limitation, we implemented a spatial downscaling
approach that uses the GLW4 dataset as a baseline to proportionally allocate
FAOSTAT’s national totals to the city level. Specifically, we calculated city-level
livestock proportions from the GLW4 density maps and used these proportions to
rescale the annual national totals from FAOSTAT. This method enables us to generate
subnational reference distributions for both sample generation and model correction (as
the reviewer kindly pointed out in Comment 3).

We acknowledge that this method inherits the assumption of spatial stability in
livestock distributions over time. To evaluate this, we conducted validation using multi-
year subnational statistics (Figures 5 and 6), which showed that the resulting spatial-
temporal patterns aligned well with observed dynamics at both provincial and county
levels. For further details and supporting literature, we kindly refer the reviewer to our
response to Comment 3.

Comment 2. As noted in the discussion (Lines 281-290, Figure 8), the authors indicate
that adopting finer-scale livestock statistics (e.g., municipal or county-level) is one of
the most effective methods to reduce uncertainties. In fact, numerous studies have
already leveraged such high-resolution data to develop regional spatial datasets, such
as https://www.nature.com/articles/s41597-024-03072-y ; https.//doi.org/10.5194/essd-
13-515-2021. A recent study even compiled over 50,000 fine-scale records for global




livestock mapping (https.://doi.org/10.21203/rs.3.rs-6201916/v1). Compared to these
efforts, what advantages does this study offer in uncertainty control?

Response: We thank the reviewer for pointing us to the valuable references, which
represent significant progress in high-resolution livestock mapping. We fully agree that
finer-scale statistical records (e.g., municipal or county-level) are essential for reducing
uncertainty in livestock distribution estimates. However, while such fine-resolution
datasets are increasingly available for selected regions and recent years, it remains very
difficult to obtain globally consistent, spatially harmonized, and temporally comparable
high-resolution statistics across multiple decades. Most available fine-scale data, even
within a single country, are limited in temporal coverage, vary in format and definitions,
and are difficult to standardize for use in long-term global mapping. In contrast,
FAOSTAT provides the globally consistent livestock statistics from 1961 onward, albeit
at the national level.

In this context, the main advantages of our study in terms of uncertainty control
are as follows: (1) By using a uniform, global input source (FAOSTAT) and consistent
modeling procedures, we ensure that interannual changes in livestock distribution are
comparable and not confounded by inconsistent data sources. (2) Our study not only
acknowledges uncertainty but also evaluates it at multiple levels—model performance
(Fig. 4), spatial consistency with fine-scale statistics (Fig. 5, Fig. 8), and feature
sensitivity (Fig. 7). This multi-level assessment helps identify which inputs and
assumptions are driving spatial or temporal uncertainty. (3) While our current product
is based on national statistics, we demonstrated in Figure 8 that integrating finer-scale
statistics (e.g., Chinese county-level pig data) improves spatial allocation accuracy.
This shows that our framework can flexibly incorporate finer data wherever available,
without losing global scalability.

In summary, while regionally detailed maps are valuable, our contribution lies in
producing the first globally consistent, annually gridded livestock dataset covering 61
years, with built-in mechanisms for uncertainty evaluation and integration with finer-
scale data in future updates. We believe this temporal and methodological robustness
offers a distinct and complementary advantage to existing efforts.

Comment 3. The authors mention using GLW4 to downscale FAOSTAT s national
statistics to municipal (city) scales (Lines 117-119), vet the specific methodology
remains unclear. Is the process based on calculating municipal proportions from GLW4

data and then scaling national totals by these proportions? If so, this approach may

inherit significant uncertainties, as municipal proportions can vary substantially over
time.
Response: Thanks for the comment. Yes, the reviewer is correct in interpreting our
approach: we used the livestock density distributions from the GLW4 dataset to
calculate municipal-level proportions, and then applied these proportions to redistribute
FAOSTAT national totals to a finer administrative scale for sample generation and
model correction. We have clarified the specific processing steps in the revised Methods
section as below (Lines 117-121):

“...FAOSTAT serves as the primary input for country-level statistics and acts as




the basis for corrections. To refine these statistics to the city level, we used the GLW4
dataset to calculate the proportional distribution of livestock across municipalities.
These proportions were then applied to each year’s national total from FAOSTAT,
allowing for the generation of city-level reference data to guide stratified sampling and
to rescale model outputs...”

We acknowledge the uncertainty that this method may introduce, particularly due
to the assumption that subnational distributions remain temporally stable. To assess its
validity, we conducted further validation using multi-year subnational statistics
(Figures 5 and 6). These comparisons demonstrate that the resulting time series preserve
reasonable temporal dynamics, despite the use of a single-year GLW4 dataset as a
reference.

Moreover, this assumption of spatial stability is consistent with many previous
studies. For example, Van Boeckel et al. (2019)
[https://doi.org/10.1126/science.aaw1944] used 2010 GLW data to assess global
antimicrobial resistance in livestock without altering the spatial distribution across
years, implying that the baseline livestock distribution was relatively stable for cross-
year comparisons. Similarly, Theobald et al. (2020) [https://doi.org/10.5194/essd-12-
1953-2020], in their study on global human modification from 1990 to 2017, employed
a static livestock layer over multiple years, treating livestock pressure zones as
relatively stable spatial variables. These examples indicate that the spatial distribution
of livestock, tends to remain coherent over time, especially when constrained by
agroecological, infrastructural, and cultural factors.

To ensure transparency, we have further discussed this potential source of
uncertainty in the revised Discussion section and explicitly cautioned users regarding
the assumptions made in the temporal allocation of livestock distributions (Lines 315-
319):

“To enable global-scale and long-term consistency, our study adopted a
proportion-based downscaling approach using the GLW4 dataset to redistribute
FAOSTAT national totals at city level. While this method assumes relative stability in
subnational livestock distributions across time, which may introduce uncertainty in
dynamic regions, it is supported by previous large-scale studies (Theobald et al., 2020;
Van Boeckel et al., 2019). Nevertheless, we recommend that users exercise caution
when applying these data in regions with known subnational shifts in production
systems.”

Comment 4. Based on the difference in feeding systems, authors categorize animals
into “‘grazing livestock” (e.g., buffalo, cattle, goats, horses, sheep) and “captive
livestock™ (e.g., chickens, ducks, pigs), and assume grazing species inhabit grasslands
while captive species are confined to impervious surfaces (Lines 83—85). This assertion
appears questionable, as intensively raised animals often occupy peri-urban or rural
agricultural lands (https://doi.org/10.1016/j.oneear.2023.08.012).

Response: Thanks for this important observation and for recommending reference. In
direct response to this reference—and since the study focuses on pigs—we have chosen
to illustrate our clarification using pig mapping as an example. Although we used




impervious surfaces as a component of the suitability mask for livestock, we
concurrently applied a population density to remove dense urban centers from the
suitable zones (Please kindly check Figure 1). This approach was designed to retain
peri-urban and rural impervious areas, which are typically associated with livestock
farming operations.

To demonstrate this approach, we added a representative figure showing pig
density mapping in Jiangsu Province, China (see figure below). In the left panel, areas
with high pig density in 2021 are shown, and it is clear that densely populated coastal
cities (e.g., cities on the east coast) were excluded from the suitability area. In the right
panels, a representative pig farm is outlined in a white circle. This farm is located in a
peri-urban area and is mapped as impervious surface (red pixels) in the land cover
product. Notably, it is surrounded by rural agricultural lands (orange pixels), and its
location aligns with a high-density zone in the pig distribution map. This example
proves that our strategy is able to capture livestock production zones located in peri-
urban agricultural landscapes.
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Comment 5. The discussion is not very adequate. (1) For instance, the claim that
vegetation omission minimally impacts predictions (Lines 280—281) is counterintuitive.
What underlying reasons justify this assertion? Have other studies observed similar
patterns? Is it premised on the assumption that grasslands or impervious surfaces serve
as_“theoretical suitable masks” for livestock distribution (Lines 83-85)? (2)
Additionally, Figure 4 shows marked disparities in prediction accuracy across species
(notably lower for cattle and higher for horses). What factors explain these variations?
Response: Thanks for the comment. Following the suggestions of both reviewers, we
have expanded the discussion to more fully address the uncertainty of our mapping
product and the contributions of different predictor groups. Regarding the two specific
questions raised in this comment, we respond as follows.

(1) Based on our sensitivity analysis (Figure 7), omitting vegetation-related
features led to only a marginal decrease in prediction accuracy, especially when
compared to the exclusion of climate and soil variables. Several factors may explain




this result. First, in global-scale models where spatial resolution is relatively coarse,
vegetation indices—especially those derived from satellite imagery—tend to be
temporally noisy and strongly affected by seasonality and land use dynamics, reducing
their predictive reliability compared to more stable features such as climate and terrain.

Second, as the reviewer kindly pointed out, our use of land-cover-based
"suitability masks" (e.g., impervious surfaces and grasslands) already filters the spatial
domain in a way that may absorb some vegetation-related variation, thereby reducing
the marginal effect of vegetation features. A similar pattern was observed in a recent
study. Parente et al. (2025) noted: "This may be explained by the fact that we only
consider the fraction of forested land within areas suitable for livestock."
(https://doi.org/10.21203/rs.3.rs-6201916/v1).

To further analyze the contribution of individual features to prediction outcomes,
we followed the other reviewer’s recommendation and performed a Partial Dependence
Plot (PDP) analysis. The results, presented in Supplementary Figures S1 and S2, show
a positive association between vegetation features and livestock density. This
conclusion has also been proved in the Figure 8 of Parente et al. (2025). The
clarification has been added in the section of Discussion (Lines 290-305):

“...The relatively minor influence of anthropogenic and vegetation features may
be attributed to spatial correlations between human activity indicators and the suitable
mask (e.g., impervious surface layers), and the use of temporally static historical data
before the years of 2000 and 1980.”

“To further investigate the role of different input features and their influence on
mapping outcomes, we performed Partial Dependence Plot (PDP) analyses using two
representative livestock species: cattle and ducks. These species were selected due to
their differing habitat preferences and spatial distributions, providing complementary
perspectives on feature importance. The PDP results (Figures S1 and S2) reveal several
consistent patterns, suggesting common influential factors of livestock
distribution...Vegetation features (e.g. total number of valid vegetation cycles with
peak) also display positive relationships with livestock density (Parente et al., 2025).”

(2) The observed variation in accuracy (e.g., lower for cattle, higher for horses)
likely reflects differences in the ecological characteristics and management systems of
each species. Grazing animals like cattle are typically associated with extensive pastoral
systems that are more spatially diffuse and environmentally constrained, making them
more difficult to model accurately. In contrast, horses tend to be concentrated around
built environments (e.g., stables, equestrian facilities) and are often managed in more
predictable locations, leading to higher model performance. Similar patterns were also
found in Ehrmann et al. (2025), where prediction accuracy (measured by R?) was
significantly higher for horses (R* = 0.530) than for cattle (R* = 0.437). We have
included this explanation in the updated model accuracy assessment section of the
manuscript (Lines 234-238):

“This variation in model performance across livestock species can be partly
attributed to differences in their spatial distribution patterns and management systems.
Cattle, as a grazing species, are often raised in extensive and environmentally
heterogeneous systems, making their spatial patterns more diffuse and harder to predict




accurately. In contrast, horses are typically managed in more spatially concentrated
settings, leading to more spatially clustered distributions and better model fit.”



Reviewer #2:
Comment 1. The methods section lacks clarity in certain areas, particularly regarding
the stratified sampling approach. The manuscript does not clearly describe how
stratified sampling was implemented (L140-L146). This information is critical, as it
directly influences the composition of the training dataset and consequently affects the
accuracy and reliability of the global predictions. I recommend that the authors provide
a _more detailed explanation of the sampling procedure, including the criteria for
stratification and how the strata were defined and selected.
Response: Thanks for the comment. We agree that the stratified sampling strategy plays
a crucial role in ensuring representative training data and improving model accuracy.
We have revised the manuscript to clarify the stratification criteria and sampling
intervals. Specifically, the stratification was based on pixel-level livestock density
values derived from the recalibrated city-level statistics. Given the wide variation in
livestock abundance across different species, we adopted species-specific stratification
intervals. For instance, for ducks, which have high population densities and wide spatial
variability, we used a stratification interval of 500 heads per grid cell. In contrast, for
horses, a smaller interval of 1 head was used. Within each stratum, samples were
randomly selected to ensure sufficient representation across density gradients. We have
included this information in the revised Methods section (Lines 147-151) accordingly:
“Given the differences in population size and distribution range among livestock
species, we adopted species-specific stratification intervals. For example, for ducks,
whose densities tend to be high and spatially heterogeneous, we used a stratification
interval of 500 heads per hectare grid cell; for horses, a finer interval of 1 head was
applied. Each stratum was randomly sampled, and approximately 20,000 training
samples per year were selected for each livestock category.”

Comment 2. The causal relationships between the predictors and the response variable
warrant further clarification. In this study, the authors used a range of environmental
and_anthropogenic factors to predict livestock density (Fig 1). For predictors with
limited historical data, such as population, the authors applied year-2000 values to
vears before 2000 and found that population had little influence. This conclusion seems
counterintuitive. Unlike wildlife, livestock is more likely to be influenced by human
management. Therefore, one would expect population density to be an important
predictor. However, in this study, soil and climate variables were found to be more
influential (fig 7). This may reflect correlations rather than causal mechanisms. A
comparison_between the spatial patterns of cattle or sheep and population density
(https.//hub-worldpop.opendata.arcgis.com/content/WorldPop: : global-1km-
population-total-grid-2000-2020/about) suggests that a strong spatial association
likely exists. I think that the lack of observed influence in the model may be due to two
reasons: (1) errors or bias introduced during stratified sampling (as noted in comment
1); and (2) potential multicollinearity among predictors. If population is indeed an
important factor, I think the authors to revisit its treatment carefully. In addition, 1
strongly recommend including partial dependence plots or similar visualizations to
show how each predictor relates to the response variable.




Response: We appreciate the reviewer’s comment regarding the interpretation of
predictor influence, particularly the role of population density in livestock distribution
modeling. We acknowledge that livestock is highly influenced by human activities,
including population distribution, market access, and infrastructure. However, due to
the lack of globally available historical population data prior to 2000 at consistent
resolution, we used the year-2000 WorldPop layer as a proxy for years before 2000. We
agree that this temporal mismatch could introduce uncertainty, especially in regions
where population patterns have changed significantly. We have revised the Discussion
section to clarify this limitation (Lines 290-293):

“The relatively minor influence of anthropogenic and vegetation features may be
attributed to spatial correlations between human activity indicators and the suitable
mask (e.g., impervious surface layers), and the use of temporally static historical data
before the years of 2000 and 1980.”

The observed limited contribution of population in our feature importance ranking
(Fig. 7) may be attributed to population being partly spatially correlated with our
suitability masks (especially impervious surface). To better illustrate the marginal
effects of individual predictors and improve interpretability, we have now included
partial dependence plots (PDPs) for all mapping features and two representative
livestock types (cattle and ducks), as the reviewer kindly suggested. These new plots
are added as a supplementary figure (Fig. S1 and Fig. S2), and referenced in the
Discussion section (Lines 294-305):

“To further investigate the role of different input features and their influence on
mapping outcomes, we performed Partial Dependence Plot (PDP) analyses using two
representative livestock species: cattle and ducks. These species were selected due to
their differing habitat preferences and spatial distributions, providing complementary
perspectives on feature importance. The PDP results (Figures S1 and S2) reveal several
consistent patterns, suggesting common influential factors of livestock distribution.
Notably, population density, precipitation, and soil moisture show positive associations
with predicted livestock density for both cattle and ducks. This highlights the
importance of human activity and water availability in shaping livestock distributions.
For instance, cattle and ducks both exhibit higher predicted densities in regions with
greater population, suggesting the influence of demand-side factors such as local
consumption and infrastructure accessibility. Additionally, elevation and wind speed at
10 m consistently show negative contributions across both PDPs, indicating a general
preference for lower-elevation and less windy environments, which are typically more
suitable for animal husbandry. Vegetation features (e.g. total number of valid vegetation
cycles with peak) also display positive relationships with livestock density (Parente et
al., 2025). These PDP results reinforce the rationale for selecting a comprehensive set
of input features wherever data availability permits.”



65 60
$ 60 g 8 80 g 80 g 60
< £ 50 < < £
255 2 3 2 CES
H g H e g
40 60
850 oy y oy 850
° ° ° ° 60 °
B4 S 30 = = S5
t t £ 40 t g t
s 40 s & & &
a 2 5 a a a 40
351M 1 1 Ll 1 E—. 1
0 500 1000 0 20 40 0 50 100 150 0 10 20
Population Distance to cities Elevation Precipitation
60 50 41.0
50
g g $ a9 8 465
H § 50 i g
2w 2 2 g 400
- H 8 2455
() 9 40 3 47 [} h
T 46 ° ° ]
K] = K] z 0
t t 3 t 46 t s
g & & [
[Tl g 1 44.0{ gy 1
[ 20 40 60 80 [ 25 50 75 100 0 50 100 150 200 0.00 0.05 0.10 015
e { temperature Wind-speed at 10m Soil moisture NDVI
47
46.0 o 48
46 £
455 k-]
5 g 4
45.0 4
44 T 4
K] s 44.5 K]
£ 43 t t
s 8 4.0 s 42
2
) 435 !
[ 10 20 30 0 20 40 60 0 1 2 3
Greenup Senescence Number of cycles

Figure S1. Partial dependence plots (PDPs) for cattle mapping in 2015. Features include
anthropogenic (e.g., population, distance to cities), topographic (elevation, slope),
climatic (precipitation, temperature, wind), soil (soil moisture), and vegetation
variables (NDVI, green up, senescence, number of cycles).
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Figure S2. Partial dependence plots (PDPs) ducks mapping in 2015. Features include
anthropogenic (e.g., population, distance to cities), topographic (elevation, slope),
climatic (precipitation, temperature, wind), and soil (soil moisture).

Comment 3. The meaning of the dots in some figures (e.g., figs 4-7) should be clarified
in the figure captions.

Response: We have revised the figure captions for Figures 47 to explicitly clarify the
meaning of the dots. Specifically, in Figures 4 and 7, the dots represent correlation
coefficients (r). In Figure 5, the dots indicate the number of livestock. In Figure 6, the
dots indicate the pixel-level livestock density. These clarifications are now included in
the updated figure captions.




