
We would like to thank the editor and reviewers very much for the valuable comments 
and suggestions that greatly helped us to improve the manuscript. Thank you very much 
for your time and efforts. In this revised version, we have addressed all reviewer 
comments in detail. Major revisions include: (1) refining the discussion on data 
uncertainty and variable importance, especially regarding vegetation features and 
anthropogenic drivers; (2) incorporating Partial Dependence Plot (PDP) analyses to 
improve the interpretability of the models; (3) clarifying the rationale behind the use of 
suitability masks and addressing concerns about land cover assumptions; (4) explaining 
the variation in prediction accuracy across species. We believe these revisions have 
substantially strengthened the scientific rigor, clarity, and transparency of the 
manuscript. 
 
Reviewer #1: 
Comment 1. The authors rely on FAOSTAT’s national-level livestock statistics as the 
primary data source for mapping. While these data span a long temporal range (1961–
2021), their spatial resolution is generally coarse. Deriving gridded datasets primarily 
based on these national statistics may introduce substantial spatial uncertainty, as 
livestock distributions exhibit strong intra-national heterogeneity 
(https://doi.org/10.1016/j.oneear.2023.08.012; 
https://doi.org/10.1016/j.rse.2019.111301). And this issue could be particularly 
pronounced in large, transhumant livestock nations such as the United States, China, 
Brazil, and India. 
Response: Thanks for the comment. We agree that national-level statistics, such as 
those from FAOSTAT, are spatially coarse and do not capture intra-national 
heterogeneity. To mitigate this limitation, we implemented a spatial downscaling 
approach that uses the GLW4 dataset as a baseline to proportionally allocate 
FAOSTAT’s national totals to the city level. Specifically, we calculated city-level 
livestock proportions from the GLW4 density maps and used these proportions to 
rescale the annual national totals from FAOSTAT. This method enables us to generate 
subnational reference distributions for both sample generation and model correction (as 
the reviewer kindly pointed out in Comment 3). 

We acknowledge that this method inherits the assumption of spatial stability in 
livestock distributions over time. To evaluate this, we conducted validation using multi-
year subnational statistics (Figures 5 and 6), which showed that the resulting spatial-
temporal patterns aligned well with observed dynamics at both provincial and county 
levels. For further details and supporting literature, we kindly refer the reviewer to our 
response to Comment 3. 
 
Comment 2. As noted in the discussion (Lines 281–290, Figure 8), the authors indicate 
that adopting finer-scale livestock statistics (e.g., municipal or county-level) is one of 
the most effective methods to reduce uncertainties. In fact, numerous studies have 
already leveraged such high-resolution data to develop regional spatial datasets, such 
as https://www.nature.com/articles/s41597-024-03072-y；https://doi.org/10.5194/essd-
13-515-2021. A recent study even compiled over 50,000 fine-scale records for global 



livestock mapping (https://doi.org/10.21203/rs.3.rs-6201916/v1). Compared to these 
efforts, what advantages does this study offer in uncertainty control? 
Response: We thank the reviewer for pointing us to the valuable references, which 
represent significant progress in high-resolution livestock mapping. We fully agree that 
finer-scale statistical records (e.g., municipal or county-level) are essential for reducing 
uncertainty in livestock distribution estimates. However, while such fine-resolution 
datasets are increasingly available for selected regions and recent years, it remains very 
difficult to obtain globally consistent, spatially harmonized, and temporally comparable 
high-resolution statistics across multiple decades. Most available fine-scale data, even 
within a single country, are limited in temporal coverage, vary in format and definitions, 
and are difficult to standardize for use in long-term global mapping. In contrast, 
FAOSTAT provides the globally consistent livestock statistics from 1961 onward, albeit 
at the national level. 

In this context, the main advantages of our study in terms of uncertainty control 
are as follows: (1) By using a uniform, global input source (FAOSTAT) and consistent 
modeling procedures, we ensure that interannual changes in livestock distribution are 
comparable and not confounded by inconsistent data sources. (2) Our study not only 
acknowledges uncertainty but also evaluates it at multiple levels—model performance 
(Fig. 4), spatial consistency with fine-scale statistics (Fig. 5, Fig. 8), and feature 
sensitivity (Fig. 7). This multi-level assessment helps identify which inputs and 
assumptions are driving spatial or temporal uncertainty. (3) While our current product 
is based on national statistics, we demonstrated in Figure 8 that integrating finer-scale 
statistics (e.g., Chinese county-level pig data) improves spatial allocation accuracy. 
This shows that our framework can flexibly incorporate finer data wherever available, 
without losing global scalability. 

In summary, while regionally detailed maps are valuable, our contribution lies in 
producing the first globally consistent, annually gridded livestock dataset covering 61 
years, with built-in mechanisms for uncertainty evaluation and integration with finer-
scale data in future updates. We believe this temporal and methodological robustness 
offers a distinct and complementary advantage to existing efforts. 
 
Comment 3. The authors mention using GLW4 to downscale FAOSTAT’s national 
statistics to municipal (city) scales (Lines 117–119), yet the specific methodology 
remains unclear. Is the process based on calculating municipal proportions from GLW4 
data and then scaling national totals by these proportions? If so, this approach may 
inherit significant uncertainties, as municipal proportions can vary substantially over 
time. 
Response: Thanks for the comment. Yes, the reviewer is correct in interpreting our 
approach: we used the livestock density distributions from the GLW4 dataset to 
calculate municipal-level proportions, and then applied these proportions to redistribute 
FAOSTAT national totals to a finer administrative scale for sample generation and 
model correction. We have clarified the specific processing steps in the revised Methods 
section as below (Lines 117-121): 

“…FAOSTAT serves as the primary input for country-level statistics and acts as 



the basis for corrections. To refine these statistics to the city level, we used the GLW4 
dataset to calculate the proportional distribution of livestock across municipalities. 
These proportions were then applied to each year’s national total from FAOSTAT, 
allowing for the generation of city-level reference data to guide stratified sampling and 
to rescale model outputs…” 

We acknowledge the uncertainty that this method may introduce, particularly due 
to the assumption that subnational distributions remain temporally stable. To assess its 
validity, we conducted further validation using multi-year subnational statistics 
(Figures 5 and 6). These comparisons demonstrate that the resulting time series preserve 
reasonable temporal dynamics, despite the use of a single-year GLW4 dataset as a 
reference. 

Moreover, this assumption of spatial stability is consistent with many previous 
studies. For example, Van Boeckel et al. (2019) 
[https://doi.org/10.1126/science.aaw1944] used 2010 GLW data to assess global 
antimicrobial resistance in livestock without altering the spatial distribution across 
years, implying that the baseline livestock distribution was relatively stable for cross-
year comparisons. Similarly, Theobald et al. (2020) [https://doi.org/10.5194/essd-12-
1953-2020], in their study on global human modification from 1990 to 2017, employed 
a static livestock layer over multiple years, treating livestock pressure zones as 
relatively stable spatial variables. These examples indicate that the spatial distribution 
of livestock, tends to remain coherent over time, especially when constrained by 
agroecological, infrastructural, and cultural factors. 

To ensure transparency, we have further discussed this potential source of 
uncertainty in the revised Discussion section and explicitly cautioned users regarding 
the assumptions made in the temporal allocation of livestock distributions (Lines 315-
319): 

“To enable global-scale and long-term consistency, our study adopted a 
proportion-based downscaling approach using the GLW4 dataset to redistribute 
FAOSTAT national totals at city level. While this method assumes relative stability in 
subnational livestock distributions across time, which may introduce uncertainty in 
dynamic regions, it is supported by previous large-scale studies (Theobald et al., 2020; 
Van Boeckel et al., 2019). Nevertheless, we recommend that users exercise caution 
when applying these data in regions with known subnational shifts in production 
systems.” 
 
Comment 4. Based on the difference in feeding systems, authors categorize animals 
into “grazing livestock” (e.g., buffalo, cattle, goats, horses, sheep) and “captive 
livestock” (e.g., chickens, ducks, pigs), and assume grazing species inhabit grasslands 
while captive species are confined to impervious surfaces (Lines 83–85). This assertion 
appears questionable, as intensively raised animals often occupy peri-urban or rural 
agricultural lands (https://doi.org/10.1016/j.oneear.2023.08.012). 
Response: Thanks for this important observation and for recommending reference. In 
direct response to this reference—and since the study focuses on pigs—we have chosen 
to illustrate our clarification using pig mapping as an example. Although we used 



impervious surfaces as a component of the suitability mask for livestock, we 
concurrently applied a population density to remove dense urban centers from the 
suitable zones (Please kindly check Figure 1). This approach was designed to retain 
peri-urban and rural impervious areas, which are typically associated with livestock 
farming operations. 

To demonstrate this approach, we added a representative figure showing pig 
density mapping in Jiangsu Province, China (see figure below). In the left panel, areas 
with high pig density in 2021 are shown, and it is clear that densely populated coastal 
cities (e.g., cities on the east coast) were excluded from the suitability area. In the right 
panels, a representative pig farm is outlined in a white circle. This farm is located in a 
peri-urban area and is mapped as impervious surface (red pixels) in the land cover 
product. Notably, it is surrounded by rural agricultural lands (orange pixels), and its 
location aligns with a high-density zone in the pig distribution map. This example 
proves that our strategy is able to capture livestock production zones located in peri-
urban agricultural landscapes. 

 
 
Comment 5. The discussion is not very adequate. (1) For instance, the claim that 
vegetation omission minimally impacts predictions (Lines 280–281) is counterintuitive. 
What underlying reasons justify this assertion? Have other studies observed similar 
patterns? Is it premised on the assumption that grasslands or impervious surfaces serve 
as “theoretical suitable masks” for livestock distribution (Lines 83–85)? (2) 
Additionally, Figure 4 shows marked disparities in prediction accuracy across species 
(notably lower for cattle and higher for horses). What factors explain these variations? 
Response: Thanks for the comment. Following the suggestions of both reviewers, we 
have expanded the discussion to more fully address the uncertainty of our mapping 
product and the contributions of different predictor groups. Regarding the two specific 
questions raised in this comment, we respond as follows. 

(1) Based on our sensitivity analysis (Figure 7), omitting vegetation-related 
features led to only a marginal decrease in prediction accuracy, especially when 
compared to the exclusion of climate and soil variables. Several factors may explain 



this result. First, in global-scale models where spatial resolution is relatively coarse, 
vegetation indices—especially those derived from satellite imagery—tend to be 
temporally noisy and strongly affected by seasonality and land use dynamics, reducing 
their predictive reliability compared to more stable features such as climate and terrain. 

Second, as the reviewer kindly pointed out, our use of land-cover-based 
"suitability masks" (e.g., impervious surfaces and grasslands) already filters the spatial 
domain in a way that may absorb some vegetation-related variation, thereby reducing 
the marginal effect of vegetation features. A similar pattern was observed in a recent 
study. Parente et al. (2025) noted: "This may be explained by the fact that we only 
consider the fraction of forested land within areas suitable for livestock." 
(https://doi.org/10.21203/rs.3.rs-6201916/v1). 

To further analyze the contribution of individual features to prediction outcomes, 
we followed the other reviewer’s recommendation and performed a Partial Dependence 
Plot (PDP) analysis. The results, presented in Supplementary Figures S1 and S2, show 
a positive association between vegetation features and livestock density. This 
conclusion has also been proved in the Figure 8 of Parente et al. (2025). The 
clarification has been added in the section of Discussion (Lines 290-305): 

“…The relatively minor influence of anthropogenic and vegetation features may 
be attributed to spatial correlations between human activity indicators and the suitable 
mask (e.g., impervious surface layers), and the use of temporally static historical data 
before the years of 2000 and 1980.” 

“To further investigate the role of different input features and their influence on 
mapping outcomes, we performed Partial Dependence Plot (PDP) analyses using two 
representative livestock species: cattle and ducks. These species were selected due to 
their differing habitat preferences and spatial distributions, providing complementary 
perspectives on feature importance. The PDP results (Figures S1 and S2) reveal several 
consistent patterns, suggesting common influential factors of livestock 
distribution…Vegetation features (e.g. total number of valid vegetation cycles with 
peak) also display positive relationships with livestock density (Parente et al., 2025).” 

(2) The observed variation in accuracy (e.g., lower for cattle, higher for horses) 
likely reflects differences in the ecological characteristics and management systems of 
each species. Grazing animals like cattle are typically associated with extensive pastoral 
systems that are more spatially diffuse and environmentally constrained, making them 
more difficult to model accurately. In contrast, horses tend to be concentrated around 
built environments (e.g., stables, equestrian facilities) and are often managed in more 
predictable locations, leading to higher model performance. Similar patterns were also 
found in Ehrmann et al. (2025), where prediction accuracy (measured by R²) was 
significantly higher for horses (R² = 0.530) than for cattle (R² = 0.437). We have 
included this explanation in the updated model accuracy assessment section of the 
manuscript (Lines 234-238): 

“This variation in model performance across livestock species can be partly 
attributed to differences in their spatial distribution patterns and management systems. 
Cattle, as a grazing species, are often raised in extensive and environmentally 
heterogeneous systems, making their spatial patterns more diffuse and harder to predict 



accurately. In contrast, horses are typically managed in more spatially concentrated 
settings, leading to more spatially clustered distributions and better model fit.” 
  



Reviewer #2: 
Comment 1. The methods section lacks clarity in certain areas, particularly regarding 
the stratified sampling approach. The manuscript does not clearly describe how 
stratified sampling was implemented (L140-L146). This information is critical, as it 
directly influences the composition of the training dataset and consequently affects the 
accuracy and reliability of the global predictions. I recommend that the authors provide 
a more detailed explanation of the sampling procedure, including the criteria for 
stratification and how the strata were defined and selected. 
Response: Thanks for the comment. We agree that the stratified sampling strategy plays 
a crucial role in ensuring representative training data and improving model accuracy. 
We have revised the manuscript to clarify the stratification criteria and sampling 
intervals. Specifically, the stratification was based on pixel-level livestock density 
values derived from the recalibrated city-level statistics. Given the wide variation in 
livestock abundance across different species, we adopted species-specific stratification 
intervals. For instance, for ducks, which have high population densities and wide spatial 
variability, we used a stratification interval of 500 heads per grid cell. In contrast, for 
horses, a smaller interval of 1 head was used. Within each stratum, samples were 
randomly selected to ensure sufficient representation across density gradients. We have 
included this information in the revised Methods section (Lines 147-151) accordingly: 

“Given the differences in population size and distribution range among livestock 
species, we adopted species-specific stratification intervals. For example, for ducks, 
whose densities tend to be high and spatially heterogeneous, we used a stratification 
interval of 500 heads per hectare grid cell; for horses, a finer interval of 1 head was 
applied. Each stratum was randomly sampled, and approximately 20,000 training 
samples per year were selected for each livestock category.” 
 
Comment 2. The causal relationships between the predictors and the response variable 
warrant further clarification. In this study, the authors used a range of environmental 
and anthropogenic factors to predict livestock density (Fig 1). For predictors with 
limited historical data, such as population, the authors applied year-2000 values to 
years before 2000 and found that population had little influence. This conclusion seems 
counterintuitive. Unlike wildlife, livestock is more likely to be influenced by human 
management. Therefore, one would expect population density to be an important 
predictor. However, in this study, soil and climate variables were found to be more 
influential (fig 7). This may reflect correlations rather than causal mechanisms. A 
comparison between the spatial patterns of cattle or sheep and population density 
(https://hub-worldpop.opendata.arcgis.com/content/WorldPop::global-1km-
population-total-grid-2000-2020/about) suggests that a strong spatial association 
likely exists. I think that the lack of observed influence in the model may be due to two 
reasons: (1) errors or bias introduced during stratified sampling (as noted in comment 
1); and (2) potential multicollinearity among predictors. If population is indeed an 
important factor, I think the authors to revisit its treatment carefully. In addition, I 
strongly recommend including partial dependence plots or similar visualizations to 
show how each predictor relates to the response variable. 



Response: We appreciate the reviewer’s comment regarding the interpretation of 
predictor influence, particularly the role of population density in livestock distribution 
modeling. We acknowledge that livestock is highly influenced by human activities, 
including population distribution, market access, and infrastructure. However, due to 
the lack of globally available historical population data prior to 2000 at consistent 
resolution, we used the year-2000 WorldPop layer as a proxy for years before 2000. We 
agree that this temporal mismatch could introduce uncertainty, especially in regions 
where population patterns have changed significantly. We have revised the Discussion 
section to clarify this limitation (Lines 290-293): 

“The relatively minor influence of anthropogenic and vegetation features may be 
attributed to spatial correlations between human activity indicators and the suitable 
mask (e.g., impervious surface layers), and the use of temporally static historical data 
before the years of 2000 and 1980.” 

The observed limited contribution of population in our feature importance ranking 
(Fig. 7) may be attributed to population being partly spatially correlated with our 
suitability masks (especially impervious surface). To better illustrate the marginal 
effects of individual predictors and improve interpretability, we have now included 
partial dependence plots (PDPs) for all mapping features and two representative 
livestock types (cattle and ducks), as the reviewer kindly suggested. These new plots 
are added as a supplementary figure (Fig. S1 and Fig. S2), and referenced in the 
Discussion section (Lines 294-305): 

“To further investigate the role of different input features and their influence on 
mapping outcomes, we performed Partial Dependence Plot (PDP) analyses using two 
representative livestock species: cattle and ducks. These species were selected due to 
their differing habitat preferences and spatial distributions, providing complementary 
perspectives on feature importance. The PDP results (Figures S1 and S2) reveal several 
consistent patterns, suggesting common influential factors of livestock distribution. 
Notably, population density, precipitation, and soil moisture show positive associations 
with predicted livestock density for both cattle and ducks. This highlights the 
importance of human activity and water availability in shaping livestock distributions. 
For instance, cattle and ducks both exhibit higher predicted densities in regions with 
greater population, suggesting the influence of demand-side factors such as local 
consumption and infrastructure accessibility. Additionally, elevation and wind speed at 
10 m consistently show negative contributions across both PDPs, indicating a general 
preference for lower-elevation and less windy environments, which are typically more 
suitable for animal husbandry. Vegetation features (e.g. total number of valid vegetation 
cycles with peak) also display positive relationships with livestock density (Parente et 
al., 2025). These PDP results reinforce the rationale for selecting a comprehensive set 
of input features wherever data availability permits.” 



 
Figure S1. Partial dependence plots (PDPs) for cattle mapping in 2015. Features include 
anthropogenic (e.g., population, distance to cities), topographic (elevation, slope), 
climatic (precipitation, temperature, wind), soil (soil moisture), and vegetation 
variables (NDVI, green up, senescence, number of cycles). 

 
Figure S2. Partial dependence plots (PDPs) ducks mapping in 2015. Features include 
anthropogenic (e.g., population, distance to cities), topographic (elevation, slope), 
climatic (precipitation, temperature, wind), and soil (soil moisture). 
 
 
Comment 3. The meaning of the dots in some figures (e.g., figs 4-7) should be clarified 
in the figure captions. 
Response: We have revised the figure captions for Figures 4–7 to explicitly clarify the 
meaning of the dots. Specifically, in Figures 4 and 7, the dots represent correlation 
coefficients (r). In Figure 5, the dots indicate the number of livestock. In Figure 6, the 
dots indicate the pixel-level livestock density. These clarifications are now included in 
the updated figure captions. 
 


