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Note 1: Exclusion of geospatial coordinates as features for Pb concentration, 206Pb/207Pb 

and 208Pb/207Pb models 

 

As briefly mentioned in the main text, geospatial coordinates were initially included as 

features on which to train the Pb concentration, 206Pb/207Pb, and 208Pb/207Pb models. To 

ensure continuity of the data, coordinates were transformed using n-vector transformations of 

latitude (l) and longitude (µ), such that:  

 

𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒	𝐴 = 	 sin(𝜆) 

𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒	𝐵 = 	 sin(𝜇) ∙ cos(𝜆) 

𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒	𝐶 = 	− cos(𝜇) ∙ cos(𝜆) 

 

While the models trained with coordinates returned performances comparable to those of 

models trained without them (Pb concentration: MAPE = 23.6 %, RMSE = 3.81 pmol/kg, R2 

= 0.91; 206Pb/207Pb: MAPE = 0.2 %, RMSE = 0.005, R2 = 0.82; 208Pb/207Pb: MAPE = 0.1 %, 

RMSE = 0.006, R2 = 0.72), global reconstructions of Pb concentrations and isotope 

compositions showed spatial artefacts biased by the inclusion of coordinates. These artefacts 

included sharp transitions from low to high values at adjacent locations, as well as strong 

impacts of coordinate values on the predicted Pb concentrations and isotope compositions. 

These model artefacts could be explained by the very different frequency distributions of 

coordinate values between the models’ training set and prediction dataset, due to the scarcity 

of data and clustering of sampling efforts in areas such as the Atlantic Ocean and North 

Pacific (Fig. 1, main text).  

 

For these reasons, we opted to exclude geospatial coordinates from the list of features on 

which the models were trained.  

 

 

 

 

 

 

 



Note 2: Performance of the Pb concentration, 206Pb/207Pb and 208Pb/207Pb models build 

using the Random Forest algorithm 

 

The same procedure used to develop the Pb concentration, 206Pb/207Pb and 208Pb/207Pb models 

with the XGBoost algorithm (Sect. 2.2 of the article) was also followed to build models based 

on the Random Forest (RF) algorithm, in order to identify the best performing architecture. In 

contrast to XGBoost, the trees in the RF are built all at the same time and only use a random 

subset of training features during the creation of each individual tree. The final prediction of 

the RF algorithm for a regression task is the average of the predictions made by all decision 

trees in the ensemble.  

 

A set of hyperparamters were tuned for all three models, including the number of trees in the 

ensemble (‘n_estimators’), the maximum depth of each tree (‘max_depth’), the minimum 

number of observations in a node for it to split (‘min_samples_split’), the minimum number 

of samples required to be at a leaf node (‘min_samples_leaf’), whether bootstrapping was 

used when building trees (‘bootstrap’), and the maximum number of features considered by 

each tree (‘max_features’). A detailed overview of the hyperparamter space explored and the 

best values for each hyperparameter is provided in Table S1 below.  

 

Compared to XGboost, RF performed overall worse for the Pb concentration and 208Pb/207Pb 

models both on the random test set and the geographic one. Indeed, the best RF Pb 

concentration model performance returned R2 = 0.86, RMSE = 4.97 pmol/kg, and MAPE = 

21.3% on the random test set and R2 = 0.80, RMSE = 5.29 pmol/kg, and MAPE = 19.7% on 

the geographic test set. Similarly, the best RF 208Pb/207Pb model performance was R2 = 0.72, 

RMSE = 0.006, and MAPE = 0.1% on the random test set and R2 = 0.33, RMSE = 0.008, and 

MAPE = 0.002 on the geographic test set. Contrarily, the RF 206Pb/207Pb had an only slightly 

better performance than its XGBoost counterpart. In detail, it had a R2 of 0.81, RMSE of 

0.005, and MAPE of 0.3% on the random test set, and R2 of 0.77, RMSE of 0.005, and 

MAPE of 0.3% on the geographic test set.  

 

Overall, given the much better performance of the XGBoost algorithm for the Pb 

concentration and 208Pb/207Pb models, and comparable performance for the 206Pb/207Pb model, 

we decided to use XGBoost for the development of all final models. 



 

 

Table S1.  Hyperparameter space explored for the Random Forest regression models. Bold values identify the combination of hyperparameters 

that returned the best model performance.

Hyperparameter
bootstrap True False True False True False
n_estimators 400 600 800 1000 1200 400 600 800 1000 1200 400 600 800 1000 1200
max_depth None 10 20 None 10 20 None 10 20
min_samples_split 2 5 10 2 5 10 2 5 10
min_samples_leaf 1 2 4 1 2 4 1 2 4
max_features None sqrt log2 None sqrt log2 None sqrt log2

Pb concentration 206Pb/ 207Pb 208Pb/ 207Pb 
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Figure S1. Location (left) and depth frequency distribution (right) of samples that make up 

the random and geographic test sets for the Pb concentration (top), 206Pb/207Pb (middle), and 
208Pb/207Pb (bottom) models.  

 

 



 
 

Figure S2. Distribution of MAPE and RMSE values for different hyperparameter 

combinations for the Pb concentration (top), 206Pb/207Pb (middle), and 208Pb/207Pb (bottom) 

models.  

 

 



 
Figure S3. Global distribution of Black Carbon AOD at 10 m, 1000 m, 2500 m, and 4000 m. 

Data from CAMS global reanalysis (ECMWF Atmospheric Composition Reanalysis 4; 

EAC4). All depth levels in each 1x1 cell column were assigned the same Black Carbon AOD 

values.  

 

 
Figure S4. Global distribution of seawater temperature [°C] at 10 m, 1000 m, 2500 m, and 

4000 m. Data from the World Ocean Atlas 2018.  

 



 
Figure S5. Global distribution of salinity at 10 m, 1000 m, 2500 m, and 4000 m. Data from 

the World Ocean Atlas 2018.  

 

 

 
Figure S6. Global distribution of dissolved oxygen concentration [µmol/kg] at 10 m, 1000 m, 

2500 m, and 4000 m. Data from the World Ocean Atlas 2018.  

 

 

 



 
Figure S7. Global distribution of dissolved nitrate concentration [µmol/kg] at 10 m, 1000 m, 

2500 m, and 4000 m. Data from the World Ocean Atlas 2018.  

 

 

 

 

 
Figure S8. SHAP values for density for the 206Pb/207Pb model.  

 



 
Figure S9. Global distribution of Dust AOD at 10 m, 1000 m, 2500 m, and 4000 m. Data 

from CAMS global reanalysis (ECMWF Atmospheric Composition Reanalysis 4; EAC4). All 

depth levels in each 1x1 cell column were assigned the same Dust AOD values.  

 

 

 
Figure S10. Global distribution of dissolved silicate concentration [µmol/kg] at 10 m, 1000 

m, 2500 m, and 4000 m. Data from the World Ocean Atlas 2018.  

 



 

Figure S11. Violin plots of Pb concentration distributions in the different ocean basin (top left panel) and within each basin at different depth 

ranges.  The white dashed line in each violin represents the median value, while the dotted lines represent the lower and upper quartiles (Q1 and 

Q3, respectively). 



 

Figure S12. Violin plots of 208Pb/207Pb distributions in the different ocean basin (top left panel) and within each basin at different potential 

density ranges.  The white dashed line in each violin represents the median value, while the dotted lines represent the lower and upper quartiles 

(Q1 and Q3, respectively). 


