Supplementary Information for

Mapping the global distribution of lead and its isotopes in seawater with explainable machine learning

Arianna Olivelli^{1,2,*}, Rossella Arcucci¹, Mark Rehkämper¹, Tina van de Flierdt¹

 ¹ Grantham Institute for Climate Change and the Environment, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
² Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom

*Corresponding author: <u>a.olivelli21@imperial.ac.uk</u>

Keywords:

Lead, lead isotopes, marine geochemistry, machine learning, explainable AI

Note 1: Exclusion of geospatial coordinates as features for Pb concentration, ²⁰⁶Pb/²⁰⁷Pb and ²⁰⁸Pb/²⁰⁷Pb models

As briefly mentioned in the main text, geospatial coordinates were initially included as features on which to train the Pb concentration, ${}^{206}\text{Pb}/{}^{207}\text{Pb}$, and ${}^{208}\text{Pb}/{}^{207}\text{Pb}$ models. To ensure continuity of the data, coordinates were transformed using *n*-vector transformations of latitude (λ) and longitude (μ), such that:

Coordinate $A = \sin(\lambda)$ Coordinate $B = \sin(\mu) \cdot \cos(\lambda)$ Coordinate $C = -\cos(\mu) \cdot \cos(\lambda)$

While the models trained with coordinates returned performances comparable to those of models trained without them (Pb concentration: MAPE = 23.6 %, RMSE = 3.81 pmol/kg, $R^2 = 0.91$; ²⁰⁶Pb/²⁰⁷Pb: MAPE = 0.2 %, RMSE = 0.005, $R^2 = 0.82$; ²⁰⁸Pb/²⁰⁷Pb: MAPE = 0.1 %, RMSE = 0.006, $R^2 = 0.72$), global reconstructions of Pb concentrations and isotope compositions showed spatial artefacts biased by the inclusion of coordinates. These artefacts included sharp transitions from low to high values at adjacent locations, as well as strong impacts of coordinate values on the predicted Pb concentrations and isotope compositions. These model artefacts could be explained by the very different frequency distributions of coordinate values between the models' training set and prediction dataset, due to the scarcity of data and clustering of sampling efforts in areas such as the Atlantic Ocean and North Pacific (Fig. 1, main text).

For these reasons, we opted to exclude geospatial coordinates from the list of features on which the models were trained.

Note 2: Performance of the Pb concentration, ²⁰⁶Pb/²⁰⁷Pb and ²⁰⁸Pb/²⁰⁷Pb models build using the Random Forest algorithm

The same procedure used to develop the Pb concentration, ²⁰⁶Pb/²⁰⁷Pb and ²⁰⁸Pb/²⁰⁷Pb models with the XGBoost algorithm (Sect. 2.2 of the article) was also followed to build models based on the Random Forest (RF) algorithm, in order to identify the best performing architecture. In contrast to XGBoost, the trees in the RF are built all at the same time and only use a random subset of training features during the creation of each individual tree. The final prediction of the RF algorithm for a regression task is the average of the predictions made by all decision trees in the ensemble.

A set of hyperparamters were tuned for all three models, including the number of trees in the ensemble ('*n_estimators*'), the maximum depth of each tree ('*max_depth*'), the minimum number of observations in a node for it to split ('*min_samples_split*'), the minimum number of samples required to be at a leaf node ('*min_samples_leaf*'), whether bootstrapping was used when building trees ('*bootstrap*'), and the maximum number of features considered by each tree ('*max_features*'). A detailed overview of the hyperparamter space explored and the best values for each hyperparameter is provided in Table S1 below.

Compared to XGboost, RF performed overall worse for the Pb concentration and ²⁰⁸Pb/²⁰⁷Pb models both on the random test set and the geographic one. Indeed, the best RF Pb concentration model performance returned $R^2 = 0.86$, RMSE = 4.97 pmol/kg, and MAPE = 21.3% on the random test set and $R^2 = 0.80$, RMSE = 5.29 pmol/kg, and MAPE = 19.7% on the geographic test set. Similarly, the best RF ²⁰⁸Pb/²⁰⁷Pb model performance was $R^2 = 0.72$, RMSE = 0.006, and MAPE = 0.1% on the random test set and $R^2 = 0.33$, RMSE = 0.008, and MAPE = 0.002 on the geographic test set. Contrarily, the RF ²⁰⁶Pb/²⁰⁷Pb had an only slightly better performance than its XGBoost counterpart. In detail, it had a R² of 0.81, RMSE of 0.005, and MAPE of 0.3% on the random test set, and R² of 0.77, RMSE of 0.005, and MAPE of 0.3% on the random test set.

Overall, given the much better performance of the XGBoost algorithm for the Pb concentration and ²⁰⁸Pb/²⁰⁷Pb models, and comparable performance for the ²⁰⁶Pb/²⁰⁷Pb model, we decided to use XGBoost for the development of all final models.

Hyperparameter	Pb concentration						²⁰⁶ Pb/ ²⁰⁷ Pb						²⁰⁸ Pb/ ²⁰⁷ Pb					
bootstrap	True	False					True	False					True	False				
n_estimators		400	600	800	1000	1200		400	600	800	1000	1200		400	600	800	1000	1200
max_depth	None		10	20			None		10	20			None		10	20		
min_samples_split		2	5	10				2	5	10				2	5	10		
min_samples_leaf		1	2	4				1	2	4				1	2	4		
max_features	None	sqrt	log2				None	sqrt	log2	2			None	sqrt	log	,2		

Table S1. Hyperparameter space explored for the Random Forest regression models. Bold values identify the combination of hyperparametersthat returned the best model performance.

Figures

Figure S1. Location (left) and depth frequency distribution (right) of samples that make up the random and geographic test sets for the Pb concentration (top), ²⁰⁶Pb/²⁰⁷Pb (middle), and ²⁰⁸Pb/²⁰⁷Pb (bottom) models.

Figure S2. Distribution of MAPE and RMSE values for different hyperparameter combinations for the Pb concentration (top), ²⁰⁶Pb/²⁰⁷Pb (middle), and ²⁰⁸Pb/²⁰⁷Pb (bottom) models.

Figure S3. Global distribution of Black Carbon AOD at 10 m, 1000 m, 2500 m, and 4000 m. Data from CAMS global reanalysis (ECMWF Atmospheric Composition Reanalysis 4; EAC4). All depth levels in each 1x1 cell column were assigned the same Black Carbon AOD values.

Figure S4. Global distribution of seawater temperature [°C] at 10 m, 1000 m, 2500 m, and 4000 m. Data from the World Ocean Atlas 2018.

Figure S5. Global distribution of salinity at 10 m, 1000 m, 2500 m, and 4000 m. Data from the World Ocean Atlas 2018.

Figure S6. Global distribution of dissolved oxygen concentration $[\mu mol/kg]$ at 10 m, 1000 m, 2500 m, and 4000 m. Data from the World Ocean Atlas 2018.

Figure S7. Global distribution of dissolved nitrate concentration $[\mu mol/kg]$ at 10 m, 1000 m, 2500 m, and 4000 m. Data from the World Ocean Atlas 2018.

Figure S8. SHAP values for density for the ²⁰⁶Pb/²⁰⁷Pb model.

Figure S9. Global distribution of Dust AOD at 10 m, 1000 m, 2500 m, and 4000 m. Data from CAMS global reanalysis (ECMWF Atmospheric Composition Reanalysis 4; EAC4). All depth levels in each 1x1 cell column were assigned the same Dust AOD values.

Figure S10. Global distribution of dissolved silicate concentration [µmol/kg] at 10 m, 1000 m, 2500 m, and 4000 m. Data from the World Ocean Atlas 2018.

Figure S11. Violin plots of Pb concentration distributions in the different ocean basin (top left panel) and within each basin at different depth ranges. The white dashed line in each violin represents the median value, while the dotted lines represent the lower and upper quartiles (Q1 and Q3, respectively).

Figure S12. Violin plots of ²⁰⁸Pb/²⁰⁷Pb distributions in the different ocean basin (top left panel) and within each basin at different potential density ranges. The white dashed line in each violin represents the median value, while the dotted lines represent the lower and upper quartiles (Q1 and Q3, respectively).