

1 **Harmonised boundary layer wind profile dataset from six ground- 2 based doppler wind lidars in a transect across Paris, France**

3 William Morrison¹, Dana Looschelders¹, Jonnathan Céspedes², Bernie Claxton³, Marc-Antoine
4 Drouin⁴, Jean-Charles Dupont⁵, Aurélien Faucheux⁶, Martial Haeffelin⁷, Christopher C. Holst⁸,
5 Simone Kotthaus², Valéry Masson⁹, James McGregor³, Jeremy Price³, Matthias Zeeman¹, Sue
6 Grimmond¹⁰, Andreas Christen¹

7 ¹Chair of Environmental Meteorology, Institute of Earth and Environmental Sciences, Faculty of Environment and
8 Natural Resources, University of Freiburg, Freiburg, 79085, Germany

9 ²Laboratoire de Météorologie Dynamique (LMD-IPSL), École Polytechnique, Institut Polytechnique de Paris,
10 Palaiseau CEDEX, France

11 ³Met Office, Exeter, EX1 3PB, UK

12 ⁴LMD/IPSL, École Polytechnique, Institut Polytechnique de Paris, ENS, Université PSL, Sorbonne Université, CNRS,
13 Palaiseau France

14 ⁵Institut Pierre Simon Laplace (IPSL), Université Versailles Saint-Quentin-en Yvelines, Palaiseau Cedex, France

15 ⁶CEREA, ENPC, EDF R&D, Institut Polytechnique de Paris, Champs-sur-Marne, France

16 ⁷Institut Pierre Simon Laplace (IPSL), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau
17 CEDEX, France

18 ⁸Institute of Meteorology and Climate Research – Atmospheric Environmental Research (IMK-IFU), Karlsruhe
19 Institute of Technology (KIT), 82467, Germany

20 ⁹Centre National de Recherches Météorologiques, University of Toulouse, Toulouse, 31057, France

21 ¹⁰Department of Meteorology, University of Reading, Reading, RG6 6ET, United Kingdom

22 *Correspondence to:* Andreas Christen (andreas.christen@meteo.uni-freiburg.de)

23 **Abstract.** Doppler wind lidars (DWL) offer high-resolution wind profile measurements that are valuable for
24 understanding atmospheric boundary layer (ABL) dynamics. Here six ground-based DWL, deployed in a multi-
25 institutional effort along a 40 km transect through the centre of Paris (France), are used to retrieve horizontal wind
26 speed and direction through the ABL at 18 - 25 m vertical and 1- 60 min temporal resolution. Data are available for
27 June 2022 – March 2024 (three DWL) and two Intensive Observation Periods (six DWL) across 9 weeks in September
28 2023 – December 2023. Data from all sensors are harmonised in terms of quality control, file format, as well as
29 temporal and vertical resolutions. The quality of this DWL dataset is evaluated against *in-situ* measurements at the
30 Eiffel Tower and radiosonde profiles. This unique, spatially dense, open dataset will allow urban boundary layer
31 dynamics to be explored in process-studies, and is further valuable for the evaluation of high-resolution weather,
32 climate, inverse and air pollution models that resolve city-scale processes.

33 1. Introduction

34 There is a growing need for atmospheric observation networks that capture urban weather and climate phenomena at
35 high spatial and temporal resolutions (Grimmond et al., 2010; Baklanov et al., 2018). With some numerical weather
36 prediction (NWP) models now having horizontal grid-resolutions of $O1$ km globally (Wedi et al. 2020) and of the
37 $O0.1$ km regionally (Lean et al., 2019), cities are increasingly well captured by these simulations. In turn, this requires
38 a greater density of observations in order to understand the spatial variability across a city that could be expected (e.g.
39 Fenner et al. 2024). Further, as cities look towards sustainable, net-zero futures, high spatial and temporal resolution

40 wind observations are crucial when considering the dispersion of urban pollutants including for inverse modelling of
41 greenhouse gas emissions at the city scale (e.g. Staufer et al., 2016; Che et al., 2022; Lian et al., 2023), building
42 construction and wind gust risk (Kent et al., 2017), wind energy yields (Stathopoulos et al., 2018) and urban-scale
43 heat exposure (e.g. Lemonsu et al., 2024).

44
45 Observations of wind are challenging to conduct in cities due to the nature of the roughness elements. A standard
46 World Meteorological Organization (WMO) in-situ wind measurement at 10 m above ground level (Liu et al., 2023;
47 WMO, 2024) typically is located within the roughness sublayer and hence directly influenced by the surrounding
48 roughness elements (Lane et al., 2013). With ground-based Doppler wind lidars (DWL) commercially available, high
49 resolution wind profiles through the atmospheric boundary layer (ABL) are possible (Kotthaus et al., 2023).

50
51 DWL wind profiles have been used to evaluate urban roughness parameterisations (e.g. Kent et al., 2017), wind gust
52 parametrisations (e.g. Kent et al., 2018), urban NWP (e.g. Fenner et al., 2024; Lean et al., 2019; Pentikäinen et al.,
53 2023) and large eddy simulation (LES) of urban wind fields under neutral atmospheric conditions (e.g. Filioglou et
54 al., 2022). These data have resolved fundamental ABL processes such as low-level jets in urban areas (Barlow et al.,
55 2015; Céspedes et al., 2024; Fenner et al., 2024; Zeeman et al., 2022) and tall building wakes (Theeuwes et al., 2024)
56 that are challenging to measure. As model complexity and resolution increase, well-documented observations are
57 needed from multiple locations across the urban-rural continuum and under different synoptic conditions (i.e. long,
58 seasonally varying time series for various land-use types and different urban densities), in standardised, accessible
59 data formats.

60
61 In this paper we present a harmonised dataset of simultaneously observed horizontal wind speed and direction from a
62 transect of six DWL through Paris operating between 2022 – 2024. The harmonisation process involves application
63 of a wind retrieval algorithm to raw instrument data files, aggregation of data to a common resolution (time and height
64 dimensions), and application of a unified quality control procedure.

65
66 Beyond regional applications, the six-DWL transect can help elucidate potential urban effects across Paris by
67 capturing urban-rural interactions and intra-urban variability. Paris is inland with relatively small orographic
68 variability, surrounded by a fairly homogeneous rural area. A number of projects are set to benefit from such
69 observations, including the ICOS-cities project aiming at measuring city-scale emissions (Christen et al., 2023), the
70 CATRINE activities improving inverse modelling of city-scale emissions (Che et al., 2024), the PAris region urbaN
71 Atmospheric observations and models for Multidisciplinary rEsearch (PANAME) initiative framework (Haeffelin et
72 al., 2023), the ACROSS air pollution campaign (Cantrell and Michoud, 2022), the Paris 2024 Olympics Research
73 Development Project (RDP) (https://www.umr-cnrm.fr/RDP_Paris2024), the CORDEX URBan environments and
74 Regional Climate Change (URB-RCC, Langendijk et al., 2024) and the *urbisphere* project (Fenner et al., 2024;
75 Morrison et al., 2023).

76 **2. Doppler wind lidar measurement principles**

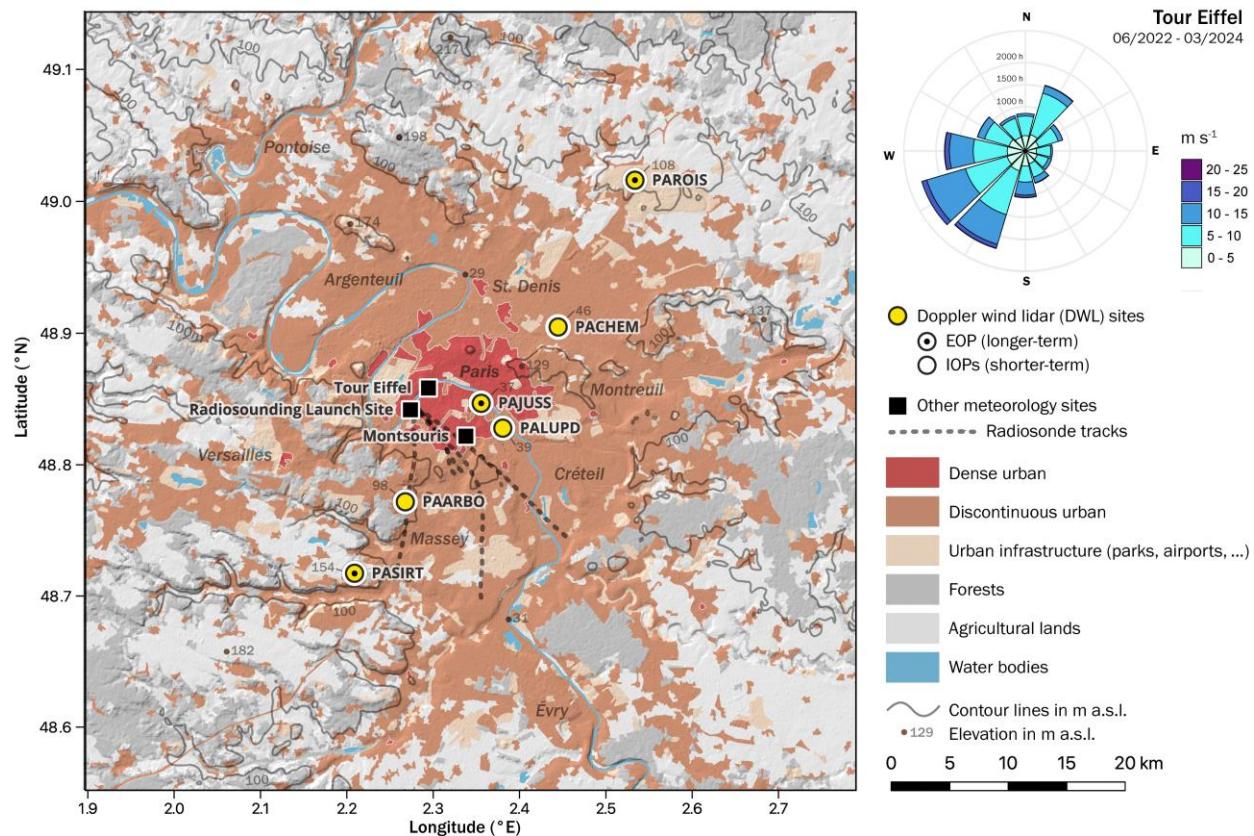
77 **2.1. Theoretical background**

78 Ground-based DWL have a laser that emits light at a specified wavelength into the atmosphere. This light propagates
79 through the atmosphere and scatters after interaction with atmospheric aerosols and cloud droplets. The motion of
80 aerosols along the beam imparts a Doppler shift on the scattered light, causing the return signal to be shifted in
81 frequency relative to the emitted pulse (Liu et al., 2019). The magnitude of this frequency shift directly relates to the
82 motion of the particles that scattered the light back, which in turn is associated with the radial velocity: the component
83 of the wind along the line of sight at a given distance (range) from the DWL. Thousands of pulses (pulse integration
84 count) are needed to be able to determine a statistically weighted velocity. The maximum range is typically up to 12
85 km but can vary by instrument manufacturer, model or serial number.

86 **2.2. Scan configurations**

87 DWLs retrieve horizontal and vertical wind components in the ABL through various carefully designed scanning
88 configurations with the following parameters: azimuth (θ) and zenith (ϕ) emission angles of the laser, number of
89 unique (θ, ϕ) angles within one complete scan, range resolution at which the atmosphere is probed along the laser
90 beam (range gate resolution, m) which – along with any oversampling – determines the maximum vertical resolution
91 (Held and Mann, 2018), and temporal resolution. There are two scan configurations used in this dataset:

- 92 • *Velocity Azimuth Display* (VAD) uses beams at one fixed zenith angle that rotates around typically 6 - 24 azimuth
93 angles. The measured radial velocities across all azimuth angles for a given range gate are used to retrieve the
94 three wind components by e.g. sine wave fitting (Browning and Wexler, 1968; Weitkamp, 2005) or by least-
95 squares fitting in matrix form (Päschke et al., 2015; Teschke and Lehmann, 2017). The average horizontal wind
96 direction and speed for the conical scan geometry are then calculated from the wind components.
- 97 • *Doppler Beam Swinging* (DBS) (Röttger et al., 1978), a simplified VAD with fewer azimuth angles, allows faster
98 wind profile sampling rates (Rahlves et al., 2022; Wildmann et al., 2020). The fewer azimuth samples (typically
99 4 cardinal and one vertical direction are sampled in one full DBS scan) allows for higher temporal resolution
100 retrievals in an effort to capture unsteady flows (e.g. in urban areas) more completely (Lane et al., 2013).


101 **3. Methods**

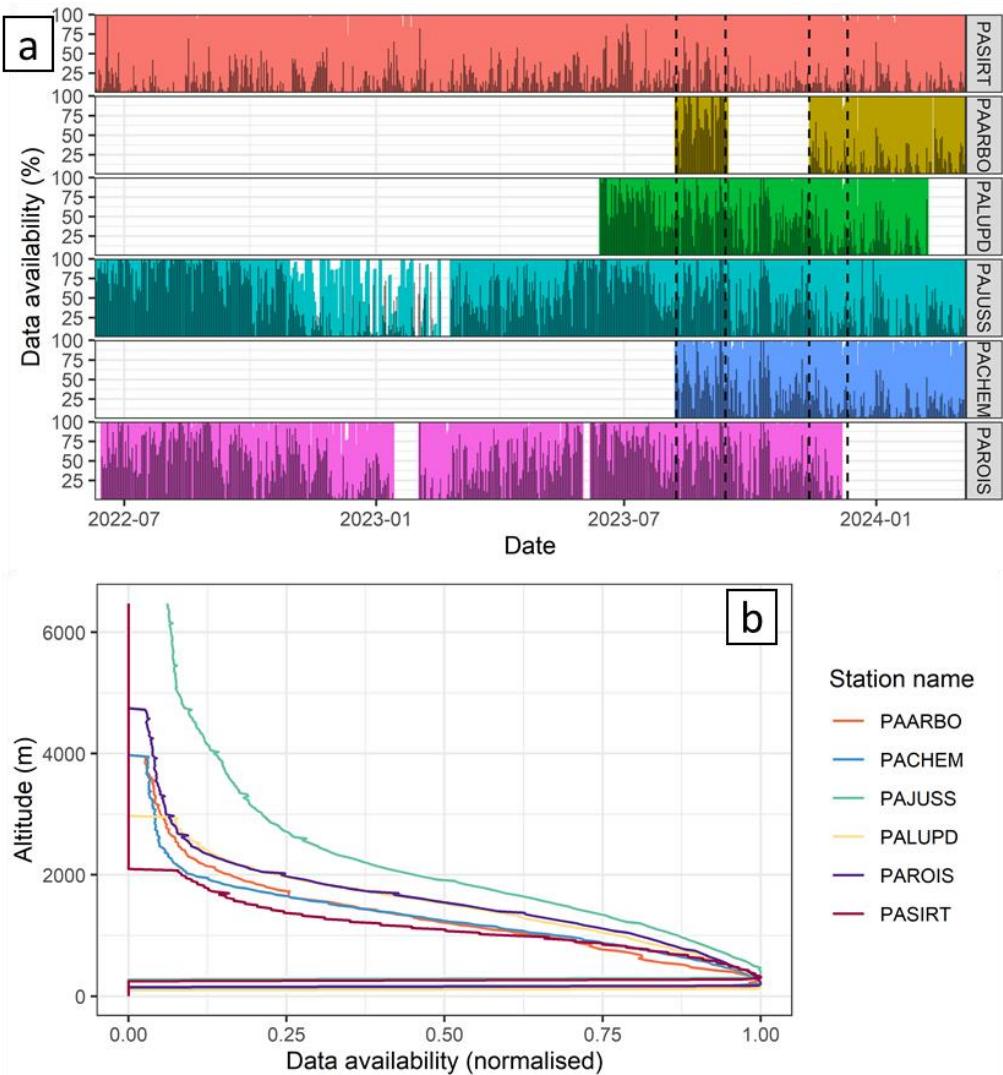
102 **3.1. Measurement stations**

103 Six DWLs were located along a 40 km linear transect from SW to NE (aligned 250° to 35°, from N) in the Paris region
104 (Table 2, Figure 1), passing through the City of Paris. Each measurement station is identified by a six-letter code, with
105 the first two letters ("PA") indicating Paris for all. Instruments were located on either high-rise (PACHEM, PAJUSS,
106 PALUPD) or low-rise (PAROIS, PASIRT) rooftops, or at ground level (PAARBO). These stations are part of a multi-
107 institutional network undertaking boundary layer profiling, as well as radiative and sensible heat flux measurements
108 during the campaign period of 2022 – 2024 for multiple projects with the campaign centre of operations at the Site
109 Instrumental de Recherche par Télédétection Atmosphérique (SIRTA) long-term observatory (Haeffelin et al., 2005).

110 **3.2. Network design**

111 The most south-westerly measurement station (PASIRT, Figure 1), is located at the SIRTA observatory (20 km from
 112 Paris). The land cover fraction within a 5 km radius (Table 1) is predominantly institutional developments (class:
 113 discontinuous urban, 41 % cover), agriculture (26 %) and forest (11 %) on a plateau about 160 m asl (above sea level)
 114 (Haeffelin et al., 2005). The transect passes through the Paris region's suburbs (PAARBO) with a majority
 115 discontinuous urban land cover (64 %) and a surrounding park (21 % forest). The centre (PAJUSS, PALUPD) and
 116 central-NE (PACHEM) of Paris have predominantly (dis)continuous urban fabric with Aéroport Roissy-Charles-de-
 117 Gaulle (PAROIS) 23 km NE of Paris uniquely sited at an airport surrounded mainly by agricultural fields (66 %
 118 airport, road and rail; 26 % agricultural). Stations are expected to be upwind, within and downwind of the Paris built-
 119 up area (Figure 1). The transect layout is aligned with the predominate south-westerly wind directions and the less
 120 common north-easterly (Figure 1) flow, where most low-level jets have been observed (Céspedes et al., 2024).
 121 The Paris topography (Figure 1, lines) is defined by the River Seine basin at 20 m a.s.l in the city centre, and the
 122 surrounding plateaus at up to 217 m asl (within Figure 1 extent). The City of Paris (Figure 1, dense urban) topography
 123 has 20 m – 130 m asl variation and PASIRT is on the ~160 m asl Paris-Saclay Plateau (Céspedes et al., 2024).

128 **Table 1. Land-cover fractions in a 5-km radius around the six DWL sites for simplified classes based on the Copernicus**
 129 **CORINE Land Cover classification. Original CORINE land cover classes considered in each line item are given in brackets**
 130 **(European Environment Agency, 2020).**


Station	PAROIS	PACHEM	PALUPD	PAJUSS	PAARBO	PASIRT
Continuous urban fabric (111)	0%	0%	42%	78%	0%	0%
Discontinuous urban fabric (112)	3%	59%	29%	2%	64%	41%
Industrial, commercial, construction sites (121, 133)	5%	23%	11%	6%	5%	12%
Airports, road and rail networks (122, 124)	66%	10%	7%	6%	0%	0%
Green urban areas, sport and leisure facilities (141)	0%	7%	7%	5%	9%	9%
Agricultural lands (211, 231, 242)	26%	1%	0%	0%	0%	26%
Forests (311)	1%	0%	0%	0%	21%	11%
Water bodies (511)	0%	0%	3%	3%	0%	0%

131

132 **3.3. Operation periods**

133 The dataset, covering July 2022 to March 2024, consists of three main periods:

- 134 1. **Extensive observation period (EOP) 14/06/2022 – 31/03/2024.** The EOP objective is to capture a wide range
 135 of synoptic and seasonal weather conditions with the trade-off being a reduced, coarser spatial network of three
 136 DWLs with concurrent observations at the city centre (PAJUSS) and transect ends (PASIRT and PAROIS).
 137 PASIRT is the long-term reference station operating since 06/2009 (Haeffelin et al., 2005) (Figure 2). The
 138 PAROIS DWL long-term deployment was decommissioned on 11th December 2023 (Table 4).
- 139 2. During two **Intensive observation periods (IOP)** all six DWL have concurrent data available. **IOP1 08/08/2023**
 140 – **13/09/2023** has a range of late summer conditions, including an air pollution episode from 05/09/2023 to
 141 08/09/2023 under south-easterly anticyclonic conditions. **IOP2 (13/11/2023 – 11/12/2023)** covers late autumn to
 142 early winter conditions, with predominantly westerly cyclonic flow. The denser network allows comparison to
 143 the EOP instruments, and observation of intra-urban variability. The three additional stations are deployed in the
 144 city centre (PALUPD) and between the city centre and transect edges (PAARBO, PACHEM). Between the two
 145 IOPs, the PAARBO sensor was down (13/09/2023 - 13/11/2023, Figure 2a). IOP2 ends when PAROIS is
 146 decommissioned, although five systems continued operation until Feb 2024.

149 **Figure 2:** Data availability for (a) the whole extensive observation period (EOP) and intensive observation periods (IOP1 and
150 IOP2) by station (ordered from north-east to south-west) with harmonised daily data availability as a % of maximum possible data
151 available at 300 m agl (colour) and 1300 m agl (grey), and (b) by height (altitude) with normalised availability relative to the gate
152 with maximum availability. The near-horizontal lines at lower altitudes indicate low/no data for the first range gates.

153 **Table 2:** Station locations with Doppler wind lidar sensor height (instruments details, Table 4), terrain altitude (height above sea
154 level) based on WGS84 EGM96 Geoid determined using Google Earth Pro v7.3.6.9796 and 3D building heights (above ground
155 level). Site owners include : Laboratoire Atmosphères et Observations Spatiales (LATMOS), Laboratoire Interuniversitaire des
156 Systèmes Atmosphériques (LISA) and Site Instrumental de Recherche par Télédétection Atmosphérique (SIRTA) an Institut Pierre-
157 Simon Laplace (IPSL) observatory dedicated to cloud and aerosol research. Regional location given relative to PAJUSS as the city
158 centre (CC) reference location.

Station code	Full station name	Lat (°N), Lon (°E)	Terrain altitude (m asl)	Instrument altitude (m asl)	Instrument height (m agl)	Siting detail: Mounting Level Building Type Site Owner/operator Site Name/ID	Operation period (DD/MM/20YY)	Regional location
PAROIS	Aéroport Roissy-Charles-de-Gaulle	49.0160, 2.53366	108	112	4	Roof: 2 storey Météo-France ROISSY site WMO ID 07157	14/06/22 – 11/12/23	Airport 23 km North East of CC

PACHEM	Chemin Vert Bobigny	48.9046, 2.44470	46	98	52	Roof: 19 storey residential building	06/08/23 – 04/03/24	Suburbs 10 km North East of CC
PAJUSS	Tour Zamansky, Jussieu	48.8469, 2.3555	37	125	88	Roof: 26 storey institutional building LATMOS, Sorbonne University QUALAIR supersite	14/-06/2022 – 30/11/2024	Inner CC
PALUPD	LISA Université Paris Diderot	48.8278, 2.38064	39	65	26	Roof: 8 storey LISA University building (Foret et al., 2022)	29/11/22 – 07/02/24	
PAARBO	Arboretum de la Vallée-aux-Loups	48.7717, 2.26769	98	99	1	Ground Arboretum maintenance yard	27/07/23 – 05/03/24	Suburbs 10 km South West of CC
PASIRT	SIRTA, IPSL, École Polytechnique	48.7173, 2.20887	154	154	4.5	Roof single storey: SIRTA, Laboratoire de Météorologie Dynamique (Dupont et al., 2016; Haeffelin et al., 2005)	01/2011 – present	Suburbs/rural 18 km South West of CC

159

160 **3.4. Instrument models and measurement locations**

161 The harmonised dataset includes observations from four different DWL instrument models (Table 3). No cross-
 162 calibration between co-located instruments was conducted due to logistical challenges in co-locating long-term EOP
 163 instruments with IOP instruments, instrument maintenance delays, and the prioritisation of maximising IOP data
 164 availability.

165 As each instrument has a wide range of adjustable settings, this information is part of the instrument “deployment”
 166 data (Table 4), which includes details such as physical positioning within a station, software version, and scanning
 167 strategy.

168

169 **Table 3:** Doppler wind lidar models from different manufacturers used to collect the observational datasets. Note Halo Photonics
 170 was acquired by the Lumibird group (Lannion, France) at the end of December 2019. Refer to Table 4 for specific instrument
 171 deployment details. *The maximum programmable range and not necessarily the maximum range for valid radial velocity
 172 retrievals. **StreamLine radial wind accuracy derived from **Newsom and Krishnamurthy (2022)**.

Manufacturer	Model	Serial number	Detection bandwidth ($\pm, \text{m s}^{-1}$)	Doppler velocity resolution (m s^{-1})	Radial wind accuracy (m s^{-1})	Wavelength (μm)	Maximum range* (m)
Halo Photonics	StreamLine	204 (METEK 0214088635)	38	0.07644	0.1 **	1.55	12006
Halo Photonics	StreamLine	175 (METEK 0213098255)	38	0.07644	0.1	1.55	12006
Halo Photonics	StreamLine	26	19.4	0.0191	0.1	1.55	3006
Halo Photonics	StreamLine XR	156	19.4	0.0382	0.1	1.55	12006
Halo Photonics	StreamLine	30	19.4	0.0382	0.1	1.55	4800
Vaisala	WindCube WLS70	10	30	0.2	0.3	1.543	2000
Vaisala	WindCube Scan 400S	WCS000243	30	unavailable	0.1	1.54	6750

173

174 **3.4.1. Halo Photonics StreamLine instruments and deployments**

175 Five Halo Photonics (now Lumibird group, Lannion, France) StreamLine DWLs are used (Table 3). The StreamLines
176 report a signal-to-noise ratio $\text{SNR} = S / N$, with S the average signal power and N the average noise power, with $\text{SNR} = 0$ no signal (Päschke et al., 2015). StreamLine XR (at PAARBO) has better SNR and an extended range, compared
177 to the non-XR StreamLine (Le et al., 2024) (stations PALUPD, PAARBO, PACHEM, PAROIS). The StreamLine's
178 rotating scanner head allows full hemispherical coverage. These sensors have previously been deployed in urban areas
179 (e.g. Fenner et al., 2024; Lane et al., 2013; Theeuwes et al., 2024; Yim, 2020a; Zeeman et al., 2022) often in multi-
180 instrument campaigns. METEK GmbH, Elmshorn, Germany configured the hardware for two instruments (Table 3,
181 serial number).

183
184 VAD scans configured on each instrument computer use scan schedule v14a.vi software and daily schedule (.dss)
185 files. Each VAD scan has 12 equally spaced azimuth points ($\Delta\theta = 30^\circ$) at $\varphi=15^\circ$ with $1.4 \text{ min} \pm 0.1 \text{ min}$ duration,
186 repeating every 10 min at rounded intervals (e.g. 12:00, 12:10, 12:20, ...) except for serial number (SN) 30 (at
187 PAROIS) prior to 12th July 2022 that had hourly 6-point VAD. Between VAD scans the instruments stare vertically
188 for a duration of $8.6 \pm 0.1 \text{ min}$. DWL SN 204 (at PALUPD) had a scan schedule configuration error between Nov
189 2022 – Jun 2023, which led to the VAD data being corrupted and unusable for the derivation of wind direction and
190 wind speed.

191
192 The instrument pitch and roll were levelled to 0° ($\pm 0.1^\circ$) using the internal inclinometers and the instrument bearing
193 determined using a known hard target. As PAARBO had no hard targets available, the instrument was aligned parallel
194 to a courtyard wall with true north determined using Google Earth Pro version 7.3.6.9796 imagery.

195 **3.4.2. WindCube Scan 400S (w400S) instrument and deployment**

196 A Vaisala Oyj (Vantaa, Finland) WindCube Scan 400S SN WCS000243 (hereafter “w400S”) was deployed at
197 PAJUSS. Some subsets of the w400S data included here are analysed by Céspedes et al. (2024). Similar Windcube
198 Scan models have been used in other urban settings (e.g. Windcube 100S, He et al. 2021).

199 The w400S has lower spatial resolution than the StreamLine sensor with a first range at 150 m (here $\sim 45 \text{ m}$ for
200 StreamLine, Table 5).

201 During this w400S deployment, from 1st June 2022 to 31st May 2024 (Table 4) at PAJUSS (Table 2), the laser pulse
202 configuration had a spatial resolution of 75 m but the resolution of the final product is increased to 25 m through
203 oversampling in the manufacturer retrieval algorithm. A blind zone with no wind retrievals spans over the first two
204 measurement gates (150 m). The w400S has a rotating scanner head. Horizontal wind is retrieved by the instrument
205 manufacturer's firmware using a five-point DBS scan (one vertical point $\varphi=0^\circ$ and one per cardinal direction at $\varphi=15^\circ$)
206 taking $\sim 15 \text{ s}$ based on a 1 s accumulation time per line of sight and 2 s between scan points. The w400S is aligned to
207 true north using a hard target with a $\pm 2^\circ$ accuracy (Céspedes et al., 2024).

208 **3.4.3. Vaisala WindCube WLS70 instrument and deployment**

209 A Vaisala Oyj WindCube WLS70 SN 10 (hereafter “WLS70”) was deployed at PASIRT (Table 2) throughout the
210 EOP. The WLS70 has a fixed 4-point DBS scan and 50 m spatial resolution (Cariou et al., 2009). Data included here
211 are for 14th June 2022 – 31st March 2024 (Figure 2). As the instrument was neither moved nor modified, there is one
212 deployment (Table 4). Subsets of the data have been formally analysed (e.g. Dupont et al., 2016; Foret et al., 2022) as
213 the instrument is part of the long-term SIRTA observatory (Haeffelin et al., 2005).

214
215
216
217 **Table 4:** Overview of Doppler wind lidar data availability by sensor deployments for each measurement configuration, with range
gate (RG) information. The w400S range gates (*) have 75 m resolution with on-board oversampling to give display resolution of
25 m. Instrument bearing corrections (clockwise from true north) are applied to both raw and final harmonised data. Number (#) of rays and range gates used are indicated.

Station code	SN	Start date DD/MM/YY	End date DD/MM/YY	# RG	RG length (m)	Bearing (°) correction (raw/final)	VAD pulse integration count	Horizontal wind sample rate (s)	Horizontal wind scan type and zenith (ϕ) angle: (# of rays per scan)	Focus (m)	Comments
PAARBO	156	07/08/23	13/09/23	223	18	9 / 9	50000	600	VAD 15° (12)	Inf	
PAARBO	204	13/11/23	05/03/24	223	18	9 / 9	50000	600	VAD 15° (12)	2000	
PACHE M	175	06/08/23	04/03/24	223	18	88 / 92.5	50000	600	VAD 15° (12)	Inf	
PAJUSS	243	04/10/22	29/10/22	265	25*	0 / 0		2 s for 720 s, → 480 s other scans	DBS 15° (5)		
PAJUSS	243	29/10/22	24/02/23	265	25*	0 / 0		2 s for 720 s, followed by 480 s of other scans	DBS 15° (5)		Deployment: low laser power, typically only wind retrievals at cloud base
PAJUSS	243	16/03/23	31/03/24	265	25*	0 / 0		2 s for 720 s interval, followed by 480 s of other scans	DBS 15° (5)		Laser replaced; software updated
PAJUSS	243	14/06/22	04/10/22	265	25*	0 / 0		2 s for 720 s interval, followed by up to 480 s of other scans	DBS 15° (5)		Instrument bearing precision $\pm 2^\circ$ (Céspedes et al. 2024). Instrument not moved in subsequent deployments
PALUPD	26	13/06/23	07/02/24	167	18	330 / 328	50000	600	VAD 15° (12)	500	
PAROIS	30	14/06/22	22/06/22	200	24	212 / 207	15000	1800	VAD 15° (6)	Inf	Instrument default VAD scan
PAROIS	30	22/06/22	08/08/22	200	24	212 / 207	15000	3600	VAD 15° (6)	Inf	6-point VAD scan sample rate reduced allowing other scans
PAROIS	30	08/08/22	07/12/22	200	24	212 / 207	30000	3600	VAD 15° (6)	Inf	Pulses integration count increased to improve signal-to-noise ratio
PAROIS	30	07/12/22	11/12/23	200	24	212 / 207	30000	600	VAD 15° (12)	Inf	Sample rate not consistent on each hour (HH:10, HH:20, ...)
PASIRT	10	14/06/22	31/03/24	40	50	0 / 0		2	DBS 15° (4)		

219 **3.5. Data processing levels and quality control (QC) flags**

220 The harmonisation process distinguishes between four levels of data. *Raw* data are those saved to the measurement
221 device directly after each instantaneous or internally aggregated measurement with no post-processing or QC steps.
222 *Level 1 (L1)* data have horizontal wind retrievals calculated from *raw*. *L1* may include manufacturer- and instrument-
223 specific QC steps and thresholds. *L2* has non-instrument specific QC and associated flags. *L3* is the harmonised,
224 published data product and is the aggregation of *L2* to a common resolution (time and height dimensions).

225
226 Quality control (QC) and data availability are documented in the harmonised dataset using four Boolean QC flags:

227 1) *flag_low_signal_warn*: signal low enough for retrieval to be suspect. Values not rejected but retrieval should
228 be used with caution.

229 2) *flag_low_signal_removed*: signal too low and retrieval is rejected.

230 3) *flag_suspect_retrieval_warn*: retrieval result is suspect and flagged (unrelated to *flag_low_signal*). Retrieval
231 result should be used with caution.

232 4) *flag_suspect_retrieval_removed*: retrieval result is erroneous and flagged (unrelated to *flag_low_signal*).
233 Retrieval result is rejected.

234 The flag value is 1 when the respective condition is satisfied.

235
236 Presented in the following subsections are instrument model-specific thresholds and processing steps for calculation
237 of vertical profiles of horizontal wind QC flags.

238 **3.6. Pre-harmonisation steps: data collection, wind retrieval processing, quality control (QC)**

239 The raw data samples collected by the DWL instruments are automatically uploaded to secure remote data archives
240 (Zeeman et al., 2024). Detail of routine instrument maintenance (e.g. cleaning) and in response to issues (e.g.
241 instrument failure), are provided in the dataset supplement (Morrison et al., 2024).

242 **3.6.1. Halo Photonics StreamLine**

243 Wind vectors are calculated from raw “.hpl” VAD scan files using the ACTRIS-cloudnet halo-reader tool (Leskinen,
244 2023) that determines the least squares solution for the wind components from the radial velocity measurements
245 (Päschke et al., 2015). The Manninen et al. (2016) background noise offset correction method is used by halo-reader
246 to reduce the SNR threshold, thus increasing the amount of usable data. The correction is applied to each
247 StreamLine (not StreamLine XR) deployment and uses the hourly background correction “.txt” raw files. The wind
248 profile retrievals are saved as an intermediate L1 data product.

249
250 The QC steps applied to L1 data consider SNR thresholds, minimum valid range gate, wind retrieval statistical error,
251 “despeckling” of remaining noise (Table 5). For the SNR thresholds, Manninen et al. (2016) thresholds are used to
252 remove clearly erroneous (*flag_suspect_retrieval_removed*) and suspect (*flag_suspect_retrieval_warn*) values. The

253 thresholds are applied to the mean signal intensity within a VAD scan. VAD scan rays with $\text{SNR} > 0.0055$ (-22.6 dB) are rejected prior to averaging. This results in the L2 dataset.

255
256 During installation, an instrument bearing (from true north) needs to be entered. This can be determined by field
257 surveys (e.g. hard target reference, compass corrected from magnetic north) but may later be revised if a more accurate
258 survey is undertaken. The raw data will still have the original bearing adjustment, requiring a wind direction offset
259 correction. To account for this, a final manual adjustment to the instrument bearing is done at L2 for a number of the
260 StreamLine deployments (Table 4, bearing correction: final harmonised).

261 **Table 5:** StreamLine-specific quality control (QC) applied at level 2 (L2) processing stage. QC steps are carried out in row-order
262 (i.e. *flag_suspect_retrieval_removed* first).

Flag name	Thresholds and steps
<i>flag_suspect_retrieval_removed</i>	<ul style="list-style-type: none">• RMSE $> 3 \text{ m s}^{-1}$ between observed scan points and fitted wind. Threshold based on manual inspection.• Fewer than 75% of scan rays have $\text{SNR} > 0.0055$ (-22.6 dB).• Range gates below 45 m. Threshold based on manual inspection across all instruments.• Based on intercomparisons, PAROIS lower range gates are found to have unrealistic wind speed bias (Section 4.2, Appendix 3).
<i>flag_suspect_retrieval_warn</i>	<ul style="list-style-type: none">• RMSE $> 2 \text{ m s}^{-1}$ between observed scan points and sine-wave fitted wind. Threshold based on manual inspection.• Despeckle: if < 3 consecutive range gates have valid wind retrievals for one timestep, all 3 range gates flagged. Threshold based on manual inspection.• Based on intercomparisons, PAROIS lower range gates are found to have unrealistic wind speed bias (Section 4.2, Appendix 3).
<i>flag_low_signal_removed</i>	<ul style="list-style-type: none">• Average SNR across all scan rays < 0.0055 (-22.6 dB). “tentative threshold” (Manninen et al., 2016).
<i>flag_low_signal_warn</i>	<ul style="list-style-type: none">• Average SNR across all scan rays < 0.007585 (-21.2 dB). Reliable post-background correction threshold (Manninen et al., 2016).

263 3.6.2. WindCube WLS70

264 QC and harmonisation of the WLS70 data here starts with the L1 product *wlscerea_1a_windLz1Lb87M10mn-*
265 *HR_v02*. The wind field products are derived from DBS scans internally by the manufacturer firmware. The output
266 is averaged to 10 min and text files are converted to standardised NetCDF using the *raw2ll* python code (Drouin,
267 2022). The L1 data availability is reported for each 10 min interval and a QC step is included to ensure a minimum
268 of 80 % of data have a sufficient signal at each range gate. The WLS70 reports a carrier-to-noise ratio (CNR) which
269 is the ratio between the detected signal power and the wideband noise power in the Doppler spectrum (Vaisala,
270 2022) used to reject retrievals with $\text{CNR} < -31$ dB.

271
272 Here, the L1 product undergoes further QC steps to create the L2 product (Table 6). The L1 10 min data availability
273 variable is used to flag suspect intervals as *flag_suspect_retrieval_warn* and *flag_suspect_retrieval_removed*. As
274 manual inspection shows sporadic unrealistic retrievals at altitudes above ~ 700 m agl, these are removed using
275 vertical and easterly wind thresholds (Table 6) with corresponding timesteps flagged
276 *flag_suspect_retrieval_removed* (Table 6).

277

278 **Table 6:** WLS70 specific quality control (QC) applied at level 2 (L2) processing stage. QC steps are carried out in row-order (i.e.
279 flag_suspect_retrieval_removed first).

Flag name	Thresholds and steps
<i>flag_suspect_retrieval_removed</i>	<ul style="list-style-type: none"> • 10 min interval data availability < 10 %. • Erroneous high-altitude retrievals: Vertical wind < 2.5 m s⁻¹ & easterly wind component < 1 m s⁻¹ and range > 750 m. Thresholds based on manual inspection.
<i>flag suspect retrieval warn</i>	10 min interval data availability > 10 % and < 75 %.
<i>flag low signal removed</i>	No QC applied at L2. Applied internally in L1 wlscerea_1a product only.
<i>flag low signal warn</i>	No QC applied at L2. Applied internally in L1 wlscerea_1a product only.

280 **3.6.3. Vaisala WindCube Scan 400s**281 QC and harmonisation of the L1 data product uses 2s temporal resolution w400s_1a_LqualairLzamIdbs_v01 data
282 (Céspedes et al., 2024). Its wind profiles are based on a rolling calculation through the dataset's time dimension,
283 updated after each DBS line of sight scan.

284

285 The L1 data are used to create a L2 dataset at 1 min temporal resolution. The first round of valid DBS scans in the
286 L1 data are found by sub-setting the data by an existing internal L1 flag *wind_speed_status*. Further suspect or
287 erroneous retrievals are filtered using a moving window approach along the time dimensions (Appendix 1) which
288 assigns *flag_suspect_retrieval* flags. As with the WLS70, the low signal thresholds are already applied internally by
289 the manufacturer firmware and then within the w400S L1 product where CNR below -20 dB and above 5 dB are
290 excluded (Céspedes et al., 2024).291 **3.7. Level 3 (L3) data harmonisation across instruments**292 The L2 data from each instrument (Sect. 3.5) are brought together as the final harmonised dataset provided in Network
293 Common Data Form (NetCDF) file format and processed as follows:

- 294 • To have a common vertical dimension that is consistent horizontally, the vertical dimension is adjusted to height
295 above sea level (NetCDF dimension name “altitude”) which is obtained from the known range gate, station
296 elevation and scan angles.
- 297 • To have a common vertical resolution, the eastward and northward wind components (*u*, *v*) are resampled to 25
298 m height by linear interpolation (Steinheuer et al., 2022). The maximum interpolation is between two range gates
299 of the individual sensor (Table 4, range gate length). If data are unavailable causing this distance to be exceeded,
300 the wind components are set to a missing value. Where resampled heights contain multiple L2 QC flags (Table
301 7) the maximum flag value is assigned.
- 302 • To have consistent vertical extent of data availability between sensors, the maximum altitude is 6500 m, defined
303 by the w400S valid retrieval extent.
- 304 • To have a common time dimension, the range-resampled data are analysed at regular intervals. Two harmonised
305 time intervals are available (600 s and 3600 s). The time labels assigned indicate the end of the time integration
306 period in UTC e.g., for the 600 s interval, 03:00 UTC is derived from data between 02:50:01 and 03:00:00 UTC.

307 • The percentage occurrence of each L2 QC flags is determined for each time interval (Table 7).
 308 • Mean u (\bar{u}) and v (\bar{v}) wind components are calculated at each time interval, from which the horizontal wind speed
 309 (W_s) and direction (W_d) are calculated:

310 $W_s = \sqrt{\bar{u}^2 + \bar{v}^2},$ (1)

311 $W_d = \arctan\left(\frac{-\bar{u}}{-\bar{v}}\right) 180/\pi,$ (2)

312 with W_d adjusted across $0 - 360^\circ$:

313 $W_d = \begin{cases} W_d + 360, & W_d \leq 0 \\ W_d, & W_d > 0 \end{cases}$ (3)

314 • With data aligned along the same time and altitude dimensions, a third and final ‘station’ dimension is then added
 315 as a measurement location identifier.

316 • Deployment attributes (Table 4) are added (e.g. `system_id`, Table 7) to differentiate deployments at an individual
 317 station.

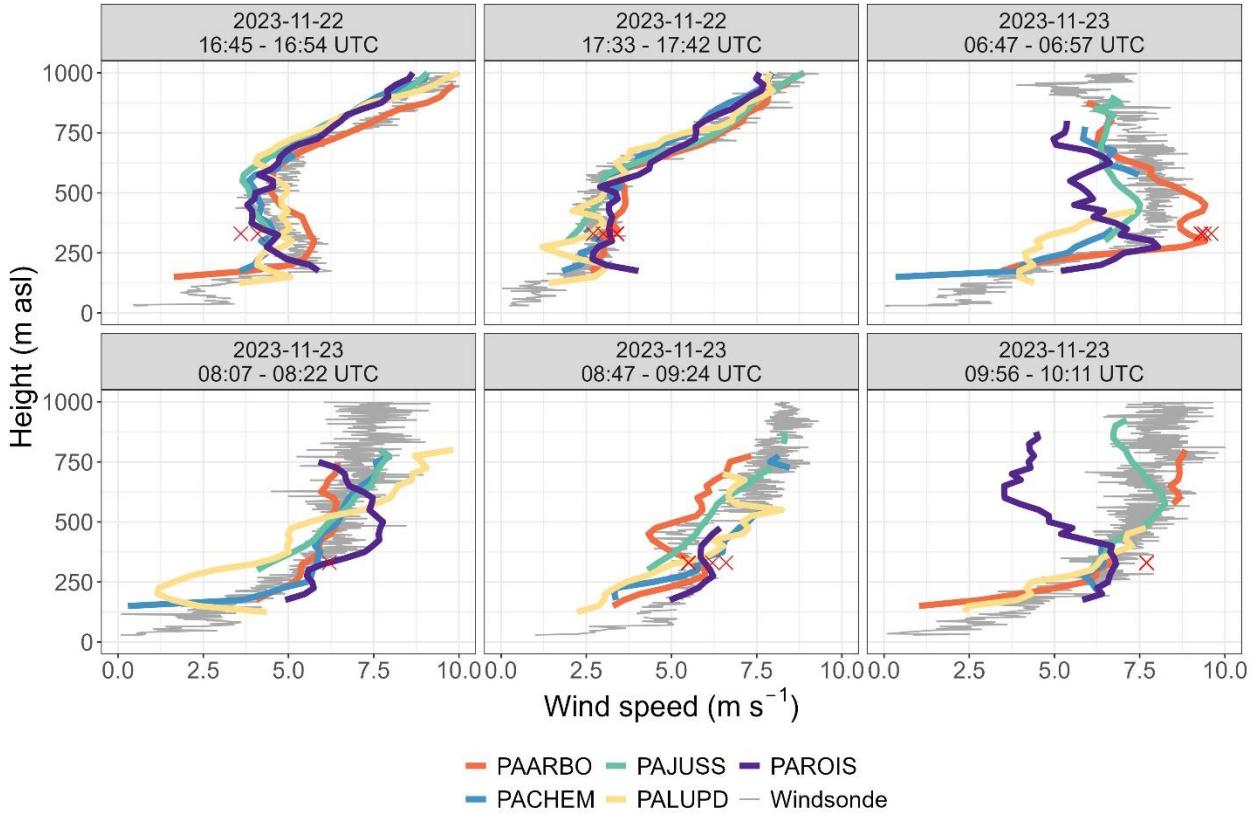
318 • Each file contains one day of data and are named `paris_dwl_L3V{version}_ {first}_ {last}_ {resolution}s.nc` with
 319 `first` and `last` timesteps (format: YYYYMMDDHHHMM), the temporal `resolution` (s) and processing `version`
 320 (format: e.g. 1.21).

321 **Table 7:** Content of the daily NetCDF files which contain the harmonised data product for all stations. Quality control flags are a
 322 percentage occurrence of L2 QC flags (Sect. 3.5) per time interval. Data have 1, 2 or 3 dimensions (#-d). For 3-d data these are
 323 time, height and station. For 2-d they are time and station. The NetCDF standard name and units are given as attributes for each
 324 NetCDF variable (Eaton et al., 2024).

NetCDF <code>standard_name</code> (variable name)	#-d	Description (see text for details)
<code>time</code>	1	Timestamp: end of time interval. 600 s and 3600 s time intervals are provided, in separate data files (600 s e.g. 00:00:01 → 00:10:00 and 3600 s e.g. 00:00:01 → 01:00:00). All variables are harmonised to this resolution as averages (e.g. wind) or percentage occurrence (e.g. flags)
<code>altitude</code>	1	Altitude of centre of each measurement gate above mean sea level (m). Harmonised gates are 25 m from 0 – 6500 m with values linearly interpolated to this resolution
<code>station</code>	1	Measurement location identifier, all are listed even if no valid data are retrieved during the file’s date.
<code>eastward_wind (u)</code>	3	Mean eastward wind component (m s^{-1}) using all valid samples within time interval
<code>northward_wind (v)</code>	3	Mean northward wind component (m s^{-1}) using all valid samples within time interval
<code>wind_speed (ws)</code>	3	Horizontal wind speed calculated from <code>eastward_wind</code> and <code>northward_wind</code> (m s^{-1}) (Eqn 1)
<code>wind_from_direction (wd)</code>	3	Horizontal wind direction calculated from <code>eastward_wind</code> and <code>northward_wind</code> (degrees from true north) (Eqn 2)
<code>system_id</code>	2	Serial number of sensors deployed at station at a given time
<code>latitude (station_lat)</code>	1	Latitude of the measurement station (degrees, decimal, WGS84)
<code>longitude (station_lon)</code>	1	Longitude of the measurement station (degrees, decimal, WGS84)
<code>station_altitude</code>	1	Average height of station above sea level (reference_geoid: EGM96) (m)
<code>station_height</code>	1	Measurement station height above ground level (m). Ground level is the “street” level so if the station is on a rooftop, the height will account for the building height and any mounting structure
<code>n_rays_in_scan</code>	2	Number of rays in a scan. e.g. 12 for a VAD scan that has 12 samples within one scan
<code>n_pulses</code>	2	Number of pulses in a given ray. More pulses, the higher the integration time
<code>raw_gate_length</code>	2	Gate length prior to L3 aggregation (m)

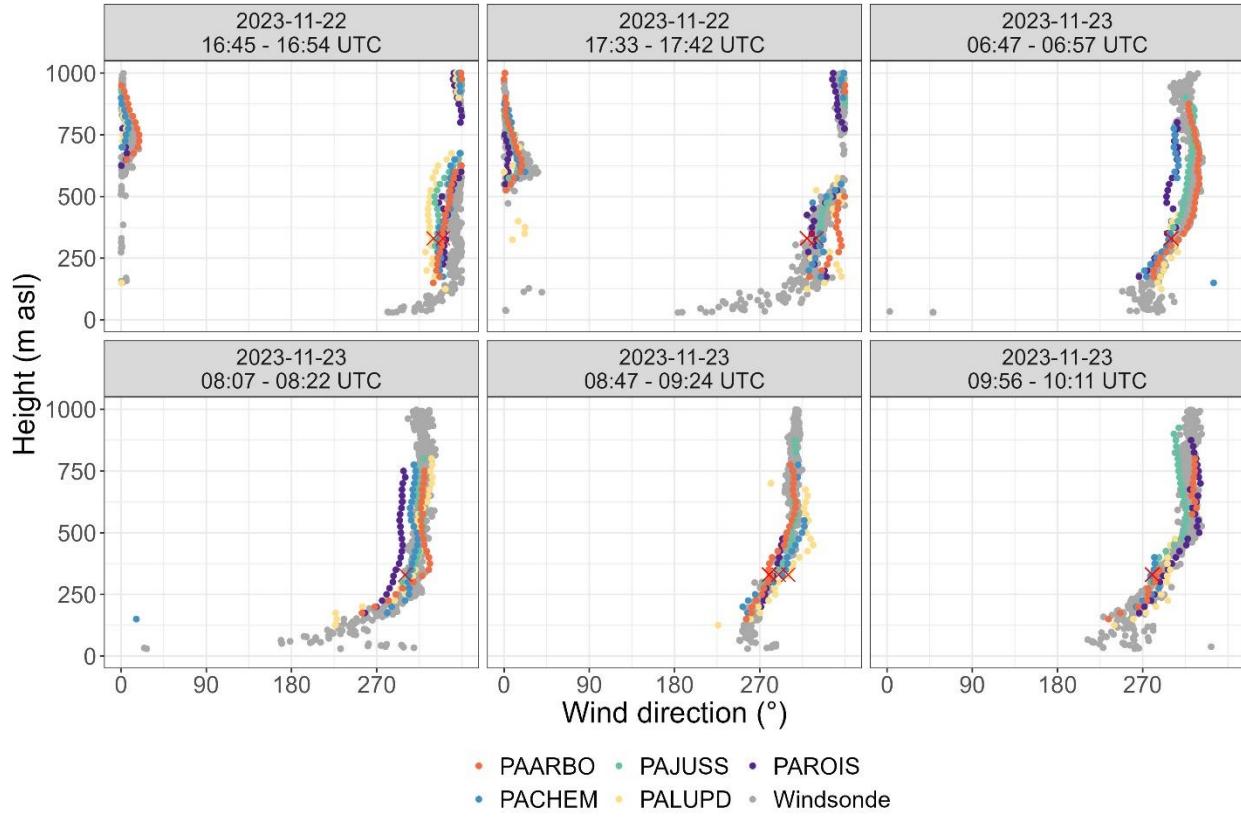
<i>flag_suspect_retrieval_warn</i>	3	Percentage of values within time interval with retrieval warning not linked to low signal (<i>flag_low_signal_warn_pc</i>) or out of range (<i>flag_ws_out_of_range_removed_pc</i>). Retrievals retained but treat with caution
<i>flag_suspect_retrieval_removed</i>	3	Percentage of values within time interval with retrieval error not linked to low signal (<i>flag_low_signal_warn_pc</i>) or out of range (<i>flag_ws_out_of_range_removed_pc</i>). Data removed
<i>flag_low_signal_warn</i>	3	Percentage of values within time interval with a low signal. Retrievals retained but treat with caution
<i>flag_low_signal_removed</i>	3	Percentage of values within time interval with a low signal. Retrieval rejected
<i>flag_ws_out_of_range_removed</i>	3	Percentage of values within time interval with wind speed outside reasonable retrievable range ($> 60 \text{ m s}^{-1}$) (i.e. removed). Evaluated after all other retrieval QC

325 **4. Data evaluation**


326 The harmonised data are evaluated using independent *in-situ* radiosonde (Sect. 4.1) and the Eiffel Tower (Sect. 4.2)
 327 data to cover both the vertical and temporal data characteristics.

328 **4.1. Radiosonde vertical profiles**

329 To evaluate the vertical component of the wind retrievals, Windsond S1H2-R radiosondes (Sparv Embedded AB,
 330 Linköping, Sweden) were released. They consist of a Styrofoam enclosure tethered to a helium balloon (circumference
 331 123 cm, 5 m thread length). The lightweight radiosounding systems (22.9 g, including sensor, battery and balloon)
 332 can be released from within urban areas (subject to air traffic control approval) and are able to measure wind speeds
 333 between 0 – 150 m s⁻¹ and wind direction (0 – 360°) every 1 s as they ascend through the atmosphere (Sparv Embedded,
 334 2019). The wind speed and direction are derived from the GPS position of the sonde every 1 s with a resolution of 0.1
 335 m s⁻¹ and 0.1°. The measurement accuracy is *ca.* 5 % for wind speed, whilst the wind direction accuracy depends on
 336 the GPS conditions (Sparv Embedded, 2019). The sondes transmitted to a Sparv RR2 radio receiver and the data is
 337 logged to a Windows laptop with Sparv WS-250 software.


338

339 Six radiosondes were released at Parc André Citroën (PABPAC, 48.84165 °N, 2.27416 °E) on Nov 22 2023, from
 340 16:45 – 17:57 UTC and on Nov 23 2023, from 06:47 – 10:11 UTC. The first day had predominantly clear skies, whilst
 341 the second day was overcast with intermittent light rain. Both days had low ground-level wind speeds that increased
 342 to up to 10 m s⁻¹ until 1 km asl (Fig. 3) and winds ranging from northerly to westerly wind directions (Figure 4).
 343 Observed ascent speeds of $1.7 \pm 0.4 \text{ m s}^{-1}$ until 1 km asl translated to flight durations of approx. 10 min. Horizontally,
 344 the radiosondes travelled between 2.0 and 4.7 km during their flight time (Figure 1). For the comparison statistics
 345 (Table 8), the DWL and sonde data were matched based on the time of closest horizontal distance between the
 346 respective DWL and sonde location.

347
348
349
350
351

Figure 3: Horizontal wind speed observed with L3 DWL (colour, key), 2D sonic anemometer (Ultrasonique Thies compact) Eiffel Tower (red crosses, Sect. 4.2, Table 9) measurements and Windsond S1H2-R radiosondes (grey) at six times (November 22, 2023 from 16:45 – 17:57 UTC and on November 23, 2023 from 06:47 – 10:11 UTC) up to 1000 m above sea level (asl). Comparison statistics in Table 8.

352
353 **Figure 4:** As Figure 3, but horizontal wind direction.

354 **Table 8. Comparison between launched radiosonde sensors and doppler wind lidars for all (*n*) matched profiles (as**

355 visualised in Figure 3 and Figure 4) analysed using the mean bias error (MBE, units of variable), root mean square error

356 (RMSE, units of variable) and Pearson correlation coefficient (PCC, dimensionless).

	<i>n</i>	Wind direction (°)			Wind speed (m s ⁻¹)		
		MBE	PCC	RMSE	bias	PCC	RMSE
PAARBO	165	-0.94	0.95	10.03	-0.05	0.87	0.92
PACHEM	134	2.65	0.89	17.07	-0.37	0.86	0.96
PAJUSS	149	4.63	0.95	9.31	-0.36	0.91	0.79
PALUPD	150	0.15	0.87	17.72	-0.42	0.80	1.30
PAROIS	158	7.15	0.94	12.89	-0.51	0.58	1.56

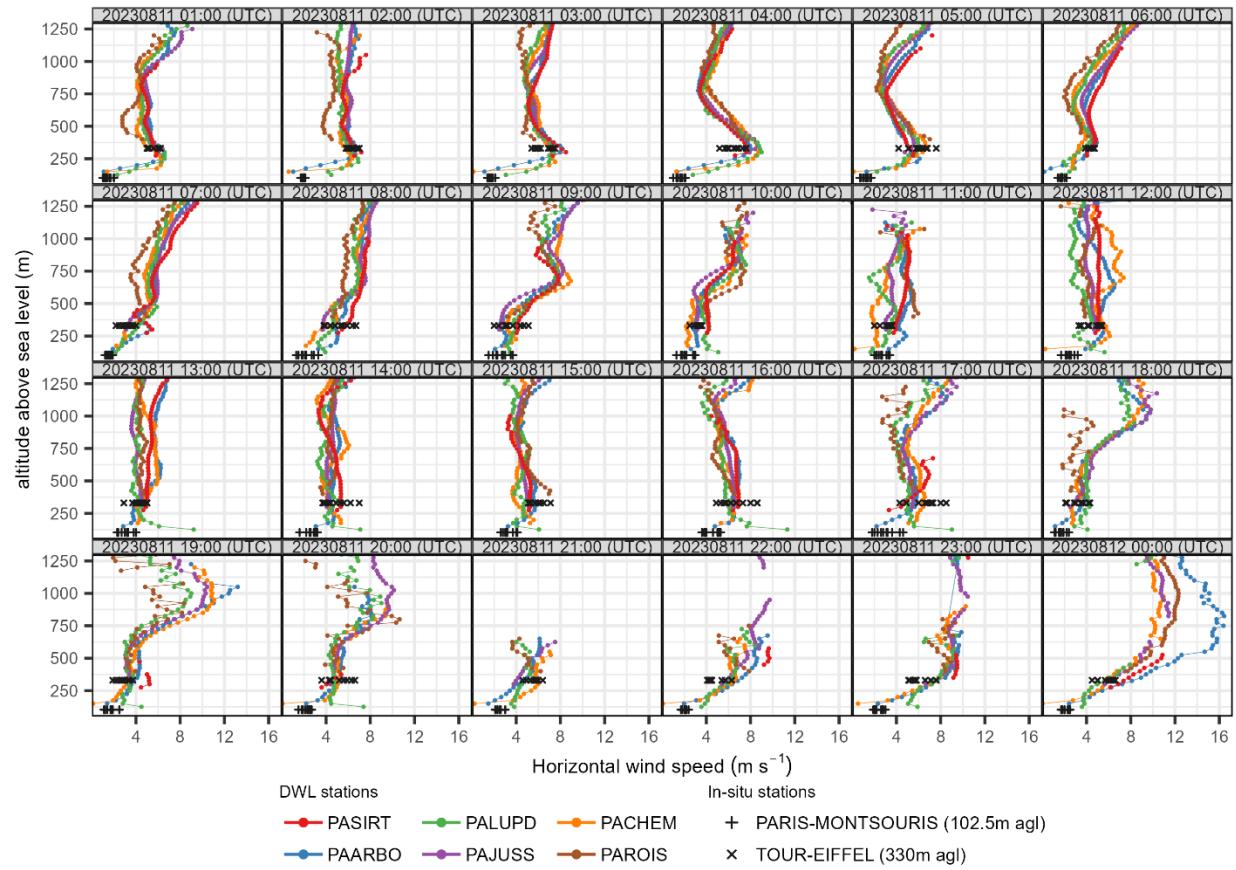
357
358 **4.2. Eiffel Tower and Parc Montsouris in-situ time series**

359 The two long-term Météo-France stations Eiffel Tower and Parc Montsouris have in-situ Ultrasonique Thies compact
360 2D ultrasonic anemometers providing 6 min mean data (Table 9, Appendix 2). The Eiffel Tower sensor is located at
361 321.5 m above ground level. The instrument has no surrounding obstacles and the data are not filtered for wind
362 direction. The DWLs are between 4.6 and 24.7 km from the Eiffel Tower (Table 7) but as the height of comparison
363 for all observations is well above the influence of local roughness elements, we assume all are capturing the similar
364 general flow, and therefore the Eiffel Tower is informative for evaluating the DWL retrievals.

365

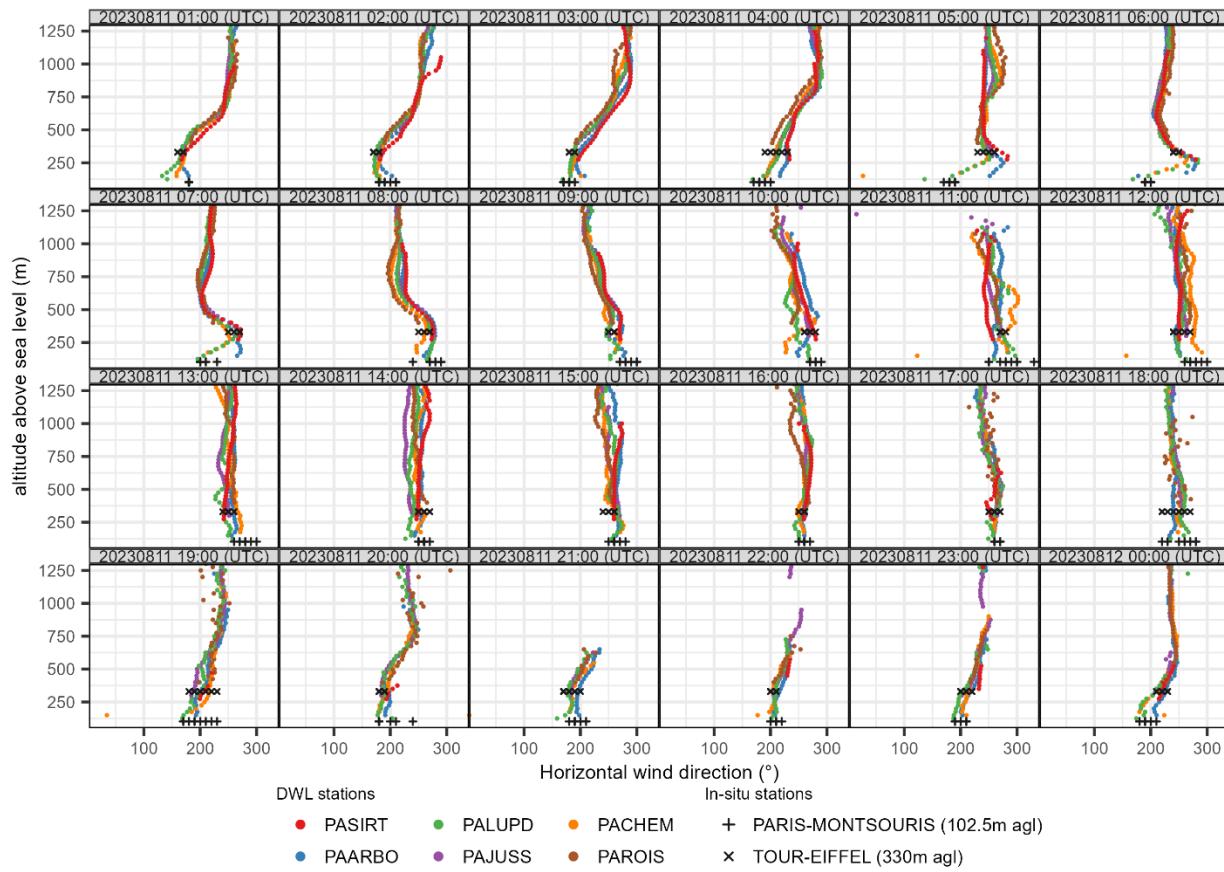
366 During IOP1 period (Figure 2), on the 11th August 2023 inter- and intra-station differences in profiles of wind speed
 367 (Figure 5) and direction (Figure 6) are evident. The wind profiles are generally consistent with the Météo-France in-
 368 situ data, except for the PAROIS DWL data below around 250 m asl, where much higher wind speeds are observed.
 369 The maximum DWL retrieval height varies through the day as aerosol loading changes within and above the ABL.

370

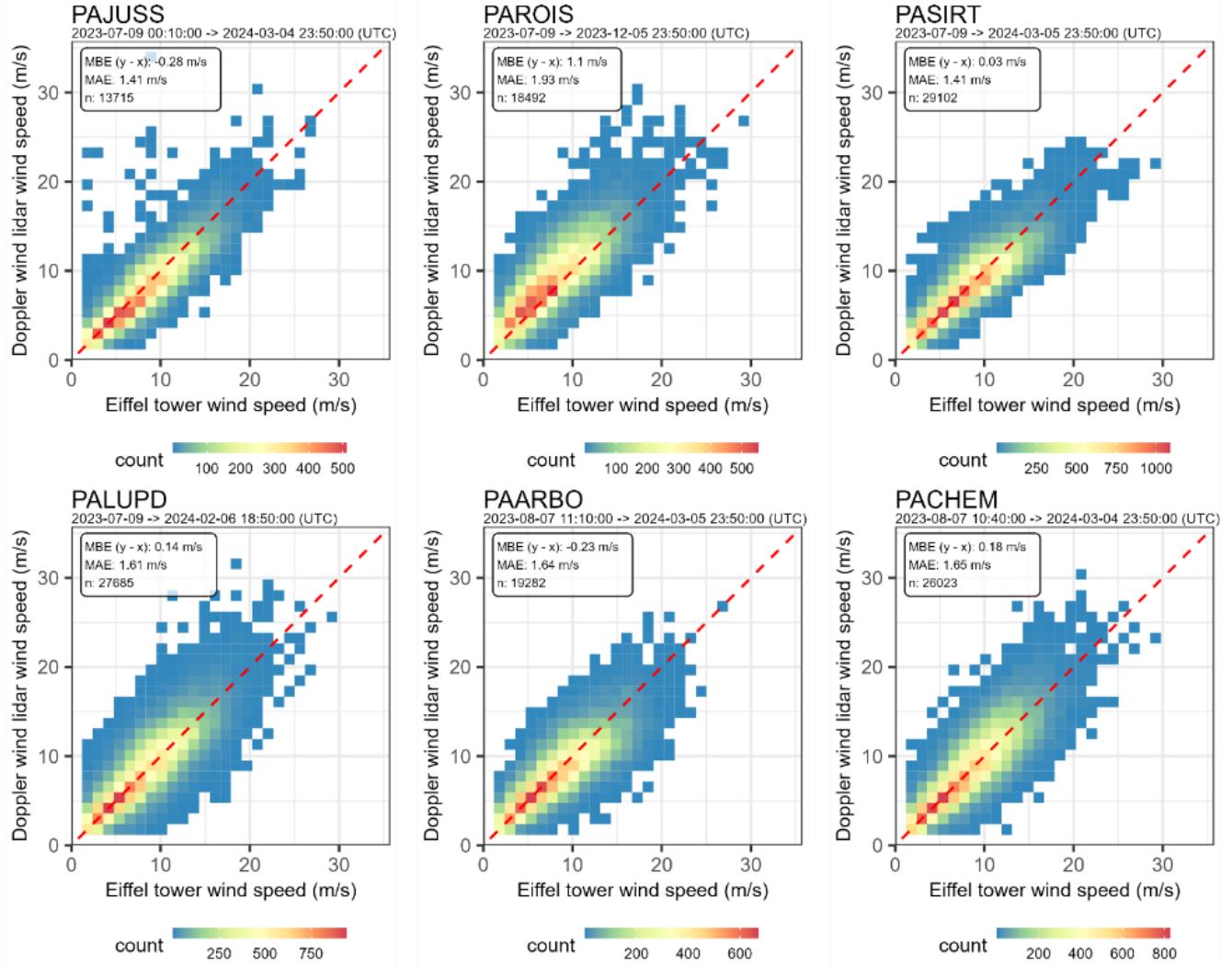

371 Comparison of the harmonised DWL and Eiffel Tower wind speed measurements for July 2023 – March 2024 are
 372 generally consistent (Figure 7), PAROIS has the largest mean bias error (MBE 1.1 m s⁻¹). On closer inspection there
 373 is an unrealistic positive wind speed bias at lower range gates, supported by intercomparison with other profilers
 374 (Appendix 3). All PAROIS DWL wind speed and direction retrievals below 210 m agl (322 m asl) are therefore
 375 removed with *flag_suspect_retrieval_removed*, and flagged as *flag_suspect_retrieval_warn* for heights between 210
 376 m and 270 m agl.

377 Wind direction is compared but the mean absolute error (MAE) is calculated only for periods when Eiffel Tower wind
 378 speeds > 2 m s⁻¹ as wind direction uncertainty increases rapidly with low wind speeds (Manninen et al., 2016; Newsom
 379 et al., 2017). The mean absolute error in wind direction is below 2° for each DWL dataset (Figure 8). The highest data
 380 frequency (reds, Figure 8) in the expected south-westerly wind direction is confirmed for all instruments.

381 **Table 9:** Attributes of the Météo-France station in-situ horizontal wind speed and direction evaluation data (<https://www.aeris-data.fr/catalogue>). The data creators are Météo-France (<https://meteofrance.fr>) and AERIS (<https://www.aeris-data.fr>). Dataset source details available (Appendix 2).


	Eiffel Tower	Parc Montsouris
Dataset name	75107005_TOUR-EIFFEL MTO 6MIN 2023.nc	75114001_PARIS-MONTSOURIS MTO 6MIN 2023.nc
Dataset product version	1.00	1.00
Sensor type	Ultrasonique Thies compact	Ultrasonique Thies compact
Height of sensor above sea level (m)	330	102.5
Height of sensor above ground level (m)	321.5	25.5
Latitude (°N), Longitude (°E)	48.8583, 2.2945	48.821311, 2.336733
Closest DWL (distance, bearing)	PAJUSS: 4.6 km, 105°	PALUPD: 3.3 km, 80°
Farthest DWL (distance, bearing)	PAROIS: 24.7 km, 45°	PAROIS: 26.0 km, 30°
Temporal resolution (average, sample rate unknown) (Météo-France, 2023)	6 min	6 min

384


385

386 **Figure 5:** Hourly level 3 (L3, harmonised) mean wind speed observed above six DWL stations for August 11, 2023 and two in-
 387 situ stations (Table 9).

388
389

Figure 6: As Figure 5 but wind direction.

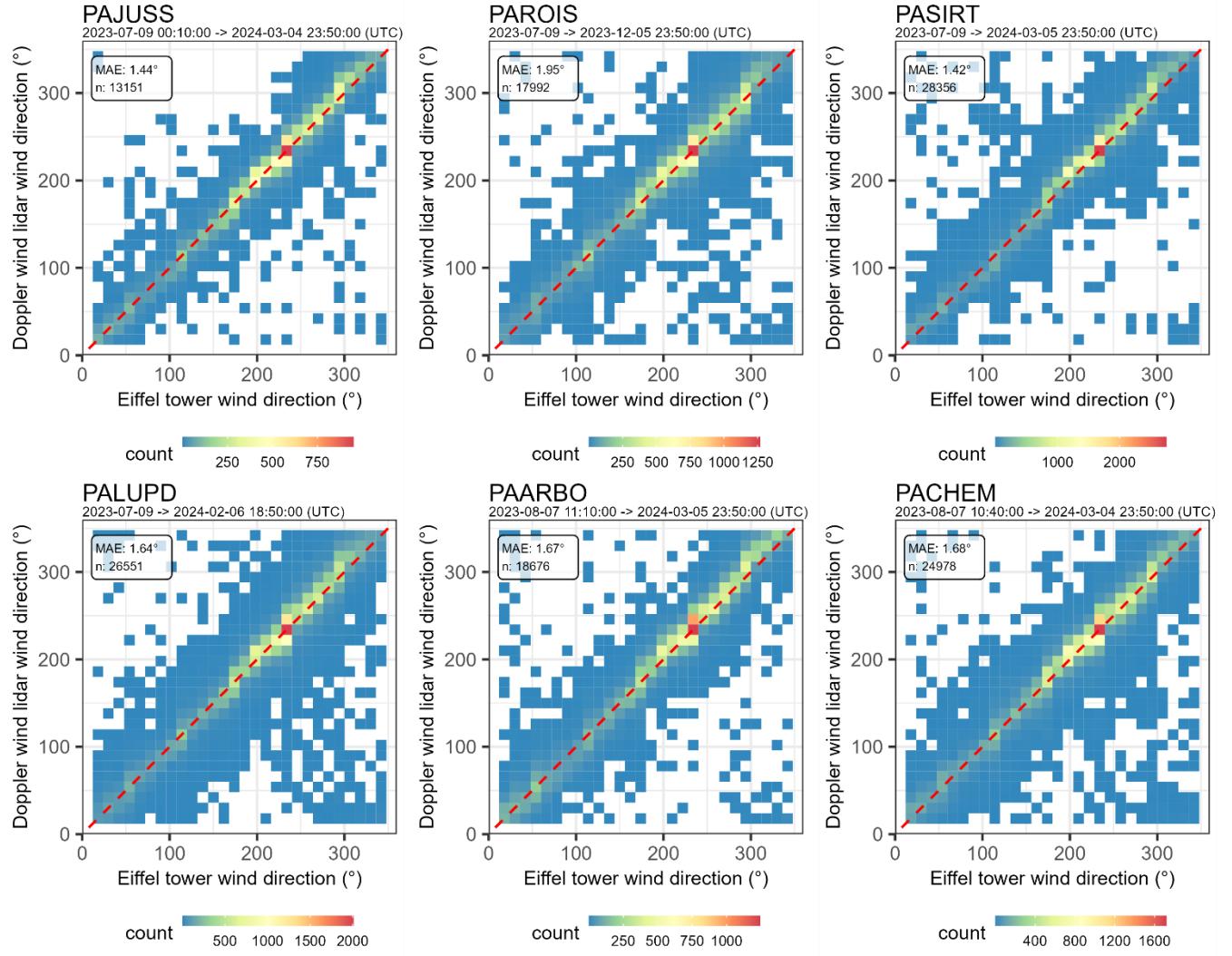


Figure 7: Comparison of Eiffel Tower (330 m asl, 360 s time interval, Table 9) resampled to 600 s by nearest neighbour and harmonised (a-f) Doppler Wind Lidar (325 m asl, 600 s time interval) wind speed for July 2023 – March 2024 with mean bias error (MBE), mean absolute error (MAE), number of period (n), density of data (colour bar, note differs between subplots) and 1:1 line (red dashed). The data availability differs between DWL stations (subtitles, Figure 2).

390

391
392
393
394

395

396
397

Figure 8: As Figure 7, but for wind direction and MAE only calculated when the Eiffel Tower wind speed $> 2 \text{ m s}^{-1}$.

398 **5. General guidance for data users**

399 To support use and interpretation of the harmonised data, we provide the following guidance, addressing strengths,
400 known limitations, and recommended practices:

401

- 402 Data availability is broadly split into the EOP and IOP operational periods (Section 3.3), however within
403 these periods the dataset is not complete through altitude, time, and instrument due to quality control filtering
404 and atmospheric changes (signal strength, clouds). Care should be taken with e.g. sampling bias for stations
with more complete datasets.
- 405 The lowest asl retrieval depends on the instrument model and deployment asl altitude. The city centre site
406 (PAJUSS) has the highest minimum retrieval altitude of all instruments, with the first valid wind profiles
407 available from 275 m asl. This can be evaluated by the nearby deployment at PALUPD (first retrieval ~ 125
408 m asl) during the intensive observation period (IOP). The PASIRT site is on a plateau and is the highest asl

409 deployment altitude (154 m asl). This significant topographical feature is expected to influence the wind
410 field.

- 411 • For single-station studies, PAJUSS and PASIRT may be more robust given their longer time series. However,
412 trade-offs include PAJUSS not sampling close to the ground and PASIRT having both the lowest maximum
413 range and range resolution.
- 414 • Transect or gradient studies benefit from using IOP data when all stations were operational. The trade-offs
415 can be evaluated with respect to the instrument and instrument deployment specifications (Table 3 and Table
416 4, respectively) and data availability analysis (Figure 2).
- 417 • The harmonised dataset extends to 6500 m asl to accommodate retrievals from PAJUSS. Generally, there is
418 limited data availability (< 5 %) from other instruments between ~4000 and ~6500 m asl. Data availability
419 is broadly governed by lidar signal returns, which are reduced during precipitation, thick cloud, or under very
420 low aerosol conditions. Retrievals generally stop at cloud base.
- 421 • Data are not collected with a common sample rate but have been harmonised to the same time resolution.
422 PASIRT and PAJUSS have multiple samples aggregated within a 10-minute interval; all StreamLine
423 instruments have one sample within a 10-minute interval with PAROIS operating a unique scan timing with
424 an assumed ±5-minute uncertainty (Table 4).
- 425 • The harmonisation of the height grid to 25 m by linear interpolation is a standard approach and the impact
426 on a complex wind profile (a low-level jet event) is evaluated (Figure 11). This analysis shows that the height
427 grid harmonisation performs well. Level 2 data are available on request for very fine-scale urban boundary-
428 layer process studies, further evaluation of the height grid interpolation, etc.
- 429 • A unified system of quality control (QC) flags is included in the dataset. Users are strongly advised to consult
430 these QC flags, which indicate potential retrieval issues due to signal strength, instrument errors, and other
431 factors. The flagging system is deliberately transparent and enables users to exclude suspect or low-signal
432 retrievals for stricter analyses.
- 433 • Each station intentionally samples a different urban, suburban or rural settings (Table 1), and their
434 representativeness will be influenced by local surface roughness, orography, and direction of the approaching
435 flow.
- 436 • Wind speed and direction retrievals below 322 m asl at PAROIS (Roissy Airport) have been removed due to
437 a technical issue resulting in positive wind speed bias at lower range gates.

438 6. Data availability

439 The harmonised L3 data described here are available at <https://doi.org/10.5281/zenodo.14761503> (Morrison et al.,
440 2025). Table 7 gives the attributes of the daily NetCDF files. Météo-France observations are available from thredds-
441 su.ipsl.fr AERIS catalogue (https://thredds-su.ipsl.fr/thredds/catalog/aeris_thredds/catalog.html) with access details
442 in Appendix 2.

443 **7. Code availability**

444 The code used to retrieve the wind from the StreamLine instruments is available at the GitHub repository
445 www.github.com/actris-cloudnet/halo-reader (details Sect. 3.5) that on 16 Feb 2024 merged to “doppy”
446 <https://github.com/actris-cloudnet/doppy>. This code was adapted for production of this dataset. The adapted fork of
447 the code is available here <https://github.com/Urban-Meteorology-Reading/halo-reader>. The code used for the
448 remaining data production is available here <https://github.com/Urban-Meteorology-Reading/paris-harmonised-dwl>.
449 The data visualisation code is available on request.

450 **8. Conclusions**

451 Boundary layer wind profile data from six doppler wind lidar (DWL) stations deployed along a 40 km transect through
452 Paris, France are harmonised for the period 06/2022 – 03/2024. The dataset consists of a long-term extended
453 observation period (EOP) and two intensive observation periods (IOP1 and IOP2) with different data availability. The
454 EOP has fewer operational sensors but longer temporal coverage suited for long-term urban-rural study. The IOP has
455 5 months when all six DWL stations are operated, making it suited for studies of intra-urban effects.

456

457 Here we provide a harmonised dataset, which has removed inter-instrument heterogeneity by creating a common set
458 of both three-dimensional (time, height, station) properties and quality control (QC) flags for data status (reject,
459 suspect, use). The harmonised data comprehensive evaluation includes temporal analysis with the Eiffel Tower
460 mounted sonic anemometer data. There is excellent agreement with all DWL data. The largest biases are for the DWL
461 deployed at Roissy Airport (station PAROIS, mean bias error 1.1 m s^{-1}), likely attributable to the near field lower
462 surface roughness. Vertical consistency is evaluated with a radiosonde campaign during IOP2. These indicate good
463 overall consistency with height. The implementation of the retrieval and quality control steps has allowed
464 independently validated wind profiles to be combined in one ready-to-use dataset, which is designed to expedite the
465 use of DWL observations in a broad range of urban climate studies and model evaluation.

466

467 **Appendix 1. WindCube Scan 400S L2 suspect retrieval removal QC**

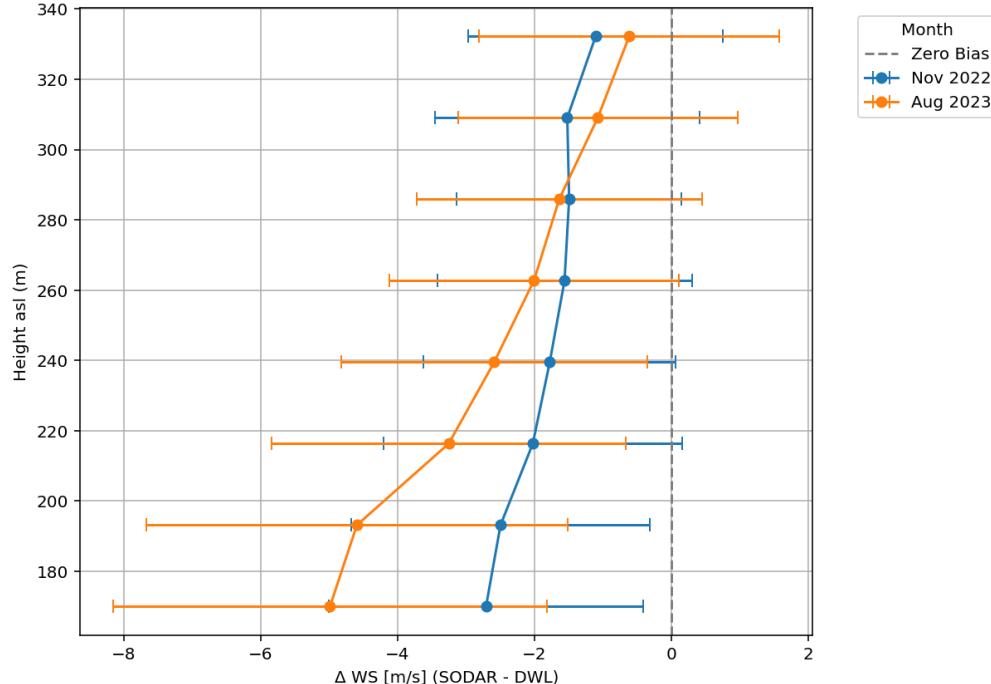
468 The L1 w400s_1a_LqualairLzamIdbs_v01 dataset includes multiple scan types within the time series (e.g. not DBS
469 scans) and some erroneous/unrealistic scans not removed during L1 quality-control (QC) steps. As the L1
470 *wind_speed_status* flag designed to select the realistic DBS scans did not identify all unrealistic retrievals, here a
471 further QC step is applied with aim of including only realistic DBS scans in the L2 dataset.

472

473 To remove the unrealistic DBS and the non-DBS retrievals, for each range gate in each 30 s interval the median wind
474 speed is calculated. If the wind speed is $> 60 \text{ m s}^{-1}$ for more than 1 % of all range gates within the 30 s interval, all 2
475 s values within that 30 s interval are rejected.

476 **Appendix 2. Météo-France data source and access methods**

477 Météo-France in-situ wind observations were found by searching for the relevant station via the <https://www.aeris-data.fr/catalogue/> interface, in the subsection “METEO-FRANCE, 6 minutes data from ground-based stations
478 (RADOME and extended network)”. The dataset IDs are DatasetScanAERISTHREDDS/actrisfr_data/cbe74172-
479 66e4-4e18-b2cc-31ad11ed934d/2023/75107005_TOUR-EIFFEL_MTO_6MIN_2023.nc (Eiffel Tower) and
480 DatasetScanAERISTHREDDS/actrisfr_data/cbe74172-66e4-4e18-b2cc-31ad11ed934d/2023/75114001_PARIS-
481 MONTSOURIS_MTO_6MIN_2023.nc (Parc Montsouris). The data access URL is <https://www.aeris-data.fr/catalogue/?uuid=cbe74172-66e4-4e18-b2cc-31ad11ed934d>.
482
483


484 **Appendix 3. Evaluation of PAROIS wind speed bias**

485 **Evaluation with Doppler SODAR at PAROIS**

486 Horizontal wind speed retrievals from doppler wind lidar (DWL) 30 at PAROIS are suspiciously high at lower range
487 gates. To evaluate this, November 2022 and August 2023 data from a nearby Doppler SODAR (model PCS.2000-
488 64/MF, METEK GmbH) with 10 m vertical resolution are used. The SODAR is located next to the northern runway
489 of Paris Charles de Gaulle Airport 115 m agl, within 2 km of station PAROIS. The SODAR data are available every
490 10 minutes on regular, rounded schedule (e.g. 01:00, 01:10).
491

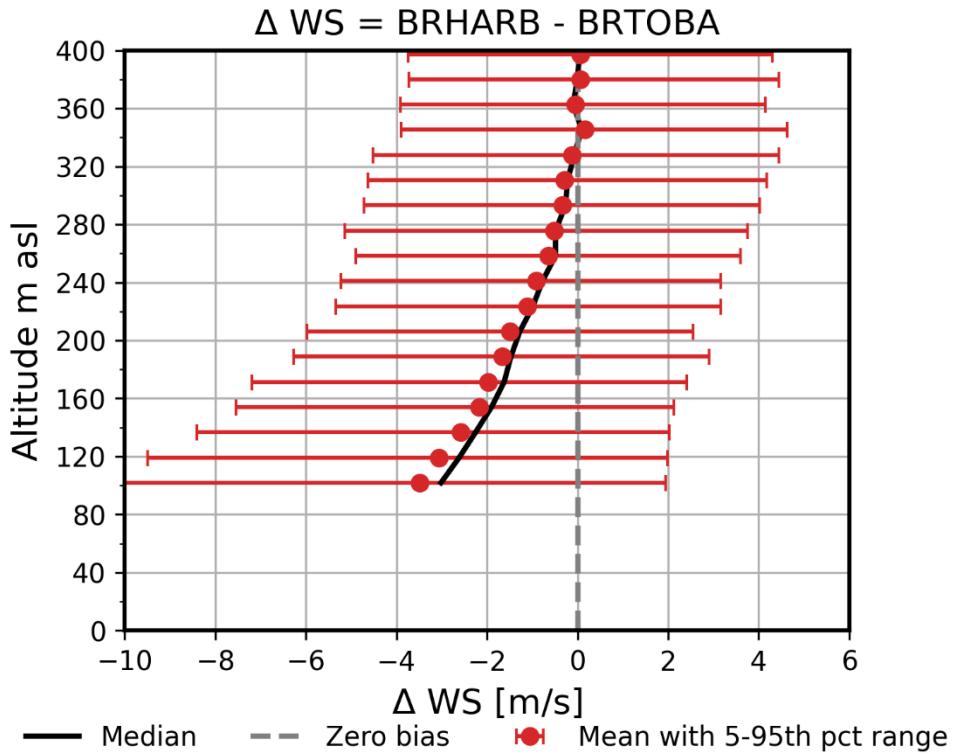
492 For each DWL (level 2) height level, the SODAR data with the closest matching height is identified. The wind speed
493 data from both instruments are aligned in time using nearest neighbour approach. Analysis is restricted to periods
494 when both datasets have valid, quality-controlled measurements available. The SODAR data are filtered for low signal
495 to noise ratios.
496

497 For each height, the wind speed difference (SODAR minus DWL) is computed for all coincident 10-minute averages
498 throughout the August period. The mean bias error (MBE) and standard deviation are calculated to evaluate the bias
499 of the DWL with respect to the SODAR (Figure 9). For example, the August 2023 MBE range by height is from –
500 $5.0 \pm 3.2 \text{ m s}^{-1}$ at the lowest evaluated height (55 m asl, 3945 samples) to $-0.6 \pm 2.2 \text{ m s}^{-1}$ at the highest (220 m, 328
501 samples, 761 samples at the second highest). Similar MBE are seen in November 2022, suggesting a long-term issue.
502

503

504 Figure 9. Wind speed as a function of height above sea level (asl) mean bias error (points, SODAR minus doppler wind lidar serial
505 number 30 at PAROIS), with standard deviation (whiskers) of differences for two months (colour).

506 **Evaluation with another StreamLine in Bristol, UK, 2025**

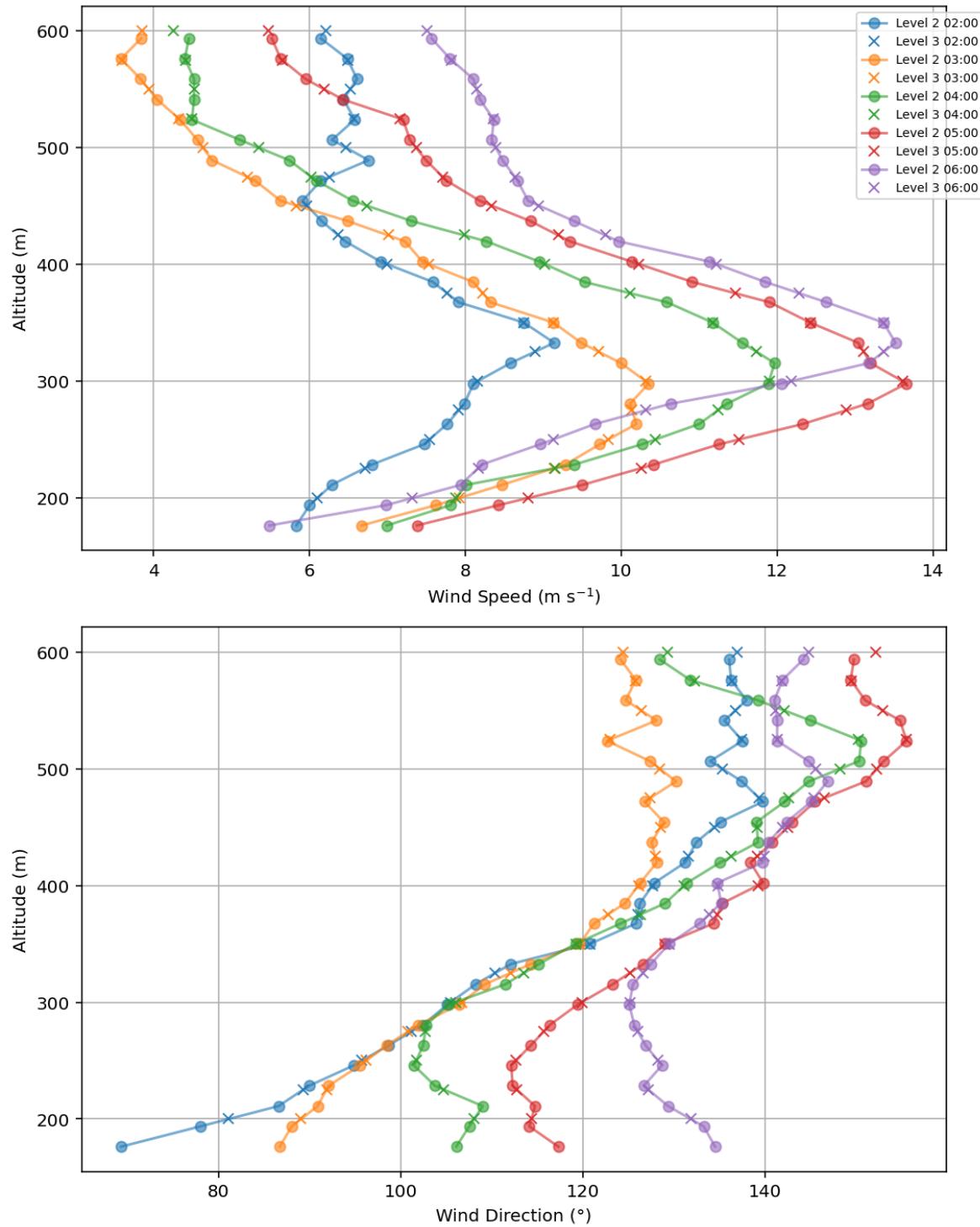

507 To evaluate the DWL (StreamLine 30) bias for range gates above the SODAR retrieval range ($> \sim 200$ m agl, Figure
508 9), an independent StreamLine (DWL#03) not used in Paris (serial number 03, operated by University of Reading)
509 are compared during an ongoing (2025) NERC ASSURE/ERC urbisphere measurement campaign Bristol, United
510 Kingdom. Here, DWL30 is installed in the city centre (BRTOBA latitude 51.442° , longitude -2.614° , 31 m asl)
511 approximately 1 km from DWL03 at BRHARB (51.449° , -2.624° , 11 m asl). DWL03 was serviced by the
512 manufacturer prior to this installation.

513

514 This second pairwise comparison, shows the same general bias (Figure 10) for the 17th June 2025 – 14th July 2025
515 period analysed. The MBE decreases to < 1 m⁻¹ above 210 m agl, and < 0.5 m s⁻¹ above 270 m agl.

516

517 As a result of these analyses, DWL30 L1 data are rejected for heights agl < 210 m with
518 *flag_suspect_retrieval_removed*; and flagged as *flag_suspect_retrieval_warn* for heights agl between 210 m and 270
519 m. See Table 5 for StreamLine quality control flagging details.


520
521 Figure 10. Mean bias error in wind speed between StreamLine doppler wind lidars installed in Bristol, United Kingdom at station
522 BRHARB (serial number 03) and BRTABA (serial number 30) as a function of height above sea level (asl) with (points) the mean
523 bias at each evaluated height and (horizontal bars) the 5th – 95th percentile range of differences between 17th June and 14th July
524 2025.

525 **Appendix 4. Impact of vertical coordinate resampling to coarse vertical grid: low-level jet example**

526 The data harmonisation process from level 2 (L2) to level 3 (L3) involves resampling the height coordinates to a
527 common grid. This may affect fine-scale variability, particularly near the surface or in cases with sharp vertical
528 gradients. To demonstrate this we compare L2 and L3 data for a low-level jet (LLJ) event detected by DWL serial
529 number 175 at PACHEM on August 24th 2023 (Figure 11).

530
531 Resampling linearly interpolates between L2 data points (circles - lines, Figure 11), to obtain the L3 resampled values
532 (crosses, Figure 11), shown up to ~600 m asl. The LLJ core wind speeds are above 10 m s⁻¹ at 298 – 333 m asl between
533 02:00 – 06:00, giving more than one L3 vertical grid point. The LLJ core height – determined as the height of the
534 maximum retrieved wind speed – has an absolute difference due to vertical resampling of up to 15.33 m at 04:00, with
535 corresponding differences in wind speed (direction) of 0.07 m s⁻¹ (5.45°) (Table 10).

536

537

538

539

540

Figure 11. Comparison of (top) wind speed and (bottom) wind direction profiles retrieved from PACHEM doppler wind lidar serial number 175 for level 2 data at original heights (circles) connected by straight lines (shown), and level 3 data (crosses at resampled heights) for six full scans (no temporal aggregation) on morning of August 24th 2023. See Table 10 for statistics.

541 **Table 10. Statistics (for Figure 11 case) for maximum wind speed derived from level 2 and level 3 data, and associated**
 542 **altitude and wind direction.**

Time (UTC, 24 Aug. 2023)	Max wind speed (m s ⁻¹ , L2)	Altitude of max wind speed (m, L2)	Wind direction (°, L2)	Max wind speed (m s ⁻¹ , L3)	Altitude of max wind speed (m, L3)	Wind direction (°, L3)	Wind speed difference (L2-L3)	Altitude difference (L2 -L3)	Wind direction difference (L2-L3)
02:00	9.14	332.72	112.08	8.89	325	110.36	0.25	7.72	1.72
03:00	10.35	297.95	106.38	10.31	300	106.71	0.04	-2.05	-0.34
04:00	11.97	315.33	111.46	11.9	300	106.01	0.07	15.33	5.45
05:00	13.66	297.95	119.41	13.61	300	119.86	0.05	-2.05	-0.45
06:00	13.52	332.72	127.46	13.36	325	126.58	0.15	7.72	0.88

543

544 **Author contribution**

545 Conceptualisation: WM, SG, AC. Data collection: WM, DL, JC, BC, MAD, JCD, AF, MH, VM, JM, JP, MZ. Data
 546 analysis: WM, DL. Other data processing: WM, DL, JC, MAD, AF. Harmonised data product generation and writing-
 547 original draft: WM. Writing – review & editing: All. Funding acquisition: WM, SG, AC, MG, SK. Figures: WM, DL,
 548 AC, JC. Research facilities: MH (SIRTA), VM (Meteo France).

549 **Competing interests**

550 The authors declare that they have no conflict of interest.

551 **Acknowledgements**

552 Funding for the processing and harmonization was provided by the European Commission for the “Carbon
 553 Atmospheric Tracer Research to Improve Numerics and Evaluation (CATRINE)” project (grant agreement
 554 101135000); DWL operation and radiosounding campaigns were funded by ERC “urbisphere - coupling dynamic
 555 cities and climate” (grant agreement 855005), by ATMO-ACCESS (grant agreement 101008004, ATMO-TNA-3—
 556 0000000125) and by the European Commission through the project “Pilot Application in Urban Landscapes - Towards
 557 integrated city observatories for greenhouse gases” (grant agreement 101037319) and OBS4CLIM, Region île de
 558 France (convention no. 20007179), and the European Union’s Horizon 2020 research and innovation programme
 559 project RI-URBANS (grant agreement No. 101036245). Radiosounding equipment were loaned by National Centre
 560 for Atmospheric Science (NCAS) Atmospheric Measurement & Observation Facility (AMOF) and the operation and
 561 analysis of the Bristol DWL is part of NERC NE/W002965/1 *ASSURE: Across-Scale processeS in Urban*
 562 *Environments*. The authors thank EDF R&D/CEREA for providing data collected by the DWL WLS70. The authors
 563 thank the following staff and researchers at the University of Freiburg (Manuel Carrera, Daniel Fenner, Benjamin
 564 Gebert, Rainer Hilland, Joshua Lartey, Dirk Redepenning), the University of Reading (Matthew Clements) and at
 565 SIRTA/LMD (Florian Lapouge and Jérémie Trules) for fieldwork and data support, respectively. Météo-France
 566 RADOME observational data 75107005_TOUR-EIFFEL_MTO_6MIN_2023.nc and 75114001_PARIS-
 567 MONTSORIS_MTO_6MIN_2023.nc are made available by the AERIS data centre and atmospheric service. Météo-
 568 France RADOME observational data 75107005_TOUR-EIFFEL_MTO_6MIN_2023.nc and 75114001_PARIS-
 569 MONTSORIS_MTO_6MIN_2023.nc is maintained by the French national center for Atmospheric data and services
 570 AERIS.
 571

572 The authors would also like to thank SIRTA and EDF R&D/CEREA for providing the lidar data used in this study;
573 the QUALAIR-SU team (Cristelle Cailteau-Fischbach) and infrastructure for their scientific support: Qualair is an
574 observation platform of the OSU Ecceterra of Sorbonne University operated by LATMOS with the support of IPSL;
575 Météo-France for providing access to PAROIS (Dominique Legain); the French national centre for Atmospheric data
576 and services ACTRIS-FR and Météo-France for providing the standard meteorology data (and metadata – Dominique
577 Legain) used for the evaluations; Vincent Michoud and Gilles Foret (LISA/IPSL) for PALUPD site access and
578 maintenance assistance; Dr Hugo Ricketts (AMOF) for Windsond support; staff at Arboretum de la Vallée-aux-Loups
579 for site access (PAARBO); staff at METEK GmbH for providing Doppler SODAR data; and the ASSURE/urbisphere
580 team involved in Bristol,

581 **References**

582 Baklanov, A., Grimmond, C. S. B., Carlson, D., Terblanche, D., Tang, X., Bouchet, V., Lee, B., Langendijk, G., Kolli,
583 R. K., and Hovsepian, A.: From urban meteorology, climate and environment research to integrated city services,
584 *Urban Clim.*, 23, 330–341, <https://doi.org/10.1016/j.uclim.2017.05.004>, 2018.

585 Barlow, J. F., Haliots, C. H., Lane, S. E., and Wood, C. R.: Observations of urban boundary layer structure during a
586 strong urban heat island event, *Environ. Fluid Mech.*, 15, 373–398, <https://doi.org/10.1007/s10652-014-9335-6>, 2015.

587 Browning, K.A., Wexler, R., 1968. The Determination of Kinematic Properties of a Wind Field Using Doppler Radar.
588 *Journal of Applied Meteorology and Climatology* 7, 105–113. [https://doi.org/10.1175/1520-0450\(1968\)007%253C0105:TDOOKPO%253E2.0.CO;2](https://doi.org/10.1175/1520-0450(1968)007%253C0105:TDOOKPO%253E2.0.CO;2)

590 Cantrell, C. and Michoud, V.: An Experiment to Study Atmospheric Oxidation Chemistry and Physics of Mixed
591 Anthropogenic–Biogenic Air Masses in the Greater Paris Area, *Bull. Am. Meteorol. Soc.*, 103, 599–603,
592 <https://doi.org/10.1175/BAMS-D-21-0115.1>, 2022.

593 Cariou, J. P., Boquet, M., Lolli, S., Parmentier, R., and Sauvage, L.: Validation of the new long range 1.5 μ m wind
594 lidar WLS70 for atmospheric dynamics studies, in: *Lidar Technologies, Techniques, and Measurements for*
595 *Atmospheric Remote Sensing V*, *Lidar Technologies, Techniques, and Measurements for Atmospheric Remote*
596 *Sensing V*, 180–189, <https://doi.org/10.1111/12.830292>, 2009.

597 Céspedes, J., Kotthaus, S., Preissler, J., Toupoint, C., Thobois, L., Drouin, M.-A., Dupont, J.-C., Faucheu, A., and
598 Haeffelin, M.: The Paris Low-Level Jet During PANAME 2022 and its Impact on the Summertime Urban Heat Island,
599 *EGUphere, Atmos. Chem. Phys.*, 24, 11477–11496, <https://doi.org/10.5194/acp-24-11477-2024>, 2024.

600 Che, K., Cai, Z., Liu, Y., Wu, L., Yang, D., Chen, Y., Meng, X., Zhou, M., Wang, J., Yao, L., and Wang, P.:
601 Lagrangian inversion of anthropogenic CO₂ emissions from Beijing using differential column measurements,
602 *Environ. Res. Lett.*, 17, 075001, <https://doi.org/10.1088/1748-9326/ac7477>, 2022.

603 Che, K., Lauvaux, T., Chanca, I., Morrison, W., Abdallah, C., Dangeli, C., Hammer, S., Christen, A., Looschelders,
604 D., Kotthaus, S., Haeffelin, M., Sanchez, O., Perrusel, O., Lopez, M., Ciais, P., Rivier, L., and Ramonet, M.:
605 Optimizing CO₂ emission estimates in Paris through enhanced urban atmospheric monitoring, 2024.

606 Christen, A., Emmenegger, L., Hammer, S., Kutsch, W., D’Onofrio, C., Chen, J., Eritt, M., Haeffelin, M., Järvi, L.,
607 Kljun, N., Lauvaux, T., Loubet, B., Mauder, M., Mensah, A. A., Papale, D., Rivier, L., Stagakis, S., and Vermeulen,
608 A.: ICOS pilot observatories to monitor greenhouse gas emissions from three different-size European cities,
609 *Copernicus Meetings*, <https://doi.org/10.5194/egusphere-egu23-9884>, 2023.

610 Drouin, M.-A.: raw211, <https://github.com/ACTRIS-CCRES/raw211>, 2022.

611 Dupont, J.-C., Haeffelin, M., Badosa, J., Elias, T., Favez, O., Petit, J. E., Meleux, F., Sciare, J., Crenn, V., and Bonne, J. L.: Role of the boundary layer dynamics effects on an extreme air pollution event in Paris, *Atmos. Environ.*, 141, 571–579, <https://doi.org/10.1016/j.atmosenv.2016.06.061>, 2016.

614 Eaton, B., Gregory, J., Drach, B., Taylor, K., Hankin, S., Caron, J., Signell, R., Bentley, P., Rappa, G., Höck, H.,
 615 Pamment, A., Juckes, M., Raspaud, M., Blower, J., Horne, R., Whiteaker, T., Blodgett, D., Zender, C., Lee, D.,
 616 Hassell, D., Snow, A. D., Kölling, T., Allured, D., Jelenak, A., Soerensen, A. M., Gaultier, L., Herlédan, S., Manzano,
 617 F., Bärring, L., Barker, C., and Bartholomew, S. L.: NetCDF Climate and Forecast (CF) Metadata Conventions,
 618 <https://doi.org/10.5281/ZENODO.14275599>, 4 December 2024.

619 European Environment Agency: European Environment Agency, CORINE Land Cover 2018 Copernic. Land Monit.
 620 Serv., 2020.

621 Fenner, D., Christen, A., Grimmond, S., Meier, F., Morrison, W., Zeeman, M., Barlow, J., Birkmann, J., Blunn, L.,
 622 Chrysoulakis, N., Clements, M., Glazer, R., Hertwig, D., Kotthaus, S., König, K., Looschelders, D., Mitraka, Z.,
 623 Poursanidis, D., Tsirantonakis, D., Bechtel, B., Benjamin, K., Beyrich, F., Briegel, F., Feigel, G., Gertsen, C., Iqbal,
 624 N., Kittner, J., Lean, H., Liu, Y., Luo, Z., McGrory, M., Metzger, S., Paskin, M., Ravan, M., Ruhtz, T., Saunders, B.,
 625 Scherer, D., Smith, S. T., Stretton, M., Trachte, K., and Hove, M. V.: urbsphere-Berlin campaign: Investigating multi-
 626 scale urban impacts on the atmospheric boundary layer, *Bull. Am. Meteorol. Soc.*, 1, <https://doi.org/10.1175/BAMS-D-23-0030.1>, 2024.

628 Filioglou, M., Preissler, J., Troiville, A., Thobois, L., Vakkari, V., Auvinen, M., Fortelius, C., Gregow, E.,
 629 Hämäläinen, K., Hellsten, A., Järvi, L., O'Connor, E., Schönach, D., and Hirsikko, A.: Evaluating modelled winds
 630 over an urban area using ground-based Doppler lidar observations, *Meteorol. Appl.*, 29, e2052,
 631 <https://doi.org/10.1002/met.2052>, 2022.

632 Foret, G., Michoud, V., Kotthaus, S., Petit, J.-E., Baudic, A., Siour, G., Kim, Y., Doussin, J.-F., Dupont, J.-C.,
 633 Formenti, P., Gaimoz, C., Ghersi, V., Gratien, A., Gros, V., Jaffrezo, J.-L., Haeffelin, M., Kreitz, M., Ravetta, F.,
 634 Sartelet, K., Simon, L., Té, Y., Uzu, G., Zhang, S., Favez, O., and Beekmann, M.: The December 2016 extreme
 635 weather and particulate matter pollution episode in the Paris region (France), *Atmos. Environ.*, 291, 119386,
 636 <https://doi.org/10.1016/j.atmosenv.2022.119386>, 2022.

637 Grimmond, C. S. B., Roth, M., Oke, T. R., Au, Y. C., Best, M., Betts, R., Carmichael, G., Cleugh, H., Dabberdt, W.,
 638 Emmanuel, R., Freitas, E., Fortuniak, K., Hanna, S., Klein, P., Kalkstein, L. S., Liu, C. H., Nickson, A., Pearlmuter,
 639 D., Sailor, D., and Voogt, J.: Climate and More Sustainable Cities: Climate Information for Improved Planning and
 640 Management of Cities (Producers/Capabilities Perspective), *Procedia Environ. Sci.*, 1, 247–274,
 641 <https://doi.org/10.1016/j.proenv.2010.09.016>, 2010.

642 Haeffelin, M., Barthès, L., Bock, O., Boitel, C., Bony, S., Bouniol, D., Chepfer, H., Chiriaco, M., Cuesta, J., Delanoë,
 643 J., Drobinski, P., Dufresne, J.-L., Flamant, C., Grall, M., Hodzic, A., Hourdin, F., Lapouge, F., Lemaître, Y., Mathieu,
 644 A., Morille, Y., Naud, C., Noël, V., O'Hirok, W., Pelon, J., Pietras, C., Protat, A., Romand, B., Scialom, G., and
 645 Vautard, R.: SIRTA, a ground-based atmospheric observatory for cloud and aerosol research, *Ann. Geophys.*, 23,
 646 253–275, <https://doi.org/10.5194/angeo-23-253-2005>, 2005.

647 Haeffelin, M., Kotthaus, S., Bastin, S., Bouffies-Cloché, S., Cantrell, C., Christen, A., Dupont, J.-C., Foret, G., Gros,
 648 V., Lemonsu, A., Leymarie, J., Lohou, F., Madelin, M., Masson, V., Michoud, V., Price, J., Ramonet, M., Ribaud, J.-
 649 F., Sartelet, K., Wurtz, J., and PANAME team: PANAME – Project synergy of atmospheric research in the Paris
 650 region, , <https://doi.org/10.5194/egusphere-egu23-14781>, 2023.

651 He, Y., Ren, C., Mak, H. W. L., Lin, C., Wang, Z., Fung, J. C. H., Li, Y., Lau, A. K. H., and Ng, E.: Investigations of
 652 high-density urban boundary layer under summer prevailing wind conditions with Doppler LiDAR: A case study in
 653 Hong Kong, *Urban Clim.*, 38, 100884, <https://doi.org/10.1016/j.uclim.2021.100884>, 2021.

654 Held, D. P. and Mann, J.: Comparison of methods to derive radial wind speed from a continuous-wave coherent lidar
 655 Doppler spectrum, *Atmospheric Meas. Tech.*, 11, 6339–6350, <https://doi.org/10.5194/amt-11-6339-2018>, 2018.

656 Kent, C. W., Grimmond, S., Barlow, J., Gatey, D., Kotthaus, S., Lindberg, F., and Halios, C. H.: Evaluation of Urban
657 Local-Scale Aerodynamic Parameters: Implications for the Vertical Profile of Wind Speed and for Source Areas,
658 *Bound.-Layer Meteorol.*, 164, 183–213, <https://doi.org/10.1007/s10546-017-0248-z>, 2017.

659 Kent, C. W., Grimmond, C. S. B., Gatey, D., and Barlow, J. F.: Assessing methods to extrapolate the vertical wind-
660 speed profile from surface observations in a city centre during strong winds, *J. Wind Eng. Ind. Aerodyn.*, 173, 100–
661 111, <https://doi.org/10.1016/j.jweia.2017.09.007>, 2018.

662 Kotthaus, S., Bravo-Aranda, J. A., Collaud Coen, M., Guerrero-Rascado, J. L., Costa, M. J., Cimini, D., O'Connor,
663 E. J., Hervo, M., Alados-Arboledas, L., Jiménez-Portaz, M., Mona, L., Ruffieux, D., Illingworth, A., and Haeffelin,
664 M.: Atmospheric boundary layer height from ground-based remote sensing: a review of capabilities and limitations,
665 *Atmospheric Meas. Tech.*, 16, 433–479, <https://doi.org/10.5194/amt-16-433-2023>, 2023.

666 Lane, S. E., Barlow, J. F., and Wood, C. R.: An assessment of a three-beam Doppler lidar wind profiling method for
667 use in urban areas, *J. Wind Eng. Ind. Aerodyn.*, 119, 53–59, <https://doi.org/10.1016/j.jweia.2013.05.010>, 2013.

668 Langendijk, G. S., Halenka, T., Hoffmann, P., Adinolfi, M., Aldama Campino, A., Asselin, O., Bastin, S., Bechtel,
669 Belda, M., Bushenkova, A., Campanale, A., Chun, K. P., Constantinidou, K., Coppola, E., Demuzere, M., Doan,
670 Q.-V., Evans, J., Feldmann, H., Fernandez, J., Fita, L., Hadjinicolaou, P., Hamdi, R., Hundhausen, M., Grawe, D.,
671 Johannsen, F., Milovac, J., Katragkou, E., Kerroumi, N. E. I., Kotlarski, S., Le Roy, B., Lemonsu, A., Lennard, C.,
672 Lipson, M., Mandal, S., Muñoz Pabón, L. E., Pavlidis, V., Pietikäinen, J.-P., Raffa, M., Raluy-López, E., Rechid, D.,
673 Ito, R., Schulz, J.-P., Soares, P. M. M., Takane, Y., Teichmann, C., Thatcher, M., Top, S., Van Schaeybroeck, B.,
674 Wang, F., and Yuan, J.: Towards better understanding the urban environment and its interactions with regional climate
675 change - The WCRP CORDEX Flagship Pilot Study URB-RCC, *Urban Clim.*, 58, 102165,
676 <https://doi.org/10.1016/j.uclim.2024.102165>, 2024.

677 Le, V., Lobo, H., O'Connor, E. J., and Vakkari, V.: Long-term aerosol particle depolarization ratio measurements
678 with HALO Photonics Doppler lidar, *Atmospheric Meas. Tech.*, 17, 921–941, <https://doi.org/10.5194/amt-17-921-2024>, 2024.

680 Lean, H. W., Barlow, J. F., and Halios, C. H.: The impact of spin-up and resolution on the representation of a clear
681 convective boundary layer over London in order 100 m grid-length versions of the Met Office Unified Model, *Q. J.
682 R. Meteorol. Soc.*, 145, 1674–1689, <https://doi.org/10.1002/qj.3519>, 2019.

683 Lemonsu, A., Alessandrini, J. M., Capo, J., Claeys, M., Cordeau, E., de Munck, C., Dahech, S., Dupont, J. C., Dugay,
684 F., Dupuis, V., Forceville, G., Garrigou, S., Garrouste, O., Goret, M., Goria, S., Haeffelin, M., Host, S., Joly, C.,
685 Keravec, P., Kotthaus, S., Laruelle, N., Madelin, M., Masson, V., Mauclair, C., Nagel, T., Pascal, M., Ribaudo, J. F.,
686 Roberts, G., Rosso, A., Roy, A., Sabre, M., Sanchez, O., Stempfleit, M., Wei, W., Wilson, R., and Wurtz, J.: The heat
687 and health in cities (H2C) project to support the prevention of extreme heat in cities, *Clim. Serv.*, 34, 100472,
688 <https://doi.org/10.1016/j.cliser.2024.100472>, 2024.

689 Leskinen, N.: actris-cloudnet HALO reader – tool for HALO Photonics wind doppler lidar post-processing, 2023.

690 Lian, J., Lauvaux, T., Utard, H., Bréon, F.-M., Broquet, G., Ramonet, M., Laurent, O., Albarus, I., Chariot, M.,
691 Kotthaus, S., Haeffelin, M., Sanchez, O., Perrussel, O., Denier van der Gon, H. A., Dellaert, S. N. C., and Ciais, P.:
692 Can we use atmospheric CO₂ measurements to verify emission trends reported by cities? Lessons from a 6-year
693 atmospheric inversion over Paris, *Atmospheric Chem. Phys.*, 23, 8823–8835, <https://doi.org/10.5194/acp-23-8823-2023>, 2023.

695 Liu, G., Wang, X., Wu, Q., Fang, D., Wu, Z., Liu, H., and Lyu, M.: Effect of urbanization on gust wind speed in
696 summer over an urban area in Eastern China, *Environ. Res. Lett.*, 18, 074025, <https://doi.org/10.1088/1748-9326/acddfa>, 2023.

698 Liu, Z., Barlow, J. F., Chan, P.-W., Fung, J. C. H., Li, Y., Ren, C., Mak, H. W. L., and Ng, E.: A Review of Progress
699 and Applications of Pulsed Doppler Wind LiDARs, *Remote Sens.*, 11, 2522, <https://doi.org/10.3390/rs11212522>,
700 2019.

701 Manninen, A. J., O'Connor, E. J., Vakkari, V., and Petäjä, T.: A generalised background correction algorithm for a
702 Halo Doppler lidar and its application to data from Finland, *Atmospheric Meas. Tech.*, 9, 817–827,
703 <https://doi.org/10.5194/amt-9-817-2016>, 2016.

704 Météo-France: Descriptif technique des données d'Observations du réseau sol de France, Météo-France, 73, avenue
705 de Paris – 94165 Saint-Mandé CEDEX – France, 2023.

706 Morrison, W., Jonnathan, C., Christen, A., Chrysoulakis, N., Fenner, D., Grimmond, S., Haeffelin, M., Hilland, R.,
707 Kotthaus, S., Lartey, J., Paskin, M., Saunders, B., Van Hove, M., and Zeeman, M.: The urbisphere boundary-layer
708 observational campaign in Paris, France: observation network design and initial results, 11th International Conference
709 on Urban Climate, Sydney, Australia, 2023.

710 Morrison, W., Looschelders, D., and Christen, A.: Metadata for the urbisphere-Paris campaign during 2022-2024:
711 fieldwork maintenance log [L1] Version V1.0.2, 2024.

712 Morrison, W., Looschelders, D., Cespedes, J., Claxton, B., Drouin, M.-A., Dupont, J.-C., Haeffelin, M., Holst, C. C.,
713 Kotthaus, S., McGregor, J., Masson, V., Price, J., Zeeman, M., Grimmond, S., and Christen, A.: Harmonised boundary
714 layer wind profile dataset from six ground-based doppler wind lidars in a transect across Paris (France) from 2022-
715 06-10 to 2024-03-05 (V1.42), <https://doi.org/10.5281/zenodo.14761503>, 2025.

716 Newsom, R. K. and Krishnamurthy, R.: Doppler Lidar (DL) Instrument Handbook, <https://doi.org/10.2172/1034640>,
717 2022.

718 Newsom, R. K., Brewer, W. A., Wilczak, J. M., Wolfe, D. E., Oncley, S. P., and Lundquist, J. K.: Validating precision
719 estimates in horizontal wind measurements from a Doppler lidar, *Atmospheric Meas. Tech.*, 10, 1229–1240,
720 <https://doi.org/10.5194/amt-10-1229-2017>, 2017.

721 Päschke, E., Leinweber, R., and Lehmann, V.: An assessment of the performance of a 1.5 μ m Doppler lidar for
722 operational vertical wind profiling based on a 1-year trial, *Atmospheric Meas. Tech.*, 8, 2251–2266,
723 <https://doi.org/10.5194/amt-8-2251-2015>, 2015.

724 Pentikäinen, P., O'Connor, E. J., and Ortiz-Amezcu, P.: Evaluating wind profiles in a numerical weather prediction
725 model with Doppler lidar, *Geosci. Model Dev.*, 16, 2077–2094, <https://doi.org/10.5194/gmd-16-2077-2023>, 2023.

726 Rahlves, C., Beyrich, F., and Raasch, S.: Scan strategies for wind profiling with Doppler lidar – an large-eddy
727 simulation (LES)-based evaluation, *Atmospheric Meas. Tech.*, 15, 2839–2856, <https://doi.org/10.5194/amt-15-2839-2022>, 2022.

729 Röttger, J., Klostermeyer, J., Czechowsky, P., Rüster, R., and Schmidt, G.: Remote sensing of the atmosphere by VHF
730 radar experiments, *Naturwissenschaften*, 65, 285–296, <https://doi.org/10.1007/BF00368369>, 1978.

731 Sparv Embedded: Windsong Catalogue, 2019.

732 Stathopoulos, T., Alrawashdeh, H., Al-Quraan, A., Blocken, B., Dilimulati, A., Paraschivoiu, M., and Pilay, P.: Urban
733 wind energy: Some views on potential and challenges, *J. Wind Eng. Ind. Aerodyn.*, 179, 146–157,
734 <https://doi.org/10.1016/j.jweia.2018.05.018>, 2018.

735 Staufer, J., Broquet, G., Bréon, F.-M., Puygrenier, V., Chevallier, F., Xueref-Remy, I., Dieudonné, E., Lopez, M.,
736 Schmidt, M., Ramonet, M., Perrussel, O., Lac, C., Wu, L., and Ciais, P.: A first year-long estimate of the Paris region
737 fossil fuel CO₂ emissions based on atmospheric inversion, *Atmospheric Chem. Phys. Discuss.*, 1–34,
738 <https://doi.org/10.5194/acp-2016-191>, 2016.

739 Steinheuer, J., Detring, C., Beyrich, F., Löhner, U., Friederichs, P., and Fiedler, S.: A new scanning scheme and
740 flexible retrieval for mean winds and gusts from Doppler lidar measurements, *Atmospheric Meas. Tech.*, 15, 3243–
741 3260, <https://doi.org/10.5194/amt-15-3243-2022>, 2022.

742 Teschke, G. and Lehmann, V.: Mean wind vector estimation using the velocity–azimuth display (VAD) method: an
743 explicit algebraic solution, *Atmospheric Meas. Tech.*, 10, 3265–3271, <https://doi.org/10.5194/amt-10-3265-2017>,
744 2017.

745 Theeuwes, N., Barlow, J., Mannisenaho, A., Hertwig, D., O'Connor, E., and Robins, A.: Observations of Tall-Building
746 Wakes Using a Scanning Doppler Lidar, <https://doi.org/10.5194/egusphere-2024-937>, 2024.

747 Vaisala: WindCube Data Filtering Guidelines. <https://www.vaisala.com/sites/default/files/documents/WindCube->
748 Data-Filtering-Guidelines-v1.3.pdf, 2022.

749 Wedi, N. P., Polichtchouk, I., Dueben, P., Anantharaj, V. G., Bauer, P., Boussetta, S., Browne, P., Deconinck, W.,
750 Gaudin, W., Hadade, I., Hatfield, S., Iffrig, O., Lopez, P., Maciel, P., Mueller, A., Saarinen, S., Sandu, I., Quintino,
751 T., and Vitart, F.: A Baseline for Global Weather and Climate Simulations at 1 km Resolution, *J. Adv. Model. Earth
752 Syst.*, 12, e2020MS002192, <https://doi.org/10.1029/2020MS002192>, 2020.

753 Weitkamp, C. (Ed.): Lidar, Springer-Verlag, New York, <https://doi.org/10.1007/b106786>, 2005.

754 Wildmann, N., Päschke, E., Roiger, A., and Mallaun, C.: Towards improved turbulence estimation with Doppler wind
755 lidar velocity-azimuth display (VAD) scans, *Atmospheric Meas. Tech.*, 13, 4141–4158, <https://doi.org/10.5194/amt->
756 13-4141-2020, 2020.

757 WMO: Guide to Instruments and Methods of Observation. WMO-No. 8. <https://library.wmo.int/idurl/4/41650>, 2024.

758 Yim, S. H. L.: Development of a 3D Real-Time Atmospheric Monitoring System (3DREAMS) Using Doppler
759 LiDARs and Applications for Long-Term Analysis and Hot-and-Polluted Episodes, *Remote Sens.*, 12, 1036,
760 <https://doi.org/10.3390/rs12061036>, 2020.

761 Zeeman, M., Holst, C. C., Kossmann, M., Leukauf, D., Münkel, C., Philipp, A., Rinke, R., and Emeis, S.: Urban
762 Atmospheric Boundary-Layer Structure in Complex Topography: An Empirical 3D Case Study for Stuttgart,
763 Germany, *Front. Earth Sci.*, 10, 840112, <https://doi.org/10.3389/feart.2022.840112>, 2022.

764 Zeeman, M., Christen, A., Grimmond, S., Fenner, D., Morrison, W., Feigel, G., Sulzer, M., and Chrysoulakis, N.:
765 Modular approach to near-time data management for multi-city atmospheric environmental observation campaigns,
766 <https://doi.org/10.5194/egusphere-2024-1469>, 10 June 2024.

767