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Abstract. Permafrost thaw disrupts ecosystems, hydrology, and biogeochemical cycles, reinforcing climate change through a 13 

positive permafrost-carbon feedback loop. Thaw can be gradual, deepening the active layer, or abrupt, triggering thermokarst, 14 

thermo-erosion, or thermodenudation. Retrogressive thaw slumps (RTSs) are a key manifestation of abrupt permafrost thaw. 15 

Yet, their distribution, scale, and environmental controls in the West Siberian Arctic remain poorly understood, further 16 

complicated by their rapid evolution. This study presents an extensive update of the West Siberian RTS inventory through 17 

manual mapping using high-resolution, multi-source, multi-year recent (2016-2023) satellite basemaps (ESRI, Google Earth, 18 

and Yandex Maps). We developed an RTS classification capturing key environmental parameters, including morphology, 19 

spatial organization, terrain position, and associated relief-forming concurrent processes. The dataset comprises 6168 classified 20 

RTS landforms, integrating newly mapped sites with previously reported occurrences to provide a comprehensive view of a 21 

445226 km2 region covering the Yamal, Gydan, and Tazovsky peninsulas. The collected data underwent manual filtering and 22 

verification, leveraging local field experience and observations from key sites to reduce uncertainty and minimize false 23 

positives. Accuracy analysis, performed by comparing the dataset with various field datasets collected across the peninsulas, 24 

confirmed high accuracy (>90%) for RTS identification. The dataset likely underestimated the distribution of small RTSs due 25 

to the resolution limitations of remote sensing data, hence generally providing a conservative estimate. This dataset serves as 26 

a valuable resource for diverse research fields, including ecology, biogeochemistry, geomorphology, climatology, permafrost 27 

science, and natural hazard assessment. Additionally, it provides a crucial reference dataset for machine learning applications, 28 

enhancing upcoming remote sensing classification and predictive modeling approaches.  29 
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1 Introduction 30 

Permafrost is any ground that stays below 0°C for two or more consecutive years (Harris et al., 1988). It constitutes about 15% 31 

of the Northern Hemisphere landmass (Obu et al., 2021) and is experiencing significant warming and reduction in extent due 32 

to global warming (AMAP, 2017; Biskaborn et al., 2019; Smith et al., 2022). Permafrost thaw not only affects the high-latitude 33 

northern ecosystems and hydrological cycle but also releases carbon into the atmosphere and hydrosphere, contributing to 34 

global climate change with a positive feedback loop (Schuur et al., 2015). However, permafrost carbon emissions are still 35 

poorly integrated into global climate models (Miner et al., 2022). Furthermore, permafrost degradation manifests itself both 36 

gradually and abruptly. Gradual thaw slowly deepens the active layer over time (Brown et al., 2000; Luo et al., 2016; Vasiliev 37 

et al., 2020), while abrupt thaw in ice-rich permafrost triggers rapid thermokarst or thermo-erosion processes, leading to the 38 

formation of various landforms. Prime examples of such abrupt thaw events are specific types of permafrost-region landslides 39 

termed retrogressive thaw slumps (RTSs) (Nesterova et al., 2024).  40 

RTSs are slope failures formed due to the thaw of exposed ice-rich permafrost (Fig. 1) (Mackay, 1966). These dynamic features 41 

can develop in a polycyclic fashion (Lantuit et al., 2005). Usually, the initial stages involve active ice ablation and downslope 42 

mudflows, followed by a stage of stabilization and colonization with pioneer vegetation (Mackay, 1966; Kerfoot, 1969; 43 

Leibman and Kizyakov, 2007). Active RTS can be considered as one of the clear indicators of permafrost response to increased 44 

air temperatures and higher summer precipitation (Lantz and Kokelj, 2008; Kokelj et al., 2015; Leibman et al., 2021; Barth et 45 

al., 2025). RTS occurrence significantly impacts the environment by altering the vegetation, topography, hydrology, as well 46 

as carbon fluxes (Lantz et al., 2009; Thienpoint et al., 2013; Cassidy et al., 2017). The prediction of RTS occurrence and 47 

activity is challenging due to heterogeneous ground ice distribution (Pollard and French, 1980; Makopoulou et al., 2024) across 48 

the Arctic, limited observational field data (Ward Jones et al., 2019), and the lack of models capable of simulating RTS 49 

initiation and dynamics (Yang et al., 2025).  50 

The north of West Siberian Arctic, with its predominantly continuous permafrost distribution (Obu et al., 2019), is 51 

characterized by a high abundance of RTS. The prevalence of massive ground ice (Baulin et al., 1967; Streletskaya et al., 2013; 52 

Leibman and Kizyakov, 2007; Badu, 2015) that often occurs close to the surface contributes to the widespread abundance of 53 

RTSs (Khomutov et al., 2017). Moreover, the observed amplification of seasonal thawing and growth of permafrost 54 

temperatures (Babkina et al., 2019; Biskaborn et al., 2019; Vasiliev et al., 2020) presents an additional factor for the mass 55 

initiation of RTS in the region. So far, the majority of RTS studies in the north of West Siberia have only been based on 56 

fieldwork at local key sites (Leibman and Kizyakov, 2007; Leibman et al., 2015; Khomutov et al., 2017; Novikova et al., 2018; 57 

Streletskaya et al., 2018; Babkina et al., 2019). Long-term field observations at the research station “Vaskiny Dachi” in Central 58 

Yamal reported the activation of rapid thaw processes after the extreme summer warmth of 2012 (Khomutov et al., 2017; 59 

Babkina et al., 2019).  60 
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 61 

Figure 1 RTS in Central Yamal, West Siberia, Russia. Photo taken in August 2021 by Nina Nesterova. 62 

The vast majority of novel large-scale RTS studies utilize automated mapping with remote sensing data. This automated 63 

approach has some limitations for West Siberia so far, including using only a moderate spatial resolution of 30m not sufficient 64 

for detecting smaller RTS, only a partial cover of the West Siberian Arctic, the lack of high-resolution ground truth data, a 65 

large amount of false positive detection, and further feature interpretation ambiguities (Nitze et al., 2018; Runge et al., 2022; 66 

Nitze et al., 2024). Furthermore, the polycyclicity of RTS development results in highly complex spatial patterns characterized 67 

by multiple overlapping or nested RTSs (Nesterova et al., 2024), which introduces further difficulties in highly automated 68 

mapping efforts. New cutting-edge panarctic datasets building on automated detection methods are being released (DARTS, 69 

Nitze et al., 2024b) but still have some limitations in accuracy on the local to regional scale. 70 

In contrast, manual mapping of RTSs with high-resolution imagery by experts with regional knowledge can provide higher 71 

accuracy and decrease the amount of false positive detections (Lewkowicz and Way, 2019; Ward Jones et al., 2019; Nitze et 72 

al., 2024). A first manually mapped inventory of RTSs in the West Siberian Arctic was performed using the Yandex Maps 73 

high to moderate resolution satellite basemap representing the 2016-2018 period (Nesterova et al., 2021). The dataset reports 74 

439 RTSs over both the Yamal and Gydan peninsulas. Due to the different spatial resolutions of satellite images used in the 75 

basemap (ranging from 0.4 to 15 m), the results tend to underestimate modern RTS distribution, particularly in areas where 76 
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only lower resolution imagery was available. Therefore, there was still no full understanding of the scale of thaw slumping in 77 

the West Siberian Arctic, its distribution, and environmental parameters, which are further complicated by the rapid evolution 78 

of RTSs. 79 

We provide an extensive update of the West Siberian RTS inventory for 2021, which was performed by manually mapping 80 

RTS in the north of West Siberia using multi-source and multi-year satellite basemaps (high-resolution ESRI, Google Earth, 81 

and Yandex Maps satellite basemaps). We further added all the RTS locations reported for this region in the literature so far. 82 

The collected dataset was manually filtered and compared to field data. This multi-source approach, in combination with 83 

regional field experience and field observations, gathered earlier at various key sites, helped us to minimize the uncertainty 84 

and decrease the number of false positive detections. We additionally developed a classification to describe each RTS, 85 

capturing their main environmental parameters such as morphology, spatial organization, terrain position, and concurrent 86 

relief-forming processes. 87 

2 Methodology 88 

Our approach includes four main steps: (1) visual identification of RTS and manual RTS point collection, (2) classification 89 

and parameter attribution, (3) iterative correction loop, and (4) final accuracy assessment (Fig. 2). Manual RTS point collection, 90 

classification, and correction were performed in QGIS software version 3.14. Accuracy analysis, plotting, and statistical 91 

calculations were performed using Python version 3.12.7. Chord diagrams were plotted in R, using RStudio 2024.12.0+467. 92 

The resulting points were analysed for clustering using Ripley’s K function. Ripley’s K function determines whether spatial 93 

points have a random, dispersed, or cluster distribution over a certain distance or scale (Dixon, 2001).  94 
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 95 

Figure 2 Workflow overview. Rectangles with rounded corners present the datasets, and rectangles with sharp corners present the 96 
curation steps. The four main stages are numbered: 1 – Visual RTS identification and manual point collection stage, 2 – RTS point 97 
classification and parameter attribution, 3 – Iterative correction, and 4 – Accuracy assessment. 98 

2.1 RTS point mapping 99 

The study area in the north of West Siberia is 445 226 km2 and includes the Yamal, Gydan, and Tazovsky peninsulas (Fig. 3). 100 

To ensure the completeness of the RTS dataset we reviewed previously published RTS datasets for the region, all of which 101 

were mapped using automated methods (Fig. 3). We manually filtered RTS datasets from Nitze et al. (2018), Runge et al. 102 

(2022), Bernhard et al. (2022), Huang et al. (2023), and Nitze et al. (2025) to verify the presence of RTS and ensure that only 103 

true positives were included. This verification was conducted using the same available datasets that we later used for manual 104 

point collection, as described further below. 105 

Manually collected RTS dataset published in 2021 (Nesterova et al., 2021) was also integrated: points were revised, classified, 106 

and renamed. 107 
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 108 

Figure 3 Study area in West Siberia with RTS datasets previously published in the literature. Please note that none of the external 109 
datasets fully covers the entire study area. 110 

For our visual identification and manual collection of RTS points, we created a regular grid of 3.9 * 3.9 km cells covering the 111 

entire study area (Fig. 4a). This cell size was chosen as the optimal for visual inspection of the area and progress tracking, 112 

balancing detail and generalization. The ESRI satellite basemap was used as the primary source of information for RTS point 113 

collection due to the best quality of its recent very high-resolution imagery. This included high-resolution imagery (up to 0.31 114 

m) largely with low cloudiness and an almost complete absence of visual artifacts. In rare cases, when the ESRI basemap did 115 

not fulfill visual quality criteria, such as no clouds, summer time of the image acquisition, and no artifacts, we used the Yandex 116 

Maps satellite basemap instead. In exceptional cases when neither the ESRI nor the Yandex basemaps fulfilled the visual 117 

quality criteria, we additionally checked the Google satellite basemap. 118 
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 119 

Figure 4 Manual mapping of RTSs in West Siberia:  (a) Example of a grid cell with manually mapped RTSs (orange dots); (b) 120 
Coverage of the study area by high-resolution satellite images from different years in the ESRI basemap in km2; (c) Example of a 121 
lake shore RTS (marked by yellow point) on ESRI basemap imagery and typical visual RTS indicators: 1 – headwall, 2 – mudflow, 122 
3 - contrasting colors of the disturbed slump floor with bare ground and the surrounding intact tundra vegetation; (d) Example of 123 
coastal RTS (marked by yellow point) on ESRI basemap imagery affected by coastal thermo-erosion, with white bracket indicating 124 
the full elongated extent of the coastal landform considered to be a single RTS in our inventory dataset. ESRI basemap used in (a), 125 
(c), and (d) has the following credits: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, 126 
IGP, swisstopo, and the GIS User Community. 127 

The majority of the high-resolution satellite images used in the ESRI basemap mosaic are recent Maxar images obtained after 128 

2015 (Fig. 4b). Over a third of the study area is covered by satellite images from 2023 (Fig. 4b). Since the ESRI basemap was 129 

utilized as the primary source, all metadata related to the satellite images (image date acquisition, image resolution, image 130 

accuracy, min and max map level, satellite description, ESRI release name) in the mosaic for identifying the RTS is stored 131 

within the inventory dataset's metadata. Yandex Maps basemap presents a mosaic of various satellite imagery taken in 2016-132 

2018 with spatial resolutions ranging from 0.4 up to 15 m. The majority of images are dated July 2017 (Nesterova et al., 2021). 133 

For the Google satellite image layer, no individual image metadata was provided. 134 

RTSs were identified at a 1:1000 mapping scale in the satellite imagery based on visual indicators such as a clear outline of 135 

the headwall, the presence of a mudflow, and the sharp contrast in colors between the disturbed slump floor with bare ground 136 

and the adjacent intact tundra vegetation (Fig.4c). Thus, stabilized RTSs were also identified when the indicators were still 137 

visible. For each identified feature, we created a point in the location of the RTS within the visible outlines of the RTS with 138 

the best possible approximation to the visual center of the landform. 139 
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Each digitized point represented one feature that would be classified (see Sect. 2.2). Due to the complex nature of coastal RTSs 140 

sometimes stretching along coastal segments (Fig. 4d), we decided to identify each elongated contour with visible semicircles 141 

embedded inland as one feature. Such contours were often separated from each other by little streams or watercourses. This 142 

approach allowed us to utilize a single technique for all coastal RTSs, regardless of their size and shape. 143 

The RTS points underwent two visual corrections by the first author. To differentiate the process of coastal erosion from 144 

thermodenudation (Günther et al., 2012; Nesterova et al., 2024) and thereby distinguish other coastal landforms from RTSs, a 145 

special correction was applied to all coastal RTSs and thermoterrace RTSs (see Sect. 2.2). This involved verifying the headwall 146 

retreat of the RTS outline using the ESRI Wayback Machine - a digital archive of the World Imagery basemap of different 147 

versions providing multi-temporal imagery (ESRI Wayback Imagery, 2024). The same verification procedure was applied for 148 

the identification of RTS in the southernmost part of our West Siberian study area, where no reliable data on massive ground 149 

ice distribution is available and thus permafrost landforms can have different origins. The literature specifies the limits of 150 

massive ground ice extent in the north of West Siberia only very approximately (Baulin and Danilova, 1998). 151 

2.2 Classification 152 

We classified each RTS point based on terrain position, morphology, spatial organization, and concurrent cryogenic processes 153 

(Fig. 5). The four main criteria had a total of 15 parameters. 154 

 155 

Figure 5 RTS classification scheme with four main criteria (shown as grey blocks) and 15 variables. 156 

The terrain position of an RTS is defined based on the location of the object to either some hydrological feature (sea coast, 157 

river bank, lakeshore, and gully) or just slope when there was no visible hydrological feature. The location lake was selected 158 

for RTSs even on the former shores of drained lakes. 159 

We further defined three types of RTS morphologies: thermocirque, thermoterrace, or a combination of these two (Nesterova 160 

et al., 2024). Thermocirque generally presents a horseshoe-like RTS shape (Fig. 6a), while thermoterrace is applied to an 161 

elongated RTS with mostly straight headwall outlines parallel to a coastline or riverbank (Fig. 6b). The combination of these 162 

two morphologies sometimes occurs when the elongated RTS landform also contains circular isometric curves of headwall 163 

outlines (Fig. 6c). It is usually formed when a thermocirque merges with a thermoterrace or when multiple thermocirques 164 
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merge in one elongated landform. The complicated shapes of these combined RTS features make it highly challenging to 165 

distinguish between individual elongated and horseshoe-like RTSs (Fig. 6c). Our decision tree to define the morphology of 166 

RTS is shown in Supplement. 167 

 168 

Figure 6 Examples of the three main RTS morphologies mapped in West Siberia: (a) Two thermocirques (yellow dots); (b) A single 169 
large thermoterrace (yellow dot); (c) A combined RTS morphology of merged thermocirques or merged thermocirque and a 170 
thermoterrace (yellow dot). ESRI basemap used has the following credits: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, 171 
AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community. 172 

Due to the polycyclic nature of RTS development, these landforms can exhibit a very complex spatial organization of nested 173 

and amalgamated RTSs (Nesterova et al., 2024). We identified two types of RTS spatial organization: single landforms and 174 

complex landforms. RTS can be classified as a single landform when its outline is distinct and clearly defined and there is no 175 

more than one actively thawing zone within this outline (Fig. 7a). RTS can be classified as a complex landform when its 176 

boundary is difficult to define and/or there are two or more actively thawing zones (Fig. 7b). All the RTSs with combined 177 

morphologies were marked as complex landforms.  178 

The influence of concurrent (happening in parallel to RTS development) processes on RTS development is described in 179 

Nesterova et al. (2024). For each mapped RTS, we noted the possible presence of 5 concurrent processes: lateral thermo-180 

erosion, coastal thermo-erosion, ice wedge erosion, nivation, and thermokarst subsidence. Lateral thermo-erosion was 181 

identified by the rugged outline of the RTS and visible traces of erosive channels (Fig. 8a). The Coastal thermo-erosion 182 

classifier includes not only the sea coast erosion but also river and lakeshore erosion. It was determined by a sharp dark outline 183 

of the RTS base along the coastline of a waterbody and the absence of sediment accumulation in the water (Fig. 8a). We have 184 

noted ice wedge erosion when an RTS headwall had a jagged outline resembling the adjacent polygonal surface of undisturbed 185 

tundra (Fig. 8b). Nivation in the context of this study is considered as persistent snow cover. It was detected as white patches 186 

of snowpacks that stayed over the summer within RTS (Fig. 8a). Thermokarst subsidence appears as small thermokarst ponds 187 

filled with water. It is noticeable as black patches within the RTS outline (Fig. 8b). 188 
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 189 

Figure 7 Examples of the different spatial organization of RTSs: (a) Single RTS landform with a distinct outline (yellow dot); (b) 190 
Complex RTS landform (yellow dot) with multiple nested active (1) and stabilized (2) RTSs within one contour. ESRI basemap used 191 
has the following credits: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, 192 
swisstopo, and the GIS User Community. 193 

 194 

Figure 8 Examples of RTS with concurrent processes: (a) Stabilized RTS (yellow dot) at a riverbank. The white arrow (1) points to 195 
the clear dark boundary between the RTS and the waterbody, which together with the absence of sediment accumulation, indicates 196 
ongoing coastal thermo-erosion at the slump base. The purple arrows (2) point to the rugged outline of RTS and traces of erosive 197 
channels, indicating lateral thermo-erosion. The green arrow (3) points at the white patch of the remaining snowpack (nivation). (b) 198 
Stabilized RTS (yellow dot) at a lakeshore. The light blue arrows (4) point to the polygonal surface around the RTS and (5) the 199 
jagged outline of the headwall suggesting ice-wedge degradation. The orange arrows (6) point to the small black patches of 200 
thermokarst ponds within the RTS. ESRI basemap used has the following credits: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, 201 
USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community. 202 

 203 
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2.3 Accuracy assessment 204 

2.3.RTS location accuracy  205 

We compared the RTS point locations of our dataset with two sets of ground truth field data to estimate the accuracy of our 206 

mapped RTS point locations. 207 

The first set of RTS locations was collected for the Vaskiny Dachi Research Station in Central Yamal by Khomutov et al. 208 

(2024) and included 158 points. The authors used satellite images of QuickBird-2 for 2010, GeoEye-1 and WorldView-2 for 209 

2013, and WorldView-2, 3 for 2018, as well as the results of long-term field observation to map RTSs. Since the RTS mapping 210 

protocols can significantly affect the results (Nitze et al., 2024), we have adjusted these ground truth points to align with our 211 

mapping protocol in which one point stands for one RTS landform. When comparing our points to the ground truth collected, 212 

we observed inconsistencies in mapping RTS points. For example, while the ground truth dataset might contain two or three 213 

points for an RTS landform, our approach would place only one. To account for these differences, we recalibrated the dataset 214 

and calculated accuracy statistics for both the original (unadjusted) and adjusted RTS points (Table 1). 215 

Two RTS surveys were conducted during helicopter flights in 2020 and 2023. We manually identified the exact locations of 216 

aerial photos and created another RTS dataset. We then used it to perform an accuracy analysis in the central Gydan Peninsula 217 

(Fig 9b, c). These points were also adjusted to our RTS mapping protocol, and the accuracy statistics were calculated for both 218 

versions (Table 1). The performance of our dataset was evaluated using precision, recall, and F1-score, which integrates both 219 

measures. In this context, precision refers specifically to the metric used in the F1-score calculation and should not be confused 220 

with measurement precision, as no measurements were performed. Precision is calculated as the proportion of correctly 221 

identified (true positive) RTS points when compared to the ground truth RTS points, among all mapped RTS points in the 222 

dataset. Recall represents the proportion of correctly identified RTS points relative to the total number of RTS points in the 223 

ground truth dataset. The F1-score is the harmonic mean of precision and recall, providing a balanced evaluation of both false 224 

positives and false negatives. 225 
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 226 

Figure 9 Field validation: (a) Locations of the Vaskiny Dachi research station with field survey area on Yamal Peninsula and 227 
helicopter survey area on central Gydan Peninsula, basemap: ESRI; (b) Photo of RTSs from the helicopter taken by Artem 228 
Khomutov, July 2023; (c) the same RTSs marked with the yellow point on the ESRI basemap, WorldView-2 24 July 2019. ESRI 229 
basemap used in (a) and (c) has the following credits: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, 230 
Aerogrid, IGN, IGP, swisstopo, and the GIS User Community. 231 
 232 
Table 1 Number of RTSs used for the location accuracy analysis. The unadjusted number of RTSs represents the initial amount of 233 

RTSs in the ground truth datasets. The adjusted number of RTSs represents the amount of RTSs in the ground truth datasets 234 

adapted to the RTS mapping protocol applied for manual collection. 235 

Vaskiny Dachi Research Station 

Survey 2024 

Gydan Helicopter Survey 2020 Gydan Helicopter Survey 2023 

unadjusted adjusted unadjusted adjusted unadjusted adjusted 

158 132 60 39 12 12 

 236 

2.3.2 Classification accuracy 237 

To assess the subjectivity of the classification, we conducted an experiment in which five co-authors of this study were tasked 238 

with classifying a subsample of 120 randomly stratified RTS points that equally covered all three types of morphology. The 239 

decision-tree schemes and the collection of screenshots of different RTSs were used as supportive materials (see Supplement). 240 
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We calculated the proportion of the same classifications by 5 co-authors compared to the original dataset and Jensen-Shannon 241 

distances explaining the deviation of classifications. 242 

3. Results 243 

3.1 RTS points 244 

The dataset is presented in a GeoPackage vector file of point geometry with 6168 RTS point locations. Mapped RTSs were 245 

distributed unevenly, covering Tazovsky Peninsula where no RTS were found, the Yamal Peninsula except its northern part, 246 

and covering the Gydan Peninsula except its southern part (Fig.10a). RTSs were significantly clustered according to Ripley’s 247 

K function on a wide range of distances (p-value=0.001). The majority of areas of both peninsulas had less than 20 RTSs per 248 

30*30 km hexagon grid cell, indicating distinct hotspots of RTS occurrence with more than 100 RTSs per grid cell. The main 249 

areas with high RTS density were the western part of central Yamal and the area between the southern-western and north-250 

eastern parts of central Gydan. On Gydan, they clustered along a distinct linear feature on its southern edge, south of which 251 

RTSs abruptly become almost absent (Fig.10b). 252 

 253 

Figure 10 Distribution of all mapped RTSs: (a) Manually mapped RTSs (purple dots); (b) Density map of RTSs per 30 × 30 km 254 
hexagonal grid cell. Projection: WGS 84 UTM Zone 43. Basemap: OSM Standard.  255 
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3.2 Terrain position 256 

More than 75% of all RTSs were found at lakeshores (Fig.11a). The high-density areas of lakeshore RTSs correspond to RTS 257 

occurrence hotspots in the western part of central Yamal and the area between the south-western and north-eastern parts of 258 

central Gydan (Fig.11c).  259 

The density of RTSs at the sea coasts was mostly less than 10 RTSs per grid cell. The highest density of coastal RTSs was 260 

found along the northern shores of Yuribei Bay in south-western Yamal (Fig.11b). For RTSs along river banks, gullies, and 261 

slopes, the predominating values of density were less than 10 RTSs per grid cell, not showing any spatial clustering (Appendix 262 

A).  263 

 264 

Figure 11 Distribution of all mapped RTSs: (a) Manually mapped RTSs classified by location; Density maps of RTSs per 30 × 30 265 
km hexagonal grid cell located along the (b) seacoast and (c) lakeshores. Projection: WGS 84 UTM Zone 43. Basemap: OSM 266 
Standard.  267 
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 268 

3.3 Morphology 269 

The majority (72%) of RTSs were classified as thermocirques, one-quarter of all RTSs are combined landforms, and less than 270 

3% were classified as thermoterraces (Fig.12a). The majority of RTSs in all categories have a spatial density of less than 15 271 

RTSs per grid cell. 272 

 273 

Figure 12 Distribution of all mapped RTSs: (a) Manually mapped RTSs classified by morphology; Density maps of RTSs per 30 × 274 
30 km hexagonal grid cell classified as (b) thermocirque, (c) thermoterrace, and (d) a combination of both. Projection: WGS 84 275 
UTM Zone 43. Basemap: OSM Standard.  276 
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Thermocirques were highly concentrated in hotspot areas of general RTS abundance (Fig. 10b). Combination landforms 277 

followed the high RTS abundance pattern mostly in the Gydan Peninsula but less so on the Yamal Peninsula. In contrast, 278 

thermoterraces lacked distinct high-density hotspots. 279 

3.4 Spatial organization 280 

More than half of all RTSs (64%) were classified as complex landforms and slightly more than one-third (36%) as single 281 

landforms (Fig. 13). Both complex and single landforms followed the general spatial distribution patterns, with high-density 282 

areas being located in the western part of the central Yamal Peninsula and the southern-western and north-eastern parts of the 283 

central Gydan Peninsula. The most frequent density range for both classes was less than 10 RTSs per grid cell. 284 

 285 

Figure 13 Distribution of all mapped RTSs: (a) Manually mapped RTSs classified by spatial organization; Density maps of RTS per 286 
30 × 30 km hexagonal grid cell classified by spatial organization as (b) single or (c) complex landforms. Projection: WGS 84 UTM 287 
Zone 43. Basemap: OSM Standard.  288 

3.5 Concurrent processes 289 

More than half (53.8%) of all RTSs were found to have at least one concurrent process detected, more than a third (33.4%) of 290 

all RTSs showed only one process detected, while much fewer RTSs demonstrated two or more processes detected at the same 291 

time (Fig. 14a). Lateral thermo-erosion and thermokarst were two very abundant RTS-concurrent processes (Fig. 14b). For the 292 
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cases where only one process was detected per RTS, there was a predominance of thermokarst (38%) followed by lateral 293 

thermo-erosion processes (30%) (Fig. 14c).  294 

Using chord diagrams (Fig. 14d, e, f) allowed a depiction of the co-occurrence of concurrent processes estimated for the cases 295 

when two, three, or four processes were detected for RTS. In general, the co-occurrence of the concurrent processes shows 296 

different results depending on the cases of the amount of the processes detected. There was a clear trend of the co-occurrence 297 

of nivation and lateral thermo-erosion among all 3 cases (Fig. 14d, e, f). The co-occurrence of lateral thermo-erosion and ice-298 

wedge erosion gradually increased with more processes detected. The co-occurrence of the nivation and the coastal thermo-299 

erosion, when only 2 processes are detected, was relatively low but increased significantly with more processes detected. The 300 

presence of thermokarst processes, in general, decreased with more processes detected. 301 

 302 

 303 

Figure 14 Results of concurrent processes detected for each RTS: (a) Pie-chart of the number of concurrent processes detected for 304 
each RTS; (b) Histogram representing the total count of all concurrent processes identified in mapped RTS; (c) Histogram 305 
representing the distribution of concurrent processes when only 1 process per RTS was detected. Chord diagrams representing the 306 
occurrence of concurrent processes in the case when (d) two concurrent processes were detected, (e) three concurrent processes were 307 
detected, and (f) four concurrent processes were detected. The size of the outer frame corresponds to the count of each concurrent 308 
process. The lines connecting color-coded concurrent processes stand for the co-occurrence: the thicker the line, the higher the co-309 
occurrence. 310 
 311 
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 312 

Figure 15 Density maps of RTSs per 30 × 30 km hexagonal grid cell classified by the presence of concurrent process: (a) Lateral 313 
thermo-erosion; (b) Coastal thermo-erosion; (c) Ice wedge erosion; (d) Nivation; (e) Thermokarst subsidence. Projection: WGS 84 314 
UTM Zone 43. Basemap: OSM Standard.  315 
 316 

RTSs attributed with concurrent processes exhibit low densities, with fewer than 5 RTSs per grid cell, regardless of the type 317 

of concurrent process (Fig. 15). RTSs with lateral thermo-erosion detected had higher densities in the western part of the 318 

central Yamal Peninsula and the central and northern Gydan Peninsula, with a hotspot in central Gydan Peninsula (Fig. 15a). 319 

RTSs with concurrent coastal thermo-erosion had higher densities in the western part of central Yamal and the north-western 320 

Gydan peninsulas, with three hotspots located at south-western part of central Yamal Peninsula, and northern and north-321 

western Gydan Peninsula. (Fig. 15b). In general, the spatial distribution of RTSs with coastal thermo-erosion did not follow 322 

the main spatial patterns detected in the Fig. 10b. RTSs with ice wedge erosion had higher densities on the northern Gydan 323 

Peninsula and rather lower densities on the Yamal Peninsula, with one hotspot located on central Yamal Peninsula (Fig. 15c). 324 
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The spatial distribution of RTSs with concurrent ice wedge erosion also did not follow the main spatial patterns detected in 325 

Fig. 10b. RTSs with nivation had higher densities in central and northern Gydan Peninsula (more than 30 RTSs per grid cell) 326 

and rather lower (less than 15 RTSs per grid cell) densities on Yamal Peninsula (Fig. 15d). There were four hotspots: one on 327 

central Yamal Peninsula and three on central Gydan Peninsula. The spatial distribution of RTSs with nivation also did not 328 

follow the main spatial patterns detected in Fig. 10b. RTSs with concurrent thermokarst did follow the main spatial patterns 329 

detected in Fig. 10b and thus had higher densities and some hotspots in the western part of central Yamal Peninsula and the 330 

area between the southern-western and north-eastern parts of central Gydan Peninsula (Fig. 15e). 331 

4. Discussion  332 

4.1 Data limitations 333 

The manual collection of RTS points using the ESRI satellite basemap was effective across a large region but also had several 334 

limitations. One challenge was the resolution and zoom limitations, as the minimum detectable landform width was 20 meters, 335 

potentially excluding smaller features. Seasonal variability of the images in the ESRI satellite basemap further complicated 336 

the process, with snowpacks identifiable only in summer images, excluding all autumn (September) imagery. On the other 337 

hand, more extensive snow cover on certain images obscured some areas, hindering the accurate inventory of RTS and their 338 

attributes in these regions. Additionally, visual artifacts (blur, glare, clouds, contrails) in some imagery led to the omission of 339 

some cells, though this accounted for less than 0.5% of the total dataset. 340 

Temporal constraints posed another issue, as working with a single satellite image captured at a specific time could mean that 341 

some features were not visible or detectable under those conditions, leading to potential underrepresentation of RTS features. 342 

The rapid evolution of RTS in this area (i.e., 35% increase in RTS number in the central Yamal key site over 8 years reported 343 

by Ardelean et al., 2020) added difficulty for static inventory not only in the amount, with two RTSs of a single morphology 344 

potentially merging into a complex morphology, creating challenges in morphology classification. Similar challenges were 345 

reported in the literature (Huang et al., 2020; Rodenhizer et al., 2024). Additionally, updates to the ESRI satellite basemap 346 

during the mapping effort sometimes introduced inconsistencies across different stages of our workflow, e.g. between the 347 

initial mapping of RTS as points, the subsequent addition of attributes, and the later correction loop (Fig. 2). To alleviate some 348 

of these challenges, we effectively used the ESRI Wayback time series to verify uncertain landforms or attributes.  349 

Visual identification also had several challenges. Stabilized RTSs were difficult to recognize. Challenges were also faced when 350 

classifying partially stabilized RTS. The limitations concerning distinguishing slowly stabilizing slumps from stabilized 351 

slumps using optical data were also reported in the literature (Bernhard et al., 2020). The sediment accumulation as a secondary 352 

indicator for coastal thermo-erosion was found to be debatable due to its temporary nature. Some landforms, such as curved 353 

riverbanks, wave-cut lakeshores, active layer detachments (ALDs), and first-stage thermokarst mound (baydzherakh) 354 

development, could have been easily misclassified as RTS, leading to false positives in the final dataset.  355 
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Atypical for this area, Yedoma RTSs found in our inventory in the northern Gydan region differed significantly in appearance 356 

from the majority of the rest mapped RTSs. Yedoma deposits in West Siberia were not included in the Circum-Arctic Map of 357 

the Yedoma Permafrost Domain (Strauss et al., 2021), yet were described in the fieldwork in northern Yamal coast and northern 358 

Gydan coast (Vasil’chuk and Vasil’chuk, 2018; Vasilchuk et al., 2022). Since Yedoma mapping was not the aim of this 359 

inventory, we did not mark Yedoma RTSs. Moreover, Yedoma RTS's visual characteristics were not properly addressed in the 360 

initial visual identification protocol, leading to potential misidentifications.  361 

4.2 Accuracy 362 

Human subjectivity, even if mapping is conducted by experienced researchers, can influence the results and contribute to 363 

dataset uncertainties. For RTS mapping, this has been demonstrated before in a mapping exercise with multiple operators with 364 

varying degrees of experience (Nitze et al., 2024). Our subjectivity assessment using a subset of 120 RTS samples revealed 365 

that 3–16.6% were classified as non-RTS, with an average false positive rate of approximately 8.5% and a median of 4.1%. 366 

Consequently, the accuracy of our dataset based on this experiment averages around 0.91. We acknowledge that involving 367 

additional experts in visual correction could have improved accuracy and reduced subjectivity. 368 

The degree of classification similarity among the five co-authors, compared to the original dataset, exhibited a clear trend 369 

influenced by spatial organization, morphology, and two concurrent processes—coastal thermo-erosion and lateral thermo-370 

erosion—which were generally the most subjective. Spatial organization emerged as the most subjective parameter, with 371 

classifications showing the alignment in only half of the 120 sample points on average (Fig. 16a). 372 

To further quantify classification variability, we calculated Jensen-Shannon distances (Fig. 16b), a metric for measuring 373 

similarity between probability distributions. This value ranges from 0.0, indicating identical distributions, to 1.0, representing 374 

completely distinct distributions. The results confirmed the overall trend of morphology, coastal thermo-erosion, and lateral 375 

thermo-erosion being the most subjective parameters, except for spatial organization, which showed minor differences in 376 

probability distributions. Coastal thermo-erosion exhibited the highest variation in classification probability distributions, 377 

likely due to two distinct hotspots observed in the heatmap. 378 

Overall, the probability distributions of most classified parameters were either highly or moderately similar to those in the 379 

original dataset. This suggests a generally consistent perception of RTS classification among the co-authors in the experiment. 380 

RTS location accuracy was estimated for the area around the Vaskiny Dachi research station in central Yamal and central 381 

Gydan Peninsulas, with helicopter surveys conducted in 2020 and 2023 (see Appendix B). RTS location accuracy assessments 382 

for all areas revealed very high precision compared to the ground truth, confirming the reliability of the dataset (Table 2). A 383 

relatively low recall, even after applying mapping style adjustments, indicates an approximate 50% underestimation of small 384 

RTSs in the study area (Table 2) primarily due to the reasons described in the Data Limitations section (see Sect. 4.1). Please, 385 

note that in this context, precision specifically refers to the metric used in the F1-score calculation and should not be mistaken 386 

for measurement precision, as no actual measurements were conducted. 387 
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 388 

Figure 16 Classification subjectivity assessment: (a) Heatmap of the proportion of similar classifications by five co-authors compared 389 
to the classification in the dataset.; (b) Heatmap of Jensen-Shannon distances explaining deviation of classifications by five co-390 
authors compared to the classification in the dataset. 391 
 392 
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Table 2 Average results of RTS location accuracy assessment for all three sets of ground truth field data: central Yamal and central 393 

Gydan (2020 and 2023). The adjusted value represents the accuracy measure calculated by comparing our dataset to the ground 394 

truth datasets adapted to the RTS mapping protocol applied for manual collection. The unadjusted value represents the accuracy 395 

measure calculated by comparing our dataset to the original ground truth datasets.  396 

Average results for all three sets of ground truth field data 

 Adjusted to the mapping style Unadjusted to the mapping style 

Precision 0.96 0.96 

Recall 0.44 0.38 

F1 score 0.60 0.54 

 397 

The relatively low F1 scores observed in our study can be attributed primarily to high underestimation (i.e., low recall) when 398 

compared to field data. Manual mapping of RTS using remote sensing data is often regarded as the most accurate approach 399 

(Swanson and Nolan, 2018; Segal et al., 2016a, b; Young et al., 2022; Luo et al., 2022). Efforts to enhance accuracy, 400 

particularly in terms of precision, have been made by incorporating multi-year datasets (Huang et al., 2021) and conducting 401 

multiple rounds of expert review (Segal et al., 2016b; Young et al., 2022). To ensure the reliability of manual mapping, Young 402 

et al. (2022) employed aerial field survey data for visual validation; however, their study did not report the initial recall of 403 

manual RTS mapping against field observations. 404 

To the best of our knowledge, there are no existing studies that quantitatively assess the recall uncertainty of RTS manual 405 

mapping using remote sensing compared to field data, particularly over large spatial extents. Lewkowicz and Way (2019) 406 

attempted to estimate recall accuracy for manual RTS mapping in Banks Island, Canada (70000 km2), but their evaluation was 407 

based on a comparison with another remote sensing dataset rather than ground-based field observations. This limitation is 408 

largely due to the challenges associated with field data collection in remote study areas. Moreover, since field data provides 409 

only a single snapshot in time, some RTS classified as false positives based on remote sensing data may be true RTS that were 410 

simply not captured in the field dataset. 411 

Despite these uncertainties, manually mapped RTS datasets serve as validation sources for automated deep-learning-based 412 

mapping algorithms (Nitze et al., 2021; Yang et al., 2023; Xia et al., 2022; Huang et al., 2021). Notably, relatively high F1 413 

scores (F1 > ~0.7) for automated RTS mapping have been reported, but these assessments were primarily conducted against 414 

internal training datasets covering limited spatial extents and derived from manual mapping rather than field data (Huang et 415 

al., 2020; Nitze et al., 2021; Witharana et al., 2022; Yang et al., 2023).  416 
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Our findings demonstrate that manual mapping using remote sensing data cannot be considered a definitive ground truth and 417 

is associated with a certain degree of inaccuracy, particularly concerning recall. 418 

Our accuracy assessment highlights the overall subjectivity in defining RTS morphology and spatial organization. These 419 

parameters critically influence what is visually identified as RTS in satellite imagery. This subjectivity aligns with previous 420 

RTS mapping experiments, where "mapping style" and the scientific background of domain experts were found to impact RTS 421 

delineation (Nitze et al., 2024). Our results demonstrate that, despite standardized instructions, both morphology and spatial 422 

organization remain the most subjective parameters in RTS classification. 423 

4.3 Data applicability 424 

The collected data on RTSs holds significant potential for future applications and research across various disciplines. It can 425 

serve as a foundation for a more detailed characterization of the permafrost region. The spatial distribution and clustering of 426 

RTSs in West Siberia, combined with cryostratigraphic and geomorphological analyses, can help unravel driving processes 427 

and improve our understanding of these dynamic landforms. 428 

This dataset can also guide further research efforts, such as field surveys aimed at monitoring cryogenic processes as well as 429 

studies to uncover the ground ice origin. In addition, it provides a valuable reference for ground-truthing in machine learning 430 

applications, enabling more accurate automated remote sensing classifications and predictive modeling. 431 

The dataset is particularly relevant to ecologists, biogeochemists, geomorphologists, climatologists, permafrost scientists, 432 

hazard researchers, and remote sensing specialists. This data can also be useful in the context of managing permafrost-related 433 

risks and planning sustainable development in vulnerable regions. 434 

5. Data availability 435 

The dataset is available at Nesterova et al., 2025 (https://doi.pangaea.de/10.1594/PANGAEA.974406).     436 

6. Conclusions 437 

In this study, we present the first large-scale manual RTS mapping effort with accuracy assessments based on field data. We 438 

present a comprehensive, manually mapped dataset of 6168 current retrogressive thaw slumps (RTS) for a large region in the 439 

West Siberian Arctic. Each RTS in the dataset was classified according to its morphology, spatial organization, terrain position, 440 

and concurrent permafrost relief-forming processes. Accuracy assessments with independent field data and expert knowledge 441 

indicate a high accuracy of the dataset while also highlighting some subjectivity in the classifications. Due to resolution 442 

limitations in the satellite image basemaps used for mapping, the dataset may underestimate the occurrence of small RTS in 443 

the region, resulting in an overall conservative estimate. Despite these constraints, our new RTS inventory offers valuable 444 

https://doi.pangaea.de/10.1594/PANGAEA.974406
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insights for a wide range of research fields aiming at further investigations of RTS formation and dynamics, permafrost-climate 445 

interactions, permafrost-ecosystem feedbacks, and ground ice distribution in West Siberia. 446 

Appendices 447 

Appendix A 448 

 449 

Figure A1. Density maps of RTS points counted per 30 × 30 km hexagonal grid cell located at the (a)river, (b) gully, and (c) slope. 450 
Projection: WGS 84 UTM Zone 43. Basemap: OSM Standard.  451 
 452 
 453 
 454 
 455 
 456 
 457 
 458 
 459 
 460 
 461 
 462 
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Appendix B 463 

Table B Results of RTS location accuracy assessment for all three sets of ground truth field data: central Yamal Vaskiny Dachi 464 

research station and central Gydan Helicopter Survey (2020 and 2023). The adjusted value represents the accuracy measure 465 

calculated by comparing our dataset to the ground truth datasets adapted to the RTS mapping protocol applied for manual 466 

collection. The unadjusted value represents the accuracy measure calculated by comparing our dataset to the original ground truth 467 

datasets.  468 

Vaskiny Dachi research station, central Yamal 

 Adjusted to the mapping 

style 

Unadjusted to the mapping style 

Precision 0.88 0.88 

Recall 0.44 0.37 

F-1 score 0.59 0.52 

Gydan Helicopter Survey 2020 

 Adjusted to the mapping 

style 

Unadjusted to the mapping style 

Precision 1 1 

Recall 0.3 0.2 

F-1 score 0.46 0.33 

 Gydan Helicopter Survey 2023 

Precision 1 

Recall 0.58 

F-1 score 0.73 

  469 
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