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Abstract. Accurate precipitation estimates are essential for a wide range of applications, including climate research, water 10 

resource management, agriculture, and natural hazard assessment. However, developing high-quality, long-term daily datasets 

at fine spatial resolutions remains challenging due to the inherent variability and heterogeneity of precipitation patterns. This 

study introduces the HYdroclimatic PERformance-enhanced Precipitation (HYPER-P) product, covering Europe and part of 

the Mediterranean basin from 2007 to 2022 at a 1 km daily resolution. HYPER-P is derived by downscaling and merging 

multiple data sources, including remote sensing products from Top-Down (TD) and Bottom-Up (BU) approaches, reanalysis 15 

datasets, and gridded in situ observations. The downscaling leverages on CHELSA climatology data, while the merging is 

obtained through a weighted average approach informed by Triple Collocation Analysis. 

Four merged products were developed based on multiple combinations of satellite products, observation and reanalysis 

datasets. The evaluation of these products was conducted through high-resolution validation in three Mediterranean regions 

with dense observational networks and coarse-resolution validation across Europe and a portion of North Africa. Results 20 

indicate that the combination of TD and BU satellite approaches enhance precipitation estimates, with merged products 

outperforming the parent datasets, especially in regions with sparse gauge coverage. The inclusion of ERA5-Land further 

improves accuracy over areas characterized by complex topography. The merging of satellite products, particularly the one 

including ERA5-Land, shows overall strong performance, although challenges remain in validating precipitation estimates 

where ground observations are limited. This work contributes to advancing precipitation monitoring capabilities, offering 25 

valuable tools for scientific and operational applications across Europe and beyond. 
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ASTER – Advanced Spaceborne Thermal Emission and Reflection Radiometer 

GDEM – Global Digital Elevation Model 

BU – Bottom-Up 

CHELSA – Climatologies at high-resolution for the Earth’s land surface areas 35 

CHIRP – Climate Hazards Group InfraRed Precipitation 

CHRS – Center for Hydrometeorology and Remote Sensing 

CPC – Climate Prediction Center  

DPR – Dual-frequency Precipitation Radar  

EMO – European Meteorological Observations  40 

EMS – Emergency Management Service  

ERA5 – European Centre for Medium-Range Weather Forecasts, ECMWF, Reanalysis 5th Generation 

EUMNET – European National Meteorological Services  

E-OBS – ENSEMBLES daily gridded observational  

GEO – Geostationary Orbit 45 

GPM – Global Precipitation Measurement Mission 

GSMAP – Global Satellite Mapping of Precipitation  

H SAF – Satellite Application Facility on support to Operational Hydrology and Water Management  

IMERG-ER – Integrated Multi-satellitE Retrievals for GPM - Early Run  

IMERG-LR – Integrated Multi-satellitE Retrievals for GPM - Late Run 50 

IMERG-FR – Integrated Multi-satellitE Retrievals for GPM - Final Run 

IR – Infrared 

JAXA – Japan Aerospace Exploration Agency 

LEO – Low Earth orbit 

M1 – Merge 1  55 

M2 – Merge 2 

M3 – Merge 3 

M4 – Merge 4  

MCM – Modified Conditional Merging 

MW – Microwave 60 

NHMS – National Meteorological and Hydrological Services 

NOAA – National Oceanic and Atmospheric Administration 

OPERA – Operational Program for Exchange of Weather Radar Information  

PERSIANN – Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks – Cloud 

Classification System 65 
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R – Linear Pearson Correlation 

RMSE – Root Mean Square Error 

SAIH – Spanish Automatic System of Hydrologic Information 

SM – Soil Moisture  

SM2RAIN – Soil Moisture to Rainfall 70 

SNR – Signal to Noise Ratio 

SPEs – Satellite Precipitation Estimates  

SRM – Snow Multidata Mapping and Modeling  

TC – Triple Collocation 

TD – Top-Down 75 

VIS – Visible 

USGS – United States Geological Survey  

WSL – Swiss Federal Institute for Forest, Snow and Landscape Research 

1 Introduction 

Precipitation estimates are crucial in many fields of research such as climate studies (Pendergrass et al., 2017), water cycle 80 

research (Pellet et al., 2024), droughts (Serrano et al., 2010), floods (Maggioni and Massari, 2018), landslides (Peiro et al., 

2024; Smith et al., 2023), ecosystem dynamic (Huxman et al., 2004), agriculture (Beck et al., 2020; Ru et al., 2022) and water 

resource management (Camici et al., 2024; Fischer and Knutti, 2016; Kucera et al., 2013). However, finding a high-quality, 

long-term daily precipitation at kilometer spatial resolution dataset is not straightforward, especially over data scarce region 

and complex terrain, given the spatial heterogeneity and temporal variability in precipitation. 85 

In Europe and in the Mediterranean region, many observational, satellite-based and reanalysis datasets are available. Notable 

examples of ground-based datasets are E-OBS (Haylock et al., 2008; Cornes et al., 2018) and EMO-5 (Gomes et al., 2020) for 

the whole of Europe, and other regional datasets like SAFRAN for France, Spain, and Tunisia (Quintana-Seguí et al., 2008; 

Vidal et al., 2010; Quintana-Seguí et al., 2017; Tramblay et al., 2019) or MCM for Italy (Sinclair and Pegram, 2005; Bruno et 

al., 2021). These datasets, that rely mainly on rain-gauge observations, are the most reliable and widely used tool for directly 90 

measuring precipitation in Europe. However, they are often characterized by uneven distribution of ground monitoring 

networks, like, for example, the case of the Mediterranean region compared to Europe (Girons lopez et al., 2015), thus leading 

to potentially significant interpolation errors. Radar measurements are also increasingly available in Europe, with more than 

200 operational weather radars managed by the EUMETNET within the OPERA (Huuskonen et al., 2014). This technology 

allows for the collection of reliable precipitation information with high temporal resolution (often in the range of minutes), 95 

wide spatial coverage (a single weather radar can cover a circular area with a radius of 100-250 km) and better spatial accuracy 
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compared to rain gauges, which only measure precipitation at their exact location). Radars do not measure rainfall directly; 

instead, they detect the reflectivity of precipitation particles. Radar measurements are hence often combined with rain gauges, 

to adjust the measurements and obtain more reliable precipitation estimates. However, also this network is heterogeneous in 

hardware, signal processing, frequency and scanning strategy, therefore their combination is difficult and prone to errors. 100 

Moreover, most of the existing weather radars are mainly located in developed countries (Heistermann et al., 2013). 

Satellite and reanalysis datasets are widely used alternatives to overcome the problem of spatial accuracy variations. The 

Global Precipitation Measurement (GPM) mission, launched in 2014 by NASA and JAXA in collaboration with GES DISC, 

revolutionized precipitation retrieval with a multi-sensor integration approach (Hou et al., 2014). GPM intercalibrates, merges, 

and interpolates data from various instruments to generate half-hourly precipitation estimates on a 0.1° grid across the 60° N–105 

S domain via the Integrated Multi-Satellite Retrievals for GPM (IMERG; Huffman et al., 2018). It offers three Level 3 products 

with different timeliness and calibration approaches: IMERG-ER, IMERG-LR, and IMERG-FR. While IMERG employs a 

Top-Down (TD) approach, based on the inversion of the atmospheric signals to obtain instantaneous rainfall rates, other 

satellite rainfall products developed in the last decade are based on indirect and alternative approaches. For example, 

SM2RAIN-ASCAT (Brocca et al., 2014; 2019) is obtained with a Bottom-Up (BU) approach, i.e. by inverting the soil water 110 

balance equation for rainfall (only the liquid phase of precipitation) starting from satellite soil moisture observations derived 

from ASCAT SM data (H SAF, 2020). Rainfall data are generated for the entire terrestrial globe, excluding frozen areas, and 

are available on a 0.1° grid. 

While invaluable, SPEs face various challenges. Specifically, precipitation products obtained from the Top-Down approach 

have limitations related to the instantaneous nature of the measurement (related to the satellite overpass) with respect to the 115 

sporadic nature of natural phenomenon, leading to errors influenced by precipitation type, satellite orbit, and swath width 

(Kucera et al., 2013; Behrangi and Wen, 2017). Additional issues include biases, difficulties in light precipitation estimation, 

and detection over snow and ice (Ferraro et al., 1994; Kidd and Levizzani, 2011). The GPM's DPR has mitigated some of these 

issues, but further improvements are needed (Tan et al., 2016; Gebregiorgis et al., 2018). Similarly, alternative approaches, 

like SM2RAIN, have also some limitations, due to e.g. the underestimation of the rainfall when the soil saturates, the low 120 

accuracy of SM (and therefore rainfall) for dense vegetation coverage and complex topography) and the sensitiveness to SM 

variations induced by noise (Brocca et al., 2014, 2019).  

Model reanalysis datasets like ERA-Interim and ERA5 (Dee et al., 2011; Hersbach et al., 2020, Munoz Sabater et al., 2019) 

provide an alternative to satellite and ground-based precipitation data. While effective for simulating large-scale weather 

patterns, their low spatial resolution and limitations in sub-grid process parameterization hinder accurate representation of 125 

convective systems (Ebert et al., 2007). In other words, reanalysis and satellite datasets are widely used alternative but also 

suffer from uncertainty especially over mountainous regions (Maggioni et al, 2018, Gomis-Cebolla et al., 2023) and challenge 

to detect small scale precipitation patterns typical of complex landscapes such as the Alpine region (Girotto et al., 2024). 
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Recently, some studies have proposed merged precipitation datasets as an alternative to single source estimates (Beck et al. 

2019, Pellarin et al. 2013, Massari et al. 2020) which, thanks to optimal merging, have shown to overcome the problems of 130 

parent datasets (Beck et al 2017, Brocca et al. 2020, Camici et al. 2018). Still the spatial resolution of these products remains 

quite coarse relative to the fine landscape features of the European regions. 

The aim of this paper is to present the HYdroclimatic PERformance-enhanced Precipitation (HYPER-P) product available 

over Europe and part of the mediterranean basin from 2007 to 2022 at 1 km/daily spatial and temporal resolution, as well as 

its quality and its potential usage.  135 

This product is generated by downscaling and merging multiple precipitation datasets from different sources: rain gauges, 

satellite observations (using both top-down and bottom-up approaches), and reanalysis data. The parent datasets are selected 

based on criteria such as low latency availability or potential, broad spatial coverage, and high accuracy. As a result, the merged 

product can be made available globally with relatively short latency—approximately one week. Radar measurements are not 

included in the merging process due to the lack of a global radar dataset and the limited number of weather radars, particularly 140 

in developing countries, but they can be used as a valuable reference. Local (intended as not-global) datasets from radar and 

gauge were not included in the merging, but they were used as independent references for assessing the performance of the 

merged product. The parent products are first downscaled using monthly pattern information obtained by CHELSA 

climatology dataset and then merged using a weighted average where relative weights have been calculated based on the 

relative quality derived from TC Analysis (Gruber et al. 2016; 2017, Massari et al. 2017, Chen et al. 2021). Due to its potential 145 

low latency, HYPER-P can be useful for climatological applications like hydrological modeling, agricultural and drought 

monitoring or climatological studies. Specifically, HYPER-P is expected to be particularly valuable for completely or nearly 

ungauged areas, which lack stable and high-resolution information from ground networks (gauges and/or radars). The 

evaluation of the dataset is carried out at both high- and coarse-resolution. The high resolution is based on high-density ground-

based rainfall networks over three different regions, while the coarse one is obtained through the comparison against gridded 150 

precipitation datasets available over Europe as E-OBS and EMO. Various satellite precipitation products are also evaluated in 

the same areas for comparison. 

This paper is organized as follows: after the introduction, the study area and the datasets used in this study are described. 

Subsequently, the downscaling and merging procedures are explained in detail, along with the performance metrics adopted 

for product assessment. Next, high-resolution validation is performed at 1-km spatial resolution over three sub-regions of the 155 

Mediterranean Basin with dense rain gauges and/or radar networks. This is followed by a broader coarse-resolution analysis 

across the full domain, using the highest-performing products aggregated to 10 km resolution. Finally, the results of the two 

validations are utilized to assess the merged products and evaluate their validity across the European region and a portion of 

north Africa regions. 
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2 Data 160 

2.1 Study Area 

The target area of this study is the Europe and mediterranean regions, specifically the area between -11.9° and 44.8° East and 

27.7° and 62.3° North. The Europe region represent diverse climatic zones, which play a crucial role in precipitation dynamics. 

Specifically, the following climates are found in different areas: Oceanic Climate (Cfb), found in Western Europe, particularly 

along the Atlantic coast, this climate is characterized by mild temperatures and relatively high, evenly distributed precipitation 165 

throughout the year; Continental Climate (Dfb, Dfc), dominates Eastern and Central Europe, marked by greater seasonal 

temperature variation, with cold winters and warm summers, and moderate precipitation, often peaking in summer; 

Mediterranean Climate (Csa, Csb), prevails in Southern Europe, particularly around the Mediterranean Basin. It features hot, 

dry summers and mild, wet winters; Subarctic and Polar Climates (Dfc, ET), present in Northern Europe and high-altitude 

regions, such as Scandinavia and parts of the Alps, with cold winters, short summers, and generally low precipitation, even if 170 

the orographic lift in some cases affect the precipitation pattern (Bonacina et al., 1945). These regions provide distinct 

hydrological contexts, with variability in precipitation driven by geographical, seasonal, and synoptic-scale atmospheric 

processes. 

2.2 Dataset selections 

Several precipitation datasets have been downloaded and processed to create a more reliable high-resolution precipitation 175 

product over the study area and validate it. Specifically, we collected seven reference datasets: four high-resolution (MCM, 

SAFRAN, COMEPHORE and EMO) and three medium resolution reference datasets (CPC, E-OBS and ERA5-Land). These 

datasets were used to validate the coarse-resolution satellite from the bottom-up and top-down approaches (CHIRP, 

SM2RAIN-ASCAT, IMERG-LR, CPC), their downscaling and the merged products. The following section provides a detailed 

description of these, and all the other datasets used in the analysis. The details of each dataset are reported in Table 1. 180 

  

Table 1: characteristics of the precipitation dataset selected for intercomparison: name, temporal resolution, spatial sampling, 

spatial coverage, period availability, and source (satellite TD: Top-down approach, satellite BU: Bottom-up approach) 

  Dataset Temporal 
resolution 

Spatial 
sampling 

Spatial 
coverage Period Source 

RE
FE

RE
N

C
E 

COMEPHORE Hourly 0.009° Hérault Basin 1997-2021 Reanalysis 
(Gauge+Radar) 

CPC Daily 0.5° World (Land) 1979-date Gauge 
EMO Daily 1 arcmin Europe 1990-2022 Gauge, reanalysis 
E-OBS Daily 0.1° Europe 1950-2021 Gauge 
ERA5-Land Hourly 0.1° World (Land) 1950-date Reanalysis 
MCM Daily 0.009° Po basin 2016-2021 Gauge, radar 
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SAIH Daily 0.009° Ebro Basin 1987-date Gauge 

SA
TE

LL
IT

E 
CHIRP Daily 0.05° 50 °S : 50°N 1981-date Satellite TD 
GSMAP Daily 0.1° 60 °S : 60 °N 2003-date Satellite TD 
IMERG Late Run Half-hourly 0.1° World 2000-date Satellite TD 
PERSIANN Daily 0.04° 60 °S : 60 °N 2003-date Satellite TD 
SM2RAIN-ASCAT Daily 12.5 km World (Land) 2007-2023 Satellite BU 

 

2.2.1 Reference datasets 185 

COMEPHORE: Comephore (Tabary et al. 2012) precipitation reanalysis is available between 1997 and 2021. The 

precipitation estimates are obtained using the data from the French operational weather radars network ARAMIS, corrected 

by hourly rain gauges observations interpolated by kriging (around 4,000). The COMEPHORE product has a spatial resolution 

of 1 km and a temporal resolution of 1 hour over the Hérault basin (~18,000 km2). The hourly precipitation was accumulated 

to daily scale in this study.  190 

 

CPC: This dataset is part of products suite from the CPC Unified Precipitation Project that are underway at NOAA CPC. The 

dataset is obtained by combining all gauge information sources available at CPC (around 17,000) and by taking advantage of 

the optimal interpolation objective analysis technique (Xie et al., 2007). See Chen et al. (2008), for further details. Precipitation 

data are available with a spatial resolution of 0.5° latitude x 0.5° longitude. The daily precipitation product was provided by 195 

the NOAA PSL, Boulder, Colorado, USA, from their website at https://psl.noaa.gov. This product is available with low latency 

(around three days).  

 

EMO: EMO is a European high-resolution, daily meteorological dataset built on historical and real time observations 

developed within Copernicus EMS. Among the released variables, the product provides total precipitation. The insitu 200 

observations are quality checked and then interpolated through SPHEREMAP and Yamamoto methods (Gomes et al., 2020). 

Currently, EMO is available in two spatial resolutions: EMO-5 provides grids with a spatial resolution of 5kmx5km and covers 

the period from 1990 to 2019. EMO-1 provides grids with a spatial resolution of 1arcminx1arcmin (approx. 1.5km) and covers 

the period from 1990-2022.  

 205 

E-OBS: E-OBS is a land-only gridded daily observational dataset for precipitation and other meteorological variables in 

Europe. This dataset is based on observations from meteorological stations over Europe (14,212 stations with data after 2007 

in version 28e), which are provided by the NMHSs and other data holding institutes (Cornes et al., 2018). The product is 

available at daily temporal resolution and 10 km spatial resolution. Version 25.0e was adopted for this study. Note that, in 

some areas, E-OBS observations are derived by aggregating precipitation networks with time intervals that differ from the 210 

standard 00–24 period (Overeem et al., 2023), This can potentially cause uncertainty on the assessment precipitation products 
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using E-OBS. However, considering that E-OBS is not the only dataset used as reference and the importance of assessing 

HYPER-P against widely used precipitation products, the uncertainty is deemed acceptable.  

 

ERA5-Land: ERA5-Land, provides hourly data of various land surface variables from 1950 onwards, combining models with 215 

observations. It was produced by replaying the land component of the ECMWF ERA5 climate reanalysis and it is characterized 

by an improved spatial resolution (0.1 degree), while the temporal resolution is 1 hour (Hersbach et al., 2020, Munoz Sabater 

et al., 2019). The hourly precipitation was accumulated to daily scale in this study.  

 

MCM: High-resolution precipitation fields over the Po basin (around 80,000 km2) were estimated with the MCM technique, 220 

which incorporates precipitation gauges and radar estimates to infer 1 km precipitation observations at hourly time scale (Bruno 

et al., 2021). MCM is an improvement of the Conditional Merging proposed by Sinclair and Pegram (2005), which estimates 

the structure of covariance and the length of spatial correlation at every gauge, taking it from the cumulated radar precipitation 

fields. For the Po River basin, MCM is based on 1,377 precipitation gauges and on the mosaic of the Italian weather radars. 

This product has been developed and shared by the CIMA Research Foundation. 225 

 

SAIH: A high-resolution forcing dataset of precipitation based on the SAFRAN analysis system (Quintana-Seguí 2016, 2017) 

has been created by the Ebro Observatory for the Ebro basin area (~83,000 km2). This dataset uses in-situ data from the SAIH 

and includes precipitation data gathered from 333 stations over the Ebro basin every 15 minutes. There are several versions of 

this dataset at different resolutions. The 1 km resolution product has been created specifically for the ESA 4DMED-Hydrology 230 

project. It covers the period 2008-2020.  

 

2.2.2 Satellite datasets 

CHIRP: The CHIRP is a quasi-global precipitation data set. The product uses IR data to retrieve precipitation at high-

resolution (Funk et al., 2015; Shen et al., 2020). The data set runs from 1981 to the near present. The CHIRP satellite was 235 

developed by the USGS in collaboration with the Climate Hazards Group at the University of California. CHIRP combines 

Thermal Infrared satellite precipitation estimates from the Globally Gridded Satellite (GriSat) and the Climate Prediction 

Center dataset (CPC TIR) from NOAA to produce the precipitation dataset. It is therefore based on a TD approach, basing 

precipitation information from cloud and atmosphere measurements. The CHIRP product provides satellite estimates at high 

spatiotemporal resolution covering regions between 50° S to 50° N of latitudes. The selected version does not use any rain-240 

gauge data. 

 

IMERG-LR: The IMERG algorithm uses data obtained from GPM mission to estimate precipitation over the majority of 

Earth's surface (Huffman et al., 2019). The precipitation is obtained by exploiting the TD approach, where the precipitation 
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particles are sensed from different satellite sensors in various regions of the electromagnetic spectrum: VIS, IR, and MW. The 245 

resulting product spatial resolution is 0.1 degree, while the temporal resolution is 30 minutes. Here, the Late-run version 6 of 

the dataset is adopted, characterized by 12–18 h latency. In this study, the precipitation data were accumulated to obtain daily 

measurements. The selected version does not use any rain-gauge data. 

 

GSMAP: The GSMAP is developed by JAXA. The product takes advantage of the GPM mission constellation satellites to 250 

provide hourly rain rates (Kubota et al., 2020). The precipitation estimation is based on the merging of microwave and infrared 

retrievals through LEO and GEO platforms. It relies on the TD approach. The product covers 60°S to 60°N globally. The 

selected version does not use any rain-gauge data. 

 

PERSIANN: PERSIANN-CCS (here in after PERSIANN) is developed by the CHRS at the University of California, Irvine. 255 

The product is based on the use of neural network function procedures to compute precipitation rate at each 0.04° x 0.04° pixel 

through infrared images provided by geostationary satellites, hence it is based on the TD approach (Ashouri et al., 2015). The 

product covers 60°S to 60°N latitude. The selected version does not use any rain-gauge data. 

 

SM2RAIN-ASCAT: This dataset is a new global scale rainfall product obtained from ASCAT satellite soil moisture data 260 

through the SM2RAIN algorithm (Brocca et al., 2014; 2019). This algorithm is based on the BU approach, since it infers the 

precipitation from SM variations by resolving the soil water balance equation. The SM2RAIN-ASCAT rainfall dataset (in 

mm/day) is provided over a regular grid at 0.1-degree sampling on a global scale. The product represents the accumulated 

rainfall between 00:00 and 23:59 UTC of the indicated day. The SM2RAIN method was applied to the ASCAT soil moisture 

product (Wagner et al., 2013), H SAF H119-H120 product, for the period from January 2007 to December 2021 (15 years). It 265 

is potentially available with low latency. The selected version does not use any rain-gauge data. 

 

All the above precipitation data (reference and merged) were linearly interpolated each day at midnight UTC, with a maximum 

gap of empty data of 5 days. 

2.2.3 Additional datasets  270 

Two additional datasets were collected to obtain a water mask (DEM ASTER) and statistical information regarding high-

resolution precipitation patterns (CHELSA dataset). Brief descriptions of them are provided below: 

 

CHELSA: CHELSA (Karger et al., 2017) is a very high-resolution (30 arc sec, ~1km) global downscaled climate dataset 

currently hosted by the WSL. It is based on a mechanistical statistical downscaling of global reanalysis data or global 275 

circulation model output, and it includes climate layers for various time periods and variables. The precipitation algorithm 

incorporates orographic predictors including wind fields, valley exposition, and boundary layer height, with a subsequent bias 

correction. Monthly precipitation data from 2000 to 2019 were downloaded.  
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ASTER GDEM: Elevation data were obtained by the ASTER, one of five instruments aboard NASA’s Terra spacecraft 280 

(launched in 1999). The ASTER GDEM covers land surfaces between 83°N and 83° with a spatial resolution of 1 arcsec 

(∼30 m resolution at the Equator). Here, version 3 data was used to obtain the average DEM at 1 km scale and generate a water 

mask (NASA et al., 2018). 

3 Methods 

3.1 Downscaling Procedure 285 

One product for each category (Gauge/Radar, Reanalysis, Satellite TD and BU) was selected for downscaling at 1 km spatial 

resolution, using CHELSA climate information. The products were selected with the criteria of maximum spatial coverage, 

lowest latency, higher spatial resolution and accuracy. The selected products were CPC for Gauge data, ERA5-Land for 

Reanalysis, IMERG-LR for satellite TD approach and SM2RAIN-ASCAT for satellite BU approach. A regular grid of 0.009° 

spatial resolution (1 km at equator) was created for the whole study area. Only land pixels are used for this analysis. A mask 290 

is derived from ASTER dem to mask water pixels. 

 

A downscaling procedure is carried out for each precipitation product by using the high-resolution information contained in 

CHELSA. The downscaling procedure is developed starting from the work of Terzago et al. (2018). The main steps of the 

procedure are shown in Fig. 1. CHELSA data are extracted and bilinear interpolated on the chosen grid (because the CHELSA 295 

grid is different from the target one). Since CHELSA dataset is not available in real-time but only up to June 2019, a single 

standard year climatology was used for the full period: first, monthly aggregates were converted into average daily precipitation 

by dividing each of them by the number of days in the corresponding month. Then, CHELSA estimates for the same month 

across 2000-2019 were averaged to obtain 12 maps, each representative of a different month, thereby producing the standard 

year estimates (Fig. 1a). The average monthly values of the standard year were then attributed to the central day of each 300 

corresponding month of the study period. Linear interpolation was then applied to obtain a daily estimate across the entire 

study period, thus avoiding step patterns after the downscaling. CHELSA information is used just for the relative precipitation 

patterns (not the value itself), to spatialize the coarse-resolution information of the selected precipitation products. Indeed, the 

pattern information of CHELSA is derived from the modelling of orographic predictors of wind fields, valley exposition and 

boundary layer height and therefore can be considered a reliable estimation of the real precipitation distribution (Karger et al., 305 

2017). The relative pattern is hence obtained by dividing the CHELSA precipitation amount by the results of a moving gaussian 

spatial filter applied to the same data. The moving gaussian filter is used to reproduce the parent product original spatial 

sampling, therefore its standard deviation is fixed to half the spatial sampling of the downscaled precipitation product, i.e. 5, 

5, 6 and 25 km for ERA5-Land, IMERG, SM2RAIN_ASCAT, and CPC, respectively (Fig. 1b).  

https://terra.nasa.gov/


11 

 

The precipitation datasets to be downscaled (Fig. 1c) are first resampled to the project grid through a bilinear interpolation, to 310 

exploit the spatial information of the original product at its fullest. A moving gaussian spatial filter with the same standard 

deviation of the previous is then applied to the interpolated data, to smooth the precipitation pattern obtained by the bilinear 

interpolation (Fig. 1d). The obtained filtered data are hence multiplied for the CHELSA-derived weights, obtaining a “pre-

downscaled” product (Fig. 1e). Although this strategy does not allow a precise downscaling of the single storm pattern, due to 

the absence of a concurrent high-resolution pattern, it is useful to better spatialize coarse resolution information through the 315 

year. 

 

The downscaling process applied at daily temporal resolution may introduce errors derived by the use of monthly CHELSA 

data. To mitigate these errors, a correction factor was applied to preserve the pattern of the parent data. This factor was obtained 

by first aggregating the pre-downscaled precipitation data at coarse resolution and then calculating the ratio between this 320 

aggregation and the original pre-downscaled precipitation. A moving gaussian spatial filter was applied to smooth transitions 

and avoid step behaviors (Fig. 1g). The downscaled data are finally obtained by multiplying the pre-downscaled data by the 

correction factor (Fig. 1h). The coarse-resolution aggregation of the downscaled data shows that the original coarse 

precipitation values are mainly maintained (Fig. 1i), since slight changes in precipitation are almost always present when 

spatial interpolation algorithms are applied. 325 

 

The procedure ensures the reproduction of climatologically consistent monthly precipitation patterns using the CHELSA 

product, while preserving sub-monthly precipitation variability and maintaining the total precipitation at the coarse scale as 

evaluated by the parent product. 

 330 
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Figure 1: Example of the downscaling procedure for CPC data of the 21 August 2007 in a small catchment of Italian Alps. a) original 

CHELSA precipitation pattern for August, b) relative CHELSA spatial pattern for the 21st of August, c) original CPC data, d) CPC 

data after spatial interpolation and gaussian filtering, e) pre-downscaled data, f) aggregation of the pre-downscaled data at the 335 
original coarse-resolution, g) corrective pattern of the pre-downscaled data, h) downscaled data, i) aggregation of the downscaled 

data at the original coarse-resolution 

 



13 

 

3.2 Merging Procedure 

The objective product should be available with a relatively low latency (e.g., a week), therefore ERA5-Land, CPC, IMERG-340 

LR and SM2RAIN-ASCAT products are selected to be downscaled and merged, due to their low latency availability or 

potentiality, large coverage and accuracy. The following combinations of the datasets are here tested: 

1) M1 = Gauge+Satellite TD; 

2) M2 = Gauge+Satellite TD+Satellite BU; 

3) M3 = Satellite TD+Satellite BU; 345 

4) M4 = Reanalysis+Satellite TD+Satellite BU. 

 

The comparison between M1 and M2 combinations allow us to assess the improvement related to the addition of the relatively 

new BU new approach to the merging procedure. Moreover, ASCAT SM has been available only since 2007, while CPC and 

IMERG both have data from 2000 onward. In M3 combination, a precipitation product derived only from satellite data is 350 

developed to assess the satellite capability to estimate precipitation also in absence of ground observations. Finally, the 

reanalysis product is used in place of the gauge one in M4 combination, to assess its potential, also considering the difference 

in spatial resolution of the selected products - ~50 and 10 km for the CPC and ERA5-Land products, respectively.TC technique 

(Gruber et al., 2016; 2017; Massari et al., 2017; Chen et al., 2021) is adopted to merge the different data. The approach requires 

three independent datasets with uncorrelated errors. The mechanism of TC approach is established on a linear error model, 355 

which can be represented by the equation as:  

𝑋𝑖 = 𝛼𝑖 + 𝛽𝑖𝑡 + 𝜀𝑖        (1) 

where 𝑋𝑖 (i =1, 2, 3) are collocated measurement systems linearly related to the true underlying value 𝑡 with additive random 

errors 𝜀𝑖, respectively, while 𝛼𝑖  and 𝛽𝑖  are the ordinary least squares intercepts and slopes. By assuming that the errors from 

the independent sources have zero mean (E(𝜀𝑖)=0) and are uncorrelated with each other (Cov(𝜀𝑖, 𝜀𝑗) =0, with i ≠ j) and with 𝑡 360 

(Cov(𝜀𝑖, 𝑡)=0) the variance of the error of each dataset can be expressed as (McColl et al., 2014):  

 

𝜎𝜀 =

{
  
 

  
 √𝑄11 −

𝑄12𝑄13

𝑄23

√𝑄22 −
𝑄12𝑄23

𝑄13

√𝑄11 −
𝑄12𝑄23

𝑄12

          (2) 

From the error variance, Gruber et al. (2016) obtained the SNR value of each dataset of the triplet with respect to the unknown 

truth for each pixel of the study area. This index can be considered a relative indicator of the capacity of the dataset to contain 365 

precipitation information with respect to the other two. An optimal merging of the products can be therefore obtained by 

 
𝑃𝑀𝑒𝑟𝑔𝑒𝑑 = 𝜔1𝑃1 + 𝜔2𝑃2 + 𝜔3𝑃3        (3) 

with 
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𝜔1 =
𝑆𝑁𝑅1

𝑆𝑁𝑅1+𝑆𝑁𝑅2+𝑆𝑁𝑅3
             𝜔2 =

𝑆𝑁𝑅2
𝑆𝑁𝑅1+𝑆𝑁𝑅2+𝑆𝑁𝑅3

             𝜔3 =
𝑆𝑁𝑅3

𝑆𝑁𝑅1+𝑆𝑁𝑅2+𝑆𝑁𝑅3
  (4) 370 

 
This approach was then applied to all the selected combinations. When just two datasets were selected for merging, ERA5-

Land product was selected to complete the triplet (not used in the merging). In these cases, the merged precipitation can be 

obtained from equations 3 and 4 by ignoring the third product index (related to ERA5-Land): 

 375 

𝑃𝑀𝑒𝑟𝑔𝑒𝑑 = 𝜔1𝑃1 + 𝜔2𝑃2        (5) 

with 

𝜔1 =
𝑆𝑁𝑅1

𝑆𝑁𝑅1+𝑆𝑁𝑅2
             𝜔2 =

𝑆𝑁𝑅2
𝑆𝑁𝑅1+𝑆𝑁𝑅2

        (6) 

The obtained weights for all the four combinations are shown in Appendix A. SM estimates from space are unreliable when 

the soil is in frozen conditions. This reduces the applicability of the BU approach in frozen areas. Since SM2RAIN ASCAT 380 

data are derived from SM, precipitation estimates obtained in frozen conditions are excluded from the analysis. The frozen 

condition mask is obtained from ERA5-Land, by selecting all the dates in which the surface temperature of the first soil layer 

is below 0. In the masked areas, SM2RAIN ASCAT product cannot be used, hence the TC fails in obtaining the SNR. In these 

areas, three different approaches were tested, according to the analysed products: a) for M2 combination, in frozen conditions 

SNR was obtained by replacing SM2RAIN-ASCAT with ERA5-Land in the TC triplet, i.e. M1 data were used in frozen areas; 385 

b) for M3, the full weight is given to IMERG data when SM2RAIN-ASCAT is not available; c) for M4, the SNR of IMERG 

and ERA5-Land were interpolated from the nearest 4 valid pixels, and the precipitation was obtained by merging the two of 

them. 

3.3 Performance metrics 

The precipitation estimates assessment against the benchmarks data was carried out by calculating different metrics, 390 

specifically as follows: 

 

− R expresses the linear relationship between two sets of data. It ranges between −1 and +1, where −1 indicates perfect 

negative linear relationship, +1 means perfect positive linear relationship and 0 means no statistical dependency. Pearson’s 

correlation is here obtained from 395 

 

𝑅 =
∑((𝑃𝑒𝑠𝑡 − 𝑃𝑒𝑠𝑡̅̅ ̅̅ ̅) ∗ (𝑃𝑜𝑏𝑠 − 𝑃𝑜𝑏𝑠̅̅ ̅̅ ̅))

√∑(𝑃𝑒𝑠𝑡 − 𝑃𝑒𝑠𝑡̅̅ ̅̅ ̅)2 ∑(𝑃𝑜𝑏𝑠 − 𝑃𝑜𝑏𝑠̅̅ ̅̅ ̅)2
 

 

where 𝑃𝑒𝑠𝑡  and 𝑃𝑒𝑠𝑡̅̅ ̅̅ ̅ are the daily precipitation estimates and the average precipitation estimates, respectively, while 𝑃𝑜𝑏𝑠 

and 𝑃𝑜𝑏𝑠̅̅ ̅̅ ̅ are the daily and average observed precipitation. This index was calculated both in space and in time. For the 400 
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spatial Pearson correlation, the precipitation was first accumulated at monthly temporal resolution, in order to match 

CHELSA original resolution. 

 

− RMSE is a widely used index to measure the error between an estimated and an observed dataset. Three different sources 

of error are considered together: decorrelation, bias and random error. As the name implied, RMSE is obtained by 405 

calculating the square root of the mean quadratic difference between two datasets: 

 

𝑅𝑀𝑆𝐸 = √(𝑃𝑒𝑠𝑡 − 𝑃𝑜𝑏𝑠)
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

 

− BIAS index measures the systematic over- or underestimation of one dataset with respect to the benchmark data. Here, it 410 

is obtained from the difference between the estimated and the observed precipitation. According to the above definition:  

 

𝐵𝐼𝐴𝑆 =∑(𝑃𝑒𝑠𝑡 − 𝑃𝑜𝑏𝑠) 

 

Negative BIAS values indicate precipitation underestimation, while positive bias values mean the opposite. 415 

4 Results 

4.1 High-resolution validation 

In this section, the performances of all datasets against high spatial resolution reference data are presented and discussed. All 

datasets were linearly interpolated to the same 1 km grid using bilinear interpolation to enable comparison. The validation of 

the precipitation products was conducted in three selected study areas, where high spatial and temporal resolution observed 420 

datasets were available. Specifically, the validation was carried out in 1) the Po River basin (Italy), using MCM data as 

benchmark; 2) the Hérault basin (France), using the COMEPHORE precipitation reanalysis as benchmark; and 3) the Ebro 

basin (Spain), using the SAIH meteorological dataset as benchmark.   

The results of the analysis are shown in Fig. 2-4. Among the satellite precipitation products, PERSIANN performed the worst 

for all metrics and across all study areas, followed by GSMAP and CHIRP. IMERG-LR and SM2RAIN-ASCAT demonstrated 425 

the best overall performances, with the former exhibiting higher temporal Pearson’s correlation, and the latter achieving greater 

monthly spatial Pearson’s correlation and lower RMSE. This confirms the selection of SM2RAIN-ASCAT and IMERG-LR 

for being merged within the integrated products, as they show superior performance and wider spatial coverage (CHIRP and 

PERSIANN are unavailable for high and low latitudes).  
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The assessment of reference products is less straightforward and site dependent: overall, CPC has the lowest performance, 430 

likely due to its coarse spatial resolution; while the performance of the remnant products depends on the study area. In the Po 

River basin (Fig. 2), ERA5-Land displayed the best Temporal Pearson’s correlation and good monthly spatial Pearson’s 

correlation, despite a general overestimation of precipitation (positive BIAS). In contrast, EMO and E-OBS tended to 

underestimate precipitation. In the Hérault River basin (Fig. 3), instead, ERA5-Land’s performances remained mainly stable, 

while E-OBS exhibited the highest spatial correlation. Finally, in the Ebro River basin (Fig. 4), both EMO and E-OBS 435 

performed well: specifically, E-OBS showed a double-edged pattern in the violin plots of temporal correlation and RMSE, 

suggesting non-uniform performance across the region. Indeed, since both the benchmark (SAIH) and reference (E-OBS) 

products are derived from gauge data, it is probable that these discrepancies are related to a partial overlap in the gauge sensors 

included in the two products. This is strongly supported by the results shown in Fig. 5, which compares the temporal Pearson’s 

correlation of EMO/E-OBS against observations with the distribution of their gauge networks in the three study areas. It is 440 

worth noting that the local benchmark gauge distribution is not shown here; however, the gauge locations in the Ebro region 

can be inferred from the patterns in the relative Pearson’s correlation map, reflecting the Thiessen polygons used to create 

precipitation products; while the MCM network is available from Fig. 8 of Filippucci et al. (2022). Additionally, both MCM 

and COMEPHORE are derived from the integration of pluviometers and meteorological radar measurements, meaning their 

spatial capability for estimating precipitation is greater than what might be inferred from gauge locations alone, thanks to the 445 

large coverage of radar measurements and their high spatial resolution (<1 km). Regarding EMO and E-OBS, the highest 

performances in each study area were observed close to the gauges, indicating that they are likely used for the generation of 

both EMO/E-OBS datasets and the high-resolution local precipitation products. Despite this fact introducing bias in our 

analysis, these findings highlight that the performance of gauge-based products is closely linked to the density and distribution 

of the gauge stations.  450 
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Figure 2: Spatial Pearson’s correlation at monthly scale, Temporal Pearson’s correlation, BIAS error and RMSE at daily scale for 

the Po River basin against MCM benchmark (1 km spatial resolution). For each violin, the white dot is the average value, the dark 

line the median value, and the shape of the violin reflects the data distribution. 
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 455 

Figure 3: Spatial Pearson’s correlation at monthly scale, Temporal Pearson’s correlation, BIAS error and RMSE at daily scale for 

the Hérault River basin against COMEPHORE benchmark (1 km spatial resolution). For each violin, the white dot is the average 

value, the dark line the median value, and the shape of the violin reflects the data distribution. 
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 460 

Figure 4: Spatial Pearson’s correlation at monthly scale, Temporal Pearson’s correlation, BIAS error and RMSE at daily scale for 

the Ebro River basin against SAIH benchmark (1 km spatial resolution). For each violin, the white dot is the average value, the dark 

line the median value, and the shape of the violin reflects the data distribution. 
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Figure 5: Pearson’s Correlation of E-OBS (a, c, e) and EMO (b, d, f) in Hérault basin area (a, b, COMEPHORE precipitation 

product), Ebro basin area (c, d, SAIH precipitation product), Po basin area (e, f, MCM precipitation product). Black dots represent 

the location of the gauge used within E-OBS and EMO, respectively. Only stations with more than 3 years of data between 2007 and 

2022 are shown. 

In general, all merged products outperformed the individual satellite datasets, and, in some cases, they surpassed also the 470 

reference products. M4 showed the best overall performance, followed by M2, M1, and M3. In the Po River basin, M4 

outperformed all the other products across all metrics except for BIAS. The superior performance of M4 can be attributed to 

the inclusion of ERA5-Land precipitation, which generally outperforms CPC (used in M1 and M2), likely due to its finer 

spatial resolution and better spatial uniformity (CPC performance is constrained by the locations of the gauges integrated in 

it). Indeed, the merging of datasets from different approaches clearly benefits precipitation estimation, as confirmed by the 475 

spatial distribution of the performance metrics in the Po River basin, shown in Fig. 6-8. Low-performance patterns were 

observed in all satellite products, including high RMSE in the northwestern portion of the catchment, as well as low Pearson’s 

correlation in specific areas within the Po valley and outside the Italian borders, and the intersecting curved shapes intersecting 

in the center of the basin within the BIAS results. Since these low performance patterns are similar across all the analyzed 

products, it is likely that they originated from uncertainty in the MCM benchmark product. Specifically, the RMSE patterns 480 

are probably due to noise in the radar measurements due to mountains ground echoes and the low number of gauge stations in 

that area. The Pearson’s correlation patterns could be instead related to the already known absence of gauge outside the Italian 
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borders within MCM, while the circular low-correlation areas could result from poorly performing, specific gauge stations. 

Finally, the intersecting curved shapes of the BIAS likely reflect the influence range of radar measurements. Consequently, 

comparisons in these areas should be treated with caution.  485 

Among the satellite products, as previously mentioned, IMERG-LR and SM2RAIN-ASCAT had the best performances. 

However, all satellite products were less reliable along the northern, western and southern borders of the Po River basin (Fig. 

6a-e), highlighting the challenges of satellite precipitation estimation in complex topographical areas. BIAS maps (Fig. 7) 

show that all satellite-based precipitation products derived from the TD approach significantly underestimate precipitation in 

these regions, whereas SM2RAIN-ASCAT tends to overestimate it. This is likely due to the satellite products’ limitations in 490 

estimating snowfall. Indeed, SM2RAIN-ASCAT does not exhibit underestimation because it measures only liquid 

precipitation: regions with negative surface temperatures are masked in this product due to the inability to retrieve SM from 

satellite sensors under frozen conditions. Notwithstanding this, SM2RAIN-ASCAT BIAS is large in those areas because 

satellite SM estimates in complex topographical regions are of lower quality due to shadowing effects and layover (Ulaby et 

al., 1981). SM2RAIN-ASCAT product also includes a monthly BIAS correction using ERA5-Land rainfall data (total 495 

precipitation - snowfall, Brocca et al. 2019). As a result, its BIAS pattern resembles that of ERA5-Land (e.g., Fig. 7e, 7m), 

although they are not identical, since ERA5-Land precipitation is analyzed (including snowfall contribution) and in any case 

the correction is obtained from the climatology of the monthly averages (Brocca et al., 2019). These limitations are inherited 

by the merged product M3 (Fig. 6h, 7h and 8h), which relies solely on SM2RAIN-ASCAT and IMERG-LR, but are partially 

mitigated by merging the satellite data with reanalysis data from ERA5-Land (M4) or gauge data from CPC (M1, M2). These 500 

merged products exhibit consistently good and uniform performance across all indices in all study areas, though M1 and M3 

tend to underestimate precipitation in mountainous regions, while M4 shows a tendency to overestimate, due to ERA5-Land 

probable overestimation of snowfall. Lastly, it is important to note the varying performance of reference products in the Po 

Valley. For the gauge-based reference (E-OBS, CPC, EMO) this is likely due to the uneven gauge networks distribution. 

Nevertheless, all the merged products consistently exhibit strong performance across the region, with M3 outperforming the 505 

reference products in the northern part of the Po Valley. This is particularly significant as it demonstrates that satellite-based 

precipitation products can outperform both reference and models in areas with sparse gauge networks.  

The results obtained in the Ebro and Hérault River basins overall corroborate the above findings. For the sake of brevity, they 

are shown in Appendix B. 
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 510 

Figure 6: Daily temporal Pearson’s correlation of the selected precipitation datasets against MCM observations for the Po River 

basin area. 



23 

 

 

Figure 7: BIAS error of the selected precipitation datasets against MCM observations for the Po River basin area. Blue area means 

that the precipitation product overestimate precipitation, while brown area means underestimation. 515 
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Figure 8: Root Mean Square Error (RMSE) of the selected precipitation datasets against MCM observations for the Po River basin 

area. 

4.2 Coarse-resolution validation 

For the coarse-resolution validation, all products were re-gridded to a regular 0.1-degree grid across the entire study region. 520 

The re-gridding was performed using bilinear interpolation when the original spatial resolution of the considered product was 

greater or equal to the target resolution (~10 km). In cases where the original pixels’ dimensions are smaller, spatial aggregation 

was used. Due to similarities with M4 and lower performances, the coarse-resolution validation of M1 and M2 is not shown. 

However, M3 is retained due to its independence from any reference measurements. PERSIANN and GSMAP products were 

also excluded from the comparison because of their low performances in the high-resolution validation. For the coarse-525 

resolution analysis, ERA5-Land was not used as benchmark but kept for comparison due to its inclusion in the M4 product. 

Similarly, CPC was excluded because of its overall low performance compared with EMO and E-OBS. The validation 

assessment is conducted across the entire study area, except for the northernmost part of Europe, due to the extensive snow 
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and ice cover and the low reliability of observations. However, precipitation data for this region are still provided (see the Data 

Availability section), albeit with caveats due to the lack of validation. 530 

Figures 9 and 10 show the performance of the selected precipitation products over the study area against EMO and E-OBS 

respectively. It should be noted that CHIRP’s assessment is somewhat biased, as its spatial coverage only partially overlaps 

with the study areas (CHIRP is available between latitude -60 and 60). The results from the high-resolution validation are 

confirmed here, with the merged satellite products performing very well against both EMO and E-OBS. The merged product 

based solely on satellite data outperforms all individual satellite products in most indices, except for RMSE, impacted by the 535 

high errors from IMERG-LR. 

 

M3 generally performs worse than the reference datasets but merging with ERA5-Land allows notable improvements across 

all performance indices, with average results on par with those of the reference products. The violin plots of the temporal 

Pearson’s correlation and RMSE between EMO and E-OBS again reveal a double-edge pattern, indicating that the two datasets 540 

are similar in at least part of the study area. This is further confirmed by Fig. 11, where a clear overlap between portions of 

EMO and E-OBS gauge networks is visible. Indeed, EMO benefits from a larger pool of data. However, the availability of 

certain gridded datasets used (e.g., CarpatClim, Euro4m-APGD, CombiPrecip) fluctuate over time (Thiemig V. et al., 2020), 

which suggests that the accuracy of EMO may also vary based on data availability.  

Performance index maps are displayed in Fig. 12-15, showing Pearson’s correlation against EMO and E-OBS (Fig. 12-13), 545 

RMSE against EMO (Fig. 14) and BIAS against E-OBS (Fig. 15) for the entire study area. These maps indicate that the 

northern, central, and western parts of Europe exhibit high Pearson’s correlation, low RMSE and near-zero BIAS between 

EMO and E-OBS due to the overlap of rain gauge stations used as data sources. However, performance declines in the 

remaining regions. A high degree of agreement between EMO and ERA5-Land is observed in eastern and southern Europe 

(12g, 14g, 15g), owing to EMO’s incorporation of ERA-interim data while a lower correspondence can be noticed between E-550 

OBS and ERA5-Land in these same areas (Fig. 13g). The RMSE and BIAS results against E-OBS are similar to those obtained 

from EMO and therefore they are not shown here. They are available in Appendix A, for completeness. 

Among the satellite products, CHIRP shows good Pearson’s correlation over western Spain and northern and central Italy (Fig. 

12a, 13a), almost on par with IMERG-LR (Fig. 12b, 13b). IMERG-LR generally outperforms CHIRP in the remaining areas 

in terms of Pearson’s correlation, but CHIRP has lower RMSE and BIAS (Fig. 14a, 15a) than IMERG-LR (Fig. 14b, 15b). 555 

Indeed, IMERG-LR exhibits large RMSE and BIAS errors across the entire study area, particularly along coastlines. Notably, 

IMERG’s performance improves beyond 60 degrees of latitude, likely due to an intense masking of the snowy/icy period 

beyond this latitude (Huffman et al., 2019).  

SM2RAIN-ASCAT also performs well in central and western Europe (12c-15c), except in topographically complex areas (due 

to the above-mentioned issue in the SM estimation) and along coastlines. The low performance and missing data near the 560 

coastlines in SM2RAIN-ASCAT are due to an issue in ASCAT SM data (H SAF h119 and h120), specifically due to an 

erroneous masking. This issue is expected to be resolved in future product versions, which could potentially lead to 
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improvements in both the SM2RAIN-ASCAT product and the associated merged datasets. Here, missing SM2RAIN-ASCAT 

data are replaced by IMERG-LR in the M3 merged product, which reduces the drop of the Pearson correlation but causes high 

RMSE in these areas (Fig. 14d). Adding ERA5-Land within M4 merged product improves performance, as mentioned before, 565 

but the effect is different according to the selected benchmark: the performance improves over northern, central and western 

Europe for both the datasets, with increases in Pearson’s correlation and reductions in both RMSE and BIAS. In the eastern 

region, however, low Pearson’s correlation persists against E-OBS, despite the addition of ERA5-Land (Fig. 13e), even though 

the RMSE decreases (Fig. 14e). In contrast, the comparison with EMO shows more substantial improvements (Fig. 12e), likely 

due to the strong correspondence between EMO and ERA5-Land in the region. Indeed, the low gauge density in eastern Europe 570 

contributes to the uncertainty in this region, as the benchmark datasets lack sufficient rain gauge data for accurate precipitation 

estimates. The absence of gauge stations in this area limits the reliability of both EMO and E-OBS products, which are based 

on  spatial interpolation techniques (Cornes et al., 2018). As an example, EMO uses data from ERA-Interim, thus explaining 

the accordance with ERA5-Land in this region. However, the results of the high-resolution validation show that these sources 

are not always accurate (e.g. Fig. 6m). All the merged satellite datasets combining TD and BU approaches perform well in 575 

regions where satellite measurements are reliable (e.g., excluding mountainous areas). This raises important questions about 

whether the low performances observed in individual satellite products and their merged versions in these areas is due to 

satellite limitation in estimating precipitation or the inadequacy of the reference products in accurately estimating precipitation 

patterns in the region. 

 580 
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Figure 9: Spatial Pearson’s correlation at monthly scale, Temporal Pearson’s correlation, BIAS error and RMSE at daily scale for 

the full study area against EMO benchmark (10 km spatial sampling). For each violin, the white dot is the average value, the dark 

line the median value, and the shape of the violin reflects the data distribution. 
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Figure 10: Spatial Pearson’s correlation at monthly scale, Temporal Pearson’s correlation, BIAS error and RMSE at daily scale for 

the full study area against E-OBS benchmark (10 km spatial sampling). For each violin, the white dot is the average value, the dark 

line the median value, and the shape of the violin reflects the data distribution. 

 

 590 
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Figure 11: Pearson’s Correlation of E-OBS against EMO in the full study area. Black dots represent the location of the gauge used 

within E-OBS (a) and EMO (b) datasets, respectively. The years availability is obtained by calculating the number of years between 

2007-2022 for which data from each pixel were available. 
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Figure 12: Daily temporal Pearson’s correlation of the selected precipitation datasets against EMO observations for the full study 

area. All the datasets are aggregated at 10 km spatial resolution. 
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Figure 13: Daily temporal Pearson’s correlation of the selected precipitation datasets against E-OBS observations for the full study 

area. All the datasets are aggregated at 10 km spatial resolution. 600 
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Figure 14: Root Mean Square Error (RMSE) of the selected precipitation datasets against EMO observations for the full study area. 

All the datasets are aggregated at 10 km spatial resolution. 
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Figure 15: BIAS error of the selected precipitation datasets against EMO observations for the full study area. Blue area means that 605 
the precipitation product overestimate precipitation, while brown area means underestimation. All the datasets are aggregated at 

10 km spatial resolution. 

4.3 Discussion 

The validation analysis assessed the performance of the four integrated precipitation products against coarse and high-

resolution observed data. Among the four products, the best performing ones were the configurations M3 and M4, based 610 

respectively only on satellite data and on satellite data plus reanalysis. This is probably due to the native coarse resolution of 

the CPC dataset used in configuration M1 and M2, as well its relatively low number of included rain gauges. M3 evaluation 

indicates that this configuration may provide valuable precipitation information for those areas where rain gauge networks are 

less dense. However, it was demonstrated that M4 configuration is generally the most reliable, in particular for those areas in 

which satellite data are known to be less performing, e.g. mountainous environment. Therefore, the M4 configuration is 615 

selected as the best performing and it is named HYPER-P (Figure 16).  
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Figure 16: Cumulated annual precipitation map of HYPER-P precipitation product, obtained by downscaling and merging 

precipitation product from reanalysis, satellite TD and satellite BU: specifically, ERA5-Land, IMERG Late Run and SM2RAIN-

ASCAT. 620 

This gridded precipitation product integrates multiple observational sources, leveraging both satellite-based retrievals and 

reanalysis data with a high spatial resolution (1 km). It has been developed to enhance spatial consistency and temporal 

coverage of the parent product, improving precipitation estimation compared to individual datasets. However, some limitations 

remain. First, the dataset is available only from 2007 onward, according to ASCAT (and SM2RAIN-ASCAT) data availability, 

limiting its use in long-term climate studies. Second, satellite-based precipitation estimates exhibit lower performance over 625 

complex topography, particularly in mountainous regions where both gauge-based and satellite-derived products tend to be 

less reliable due to orographic effects and snow-related biases (Girotto et al., 2024). These limitations are expected to propagate 

into the merged product, together with potential underestimation from satellite-derived estimates. Similarly, also ERA5-Land 

limitations could propagate to the new product (e.g. higher error in case of convective precipitation, Lavers et al., 2022). 

Finally, the original coarse resolution of the parent datasets may generate issues on localized convective precipitation events, 630 

since the downscaling procedure is based on monthly climatologies. However, using weights derived from TC reduces 

dependency on the parent products in areas where they perform poorly, as the relative weight decreases, thereby minimizing 

propagated issues. 
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Despite these constraints, the product is expected to provide valuable insights into precipitation patterns that will be useful in 

multiple research fields. This is demonstrated by the use of the developed precipitation products in multiple recent studies:  635 

− In Brocca et al., 2024, the integrated products were used in the context of the Digital Twin Earth and validated against a 

hydrological model over the Po Valley, obtaining Kling-Gupta Efficiency values higher than the observed products; 

− M1 configuration was used in Pellet et al., 2024 in a simple hydrological model of the Ebro River, resulting in good 

performance, closer to those obtained with an assimilation scheme; 

− M2 configuration was used in Peiro et al., 2024 within a Random Forest machine learning model for predicting landslide 640 

susceptibility, achieving high predictive accuracy, effectively identifying landslide-prone areas in Italy;  

− Sivelle et al. (under review) uses M2 configuration when testing multiple Precipitation and Soil Moisture products as 

hydrological model input for 5 catchments in Spain, France, Italy, Tunisia and Algeria, obtaining better performance than 

single satellite products, and showing positive improvements related to the use of the downscaling procedure; 

− M2 configuration was used also in Camici et al. (under review) to create a Water Resources Management database for 645 

the Po River, with promising results; 

− M2 configuration was also used by Dari et al., 2024, within the development of a novel approach for estimating 

groundwater recharge, obtaining performance similar to those generated by using gauge data; 

In some cases, the integrated products did not provide additional information, as in the case of Al Khoury et al., 2024, where 

the M2 product was used in a small karst catchment in the French Pyrenees, focusing on data-scarce mountainous regions, 650 

for hydrological modelling. Here, the use of the merged product did not improve the model performances, confirming the 

limitation of the dataset for mountainous regions and local convective events. Notwithstanding this, the large use of M1 and 

M2 demonstrates both their usefulness and the need of the scientific community for high spatial resolution precipitation 

products. M3 and M4, instead, are still to be tested, since they were only recently developed in the framework of the 4dHydro 

project.  655 

5 Conclusions 

In this study, a new precipitation product named HYPER-P, characterized by high spatial resolution and accuracy, is derived 

for Europe and mediterranean basin from downscaling and merging multiple data sources, including remote sensing products, 

reanalysis datasets, and gridded in situ observations, in the period 2007 to 2022. For this purpose, multiple precipitation 

products derived from gauges, radars, reanalysis and satellite observations are mutually compared. A total of twelve different 660 

precipitation products – five from satellites, six from reference products and one from reanalysis – were collected for the study 

area and re-gridded to resolutions of 1 km and 10 km. For each type of precipitation product, datasets characterized by high 

performance metrics, broad spatial coverage and low latency availability were downscaled and merged to obtain enhanced 

precipitation products that leverage the complementary strengths of each estimation approach. Specifically, four merged 

products were developed: M1, satellite TD approach (IMERG-LR) + gauge (CPC); M2, satellite TD approach (IMERG-LR) 665 



36 

 

+ satellite BU approach (SM2RAIN-ASCAT) + gauge (CPC); M3, satellite TD approach (IMERG-LR) + satellite BU approach 

(SM2RAIN-ASCAT); and M4, satellite TD approach (IMERG-LR) + satellite BU approach (SM2RAIN-ASCAT) + reanalysis 

(ERA5-Land). The performance of the merged datasets, individual satellite products and reference datasets was evaluated 

through two validation analyses conducted at high and coarse spatial resolution, respectively. The high-resolution analysis was 

performed across three regions in the Mediterranean Basin with dense gauge/radar networks: the Po River Basin, the Hérault 670 

River Basin and the Ebro River Basin. This analysis allowed the selection of the best performing products and understanding 

the mutual limitations of the datasets, such as the low accuracy of satellite products over the mountainous regions and the 

performance drop of reference datasets in areas with low gauge density. A selection of products was subsequently assessed 

over most of Europe and Mediterranean basin within the coarse-resolution validation, where all the data was aggregated to a 

10 km resolution and then compared against EMO and E-OBS reference datasets. 675 

Satellite data demonstrated a generally strong capability in estimating precipitation, and the combination of BU and TD 

approaches effectively leverages the strengths of both SM2RAIN-ASCAT and IMERG-LR. This merged product estimate 

precipitation with high reliability across most of the analyzed areas, even outperforming datasets based on in-situ and reanalysis 

data in regions with low gauge density. The inclusion of ERA5-Land further enhances these results, particularly improving 

precipitation accuracy in topographically complex regions where satellite data alone often struggles to achieve good results. 680 

However, evaluating precipitation products by using traditional techniques in regions with scarce observed data, such as eastern 

Europe, is not trivial. In these areas, the merged product obtained from the combination of SM2RAIN-ASCAT, IMERG-LR 

and ERA5-Land seems to be the best performing against EMO and E-OBS benchmarks, but the low reliability of these 

reference datasets due to the unavailability of gauge measurements raises concerns about the robustness of the findings. Hence, 

the merged product was selected as HYPER-P product and, along with satellite-only merged product (SM2RAIN-ASCAT and 685 

IMERG-LR), will be undertaken a hydrological validation within the ESA 4DHydro project to further assess the optimal 

precipitation dataset through the capability of reproducing observed discharge. The results of this ongoing project, together 

with the findings of this analysis, will enable the scientific community to further advance its understanding of available 

precipitation products, particularly in terms of their respective strengths and weaknesses. This knowledge will potentially 

contribute to the development of a global, high-resolution precipitation product with short latency, which integrates and 690 

complements the various existing datasets. Future improvements will focus on refining the downscaling methodology by 

incorporating higher-resolution datasets, such as Sentinel-1-derived soil moisture, to enhance spatial detail and accuracy, 

particularly in regions where traditional precipitation estimates remain uncertain. Efforts will also aim to extend the dataset 

both spatially and temporally, especially in areas with sparse rain gauge coverage.  

 695 

Data availability: 

The merged products analyzed in this study were developed within the ESA projects 4DMED and 4DHydro. They are available 

online at: 
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M1: IMERG-LR+CPC. https://stac.eurac.edu/browser/#/collections/rainfall_all_domain/ and 

https://zenodo.org/records/15025397, available for the Mediterranean basin for the period 2000-2022 (Filippucci et al, 700 

2023a). 

M2: SM2RAIN-ASCAT+IMERG-LR+CPC. https://zenodo.org/records/10402392, available for the Mediterranean basin for 

the period 2015-2022 (Filippucci et al, 2023b).  

M3: SM2RAIN-ASCAT+IMERG-LR. https://4dhydro.eu/catalog/ (path Products => WP1 Products => 4DHYDRO 

precipitation product: SM2RAIN+GPM) and https://zenodo.org/records/15025462 (Europe), available for the entire 705 

Europe and the Tugela Basin (Africa) from 2007-2022 (Filippucci et al., 2024a) 

M4: SM2RAIN-ASCAT+IMERG-LR+ERA5-Land. https://4dhydro.eu/catalog/ (path Products => WP1 Products => 

4DHYDRO precipitation product: ERA5+SM2RAIN+GPM) or https://zenodo.org/records/15025514 (Europe), available 

for the entire Europe and the Tugela Basin (Africa) from 2007-2022 (Filippucci et al., 2024b). 

Appendices 710 

A Merging weights distribution 

The weights used for dataset merging, obtained from the application of the TC, are shown here. Figure A1 presents the weights 

for configuration M1, where CPC is merged with IMERG-LR. As expected, CPC has the highest weights across most of the 

northern Mediterranean basin due to the presence of dense meteorological gauge networks. The weights used in configuration 

M2 are shown in Fig. A2. Here, the results differ slightly: CPC remains the most used product in the northern part of the basin, 715 

but IMERG-LR and SM2RAIN-ASCAT also contribute significantly to many areas. Specifically, IMERG-LR is selected over 

topographically complex regions, where ASCAT SM retrievals (and therefore SM2RAIN-ASCAT rainfall estimations) are 

less reliable. Figure A3 illustrates the weights for configuration M3, where only SM2RAIN-ASCAT and IMERG-LR are used. 

In this case, IMERG-LR is the dominant product at higher latitudes, where frozen soil conditions often hinder soil moisture 

(SM) retrieval and, consequently, rainfall estimation from space. Conversely, SM2RAIN-ASCAT has greater weight in the 720 

southern areas. Finally, Figure A4 shows the weights for configuration M4. Here, ERA5-Land has the greatest weight across 

most of Europe due to the limitations of satellite products in frozen regions. However, in African regions and parts of Eastern 

Europe, the weights of the satellite datasets increase, likely due to the scarcity of observational data in these areas. Over most 

of the coastal areas, ASCAT SM data are not available or less accurate, therefore there the SM2RAIN-ASCAT dataset is not 

used in any configuration. 725 

https://www.4dmed-hydrology.org/
https://zenodo.org/records/15025397
https://zenodo.org/records/10402392
https://4dhydro.eu/catalog/
https://zenodo.org/records/15025462
https://4dhydro.eu/catalog/
https://zenodo.org/records/15025514
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Figure A1: Weights distribution for configuration M1: areas where CPC has the greater weight are highlighted in blue while those 

where IMERG-LR is prevalently used are highlighted in brown. 
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Figure A2 

Weights distribution for configuration M2: areas colored in red, green and blue highlight the pixels where CPC, IMERG-LR and 730 
SM2RAIN-ASCAT have the greater weight, respectively. 
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Figure A3: Weights distribution for configuration M3: areas where SM2RAIN-ASCAT has the greater weight are highlighted in 

blue while those where IMERG-LR is prevalently used are highlighted in brown. 
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Figure A4 735 
Weights distribution for configuration M4: areas colored in red, green and blue highlight the pixels where ERA5-Land, IMERG-

LR and SM2RAIN-ASCAT have the greater weight, respectively. 

 

B Performance indices at high and coarse resolution 

Here, the daily Pearson’s correlation (Fig. B1, B2), RMSE (Fig. B3, B4) and BIAS (Fig. B5, B6) maps of the high spatial 740 

resolution analyzed products against the local high spatial resolution precipitation benchmarks are shown for Ebro River basin 

(Fig. B1, B3, B5) and the Hérault River basin (Fig. B2, B4, B6). The RMSE (Fig. B7) and BIAS (Fig. B8) performance of the 

coarse spatial resolution against E-OBS for the full study area are also shown. 

resolution against E-OBS for the full study area are also shown. 
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 745 

Figure B1: Daily temporal Pearson’s correlation of the selected precipitation datasets against SAIH observations for the Ebro River 

basin area. 
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Figure B2: Daily temporal Pearson’s correlation of the selected precipitation datasets against COMEPHORE observations for the 750 
Hérault River basin area. 
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Figure B3: Root Mean Square Error (RMSE) of the selected precipitation datasets against SAIH observations for the Ebro River 

basin area. 755 
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Figure B4: Root Mean Square Error (RMSE) of the selected precipitation datasets against COMEPHORE observations for the 

Hérault River basin area. 

 760 
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Figure B5: BIAS error of the selected precipitation datasets against SAIH observations for the Ebro River basin area. Blue area 

means that the precipitation product overestimate precipitation, while brown area means underestimation. 
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 765 

Figure B6: BIAS error of the selected precipitation datasets against COMEPHORE observations for the Hérault River basin area. 

Blue area means that the precipitation product overestimate precipitation, while brown area means underestimation. 
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Figure B7: Root Mean Square Error (RMSE) of the selected precipitation datasets against E-OBS observations for the full study 

area. All the datasets are aggregated at 10 km spatial resolution. 770 
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Figure B8: BIAS error of the selected precipitation datasets against E-OBS observations for the full study area. Blue area means 

that the precipitation product overestimate precipitation, while brown area means underestimation. All the datasets are aggregated 

at 10 km spatial resolution. 
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