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Abstract. This study investigates the long-term monitoring of physico-chemical parameters and biogeochemical 

cycles in coastal ecosystems, focusing on three stations in Normandy: Blainville-sur-Mer, Saint-Vaast-la-Hougue, 

and Utah Beach. Over a 24-year period, we analyzed trends in temperature, pH, chlorophyll a concentrations, and 10 

nutrient levels, aiming to assess the impacts of climate change and human activities on marine ecosystems. Results 

show a consistent rise in winter temperatures, particularly since 2013, alongside increasing ocean acidification, 

especially at Blainville-sur-Mer. These trends suggest potential consequences for planktonic communities and 

mollusk health. Nutrient analysis revealed significant variations, including high ammonium concentrations on the 

East coast and a gradual decline in phosphates over the last 15 years, highlighting the influence of anthropogenic 15 

activities. The study also identified nutrient limitations, with phosphorus dominating the East coast and nitrogen 

on the West coast. Our findings emphasize the need for effective nutrient management strategies to mitigate the 

effects of climate change and human impact, ensuring the sustainability of coastal ecosystems and aquaculture 

practices. This long-term monitoring is crucial for understanding ecological dynamics and guiding future coastal 

zone management in the face of global environmental changes. 20 

1. Introduction 

Located at the interface between land and ocean, coastal ecosystems are highly productive areas essential 

for the survival of many marine species (Barbier et al., 2011). However, these environments are under increasing 

pressure from human activities, such as eutrophication, pollution, and changes to coastal and marine landscapes. 

These threats affect both benthic and pelagic habitats, thereby disrupting ecological balances (Sala et al., 2000 ; 25 

Dudgeon et al., 2006 ; Halpern et al., 2007 ; Barbier et al., 2011 ; Ovaskainen et al., 2019). 

Since the 1950s, the widespread use of fertilizers in intensive agricultural practices has led to an increase 

in nutrient inputs into European coastal waters (Vermaat et al., 2008). Over the decades, numerous programs have 

been implemented to limit these discharges, but while the effects on phosphorus inputs have been notable 

(Claussen et al., 2009), nitrogen inputs remain very high (Garnier et al., 2019). These inputs influence not only 30 

the concentration of nutrients but also their stoichiometry (Martin et al., 2008 ; Watanabe et al., 2017 ; Meybeck 

et al., 2018). These imbalances lead to changes in the productivity of phytoplankton communities, which are at 

the base of the food web, as well as in their composition (Shen, 2001 ; Cadée & Hegeman, 2002 ; Smith, 2006 ; 

Lefebvre et al., 2011 ; Leruste et al., 2019). 

Nutrient inputs, alongside other environmental factors such as light availability, temperature, water 35 

residence time, and river discharge, play a critical role in driving phytoplankton blooms (Heisler et al., 2008). 

These blooms are vital for shellfish ecosystems, serving as an essential food source for farmed bivalves (Sonier et 
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al., 2016 ; Filgueira et al., 2016). However, studies have reported a slowdown in primary production, including 

phytoplankton blooms, due to changing environmental conditions (Romero et al., 2016). 

Climate change significantly influences coastal systems through various physical and chemical processes 40 

(Kirby et al., 2009). Beyond the well-documented direct effects of rising temperatures on marine organisms 

(Beaugrand, 2004), warming also affects water stratification, which alters the vertical exchange of nutrients and 

oxygen (Sarmiento & Gruber, 2006). This can lead to an increased occurrence of hypoxic or anoxic events in 

coastal waters (Diaz, 2001 ; Selman et al., 2008). Furthermore, atmospheric circulation—through changes in sea 

level pressure, wind direction, and intensity-impacts oceanic currents, which play a key role in the horizontal 45 

transport of nutrients and oxygen in these ecosystems (Cloern, 2001 ; Reid et al., 2003). 

Since the early 2000s, the HYDRONOR observatory, dedicated to shellfish water masses, has been 

established in the Cotentin department. The objective of our study is to track the evolution of hydrobiological 

parameters in three Normandy shellfish stations: Blainville-sur-Mer, Saint-Vaast-La-Hougue, and Utah Beach, 

monitored by this observatory. Over 20 years of data have been collected and will be analyzed using advanced 50 

statistical tools. These stations make it possible to establish a link between the two SOMLIT stations at Luc-sur-

Mer in the Baie de Seine and Roscoff. 

2. Material and methods  

2.1. Sampling sites and strategies 

Three shellfish sampling areas were studied by SMEL between 2000 and 2024 as part of the 55 

HYDRONOR observatory. Two of these areas are located in open ecosystems, heavily exploited by oyster farming 

activities: Saint-Vaast-la-Hougue (named Tocquaise), in the eastern part of the department, and Blainville-sur-

Mer, in the western part. The third area, Utah Beach, is located in the enclosed environment of the Baie des Veys, 

under strong anthropogenic influence (Figure 1). 

 60 

Figure 1: Location of the sampling stations along the French coast in the English Channel (Blainville-sur-mer, Saint-

Vaast-La-Hougue, Utah Beach). 
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2.2. Sample analysis 

Table 1: Analytical Methods for the Determination of Nutrients in seawater samples 

 65 

 

Molecule References Principe 

Ammonium 

(NH4
+) 

Standard NF T 90-

015-2 (January 

2000): Water 

testing – 

Determination of 

ammoniacal 

nitrogen – 

Spectrophotometric 

method using 

indophenol blue 

In an alkaline medium (10.4 < pH < 11.5), the ammonium ion reacts 

with phenol and hypochlorite to form monochloramine. This 

compound, in the presence of nitroprusside as a catalyst, leads to the 

formation of indophenol blue. The absorption is measured using a 

spectrophotometer at 630 nm. 

Nitrate (NO3
-)  

/  

Nitrite (NO2
-) 

Aminot & 

Chaussepied, 1983 

 

Bendschneider & 

Robinson, 1952 

 

Aminot & Kerouel, 

2004 

The selected method is based on the determination of NO2⁻ ions 

obtained through the quantitative reduction of NO3⁻ ions. In 

practice, the measurement reflects the sum of the concentrations of 

both ions, from which the nitrite concentration is deducted 

separately, without reduction. The reduction is carried out by passing 

the sample through a cadmium column treated with copper. After 

nitrate reduction (Griess reaction), measurement is performed based 

on the determination of nitrite ions. 

Nitrite ions form a diazo compound with sulfanilamide in an acidic 

medium (pH < 2), which then reacts with N-naphthyl-

ethylenediamine to form a pink dye absorbing at 543 nm. 

Orthophosphate 

(PO4
³⁻) 

Aminot & 

Chaussepied, 1983 

 

Murphy & Riley, 

1962 

Phosphate ions react with ammonium molybdate in the presence of 

antimony to form a complex that is then reduced by ascorbic acid; 

this reduced form, with a blue coloration, has a maximum absorption 

at 885 nm. This blue compound contains phosphorus, molybdenum, 

and antimony in atomic proportions of 1-12-1. Polyphosphates and 

organic phosphorus are not measured by this method. 

Orthosilicic acid 

(Si(OH)₄) 

Aminot & 

Chaussepied, 1983 

Mullin & Riley, 

1955 

Strickland & 

Parsons, 1972 

Aminot & Kerouel, 

2004 

The colorimetric determination is based on the formation of a 

silicomolybdic complex which, after reduction, produces an intense 

blue coloration. 

Orthosilicic acid tends to form polymers, of which only the mono- 

and dimeric forms react with molybdate ions under the conditions of 

this method, making the term "reactive silicon" more appropriate. 

Under reaction conditions, colloidal silicates are measured together 

with dissolved silicates using this method. 
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The samples were collected at a depth of 1 meter using a 5L Niskin bottle, twice a month, one hour before 

or after high tide. Chlorophyll a was quantified after filtering three 100 mL samples using fluorimetry. Nutrients 70 

were measured via spectrophotometry. Mineral nitrogen was quantified through ammonium (NH4
+), nitrite (NO2

-

), and nitrate (NO3
-). Only the assimilable form of phosphorus, orthophosphate (PO4

3-), was quantified, as well as 

silicates (Si(OH)4). The methods are detailed in Table 1.  

Calibration standards were prepared in depleted seawater and validated according to AFNOR XP T90-

210 (May 2009), an experimental standard for water quality outlining the protocol for the initial performance 75 

evaluation of a method in a laboratory. Physico-chemical parameters (temperature, salinity) were measured in situ 

using a YSI multi-parameter probe. pH was measured in the laboratory. 

To assess the potential limitation of primary production by nutrient availability, the standard molar ratios 

for dissolved inorganic nitrogen (DIN = ammonium + nitrite + nitrate), phosphate, and silicate were calculated 

and compared. These ratios were based on the biogenic matter composition described by Redfield et al. (1963) 80 

and Brzezinski (1985), which is Si:N:P = 16:16:1. 

2.3. Data analysis  

 The entire dataset was analyzed using the R software, with the TTAinterfaceTrendAnalysis package 

developed by Devreker & Lefebvre (2014).  

 85 

3. Results 

3.1. Evolution of Physico-Chemical Parameters: Rising Winter Temperatures and pH Acidification 

Figure 2 presents the monitoring of physico-chemical parameters. The monthly trends across the three 

stations show a similar pattern regarding temperature. However, the time series reveals a notable increase in winter 

temperatures. For instance, between 2009 and 2013, the average minimum temperatures at the three stations were 90 

around 5°C. In contrast, from 2013 to 2024, these minimum temperatures ranged between 6°C and 8°C across all 

stations. Significant changes are also observed in pH levels. As illustrated by the time series in Figure 2, pH has 

become more acidic over time. In the early 2000s, the lowest recorded pH remained above 8.0, whereas by 2024, 

it has dropped to 7.85. These observations are shared by the mean deviation data presented in Figure 3. Indeed, 

the red values for temperature indicate so-called "positive" anomalies, representing values above the interannual 95 

averages. For pH, the dominance of blue since 2017 reflects its acidification, which is most noticeable in 

Blainville-sur-mer, on the western coast. 
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 100 
 

Figure 2: Time Series and Monthly Averages of Temperature (°C) (top) and pH (bottom) Parameters from 2000 to 2024 

at Blainville-sur-Mer, Saint-Vaast-la-Hougue (Tocquaise), and Utah Beach. 

3.2. Spatial and Temporal Variability of Chlorophyll a Concentrations 

Chlorophyll a concentrations are illustrated in Figure 4. The stations located on the eastern coast, Saint-105 

Vaast-la-Hougue and Utah Beach, exhibit the highest levels, with peaks exceeding 20 µg/L, compared to a 

maximum of 10 µg/L at Blainville-sur-Mer. On the western coast, the annual bloom is clearly visible, marked by 

an increase in chlorophyll a concentrations every March. In contrast, on the eastern coast, trends are more variable 

across years, with peaks observed between February and July. Since 2020, a drastic decrease in chlorophyll a 

concentrations has been observed on the eastern coast. This trend is confirmed by Figure 5, which highlights values 110 

below the median for this period. Moreover, the predominance of green in the Blainville graph, compared to blue 

for the other two stations, underscores the differences between the western and eastern coastal ecosystems. 
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Figure 3: Monitoring of temperature (Top) and pH (Bottom) anomalies for the 3 stations.   Anomalies are Calculated 115 
as Deviations from the Median (red : positive anomalies / blue : negatives anomalies). 

 

 

 

Figure 4: Time Series and Monthly Averages of chlorophyll a (µg.L-1) from 2000 to 2024 at Blainville-sur-Mer, Saint-120 
Vaast-la-Hougue (Tocquaise), and Utah Beach. 
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Figure 5: Monitoring of Chorophyll a anomalies for the three Stations: Blainville-sur-Mer, Saint-Vaast-la -Hougue 

(Tocquaise), and Utah Beach. Anomalies are Calculated as Deviations from the Median (red : positive anomalies / dark 125 
blue : negatives anomalies). 

3.3. Nutrient Salt Dynamics and Seasonal Decomposition  

The evolution and trends of nutrient salts are illustrated in Figure 6. Among them, ammonium shows the 

most marked variations between the stations. Its concentrations mainly increase between September and 

December, with the highest levels on the East coast, where they can exceed 2 µmol/L.In contrast, on the West 130 

coast, represented by Blainville-sur-Mer, the maximum values are closer to 1 µmol/L. Nitrites and nitrates exhibit 

much more cyclical variations across the three stations, with minimal concentrations in the summer and maximum 

levels exceeding 20 µmol/L in January, before decreasing in the spring.  

On the West coast, although the maximum concentrations are similar to those of the East coast, they 

decrease more rapidly once the winter peak is reached. As for orthophosphates and silicates, the trends follow a 135 

similar pattern to those of nitrates and nitrites: concentrations rise in the autumn, peak in the winter, and decrease 

in the spring. For phosphate, concentrations rarely exceed 1 µmol/L, while silicates reach nearly 30 µmol/L in 

winter, especially on the East coast. However, no significant difference was observed between the two coasts for 

silicates. Finally, the time series for phosphate highlights a gradual decline in concentrations over the past 15 years 

on both coasts. 140 

The seasonal decomposition of various nutrients and chlorophyll-a, presented in Figure 7, reveals similar 

trends across the three studied stations over the past 20 years. Chlorophyll-a concentrations decreased 

progressively until 2010, increased between 2010 and 2015, and then declined again until 2024. Over this period, 

an overall decrease in chlorophyll-a concentrations was observed, with reductions of 0.2 µg.L⁻¹ at Blainville-sur-

Mer, 3.0 µg.L⁻¹ at Saint-Vaast-la-Hougue, and 2.0 µg.L⁻¹ at Utah Beach.For nutrients, a general downward trend 145 

was also observed. Between 2000 and 2024, orthophosphate concentrations decreased by 0.3 µmol.L⁻¹ at 

Blainville-sur-Mer, 0.5 µmol.L⁻¹ at Saint-Vaast-la-Hougue, and 0.4 µmol.L⁻¹ at Utah Beach. Silica recorded 

decreases of 1.5 µmol.L⁻¹, 2.0 µmol.L⁻¹, and 2.5 µmol.L⁻¹ at these respective stations, while ammonium 

concentrations decreased by 1.5 µmol.L⁻¹, 1.0 µmol.L⁻¹, and 0.4 µmol.L⁻¹. The most significant reductions were 

observed for nitrates and nitrites, with decreases of 6.0 µmol.L⁻¹ at Blainville-sur-Mer and Saint-Vaast-la-Hougue, 150 

and 4.0 µmol.L⁻¹ at Utah Beach. Finally, it is noteworthy that in 2010, when chlorophyll-a concentrations were at 

their lowest, nutrient concentrations were not at their minimum, highlighting a distinct dynamic between these 

parameters. 
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Figure 6: Time series and monthly averages of nutrient concentrations at the three stations (2000-2024): Blainville-sur-

Mer, Saint-Vaast-la-Hougue (Tocquaise), and Utah Beach. A: Ammonium (NH₄⁺), B: Nitrites and Nitrates (NO₂⁻, NO₃⁻), 160 
C: Orthophosphate (PO₄³⁻), D: Orthosilicic acid (Si(OH)₄). 

B 

A 

C 

D 
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Figure 7: Seasonal Decomposition of Chlorophyll-a and Nutrients (Ammonium, Nitrate, Nitrite, Orthophosphate, and 

Silicic Acid) from 2000 to 2024 at Blainville-sur-Mer, Saint-Vaast-la-Hougue, and Utah Beach. 
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3.4. Stoichiometric Limitations 165 

The variations in macronutrient concentrations described in Figure 6 influenced the stoichiometric ratios. 

Figure 8, by presenting the Si:N and N:P ratios, delimits six areas that highlight the potentially limiting nutrients 

in a prioritized order, based on thresholds for biogenic particles defined by Redfield et al. (1963) and Brzezinski 

(1985): Si:N:P = 16:16:1. Data aggregated for the 2000–2024 period reveal two distinct dynamics depending on 

the observed coastline. At Blainville-sur-Mer, nitrogen was identified as the primary limiting nutrient in 186 170 

observations (Table 2), followed by silica. Conversely, on the eastern coast, phosphorus appears to be the most 

limiting nutrient in the ecosystem, with 185 and 182 observations for Saint-Vaast-la-Hougue and Utah Beach, 

respectively. 

 

 175 

 

Figure 8: Synthetic graph showing the molar ratios of Si:N:P from 2000 to 2024 at Blainville-sur-Mer, Saint-Vaast-la-

Hougue, and Utah Beach. Each region is defined by specific ratios, illustrating the potential limiting nutrient order of 

priority. 

 180 
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Table 2: Distribution of observations based on the potential limiting nutrient (from most to least limiting) at the three 

stations (Blainville-sur-Mer, Saint-Vaast-la-Hougue, and Utah Beach) from 2000 to 2024. 

 Blainville-sur-mer Saint-Vaast-la-Hougue Utah Beach Total 

P<Si<N 100 185 182 467 

Si<P<N 101 107 95 303 

N<Si<P 186 90 75 351 

N<P<Si 48 41 34 123 

Si<N<P 19 8 15 42 

n 454 431 401 1286 

 

4. Discussion   

The results of this study highlight the importance of conducting long-term monitoring at specific sites to 185 

better understand intra- and inter-annual variations in the biogeochemical cycles of nutrients and the evolution of 

physico-chemical parameters.   

4.1. Coastal Ecosystems and Climate Change   

The three studied sites, located in the Normandy region, show a progressive increase in winter 

temperatures over the past decade (Figures 2, Figure 3). This finding aligns with observations made at other 190 

monitoring points in the English Channel (Cornes et al., 2023 ; Kassem & Thompson, 2023 ; McEvoy et al., 2023 

; Hubert et al., 2024 ; Neven et al., 2024). While our data indicate an average rise of 1°C over 12 years for the 

three stations, studies conducted along the southern coast of England report an increase ranging from 0.42°C to 

0.76°C per decade (Kassem & Thompson, 2023). In France, Hubert et al. (2024) reported a similar warming trend, 

estimated at +1.063°C over 11 years.  Moreover, the year 2022 was marked by an exceptional heatwave, recorded 195 

by Simon et al. (2023), with particularly high summer temperatures (Guinaldo et al., 2023 ; Hubert et al., 2024). 

This phenomenon was also observed within our monitoring network. However, natural temperature oscillations, 

such as the Atlantic Multidecadal Oscillation (AMO; Kerr, 2000), also affect conditions in the English Channel 

(Edwards et al., 2013 ; Auber et al., 2017).   

The warming of coastal waters may lead to significant changes in marine ecosystems, particularly by 200 

altering the composition and biomass of phytoplankton communities (Richardson & Schoeman, 2004), 

zooplankton (Neven et al., 2024), and fish populations (Auber et al., 2017 ; Maltby et al., 2020). These changes 

could have major repercussions on the dynamics of coastal ecosystems and the services they provide. Another 

major factor threatening marine ecosystems is ocean acidification. Observations and modeling studies indicate a 

global decrease in ocean pH by 0.02 units per decade, with a projected drop of up to -0.7 units by 2100 due to the 205 

dissolution of atmospheric CO2 into the oceans (Calderira & Wickett, 2003 ; Bates, 2007 ; Santana et al., 2007 ; 

Olafsson et al., 2009 ; Lauvset et al., 2015). Such acidification will have significant consequences, including 

altering the structure of marine communities (Fabry et al., 2008), disrupting nutrient cycles (Hutchins et al., 2009), 

reducing productivity (Riebesell et al., 2007), and impacting carbon fluxes (Schulz et al., 2008). 
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Data from the HYDRONOR observatory reveal an average acidification over 24 years of -0.2 units in 210 

Blainville-sur-Mer, -0.25 units in Saint-Vaast-la-Hougue, and -0.15 units in Utah Beach. These values significantly 

exceed previously predicted levels, highlighting the urgency of better understanding these phenomena. Long-term 

monitoring of coastal ecosystems is crucial to understanding the effects of climate change, particularly in shellfish 

farming areas where bivalves, vulnerable due to their calcareous shells, are heavily impacted by acidification 

(Doney et al., 2020). However, coastal zones present specific challenges due to their high daily, seasonal, and 215 

interannual variability. This complexity, influenced by factors such as riverine inputs, climatic conditions, and 

anthropogenic pressures, makes identifying climate change-related trends more difficult (Kapsenberg et al., 2017; 

Reimer et al., 2017 ; Chen & Hu, 2019). 

4.2. Ecological Contrasts between the West and East Coasts of Cotentin 

Our findings highlight two distinct ecological dynamics between the West and East coasts of Cotentin. 220 

The West coast, represented by the Blainville-sur-Mer station, is characterized by an open environment where 

processes appear to "dilute," leading to consistent and regular seasonal trends. As shown in Figure 4, chlorophyll 

a peaks occur systematically in March, with variations mainly limited to the amplitude of phytoplankton blooms. 

In contrast, the East coast exhibits much less predictable and highly variable trends from year to year. Regarding 

nutrient salts, although maximum concentrations are similar between the two coasts (except for ammonium, Figure 225 

6), these peaks are short-lived on the West coast. 

We hypothesize that this "dilution" of processes on the West coast is linked to its open environment, with 

greater exchange with the English Channel and the Atlantic Ocean. Conversely, the East coast, influenced by the 

proximity of bays and riverine inputs (Figure 1), experiences more intense and irregular phenomena. A notable 

difference lies in the limiting elements: the West coast is primarily nitrogen-deficient, whereas the East coast is 230 

limited by phosphorus and silica (Figure 8). These observations contrast with studies conducted in the English 

Channel, which generally report a nitrogen surplus due to agricultural activities and riverine inputs (Ménesguen et 

al., 2019 ; Romero et al., 2019 ; Yan et al., 2021 ; Yan et al., 2022). 

Differences between the ecosystems of the East and West coasts of the Cotentin Peninsula have already 

been highlighted in previous studies. Lefebvre et al. (2009a; 2009b) found that the diet of oysters on the West 235 

coast was primarily based on phytoplankton (i.e., pelagic), whereas on the East coast, the animals consumed a mix 

of benthic and pelagic sources. 

4.3. Phytoplankton Communities in Transition 

 Since the 1980s, European policies have aimed to reduce nitrate and, more specifically, phosphate inputs 

(Claussen et al., 2009). Long-term data analysis shows that phytoplankton availability is closely linked to the 240 

hydrographic and hydrological conditions of the area studied (Loebl et al., 2009). Thus, the decline in riverine 

nutrient inputs is directly correlated with decreasing chlorophyll a concentrations, as illustrated in Figure 7. 

Regardless of the site studied, a decrease in ammonium, nitrate, nitrite, phosphate, and silicate concentrations in 

the water column has been observed over the past decade (Figure 7). This reduction in nutrients is accompanied 

by a widespread decline in chlorophyll a levels across the region since the early 2000s (Goberville et al., 2010; 245 

Gohin et al., 2019). 
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These environmental changes naturally impact planktonic communities. In regions such as the central 

North Atlantic Ocean, the North Sea, and the Baltic Sea, an increase in certain dinoflagellate populations has been 

observed (Leterme et al., 2005; Klais et al., 2011; Zhai et al., 2013). Similar trends have been reported in the 

English Channel, where some diatom species are declining while dinoflagellate communities have been expanding 250 

since the 2000s (Hernandez-Farinãs et al., 2014). Moreover, in the western English Channel, monitoring efforts 

have highlighted the growing importance of pico- and nanoplankton communities in primary production (Barnes 

et al., 2015). Although their biomass is relatively low compared to microphytoplankton, these communities exhibit 

high productivity and significant photosynthetic efficiency (Barnes et al., 2014). 

Picoplankton biomass remains relatively stable in terms of production and plays a significant role in 255 

productivity within oligotrophic gyres (Maranon et al., 2001; Uitz et al., 2010; Moreno-Ostos et al., 2011). 

Meanwhile, nanoplankton appears to be the primary contributor to primary production in coastal areas (Hirata et 

al., 2009). 

These shifts can be explained by changes in N:P stoichiometric ratios and the forms of available nitrogen, 

which influence the structure of phytoplankton communities (Donald et al., 2013; Glibert et al., 2014). Based on 260 

Glibert’s (2016) work and his phytoplankton mandala (Figure 9), it is possible to hypothesize two contrasting 

dynamics. On the west coast, the coastal ecosystem is characterized by nitrogen deficiency, with nitrate and nitrite 

as the dominant nitrogen forms, which could favor a regenerative phytoplankton community with a high abundance 

of diatoms. In contrast, the east coast is nitrogen-enriched, with significant ammonium concentrations, potentially 

leading to an ecosystem dominated by picophytoplankton and cyanobacteria. 265 

 

Figure 9: Revised phytoplankton mandala. Phytoplankton functional types are depicted along 12 axes (shown by the 

small numbers in the corner of each axis. All responses within relative space are representative and not meant to imply 

that all species or individuals within a given response surface will respond similarly. Icons of the organisms are from 

the University of Maryland Center for Environmental Science Integration and Application Network symbol library. 270 
From Glibert et al., 2016. 
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5. Conclusion 

This study provides valuable insights into the long-term trends of hydrobiological parameters in 

Normandy's shellfish ecosystems, emphasizing the significant impacts of both human activity and climate change. 

Our analysis highlights a consistent increase in winter temperatures and a gradual acidification of pH levels across 275 

all three monitoring stations (Blainville-sur-Mer, Saint-Vaast-la-Hougue, and Utah Beach) from 2000 to 2024. 

These changes align with broader trends observed in the English Channel and suggest a shift in the environmental 

conditions that could affect the ecological balance of coastal habitats. 

The observed variations in chlorophyll a concentrations and nutrient dynamics reveal complex interactions 

between nutrient availability, primary production, and the potential limitations of different nutrients across 280 

seasons. Notably, nitrogen was identified as the primary limiting nutrient in the western region, while phosphorus 

dominated as the limiting factor in the eastern stations. These findings have important implications for managing 

nutrient inputs and maintaining the health of coastal ecosystems, particularly in the context of ongoing 

eutrophication. 

Furthermore, the study underscores the importance of sustained, site-specific monitoring to capture the 285 

intricate and evolving dynamics of coastal environments. The long-term dataset from the HYDRONOR 

observatory has proven essential in understanding how climatic shifts, such as increased temperatures, influence 

phytoplankton blooms and nutrient cycling. This research provides a crucial foundation for future efforts to 

mitigate the impacts of climate change and anthropogenic pressures on coastal ecosystems, particularly those 

supporting critical industries like shellfish farming. As the region faces rising temperatures and ongoing nutrient 290 

imbalances, adaptive management strategies will be key to preserving the resilience of these vital ecosystems. 

 

6. Data and code availability 

The hydrobiological dataset from the HYDRONOR Observatory is openly accessible on Zenodo at the 

following DOI: https://doi.org/10.5281/zenodo.15058835 (SMEL - Synergie Mer & Littoral, 2024). Additionally, 295 

the R package **TTAinterfaceTrendAnalysis**, designed for trend analysis, is available for consultation and 

download directly from the CRAN website: https://cran.r-

project.org/web/packages/TTAinterfaceTrendAnalysis/index.html. 
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