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Abstract. Nighttime light (NTL) data at daily scales presents an innovative foundation for monitoring human activities, 10 

offering vast potential across various research domains such as urban planning and management, disaster monitoring, and 

energy consumption. The daily moonlight-adjusted nighttime lights product (VNP46A2), sourced from Suomi National Polar-

orbiting Partnership Visible Infrared Imaging Radiometer Suite (NPP-VIIRS), has been providing globally corrected daily 

NTL data since 2012. However, persistent challenges, such as fluctuations in the daily NTL series due to spatial mismatch and 

angular effects, as well as data holes, have significantly impacted the accuracy and comprehensiveness of extracting daily NTL 15 

changes. To address these challenges, a dataset production framework focusing on error correction, interpolation, and 

validation was developed. This framework led to the creation of a high-quality daily NTL (HDNTL) dataset from 2012 to 

2024, which specifically targets 653 cities with populations predictably exceeding one million in 2025. A comparative analysis 

with the VNP46A2 dataset revealed promising results in spatial mismatch correction for two sample areas—the airport and 

highway (angular effect can be ignored). These areas exhibited reduced fluctuations in HDNTL time series and enhanced 20 

spatial consistency among pixels with homogeneous light sources. Furthermore, the correction of angular effects across various 

urban building landscapes demonstrated sound improvements, mitigating angular effects in different directions and reducing 

periodicity from the angular impacts. The spatiotemporal interpolation of data holes shows high similarity with the reference 

data, as indicated by a Pearson correlation coefficient (r) of 0.99, and it increased the valid pixels of all cities by about 2%. 

The HDNTL dataset exhibited enhanced consistency with high-resolution Sustainable Development Science Satellite 1 25 

(SDGSAT-1) NTL data regarding the NTL change rate. Also, it showed high alignment with ground truth data of power 

outages, showcasing superior performance in short-event detection. Overall, the HDNTL dataset effectively mitigates 

instability in daily series caused by spatial mismatch and angular effects observed in VNP46A2, improving data comparability 

across both time and space. This dataset enhances the ability of the NTL to reflect the ground events, providing a more accurate 

reference for daily-scale nighttime light research. Additionally, the dataset production framework facilitates easy updates from 30 

future VNP46A2 products to HDNTL. The HDNTL is openly available at https://doi.org/10.5281/zenodo.17079409 (Pei et al., 

2025).  
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1 Introduction 

    Nighttime light (NTL) data captures artificial light emissions at night, serving as a distinctive proxy for monitoring human 

activities that differ significantly from daytime observations. Recent studies have demonstrated the powerful capability of NTL 35 

in characterizing various aspects of dynamic urban processes and societal activities: from mapping urban extents, estimating 

economic vitality and energy consumption, to evaluating housing vacancy rate, disaster and conflict impact, light pollution 

issues (Cao et al., 2009; Chen et al., 2015; Davies et al., 2023; Elvidge et al., 1997; Li and Zhou, 2017; McCallum et al., 2022; 

Wang et al., 2020; Zheng et al., 2022b; Zhou et al., 2014). These applications typically use yearly or monthly temporal 

resolutions of NTL, such as Defense Meteorological Satellite Program Operational Linescan System (DMSP-OLS) nighttime 40 

light data (Elvidge, 1997), which are valuable for studying long-term human activity and urban development.  

With advances in satellite remote sensing, higher temporal and spatial resolution NTL data have become available, enabling 

more detailed and timely monitoring of human activities. The Day/Night Band (DNB) sensor of the Visible Infrared Imaging 

Radiometer Suite (VIIRS), is carried aboard the Suomi National Polar-orbiting Partnership (S-NPP) and Joint Polar Satellite 

System (JPSS) satellites. This sensor captures high-resolution global nighttime data in the visible and near-infrared (NIR) 45 

spectrum, enabling daily monitoring of nocturnal light emissions. NASA's Black Marble nighttime lights product suite (VNP46) 

has been providing daily NTL datasets based on VIIRS DNB records since January 2012 with a spatial resolution of 15 arcsec 

(approximately 500m) and a temporal resolution of one day (Román et al., 2018; Miller et al., 2012), supporting more potential 

applications for short-term human activity monitoring. Among the current NASA Black Marble product suites, the VNP46A2 

dataset has been daily moonlight- and atmosphere-corrected based on daily at-sensor top-of-atmosphere nighttime radiances 50 

(VNP46A1). Despite these improvements, several challenges remain for daily NTL products, especially regarding data quality 

and reliability (Wang et al., 2021; Román et al., 2018). Notably, spatial observational coverage mismatch (hereafter spatial 

mismatch, i.e., misalignment between satellite footprint and output grid) (Campagnolo et al., 2016; Román et al., 2018; Wolfe 

et al., 2013), angular effect (i.e., systematic variations in observed NTL radiance with changing viewing zenith angle) (Tan et 

al., 2022) and data holes (i.e., scattered pixels flagged as low-quality or missing values in cloud-free images) have all been shown 55 

to introduce significant uncertainties into daily NTL series (Campagnolo et al., 2016; Wolfe et al., 2013). These issues can 

lead to spurious fluctuations or gaps in the observed NTL intensity that do not reflect actual changes in human activity, thereby 

limiting the accuracy and reliability of short-term human activity monitoring based on daily NTL data (Hu et al., 2024; Wang 

et al., 2021) (Fig. 1).  

The Black Marble dataset grid 740m DNB observations to 15 arcsec geographic latitude/longitude pixels (approximately 60 

500m), resulting in gridding artifacts (Wang et al., 2021; Hu et al., 2024) (Fig. 1a). In addition, the geolocation accuracy of 

NASA VIIRS swath products has a mean residual of 2 m with a root mean square error of less than 70 m along track and 60 

m along scan direction (Wolfe et al., 2013). Both the geolocation uncertainty and gridding artifacts result in a spatial mismatch, 

which is reported as the relatively large temporal daily NTL radiance variation (Román et al., 2018) (Fig. 1b). Estimating the 

error using any model or formula is challenging since the discrepancy varies from day to day. To mitigate the spatial mismatch 65 
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error, it has been recommended that a 3-by-3-pixel averaging window be applied (Román et al., 2018). However, this approach 

potentially causes a “blooming effect” where the signal in specific pixels becomes diffused. 

The anisotropic behavior of artificial light emissions and observation—dependent on local landscape and satellite viewing 

angles—is yet to be addressed in VNP46A2. The S-NPP satellite experiences daily variations in the sensor's viewing zenith 

angle (VZA) over a 16-day orbital cycle (Tan et al., 2022). The DNB sensor captures both direct artificial light (e.g., street 70 

lamps, vehicle headlight, indoor light through a window) and reflected light (Fig. 1a). Due to the diversity of built environments, 

surrounding buildings and trees create a blocking effect on light sources. For some top-covered light sources, such as 

streetlights and indoor lighting, the observed radiance may change as the satellite’s viewing angle varies. For example, these 

lights might not be observable from a nadir view but could be detected from off-nadir angles (Tan et al., 2022). Additionally, 

reflected light sources, in addition to being influenced by blocking effects and visible changes, are inherently anisotropic and 75 

are sensitive to surface reflectance (Barnsley et al., 1994). Collectively, these factors result in pronounced angular effects, 

which are directly reflected in the variability of NTL with respect to VZA (Wu and Li, 2024) (Fig. 1c). In urban areas, this 

variability is closely tied to the complexity of the built environment, with Tan et al. (2022) identifying negative, U-shaped, 

and positive angular effect across different built environments. In general, the angular effect introduces uncertainties in the 

NTL time series, potentially leading to inaccuracies in estimating dynamic changes in ground truth conditions (Wang et al., 80 

2021). Therefore, using angularly consistent NTL observations is essential to ensure the reliability and accuracy of NTL-based 

applications. 

    In addition, a certain number of pixels in cloud-free images from the VNP46A2 were masked as low quality or without valid 

pixel values. As a result, these cloud-free images exhibit small data holes (see an example in Fig. 1d). Unlike pixels covered 

by actual clouds and snow, these small data holes are spatially or temporally discontinuous. Some small data holes inherently 85 

lack valid NTL values from VNP46A2, and another portion of holes are flagged as suspect VIIRS Nighttime Cloud Mask 

(VCM) detections and subsequently output as poor-quality mandatory quality assurance flags (Wang et al., 2021). The 

benchmark test conducted during the Black Marble production illustrates that the accuracy of the quality mask varies depending 

on factors such as high albedos, atmospheric, and geographic conditions (Wang et al., 2020). These holes pose challenges for 

subsequent applications, since we observe a higher proportion of data holes in areas with higher annual average NTL intensity, 90 

which often correspond to city cores (Fig. 1e). The high albedos of land surfaces and the heavy air pollution in urban cores 

may contribute to the errors in the quality mask. Therefore, it is crucial to interpolate these small data holes to ensure the 

continuity of cloud-free NTL images and enhance the practical application of NTL images in urban core areas. 
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Figure 1: An illustration of spatial mismatch error, angular effect error and data holes of VNP46A2. (a) Error source: Schematic 95 
diagram illustrating the existence of spatial mismatch and angular effects, (b) The instability of daily NTL series, (c) Angular effect: 
The changing trend of daily NTL intensity along with VZA changes within one year, (d) Data holes existence in cloud-free NTL 
image of Beijing on October 1, 2018, (e) The percentage of data holes in different NTL intensity groups calculated based on annual 
averages. 

Until an effective solution is developed, researchers rely on aggregation methods, such as calculating weekly or monthly 100 

averages, to minimize the impact of uncertain errors in daily time series in regional research cases (Alahmadi et al., 2021; 

Zhou et al., 2022). It becomes crucial to establish a temporally consistent daily NTL dataset to conduct a quantitative analysis 

of human activities at finer time scales. A self-adjusting method featuring filter and angular effect correction (SFAC), proposed 

by Hu et al. (2024), provides an effective solution to mitigate errors arising from spatial mismatch and angular effects. The 

SFAC only requires the original NTL data and does not require other auxiliary data for error correction. Therefore, it has strong 105 

generalization ability and is conducive to producing a dataset. While SFAC effectively addresses spatial mismatch and angular 

effects, the issue of small data holes remains unresolved, which leads to incomplete temporal and spatial coverage, especially 

in urban central areas (Fig.1e). In addition, using the annual average value as the reference for correcting the angular effect 

can easily mask the satellite observation angle information of the corrected data, leading to inconsistent-angle adjusted results. 

Owing to surface heterogeneity, the angular effect differs across locations, and corrections based on unknown observation 110 

angles may compromise the spatial comparability of the data. 
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    This study aims to address these gaps by developing a refined dataset that enhances the accuracy and reliability of daily 

NTL observations. Such improvements are critical for facilitating more precise short-term urban dynamics and human 

activities analyses. To achieve this, we refined and optimized the SFAC method by adjusting the data to a consistent satellite 

monitoring angle and developed a spatiotemporal interpolation method to ensure the completeness of cloud-free images. 115 

Focusing on 653 major cities with populations projected to exceed 1,000,000 by 2025, our dataset targets densely populated 

urban centers worldwide. As population and economic activity hubs, these cities play a crucial role in shaping the nocturnal 

landscape visible through remote sensing. It is important to note that the framework developed in this study is versatile and 

can be applied to any region, including small cities, towns, and rural areas, to produce high-quality daily NTL time series. We 

will make the code from this study available for users who wish to generate such data beyond the 653 major cities. Our work 120 

aims to support sustainable urban development initiatives globally by delivering accurate and detailed daily NTL data. 

2 Data 

2.1 Study area 

    Large cities, especially those with populations exceeding one million, are increasingly recognized as key drivers of global 

economic, cultural, technological, and social development. These cities are at the forefront of global challenges such as climate 125 

change, energy transition, and rapid urbanization. Prioritizing the growth and sustainability of these cities is paramount for 

fostering global prosperity and sustainable development. To aid these key areas with valuable NTL insights, and help their 

urban dynamics monitoring, our study focuses on producing a high-quality daily nighttime light dataset (HDNTL) for 653 

cities with a projected population of more than 1,000,000 by 2025, based on the World Urbanization Prospects (WUP): The 

2018 Revision (United Nations, 2018). The location of the 653 cities is shown in Fig. 2. The HDNTL dataset generation 130 

process is not limited by city size or location, as it relies on pixel-level processing of NTL data. To facilitate broader application, 

we will make our code open-source, enabling researchers and practitioners to generate HDNTL datasets for other cities of 

interest.  

    The extent of each city, defined as its urban region, is adaptively determined based on the GHS Degree of Urbanisation 

Classification (GHS-DUC) dataset (Schiavina et al., 2021). Our goal is to ensure that the urban region for every city adequately 135 

covers the contiguous urban core area radiating from the city center. The process for delineating each urban region is as follows: 

(1) The GHS-DUC data are reclassified into three categories: urban core area (“city”, “dense town”, and “semi-dense town” 

in GHS-DUC), suburban and rural area (“suburbs or peri-urban area”, “village”, “dispersed rural area”, and “mostly 

uninhabited area” in GHS-DUC), and non-land area (including oceans and inland water bodies, categorized as “not on land” 

in GHSL); (2) Beginning with the central coordinates of each city, as sourced from the United Nations World Urbanization 140 

Prospects (WUP): The 2018 Revision, we defined an initial square region with a side length of 0.1 decimal degrees. This 

square was progressively expanded using a fixed step size of 0.05 decimal degrees. At each step, the suburban and rural area 

was compared to that of the urban core within the current square. The square expansion continued until the suburban and rural 
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area exceeded the urban core area, and the final square region was adopted as the urban region of each city. For cities where 

the urban regions did not fully encompass the contiguous urban core area, we manually adjusted the urban regions to guarantee 145 

complete coverage. For special cases involving urban agglomerations (e.g., Los Angeles-Long Beach-Santa Ana), we also 

performed visual inspections and manual adjustments to ensure that the urban regions covered the core built-up areas of all 

cities within this urban agglomeration. In regions where cities are in proximity, some urban regions may overlap, as illustrated 

by the close-up of cities in the Yangtze River Delta in China (see Fig. 2); no further adjustments were made in these cases. 

 150 
Figure 2: Location of the 653 cities included in HDNTL and a close-up of the urban regions in part of the Yangtze River Delta in 
China. Background NTL image from NASA (https://earthobservatory.nasa.gov/features/NightLights). 

2.2 Data source and preprocessing 

    We obtained daily VNP46A2 data from 2012 to 2024 for 653 cities, and used the “DNB_BRDF-Corrected_NTL” band as 

the nighttime light data to be further corrected (Román et al., 2018). At the same time, the “Sensor_Zenith” band of VNP46A1 155 

data was obtained as a reference for angular effect correction (Román et al., 2018). Regarding quality control, we used the 

mandatory quality flag, snow cover flag, and cloud mask quality flag to screen high-quality observations. 

    To verify the effectiveness of the data correcting process, we compared the processed data with the unprocessed data to 

investigate whether the spatial mismatch problem and the angular effect problem were effectively alleviated. In addition, to 

verify the dataset’s ability to reflect the ground artificial light changes, we collected high spatial resolution NTL datasets 160 

represented by Sustainable Development Science Satellite 1 (SDGSAT-1) NTL data and a power outage statistic report as 

comparative verification data. The SDGSAT-1 is equipped with a glimmer imager capable of capturing low-light nighttime 

data with a revisit cycle of 11 days. We computed the grayscale brightness from the RGB band (40m resolution) as a 
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comparative reference. To avoid the spatial mismatch between the HDNTL and SDGSAT-1, we resampled both datasets to 1 

km during verification. Given the high spatial resolution of SDGSAT-1 data, we have grounds to believe that the resampled 165 

SDGSAT-1 is less prone to the spatial mismatch issue observed in VNP46A2 data. Due to the limited availability and quality 

of SDGSAT-1 data, we only selected the SDGSAT-1 NTL images of Tianjin, China, on January 25 and February 21, 2022, 

for comparisons (https://www.sdgsat.ac.cn/). 

    NTL can directly reflect the lighting pattern of artificial lights at night, directly responding to power outages. The validity 

of the dataset can be evaluated by comparing the power outage response before and after data processing. On September 20, 170 

2017, Hurricane Maria landed in Puerto Rico as a Category 4 storm, becoming the most serious hurricane to affect the island 

since 1928. After the hurricane, there was a large-scale and long-term power shortage across the island. We obtained the 

Hurricanes Nate, Maria, Irma, and Harvey Situation Reports provided by the U.S Department of Energy 

(https://www.energy.gov/ceser/articles/hurricanes-nate-maria-irma-and-harvey-situation-reports), screened the daily reports 

10 days before the hurricane and one month after the hurricane, and selected the percent of total customers without power in 175 

the report as the parameter for calculating the official power supply index. 

3 Methodology 

    As Fig. 3 shows, we proposed a four-step framework to generate the HDNTL dataset based on VNP46A2 after data 

preprocessing. During preprocessing, only the high-quality observations are retained based on the mandatory quality flag, 

snow cover flag, and cloud mask quality flag. The first step was to correct the spatial mismatch, the second step was to fix the 180 

angular effect, and the third step was to interpolate the small data holes based on spatial and temporal information. Finally, a 

thorough dataset validation was conducted, including examining the effectiveness of spatial mismatch and angular effect 

corrections, interpolation accuracy, comparing results with high-resolution NTL datasets, and investigating the application 

capability in different events. 

https://www.energy.gov/ceser/articles/hurricanes-nate-maria-irma-and-harvey-situation-reports
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 185 
Figure 3: Flow chart of the generation of HDNTL. 

3.1 Spatial mismatch and angular effect correction 

We referred to SFAC (Hu et al., 2024) to eliminate the spatial mismatch and angular effect. The SFAC approach decomposes 

the observed radiance within a sensor’s 740 m footprint into two key elements: a component originating from a fixed, 

consistently observed area within the scope of the sensor’s footprint and remains unaffected by spatial mismatch, and a 190 

dynamic component contributed by peripheral regions due to variations in observational coverage. Based on this 

decomposition, the NTL in the SFAC framework is formally expressed as: 

𝑁𝑁𝑁𝑁𝑁𝑁 = 𝐴𝐴 ∗ �𝑁𝑁𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑁𝑁𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣� + 𝑁𝑁𝑁𝑁𝑁𝑁 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ + 𝜀𝜀 ,  (1) 

Where 𝐴𝐴 ∗ (𝑁𝑁𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑁𝑁𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) is the light from the fixed area, 𝑁𝑁𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓 means the regular light emission from the fixed 

area, 𝑁𝑁𝑁𝑁𝑁𝑁𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 represents the changes in NTL that are extremely different from regular patterns due to specific events. 195 

𝑁𝑁𝑁𝑁𝑁𝑁 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ is the light that exists at the areas within the daily changing footprint but outside the fixed area (Fig. 1a); 𝐴𝐴 is 

the angular effect coefficient that helps correct NTL at different observation angles to the nadir observation. 𝜀𝜀 denotes residual 

random noise, which could originate from initial sources or be introduced during the product generation process. 

The SFAC method employs a specialized A-average filter to address spatial mismatch effects. This approach operates under 

the principle that the fixed area (representing regular light emissions) is inherently smaller than the daily varying sensor 200 
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footprint. Accordingly, the annual lowest light intensity within a given year is used to approximate the regular light intensity 

coming from the fixed area (𝑁𝑁𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓), except in cases of abrupt light reduction events such as power outages (𝑁𝑁𝑁𝑁𝑁𝑁𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣). 

Therefore, the A-average filter processes identified and removed the 𝑁𝑁𝑁𝑁𝑁𝑁𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 firstly using a 3 times standard deviation 

threshold relative to the annual mean light radiance (Hu et al., 2024; Pukelsheim, 1994). The dates with 𝑁𝑁𝑁𝑁𝑁𝑁𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 

observations are marked. The 𝑁𝑁𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓 is then determined as the mean of the lowest 5% NTL radiance for non-variation days. 205 

Subsequently, the 𝑁𝑁𝑁𝑁𝑁𝑁 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ + 𝜀𝜀 is obtained by subtracting 𝑁𝑁𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓 from NTL without 𝑁𝑁𝑁𝑁𝑁𝑁𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣. The SFAC applied a 

3 × 3 pixel averaging filter for 𝑁𝑁𝑁𝑁𝑁𝑁 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ + 𝜀𝜀 , and add back 𝑁𝑁𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓  to complete the correction process of spatial mismatch. 

For those days when extreme events occurred (𝑁𝑁𝑁𝑁𝑁𝑁𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣), the SFAC chose to directly retain the original values in the final 

dataset, which not only preserved the event signal but also avoided the diffusion of the event signal component during the 

processing. 210 

    The anisotropic characteristics of NTL and their relationship with satellite viewing angles have been well documented and 

modeled (Tan et al., 2022; Li et al., 2019). The S-NPP satellite, which operates in a sun-synchronous polar orbit with a 16-day 

revisit cycle, observes each ground location under a recurring sequence of View Zenith Angles (VZAs). This orbital pattern 

ensures that observations made every 16 days (e.g., on the 1st, 17th, and 33rd days of the year) have nearly identical VZA values. 

Consequently, annual observations for each pixel can be grouped into 16 distinct VZA categories, where the differences in 215 

VZA between groups are much greater than those within each group. Consequently, the annual variation in observation angles 

for a given pixel is not particularly complex. Moreover, pixel-based model fitting is time-consuming for data generation in 

large areas. Therefore, we still follow the SFAC method of Hu et al. (2024), as the group-based correction approach is sufficient 

to address the angular effect. In the production process of the HDNTL dataset, we made subtle improvements to the angular 

effect correction in the SFAC method by shifting from an annual average-based correction approach to a nadir observation-220 

based correction approach. This adjustment is necessary for several reasons. First, NTL images are frequently affected by 

clouds, snow, and atmospheric conditions, resulting in data gaps. These missing data can lead to insufficient observations at 

certain angles. When using valid observations for the annual average calculation, observations at some angles may be 

overrepresented, while others may be underrepresented. This imbalance can introduce additional uncertainties into the angular 

effect correction process. Additionally, the annual average method may introduce regional biases, particularly in areas 225 

exhibiting distinct angular effect patterns (Tan et al., 2022). Since the annual average may represent different viewing angles 

in different regions, this inconsistency in angular observations can reduce the spatial comparability of the dataset. Such biases 

can undermine the reliability of the dataset for cross-regional analyses, such as comparing urbanization trends or energy 

consumption patterns between cities. By adopting a nadir observation-based correction approach, we can effectively mitigate 

these biases, ensuring more consistent and spatially comparable NTL data representation across diverse built environments. 230 

Based on the periodic characteristics of VZA, we divided the daily NTL time series for each year into 16 groups according 

to the day sequence within the 16-day cycle. For each group, we calculated the mean NTL radiance. The group with near-nadir 



10 
 

observations (VZA < 6º) was designated as the reference group for angular effect correction. The angular effect coefficients 

and correction value of the remaining groups were calculated as follows:  

𝐴𝐴𝑖𝑖_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑁𝑁𝑁𝑁𝑁𝑁𝚤𝚤_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔����������������

𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛��������������   (2) 235 

𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′ = 𝑁𝑁𝑁𝑁𝑁𝑁𝚤𝚤_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔����������������

𝐴𝐴𝑖𝑖_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
  (3) 

Where 𝑁𝑁𝑁𝑁𝑁𝑁𝚤𝚤_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔�������������� represents the average light radiance of the 𝑖𝑖 𝑡𝑡ℎ angular group, 𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛������������ is the average light radiance of 

the reference nadir group (VZA < 6º), 𝐴𝐴𝑖𝑖_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is the angular effect coefficient for the 𝑖𝑖 𝑡𝑡ℎ group. 𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′  is the angular-

corrected NTL radiance for 𝑖𝑖-th group. 

      To ensure the reliability of the near-nadir reference value and prevent it from being unduly uncertain by an insufficient 240 

number of observations, we established a tiered filling strategy for constructing the angular effect reference layer. Specifically, 

the near-nadir observation group of the target year is used as the primary reference only if it contains more than three days of 

valid observations. Otherwise, we extend the temporal window to include near-nadir observations from both the target year 

and its two adjacent years (except for boundary years such as 2012 or 2024, where only one adjacent year is available), and 

calculate the average value of all near-nadir observations as the second reference. If the extended observations still do not 245 

exceed three days, the annual mean of all observations from the target year—regardless of viewing angle—is used as the 

fallback reference to guarantee completeness of the reference layer. The data source of each pixel in the final nadir reference 

image is systematically recorded in the Nadir Reference Flag, with values of 1, 2, and 3 indicating the primary (target year 

near-nadir), secondary (multi-year near-nadir), and tertiary (target year annual mean) references, respectively. 

3.2 Spatiotemporal interpolation of small holes 250 

    Unlike conventional spatial or temporal-filling methods, spatiotemporal filling methods leverage more information and 

achieve higher accuracy (Hao et al., 2023; Tan and Zhu, 2023). In this study, we developed an efficient interpolation method 

that integrates spatial and temporal information to estimate pixel values of small holes. Importantly, we do not interpolate 

missing pixels caused by large and long-persistent clouds as such interpolation is considered unreliable (Román et al., 2018). 

Our method is specifically designed to fill only small, spatially discontinuous gaps in otherwise high-quality data, where 255 

interpolation is more likely to be reasonable. To distinguish small missing holes from those caused by extensive coverage of 

the cloud mask, we define the missing value hole as a missing value pixel with valid neighboring observations in the spatial 

windows. Considering the significant heterogeneity of urban areas, we chose the smallest spatial unit for spatial interpolation, 

a 3×3 window. To avoid overfilling edge pixels near coasts, lakes, or urban region boundaries, we only filled missing-value 

pixels that had at least four valid reference pixels within the 3×3 window. As for temporal interpolation, it has been proven 260 

that for VNP46A2 data, an average of 16 days of compositing is required to ensure at least 95% effective pixel coverage of 

the city (Zheng et al., 2022a). Therefore, we tested the single-sided temporal window from 1 to 8 days. The temporal 
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interpolation window was finally determined based on the evaluation of interpolation accuracy and effectiveness. The 

interpolation process is as follows: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 = ∑ 𝜔𝜔𝑛𝑛𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛𝑁𝑁
𝑛𝑛   (4) 265 

𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 = ∑ 𝜔𝜔𝑚𝑚𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑀𝑀
𝑚𝑚   (5) 

𝑊𝑊𝑖𝑖𝑖𝑖 = ∑ 𝜔𝜔𝑛𝑛∙𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑛𝑛𝑁𝑁
𝑛𝑛
∑ 𝜔𝜔𝑛𝑛∙1𝑁𝑁
𝑛𝑛

  (6) 

𝑊𝑊𝑖𝑖𝑖𝑖 = ∑ 𝜔𝜔𝑚𝑚∙𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑚𝑚𝑀𝑀
𝑚𝑚
∑ 𝜔𝜔𝑚𝑚∙1𝑀𝑀
𝑚𝑚

  (7) 

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑛𝑛 = �1,  𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛 𝑖𝑖𝑖𝑖 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
0,  𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  (8) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 + 𝑎𝑎𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 (9) 270 

𝑎𝑎𝑖𝑖𝑖𝑖 =  𝑊𝑊𝑖𝑖𝑖𝑖
𝑊𝑊𝑖𝑖𝑖𝑖+𝑊𝑊𝑖𝑖𝑖𝑖

,𝑎𝑎𝑖𝑖𝑖𝑖 =  𝑊𝑊𝑖𝑖𝑖𝑖
𝑊𝑊𝑖𝑖𝑖𝑖+𝑊𝑊𝑖𝑖𝑖𝑖

   (10) 

Where 𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 is the spatial fill value for pixel 𝑖𝑖, 𝑛𝑛 is the 𝑛𝑛-th pixel in a 3×3 window centered on pixel 𝑖𝑖,  𝜔𝜔𝑛𝑛 is the inverse 

distance spatial weight of pixel 𝑛𝑛, 𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛 is the NTL of pixel 𝑛𝑛; 𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 is the temporal fill value for pixel 𝑖𝑖, 𝑚𝑚 is the 𝑚𝑚-th day 

in the temporal window centered on the target date for pixel 𝑖𝑖,  𝜔𝜔𝑚𝑚 is the inverse distance temporal weight of pixel 𝑚𝑚, 𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚 

is the NTL of pixel 𝑖𝑖 at day 𝑚𝑚; 𝑊𝑊𝑖𝑖𝑖𝑖 and 𝑊𝑊𝑖𝑖𝑖𝑖 represent the valid weight ratios in the spatial and temporal interpolation processes, 275 

respectively. 𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 is the spatial-temporal interpolated NTL for pixel 𝑖𝑖, 𝑎𝑎𝑖𝑖𝑖𝑖 is the relatively spatial weight, 𝑎𝑎𝑖𝑖𝑖𝑖 is the relatively 

temporal weight. The above interpolation process was conducted for data after spatial mismatch and angular effect corrections 

and only applied to missing pixels with at least four valid neighboring observations in the spatial windows. 𝑁𝑁𝑁𝑁𝑁𝑁𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 is 

also excluded during interpolation and added back after interpolation. 

3.3 Validation strategy 280 

3.3.1 Spatial mismatch and angular effect correction 

    Spatial mismatch errors can cause large fluctuations in the time series of NTL data. Therefore, the effectiveness of spatial 

mismatch correction can be evaluated by investigating the daily NTL data of regions with relatively stable lights. In addition, 

to eliminate the superposition effect of angular effect correction, we selected airports and highways without surrounding 

obstructions as sample sites to conduct this evaluation for the following reasons: (1) As functional areas with transportation 285 

attributes, airports and highways generally do not experience large fluctuations in daily light changes, are less affected by 

extreme events, and tend to be more stable in time series. (2) Airports are generally built in open areas, and the highways we 

selected generally have no surrounding buildings or other construction land obstructing their view. So both of them are less 

affected by angular effects. To validate the effectiveness of spatial mismatch correction, we calculated the normalized standard 

deviation both spatially and temporally within the case study area. Furthermore, in the highway case, due to the uniform 290 

distribution of streetlights along these highways, the corrected NTL values of highway pixels are expected to exhibit greater 
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spatial consistency. We therefore quantified the spatial variability (SV) of all highway pixels using the normalized annual 

mean and normalized standard deviation, calculated as: 

𝑆𝑆𝑆𝑆 =  𝑠𝑠𝑠𝑠𝑠𝑠(𝑁𝑁)
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑁𝑁)  (11) 

The SV helps quantify inter-pixel contrast, with lower values indicating lower radiance differences between pixels.  295 

Since periodic VZA induces observed periodicity of the daily NTL series (Tan et al., 2022), the periodic weakening of the 

NTL with VZA changes can prove the effective correction of the angular effect. To assess the periodicity, we employed the 

periodic basis vectors following the approach of Liu et al. (2019). Given the 16-day periodicity of VZA, 16 orthogonal vectors 

𝑒𝑒𝑖𝑖 (𝑖𝑖 =  1, . . . , 16) were established, each representing distinct VZA variations. The time series data were projected onto these 

orthogonal vectors using principal component analysis. The periodicity for each day within the cycle (𝑖𝑖 =  1, . . . , 16) was 300 

quantified by computing the ratio between the projection vector’s norm and the NTL radiance time series vector’s norm, 

expressed as the Information Rate (IR) (Jia et al., 2023). The higher the IR, the higher the periodicity of the 16-day cycle. The 

overall periodicity (𝑖𝑖 =  1, . . . , 16) was determined by aggregating all individual periodicities: 

𝐼𝐼𝐼𝐼𝑖𝑖 = ∑ 𝐼𝐼𝑅𝑅𝑖𝑖
𝑗𝑗𝑛𝑛

𝑗𝑗=1     (12) 

Where 𝐼𝐼𝐼𝐼𝑖𝑖 is the 𝐼𝐼𝑅𝑅 of a pixel 𝑖𝑖. 𝐼𝐼𝑅𝑅𝑖𝑖
𝑗𝑗 is the 𝐼𝐼𝑅𝑅 of pixel 𝑖𝑖 of 𝑗𝑗 𝑡𝑡ℎ day in the cycle. 𝑛𝑛 is the length of the cycle. To gain a regional 305 

evaluation, we calculated the average value of 𝐼𝐼𝐼𝐼𝑖𝑖 of all pixels (total number = 𝑁𝑁) inside a given region as an assessment 

metric, the equation is: 

𝐼𝐼𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 1
𝑁𝑁
∑ 𝐼𝐼𝐼𝐼𝑖𝑖𝑁𝑁
𝑖𝑖=1    (13) 

3.3.2 Spatiotemporal interpolation of data holes 

    To evaluate the accuracy and reliability of the spatiotemporal interpolation method and determine the optimal temporal 310 

window size, we designed a comprehensive validation approach that considers both interpolation accuracy and the availability 

of valid reference data within the interpolation window. We selected 300 images randomly from the dataset that had already 

undergone spatial mismatch and angular effect corrections. In each image, we randomly masked out a subset of high-quality 

pixels with at least four valid pixels in a 3×3 spatial window, treating them as “data holes”. The original values of these masked 

pixels were retained as reference data for comparison. Single-sided temporal windows were tested from 1 to 8 days to evaluate 315 

the impact of window size on interpolation accuracy, and the interpolated values were compared with the reference values 

using R², Root Mean Square Error (RMSE), and Mean Absolute Error (MAE) as evaluation metrics. Additionally, we assessed 

the relative temporal weight for each window size, with higher weights indicating a greater proportion of valid reference data. 

3.3.3 Short-period event detection 

    The corrected NTL time series should have eliminated false fluctuations to improve the monitoring sensitivity of specific 320 

events, especially the response to sudden weakening or strengthening. We selected two cases for analysis. The first case refers 
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to the 2023 Liuyang Fireworks Festival (LFC) held in Liuyang City, Hunan Province, China, on the evening of November 4, 

2023. After a four-year hiatus due to COVID-19, the festival scale was grand, with tens of thousands of fireworks set off at 49 

points in the main urban area of Liuyang. The fireworks festival also presented a variety of themed activities and night markets, 

attracting a large number of citizens and tourists. The event lasted until the early morning of November 5. During this period, 325 

the light intensity in this area should be significantly enhanced compared with regular dates. The second case is the Beirut Port 

explosion on August 4, 2020, resulting in a death toll of at least 220 people, with over 7,000 injured and 60 people reported 

missing. In the affected area centered on the explosion site, a large area of buildings was damaged, and power outages occurred, 

leaving 300,000 people homeless. During this period, the area should have lower light intensity than usual. For the above two 

cases, we used the detectability index (DA) to detect whether the NTL value on the day of the event was consistent with 330 

expectations (Hu et al., 2024). We compared the detection advantage of HDNTL over the VNP46A2 dataset. When the absolute 

value of DA is greater than 3 (usually used as the threshold for mutation signal detection), it suggests that the value of this 

event deviates statistically significantly from the normal distribution and may be an outlier or extreme value (Pukelsheim, 

1994). The DA is calculated as follows: 

𝐷𝐷𝐷𝐷 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒−𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

   (14) 335 

Where 𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is the NTL intensity for a pixel on the event day, 𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 represents the average NTL intensity for a pixel 

over a given year,  𝑁𝑁𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 denotes the standard deviation of NTL intensity for a pixel over a given year.  

3.3.4 Estimation of power outage and restoration 

    In addition to assessing the ability to monitor short-term events, we also focus on whether the corrected NTL data can more 

accurately reflect the actual situation on the ground. Artificial light creates the NTL landscape, and power outages are directly 340 

related to the reduction of NTL. Thus, the NTL data's ability to reflect the actual situation on the ground can be evaluated by 

comparing NTL changes and the statistics of power outages. We chose the power outage event in Puerto Rico, which was 

affected by Hurricane Maria. We collected daily power reports 10 days before and 1 month after the hurricane. The power 

supply rate is calculated as 1 − 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 in the report. To enhance the comparability of 

NTL data and power data reports, we designed a Customer-based Power Supply Index (CPSI) based on NTL data as below: 345 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡
𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝−𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

× 𝑃𝑃𝑃𝑃 (15) 

Where the 𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 represents the NTL radiance at time 𝑡𝑡, 𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝−𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is the mean NTL value before the outage event in ten 

days. 𝑃𝑃𝑃𝑃 is the percentage of the pixel-level population in the region-level population calculated based on the GHS-POP 

R2015A dataset (European Commission, Joint Research Centre (JRC), 2015). This index is calculated on the pixel level, and 

the total sum of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 of each pixel will be the estimation of the outage situation for the whole region. It should be noted that, 350 

in order to conduct a holistic assessment of Puerto Rico, we used the HDNTL data production framework to generate data for 

the entire area of Puerto Rico, which is inconsistent with the urban region in the current HDNTL dataset. 
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4 Results 

4.1 Effectiveness of spatial mismatch correction 

    We used two landscapes, airports, and highways, with less angular effects, to demonstrate the effectiveness of spatial 355 

mismatch correction. Figure 4 shows three airport cases. The role of spatial mismatch correction is to reduce data fluctuations 

resulting from capturing the light sources of adjacent pixels due to different daily footprints. We used the normalized standard 

deviation (n-std) to see the annual fluctuation for each pixel in the case area. The first case is Beijing International Airport in 

2023. A comparison of the n-std spatial distributions between VNP46A2 and HDNTL indicates that HDNTL consistently 

demonstrates reduced pixel-level variability in the airport region. We selected one terminal building pixel to see the annual 360 

time series, and the n-std of the NTL time series was reduced from 0.2 to 0.18, while the average did not change much. The 

second case is at the Los Angeles International Airport in 2023. The n-std distribution image also showed a large reduction 

after correction. The fluctuation of the annual time series of the selected pixel (airport runway) decreased, and the n-std reduced 

from 0.27 to 0.22. We can also see that the average NTL radiance of the chosen pixel increased from 38 nW·cm-2·sr-1 to 54 

nW·cm-2·sr-1, indicating that the NTL is significantly underestimated due to spatial mismatch, as there are no obvious lights 365 

outside the runway. The third case is Sydney Airport in 2023. We also chose a runway pixel. The runway of Sydney Airport 

is built on the sea, so it should have lower lights. However, the VNP46A2 was overestimated due to the spatial mismatch. 

After correction, the NTL decreased, and n-std decreased from 0.23 to 0.17. 

 
Figure 4: Spatial mismatch correction effectiveness in less-angular effect areas within airport cases. (a) Beijing International 370 
Airport, (b) Los Angeles International Airport, (c) Sydney International Airport. Google Earth images © 2025 Google LLC. 

    A highway without surrounding obstructions that affect satellite observations can serve as another good sample to validate 

the effectiveness of spatial mismatch correction. The chosen sections—Tianfu Avenue South Section 2 in Chengdu and the 

Beijing–Hong Kong–Macao Expressway in Zhengzhou—have no surrounding buildings or other construction land obstructing 

their view, meaning their lighting mainly comes from streetlights and vehicle headlights, and less angular effect (Chang et al., 375 
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2019) (Fig. 5). Given that the spatial resolution of the NTL data is approximately 500 meters, the pixel width is sufficient to 

cover the highway width, yet adjacent pixels remain highly susceptible to spatial mismatch effects. A transect analysis across 

each highway was conducted to evaluate the spatial mismatch correction response (Fig. 5). In both the Chengdu and Zhengzhou 

cases, correction resulted in a more pronounced contrast in radiance intensity between the highway pixels and the non-built-

up land on both sides, manifested as a narrowing of the peak in the NTL intensity profile. Moreover, due to the uniform 380 

distribution of streetlights along these highways, the corrected NTL values of highway pixels are expected to exhibit greater 

spatial consistency. We therefore quantified the SV of all highway pixels. We observed a decrease in SV following the 

correction in Fig.5. This result confirms the effectiveness of the spatial mismatch correction. 

 
Figure 5: Spatial mismatch correction effectiveness in less-angular effect areas within highway cases. (a) Chengdu Tianfu Avenue, 385 
(b) Zhengzhou section of Beijing-Hong Kong-Macao Expressway. Land cover data from the European Space Agency (ESA) 
WorldCover 10 m 2020 product © ESA WorldCover Consortium. 

4.2 Effectiveness of angular effect correction 

    Previous literature has proved that the angular effect is highly correlated with the surface built-up landscape (Tan et al., 

2022, 2023). When VZA changes, the blocking effect and visibility changes may lead to the angular effects in different 390 

directions. Specifically, areas with dense and high buildings, such as urban core areas, tend to have a negative angular effect, 

that is, NTL decreases with increasing VZA. A U-shaped angular effect tends to be produced in the transition area between 

urban core areas and suburban bungalows. Suburban areas where bungalows are the main buildings tend to have a positive 

angular effect because the blocking effect is reduced. We selected three representative areas from 653 cities with different 

surface built-up landscapes to explore whether the IR related to the angular effect was significantly reduced after data 395 

correction. 
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For the first case, we selected part of the core area of Tokyo. The Google Earth 3D map (Fig. 6a) shows many high-rise 

buildings here with a high density. We drew the NTL series of one pixel of this region in 2021. Due to the blocking effect of 

high-rise buildings, the changing trend of NTL with the increase of VZA was consistent with the negative angular effect. After 

correction, this trend was no longer apparent, and the IR showed that the periodicity caused by the angular effect after treatment 400 

was reduced from 0.390 to 0.138, with a reduction rate of 64.62%. The second case is a residential and industrial area near the 

core area of Sao Paulo, Brazil, with a relatively complex building structure. From the NTL time series of one pixel, the area 

here had an apparent U-shaped angular effect, that is, with the increase of VZA, NTL first decreased and then increased. After 

correction, this trend was also significantly weakened, and the periodicity of IR was reduced from 0.398 to 0.141, with a 

reduction rate of 64.57%. The third scenario pertains to Toronto, Canada, focusing on a residential locality far from the city 405 

center. The buildings here predominantly feature flat and low-rise buildings. It can be seen that the NTL series before treatment 

had a significantly increasing trend with the increase of VZA, which was a positive angular effect. After correction, this trend 

was also weakened, and IR was reduced from 0.382 to 0.129, with a reduction rate of 66.77%. In general, HDNTL can perform 

effective angular effect correction for different urban built environments, greatly enhancing the comparability of data in 

different spaces and times. 410 
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Figure 6: Angular effect and its correction effectiveness in different built-up environments. Google Earth images © 2025 Google 
LLC. 

4.3 Effectiveness of data holes interpolation 

    The urban surface environment presents highly heterogeneous characteristics due to the transformation and intervention of 415 

human activities. Therefore, we chose the smallest spatial window, a 3×3 window, to perform spatial interpolation of NTL, 

which can ensure the reliability of the interpolation results. In terms of temporal interpolation, we started with a single-sided 

window of 1 and gradually tested and verified the interpolation accuracy until 8. According to Fig. 7a, when the single-sided 

window was set to 5, the RMSE and MAE of the interpolation were lowest. Further, according to Fig. 7b, when the single-

sided window was 5, the relative time weight was higher, which means more valid reference values can be obtained in the time 420 

dimension. After the single-sided window was greater than 5, the marginal effect of increasing the relative time weight was 

weakened. Therefore, we finally chose a single-sided window of 5 for temporal interpolation. Taking into account the effective 

value information of time and space, we determined the relative weights of the spatial interpolation results and the temporal 
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interpolation results, and then performed comprehensive interpolation (Eq. (9)&(10)). We randomly masked out some valid 

pixels for evaluating the interpolation method, i.e., interpolating these masked-out pixels, and compared the results with their 425 

original values (i.e., reference values). As shown in Fig. 7c, the linear regression R2 between the reference value and the 

interpolation value was 0.98, the Pearson correlation coefficient (r) was 0.99 (p< 0.001), the RMSE was 2.64 nW·cm-2·sr-1, 

and the MAE was 1.24 nW·cm-2·sr-1, indicating the high accuracy and reliability of the comprehensive interpolation method. 

After the hole interpolation implementation, all cities' valid pixels increased by about 2%. 

 430 
Figure 7: Interpolation accuracy test. (a) The Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) of interpolation 
by different time windows, (b) The relative temporal weight of different time windows, (c) The comparison between reference data 
and its interpolation by the 5-day temporal window. 

5 Discussion 

5.1 Comparison with high spatial resolution NTL data regarding temporal changes 435 

    We selected high-quality and clear nighttime light observation images from SDGSAT-1 of Tianjin on January 25, 2022, and 

February 21, 2022. We compared their temporal changes on pixel-level with those retrieved from HDNTL and VNP46A2. 

Since SDGSAT-1 has a high spatial resolution, it is less susceptible to spatial mismatch issues after upscaling. Thus, the change 

between two SDGSAT-1 images can more accurately capture the ground light changes. The advantage of the HDNTL dataset 

is that it restores the daily variation characteristics of NTL, so it is expected that changes retrieved from HDNTL should be 440 

closer to SDGSAT-1. As shown in Fig. 8, the box plots of the change rate between the two days of HDNTL and SDGSAT-1 
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are closer, showing a consistent change trend. The VNP46A2 data show a large fluctuation in the change rate. This 

phenomenon reflects the significant fluctuation of VNP46A2 on the daily scale, making it challenging to capture the actual 

characteristics of daily changes accurately. Therefore, HDNTL data appear more stable and reliable in representing NTL daily 

changes. 445 

 
Figure 8: Comparison of the temporal changing rate between SDGSAT-1, VNP46A2, and HDNTL. 

5.2 Event detection regarding short-period changes 

    Figure 9 shows the daily NTL series of selected pixels of two short-term events in their targeted year. Figure 9a shows the 

daily time series of NTL for one pixel at the 2023 Liuyang Fireworks Festival (LFC) site. On the event day, the DA value 450 

calculated based on VNP46A2 was 2.1, and the DA value calculated based on HDNTL was 4.12. The absolute DA value from 

HDNTL was greater than 3, exceeding the mutation signal recognition threshold. For the case of a sudden drop in light, as 

shown in Fig. 9b, the figure shows the daily time series of NTL for one pixel at the explosion center. Before processing, the 

DA on the event day was -1.76, which failed to become a mutation signal. After processing, the DA was -3.63, and its absolute 

value was greater than 3, which can be identified as a mutation signal. This proves that after processing with spatial mismatch 455 

correction and angular effect correction, the HDNTL dataset can reduce the fluctuation of non-real situations compared to the 

VNP46A2 dataset, and highlight the changes in light density caused by the mutation event. 
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Figure 9: Two cases for short-period event detection by NTL.  

5.3 Comparison with an official report regarding the power outage 460 

According to Eq. (15), we evaluated the CPSI as the power supply index based on NTL and population density data. In this 

process, we chose the "Gap_Filled_DNB_BRDF_Corrected_NTL" band in the VNP46A2 data to obtain more valid values for 

comparison. Figure 10 shows the results of the power supply assessment using HDNTL and VNP46A2, respectively. Also, it 

presents the regression R² between the time series of the two assessment results and the official report data. The results show 

that the assessment results of HDNTL were more consistent with the official report, with an R² value of up to 0.839, which 465 

was 170% greater than the VNP46A2 data. This result emphasizes the advantages of HDNTL in capturing changes in electricity 

supply and further verifies the application potential of HDNTL in urban energy and disaster impact research. 
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Figure 10: Comparison of CPSI calculated based on VNP46A2 and HDNTL with official report data. 

5.4 Limitations 470 

    We have further improved the angular effect correction in the SFAC algorithm. In the original algorithm, the angular effect 

correction was based on the annual average NTL value, which would lead to some uncertainty. That is, this average value may 

correspond to any VZA. Existing research and the cases we discussed show that the angular effect highly correlates with the 

urban built environment landscape. Therefore, NTL data corrected to the same observation angle facilitates comparability 

between different study areas. By correcting all the data to nadir observation, theoretically, in areas with high building density 475 

and height, the NTL observation value of the nadir angle is relatively high compared with other angles. Conversely, the nadir 

NTL observation value is relatively low in areas with low buildings compared with other angles. Figure 11 illustrates a case 

in Los Angeles. Figure 11a and Fig. 11b show the corrected results based on the annual average (SFAC) and the corrected 

results based on nadir observation (HDNTL), respectively, both depicting the average NTL images for Los Angeles in 2024. 

Figure 11c displays the difference between HDNTL and SFAC. The results reveal that HDNTL data exhibits higher corrected 480 

NTL values in urban centers, particularly in areas with high-rise buildings, such as downtown Los Angeles shown in Fig. 11d. 

In contrast, in areas with low-rise and sparsely distributed buildings, such as the city of industry in Los Angeles shown in Fig. 

11e, which features warehouses, retail stores, and car dealerships, the HDNTL data shows lower corrected NTL values. As a 

result, this adjustment could accentuate differences between a city's core and periphery. The HDNTL may not fully capture 
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the facade lighting of the building, especially in low-rise building areas. Users can customize the correction parameters of the 485 

angular effect through our open-source code according to the purpose of the research. 

 
Figure 11. Comparison of angular correction results based on nadir correction (HDNTL) and annual mean correction (SFAC). 
Google Earth image © 2025 Google LLC. 

6 Data availability 490 

    The HDNTL dataset for 653 cities from 2012 to 2024, with a spatial resolution of 15 arc-seconds (approximately 500 meters), 

is freely available at https://doi.org/10.5281/zenodo.17079409 (Pei et al., 2025). The data is organized in descending order of 

city population, with every 10 cities stored in a zip archive. City order numbers can be referenced in the data table provided in 

the .xlsx format. After extraction, each city's data is stored in a separate folder, containing 13 annual NTL data in GeoTIFF 

format. Daily data is stored as bands within each annual NTL image. To prevent confusion among end users, we removed 495 

images heavily obscured by clouds (percentage of invalid pixels >50%, pixels with constant invalid values, such as water 

bodies, are not considered in the calculation) from the daily NTL time series. Yearly count of daily data records available for 

each city in the HDNTL dataset is recorded in a .csv file for users to query. Additionally, we provide a flag layer indicating 
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the source of the angular effect reference value and whether interpolation was applied. This flag is encoded as a two-digit 

integer. The tens digit (values 0, 1, 2, or 3) denotes the source of the nadir-group reference value: 0 for an invalid value, 1 for 500 

the mean value of nadir observations from the current year, 2 for the mean value of nadir observations from the current year 

and its two adjacent years (except for boundary years such as 2012 or 2024, where only one adjacent year is available), and 3 

for the annual mean value of all valid observations from the current year. The units digit (values 0 or 1) indicates the 

interpolation status: 0 for no interpolation and 1 for an interpolated value. The storage structure of this flag is consistent with 

that of the HDNTL data product. 505 

7 Conclusion 

    A high-quality daily nighttime light (HDNTL) dataset for the global 653 cities (2012-2024) was produced in this study. 

From correction to validation, this study includes four parts: the correction of spatial mismatch, the correction of angular effect, 

the interpolation for data holes, and the validation and application. Compared to VNP46A2, the two sample areas, airport and 

highway, showed a good effect on spatial mismatch correction, with a decreased n-std in annual NTL time series and enhanced 510 

spatial consistency among pixels with homogeneous light sources. The angular effect correction works well on three different 

urban building landscapes, weakening the angular effect in different directions and decreasing the angular effect's periodicity. 

The spatiotemporal interpolation accuracy also showed promising results in the 5+5 temporal window and 3×3 spatial window. 

The spatiotemporal interpolation of data holes is highly similar to that of reference data, as indicated by the Pearson correlation 

coefficient (r) of 0.99. After the hole interpolation implementation, all cities' valid pixels increased by about 2%. Finally, the 515 

HDNTL demonstrated better consistency with SDGSAT-1 data in terms of NTL change rate and superior performance in 

short-period event detection and alignment with power outage report data compared to VNP46A2. Generally, our HDNTL 

dataset can effectively decrease the instability of the daily NTL series caused by spatial and temporal errors in the VNP46A2, 

enhance the comparability of the data over different time and space, and improve the ability and accuracy of the NTL to reflect 

the actual events on the ground. Leveraging the degree of urbanization metrics, we have defined urban regions for 653 cities 520 

globally. The HDNTL dataset from 2012 to 2024 has been provided within these delineated areas. This dataset offers a valuable 

resource for enhanced analysis and assessment of nighttime human activity dynamics on a daily scale during the progression 

of urbanization. 
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