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Abstract. Ocean-surface stress is a critical driver of polar sea ice dynamics, air-sea interactions, and ocean circulation. This 6 

work provides a daily analysis of ocean-surface stress on 25-km Equal-Area Scalable Earth (EASE) Grids across the ice-free 7 

and ice-covered regions of the polar oceans (2011-2021 for Arctic, 2013-2021 for Antarctic), covering latitudes north of 60°N 8 

in the Arctic and south of 50°S in the Antarctic and Southern Ocean. Ocean-surface stress is calculated using a bulk 9 

parameterization approach that combines ocean-surface winds, ice motion vectors, and sea surface height (SSH) data from 10 

multiple satellite platforms.  The analysis captures significant spatial and temporal variability in ocean-surface wind stress and 11 

the resultant wind-driven Ekman transport, while providing enhanced spatiotemporal resolution. Two sensitivity analyses are 12 

conducted to address key sources of uncertainty. The first addresses the fine-scale variability in SSH fields, which was 13 

mitigated using a 150-km Gaussian filter to smooth three-day SSH datasets and enhance compatibility with the other monthly 14 

product, followed by linear interpolation to achieve daily resolution. The second investigates uncertainty in the ice-water drag 15 

coefficient, which revealed that variations in the coefficient have a proportional influence on the computed ocean-surface stress 16 

under the tested conditions. These uncertainties are most pronounced during winter, with median values reaching 20% in the 17 

Arctic and 40% in the Southern Ocean. Validation efforts using Ice-Tethered Profiler velocity records revealed weak to 18 

moderate correlations with satellite-derived stress (r = 0.4–0.8) between observed surface velocities and satellite-derived 19 

estimates (Ekman + geostrophic) at daily resolution, with significantly improved agreement when averaged to weekly means. 20 

This dataset is publicly available at https://doi.org/10.5281/zenodo.15534576 (Liu & Yu, 2024).  21 

  22 
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1 Introduction 23 

Earth’s polar regions have undergone profound changes over the past decades, with sea ice playing a central role in the polar 24 

climate system. By modulating heat, momentum, and freshwater exchanges at the atmosphere-ice-ocean boundary, sea ice 25 

directly influences global climate dynamics (Meehl, 1984; Stammerjohn et al., 2012). In the Arctic, rapid sea ice decline has 26 

transitioned the region from predominantly thick, multiyear ice to thinner, more dynamic ice, with increased interannual 27 

variability (Comiso et al., 2008; Stroeve and Notz, 2018; Moore et al., 2022; Babb et al., 2022). Meanwhile, Antarctic sea ice 28 

trends have shown greater complexity, with a modest long-term increase observed until the mid-2010s, followed by a record 29 

loss in 2017 and a subsequent continued decline (Liu et al., 2004; Parkinson, 2019; Turner et al., 2022; Purich & Doddridge, 30 

2023). These changes in sea ice extent and thickness have significant implications for polar systems and global climate 31 

feedbacks, influencing the Arctic’s ability to regulate planetary heat, as well as impacting marine ecosystem, carbon cycling, 32 

nutrient distribution, and thermohaline circulation (Talley, 2013; Campbell et al., 2019).  33 

Atmospheric circulation is a primary driver of sea ice dynamics and variability. Geostrophic winds, for instance, account for 34 

over 70% of sea ice velocity variability (Thorndike and Colony, 1982; Maeda et al., 2020), while broader climate modes, 35 

including the Arctic Oscillation, Pacific Decadal Oscillation, and Southern Annular Mode, influence ice extent and distribution 36 

(Rigor et al., 2002; Park et al., 2018; Lefebvre et al., 2004). These wind-driven processes interact with sea ice to modify ocean-37 

surface stress, impacting Ekman dynamics and the transport of heat, salt, and nutrients (Yang, 2006, 2009; Meneghello et al., 38 

2018). This feedback mechanism, often described as the "ice-ocean governor" (Meneghello et al., 2017), plays an important 39 

role in regulating polar freshwater storage and circulation (Marshall and Speer, 2012; Abernathey et al., 2016; Ma et al., 2017). 40 

Surface stress plays a pivotal role in driving Arctic Ocean circulation by mediating the transfer of momentum from the 41 

atmosphere to the ocean. In the Arctic, sea ice acts as a modulator of this momentum exchange, either dampening or amplifying 42 

the transfer depending on its concentration and mechanical properties. Recent projections indicate that as the Arctic climate 43 

warms, sea ice will become thinner and less extensive, leading to a more efficient transfer of wind energy to the ocean surface 44 

(Muilwijk et al., 2024). This enhanced momentum transfer is expected to accelerate surface currents, increase ocean kinetic 45 

energy, and intensify vertical mixing processes (Martin et al. 2014; Martin et al. 2016). However, current climate models 46 

exhibit considerable uncertainty in simulating these processes due to simplified representations of atmosphere-ice-ocean 47 

interactions. Therefore, developing observationally based surface stress products is essential for validating and improving 48 

model simulations, leading to more accurate predictions of future Arctic Ocean dynamics and their global implications. 49 

To address the complexity of ice–ocean interactions, recent modeling advances have highlighted the pivotal role of sea ice 50 

form drag in governing momentum exchange at the ocean–ice–atmosphere interface. Tsamados et al. (2014) introduced a 51 

physically grounded parameterization of ice form drag that accounts for ice morphological features—such as ridges, floe edges, 52 

and melt pond geometry—and demonstrated that spatial and temporal variability in drag coefficients can substantially 53 

influence sea ice dynamics and the spin-up of the Arctic Ocean. Extending this approach, Sterlin et al. (2023) implemented a 54 

variable ice form drag scheme in the NEMO-LIM3 ocean–sea ice model and found that it exerts a pronounced control over 55 
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ocean surface stress patterns, mixed layer depth, sea surface salinity, and upper ocean temperature across both polar regions. 56 

These modeling efforts reveal that ice form drag is not merely a secondary detail, but a first-order process in polar ocean 57 

circulation and surface forcing. However, the representation of ice–ocean drag—often quantified through the coefficient—58 

remains highly uncertain, as it can vary markedly with environmental conditions including ice concentration, surface roughness, 59 

and the presence of waves (Lüpkes & Gryanik, 2015; Brenner et al., 2021). This highlights the growing need for 60 

observationally based estimates of ocean surface stress that can support parameterization efforts, constrain model behavior, 61 

and improve the physical realism of coupled ocean–ice simulations. 62 

Despite significant advancements in understanding these processes, direct measurements at the ice-ocean interface remain 63 

limited, with most data concentrated in the Arctic’s Canada Basin (Smith et al., 2019; Regan et al., 2019). Satellite remote 64 

sensing has been instrumental in addressing these gaps, providing open ocean-surface wind retrievals available since 1988 (Yu 65 

& Jin, 2014a) and tracking sea ice motions since 1978 (Cavalieri et al., 1996). Recent advances in satellite altimetry further 66 

enable high-resolution monitoring of sea surface height (SSH) changes, offering new insights into mesoscale ocean dynamics 67 

(Armitage et al., 2016, 2017; Prandi et al., 2021). 68 

Building upon the concepts developed in previous studies (Yang, 2006, 2009; Meneghello et al., 2018), this analysis utilizes 69 

recent satellite-based datasets on wind, ice motion, and SSH to analyze ocean-surface stress across both ice-free and ice-70 

covered polar seas. Specifically, we present a daily analysis of ocean-surface stress at 25-km resolution using Equal-Area 71 

Scalable Earth (EASE, see glossary in Table A1 for more details) Grids from 2011 to 2021 for Arctic and 2013-2021 for 72 

Antarctic, covering latitudes north of 60°N in the Arctic and south of 50°S in the Antarctic and Southern Ocean (Figure 1).  73 

Section 2 provides a description of the satellite datasets used and processing steps, along with the methods for calculating 74 

ocean-surface stress and Ekman circulation. Section 3 presents the time-mean patterns and variability of the derived surface 75 

stress and Ekman pumping fields. Section 4 addresses quantification of uncertainties in the analysis, including sensitivity to 76 

the ice-water drag coefficient and comparisons of with in-situ data.  77 

 78 

 79 
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 80 
Figure 1: Study region in (a) Arctic and (b) Southern Oceans. Blue shading represents the bathymetry in meter. Solid and dashed 81 
magenta lines indicate the median sea ice extent boundaries for March and September, respectively, defined by areas with sea ice 82 
concentration. 83 

2 Data, Method and Processing of the Analysis 84 

2.1 Calculation of Ocean-Surface Stress and the Ekman Transport 85 

The ocean-surface stress is estimated using the methodology proposed by Yang (2006, 2009), with modifications by 86 

Meneghello et al. (2018). The total ocean-surface stress (𝜏!) is calculated as a weighted linear combination of ice–water stress 87 

(𝜏"#) and air–water stress (𝜏$#), based on the fractional sea ice concentration: 88 

𝜏! = 𝛼𝜏"# + (1 − 𝛼)𝜏$#																																																																																																																																																																												(1) 89 

where 𝛼 is set to 0 for the ice-free surfaces (defined as sea ice concentration less than 15%) and 1 for ice-covered surfaces 90 

(defined as sea ice concentration exceeding 15%). The stresses 𝜏"# and 𝜏$# are parameterized using quadratic drag laws:  91 

𝜏"# = 𝜌#𝐶%,"#,𝑈"'( −𝑈( −𝑈),.𝑼𝒊𝒄𝒆 −𝑼𝒆 −𝑼𝒈0																																																																																																																															(2) 92 

and 93 

𝜏$# = 𝜌$𝐶%,$#|𝑈./|𝑼𝟏𝟎																																																																																																																																																																															(3) 94 

where 𝑈"'(,  𝑈(, 𝑈), and 𝑈./ are the local ice motion, Ekman velocity, geostrophic velocity, and equivalent neutral wind at 10-95 

m height, respectively.	𝜌# = 1027.5 kg m-3 and 𝜌$ represent the densities of water and air. In this product, 𝜏$# is taken directly 96 

from existing satellite wind products (Yu and Jin 2014a, b).  97 
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𝐶%,"# is the ice-water drag coefficient and  𝐶%,"# = 5.5 × 10-3 is adopted in this product as it is a commonly recognized value. 98 

It is worth noting that, due to the limited availability of direct observations, 𝐶%,"# is identified as a key source of uncertainty. 99 

A sensitivity analysis is therefore provided in the following section to evaluate its potential impact. 100 

In Equation (2), surface ocean velocity expressed as the sum of 𝑈) and 𝑈(. The representation of ocean surface stress is known 101 

to be highly sensitive to the assumed surface velocity used in the drag formulation. A range of approaches has been employed 102 

in past studies—incorporating 𝑈(, 𝑈), or even assuming zero ocean motion—each with markedly different implications. For 103 

instance, Zhong et al. (2018) showed that mean Ekman pumping in the Beaufort Sea can differ by over 50% depending on the 104 

inclusion of geostrophic flow. Wu et al. (2021) reported similar sensitivities in the Nordic Seas, while earlier works by Zhong 105 

et al. (2015) and Ma et al. (2017) further detailed the variability across Arctic regimes. As a result, stress-based diagnostics 106 

remain sensitive to parameterization choices, and conclusions should be interpreted with that uncertainty in mind. 107 

The geostrophic velocity 𝑈) can be calculated from dynamic ocean topography datasets (McPhee 2013; Armitage et al. 2016, 108 

2017). The Ekman velocity 𝑈( , which moves at an angle of 45° to the right of the ocean-surface stress in the Northern 109 

Hemisphere, is calculated as: 110 

𝑈( =
√2𝑒2"(4/6)

𝑓𝜌#𝐷(
𝜏!																																																																																																																																																																																									(4) 111 

where 𝑓 is the Coriolis parameter, and 𝐷(  is the Ekman layer depth (20 m, Meneghello et al., 2018). Since 𝑈(  and 𝜏! are 112 

interdependent in Eqs. (1) and (4), a modified Richardson iteration method is applied to solve them iteratively until converge 113 

is achieved, starting with 𝑈( = 0 in the first iteration (Yang 2006).  114 

Subsequently, the vertical Ekman velocity 𝑤( can be calculated as follows:  115 

𝑤( =
1
𝑓𝜌#

∇ × 𝜏!																																																																																																																																																																																													(5) 116 

A positive 𝑤( indicates upwelling, while a negative 𝑤( corresponds to downwelling. 117 

 118 

2.2 Data Description 119 

The calculation of total ocean-surface stress (Eqs. (1)–(4)) requires the following input datasets: ocean-surface wind stress 120 

(𝜏$# ), sea ice concentration (𝛼), sea ice motion (𝑈"'( ), and dynamic topography for geostrophic velocity (𝑈)). A brief 121 

description of each satellite-based dataset is given in Table 1. 122 

 123 
Table 1: Gridded satellite datasets used in the work. 124 

Variable Source Resolution Period Reference 

Surface 

Wind	Stress	𝜏!" 

OAFlux2 Daily, 0.25° 1988-present Yu & Jin, 2014a, 2014b 

Ice Motion 𝑈"'(  Polar Pathfinder v4 Daily, 25 km 1978-2023 Tschudi et al., 2019 
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Geostrophic 𝑈)  multi-altimeter dataset 3-Day, 25 km 2011-2021 

(Arctic) 

2013-2021 

(Antarctic) 

Prandi et al., 2021 

Sea Ice Concentration 

𝛼 

NSIDC0051, v2 Daily, 25 km 1988-present DiGirolamo et al., 2022 

 125 

In this product, the air-water wind stress is taken from OAFlux2 (Yu & Jin, 2014a, 2014b), a satellite-derived 0.25-degree 126 

gridded air-sea flux daily analysis (1988 to present) developed under the auspices of NASA's Making Earth System Data 127 

Records for Use (MEaSUREs) program (Yu, 2019). OAFlux2 winds are synthesized from 19 active and passive satellite wind 128 

sensors and wind stress are calculated from the Coupled Ocean-Atmosphere Response Experiment (COARE) bulk algorithm 129 

version 3.6 (Fairall et al., 2003).  130 

Daily sea ice motion vectors for the Arctic and Antarctic regions are obtained from the National Snow and Ice Data Center's 131 

(NSIDC) Polar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors, Version 4 (Tschudi et al., 2019, 2020), covering 132 

the period from 1978 through 2023. The ice motion fields are derived from multiple sources, including passive microwave 133 

radiometers (e.g., SSM/I, AMSR-E), visible and infrared sensors (e.g., AVHRR, MODIS), scatterometers (e.g., QuikSCAT), 134 

drifting buoys (e.g., IABP), and atmospheric reanalysis winds. Feature-tracking algorithms are applied to sequential satellite 135 

images to identify ice displacement, while optimal interpolation techniques combine the various data sources to produce daily 136 

sea ice motion estimates. The resulting vectors represent sea ice displacement over a 24-hour period and are gridded onto a 25 137 

km EASE grid 2.0 (EASE2). 138 

Geostrophic velocity in the Arctic and Antarctic are obtained from the CLS/PML multi-altimeter combined Arctic/Antarctic 139 

Ocean sea level dataset (Prandi et al., 2021). This dataset spans latitudes north of 50°N on a 25 km EASE2, with a temporal 140 

resolution of one grid point every 3 days. Covering the Arctic from 2011 to 2021 and the Antarctic from 2013 to 2021, the 141 

CLS dataset mitigates the spurious meridional signals often introduced by the longer sampling intervals of CryoSat-2 142 

observations (Auger et al., 2022). 143 

The Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I–SSMIS Passive Microwave Data, Version 2 (NSIDC-144 

0051, Cavalieri et al., 1996; DiGirolamo et al., 2022) is used to define the daily ice boundary based on the 15% ice 145 

concentration threshold. NSIDC-0051 provides a reliable, long-term record of sea ice concentration, making it valuable for 146 

studying sea ice conditions and large-scale climate variability (Parkinson, 2019). Widely recognized for its accuracy, the 147 

dataset is frequently used to validate and improve climate model simulations. The daily dataset is available from 1987 to the 148 

present and provide a coverage on a 25 km resolution polar stereographic grid for the both polar regions.  149 

The analysis period ends in 2021 to maintain consistency with the most reliable iteration of the ongoing refinement of the 150 

associated satellite products as listed in Table 1. While this choice limits the temporal extent, the framework itself remains 151 
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flexible and can be readily extended as newer, better-resolved datasets become available. With all considered, the study period 152 

for Antarctica is constrained to six years (2013–2021), while an eight-year period (2011–2021) is maintained for the Arctic.  153 

2.3 Data processing procedure 154 

Using the methodology described in Eqs. (1)-(5) and the input data listed in Table1, the workflow for processing and analysing 155 

data to calculate ocean-surface stress and derive vertical Ekman velocity is shown in Figure 2.  156 

  157 

Figure 2: Workflow for data processing and analysis to calculate ocean-surface stress and derive vertical Ekman velocity.  158 
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All datasets are interpolated onto a common 25 km EASE grid format, providing uniform spatial resolution and facilitating 159 

consistent analysis across the Arctic and Antarctic regions. Noting that the 25 km resolution may introduce uncertainties near 160 

the 15% sea ice concentration boundary, as such coarse resolution can obscure sharp gradients in the marginal ice zone and 161 

misclassify mixed ice–water grid cells (e.g., Meier, 2005; Ivanova et al., 2015). 162 

Despite efforts to merge ice-edge boundaries across multiple satellite products, we note that data gaps and inconsistencies 163 

become more pronounced after 2019. This is primarily due to increasing divergence between input datasets used to define sea 164 

ice concentration and motion. As a result, the quality of the derived surface stress fields may be reduced, particularly in the 165 

marginal ice zone (MIZ), where small changes in ice coverage can significantly affect stress partitioning. Users should exercise 166 

caution when applying this dataset to study MIZ dynamics after 2019, and we recommend validating results against 167 

independent sources where possible. 168 

Temporal sampling frequency plays a critical role in determining the accuracy and interpretability of ocean surface stress 169 

estimates. Daily and sub-daily sampling is often needed to capture short-term variability in wind and sea ice motion, which 170 

directly affects transient stress fluctuations and high-frequency Ekman responses (Meneghello et al., 2018; Regan et al., 2020). 171 

Conversely, monthly-averaged fields may overly smooth dynamic features and obscure important stress events, particularly in 172 

regions with strong synoptic variability. In this context, the 3-day sampling of the CLS/PML altimetry product offers a useful 173 

compromise: it resolves large-scale mesoscale dynamics more consistently than monthly data while maintaining better signal-174 

to-noise properties than noisy daily sea surface height reconstructions in ice-covered regions (Prandi et al., 2021). Given the 175 

limitations of satellite altimetry in the polar oceans, the CLS dataset provides a crucial improvement by reducing spurious 176 

meridional errors and enabling more consistent estimation of geostrophic velocities and their role in modulating surface stress 177 

(Auger et al., 2022). We revisit the implications of time-averaging choices for surface stress/derived velocity fields in Section 178 

4.2. 179 

While the CLS/PML product offers improved temporal resolution and geophysical realism at finer spatial scales, its use of 180 

multiple altimeters and interpolation techniques can introduce high-frequency structures that remain difficult to validate given 181 

the sparse in situ coverage at high latitudes (Prandi et al., 2021; Auger et al., 2022). In contrast, the CPOM Dynamic Ocean 182 

Topography (DOT) dataset (2003-2021) from the Centre for Polar Observation and Modelling (CPOM; Armitage et al., 2016, 183 

2017), despite its coarser resolution and monthly cadence, has seen wider adoption and validation across climate-scale Arctic 184 

studies (e.g., Meneghello et al., 2018; Zhong et al., 2018; Lin et al., 2023), making it a valuable benchmark for cross-185 

comparison. To reconcile the strengths of both datasets, we apply a two-dimensional Gaussian spatial filter to smooth CLS 186 

fields, aligning their effective resolution with CPOM and improving interpretability of large-scale patterns. This hybrid 187 

approach leverages the temporal detail of CLS while benefiting from the broader-scale reliability of CPOM, offering a more 188 

balanced foundation for stress estimation and error characterization in polar oceanographic applications. 189 

We employed a 2D Gaussian filter with a standard deviation of 75 km to improve consistency and interpretability between 190 

CLS and CPOM DOT datasets, which have different resolutions and small-scale characteristics. A sensitivity test is conducted 191 

to determine the optimal filter radius, ranging from 50 km to 250 km. Smaller filters (e.g., <50 km) preserve small-scale 192 
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variability but may complicate the interpretation of large-scale features, while larger filters (e.g., >250 km) can excessively 193 

smooth mesoscale processes, such as boundary currents, reducing the dataset’s ability to capture key processes of polar 194 

dynamics. 195 

To find the optimal filter size, a series of tests were conducted for 2011. The effectiveness of each filter setting is evaluated 196 

using the Root Mean Squared Deviation (RMSD): 197 

𝑅𝑀𝑆𝐷 = A
1
𝑁C (𝑤(	",9 −𝑤(:(;,(",9))",9

<
																																																																																																																																																		(6) 198 

where 𝑤( represents the local vertical Ekman velocity 𝑤( derived from the CLS dataset, filtered with a specific Gaussian filter 199 

size (e.g., 100 km, 150 km, etc.), and 𝑤:(; is the reference vertical Ekman velocity calculated using the CPOM dataset. N is 200 

the total number of the grid points with sea ice coverage.  201 

The unfiltered CLS dataset exhibits clear seasonal variations in RMSD, with values peaking at 25 cm/day during winter and 202 

decreasing in summer (Figure 3a). Applying a Gaussian filter significantly enhances agreement with the CPOM dataset, 203 

reducing RMSD by 10–15 cm/day for most of the year. However, in late summer the reduction is only 2–5 cm/day. 204 

Increasing the filter size further enhances spatial agreement (Figure 3b). From no-filter to a 100 km filter, the annual mean 205 

RMSD is reduced to 17 cm/day, and increasing the filter size to 150 km further lowers the RMSD to 15.5 cm/day. The standard 206 

deviation of daily RMSD is also reduced by half with 150 km filter compared to the unfiltered results. However, larger filter 207 

sizes (e.g. 200 km and 250 km) yield only marginal additional improvements. Therefore, the 150 km Gaussian filter is selected 208 

as a practical and effective balance between preserving spatial features and minimizing small-scale variability for this work. 209 

Figure 3c–h demonstrates the impact of varying filter sizes on the spatial structures of 𝜏! and 𝑤( on March 15, 2011. Without 210 

filtering, the CLS dataset exhibits residual meridional striping due to satellite sampling artifacts (Auger et al., 2022). This 211 

pattern is significantly suppressed with a 150 km Gaussian filter. Between the filtered CLS-derived 𝑤( (150 km) and CPOM-212 

derived 𝑤(, the correlation coefficients improving markedly from 0.77 (no filter) to over 0.95 (p < 0.05).  213 

 214 
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  215 
Figure 3: Area-averaged ocean-surface stress 𝝉𝒐 and vertical Ekman velocity 𝒘𝒆 regarding Gaussian filter setting. (a) Annual cycle 216 
of root mean squared deviation (RMSD) of 𝒘𝒆 over 2011. Blue shades show total ice-cover areas (right axis). (b) Annual mean RMSD 217 
of 𝒘𝒆 with shading indicating one standard deviation over a year. (c) Snapshot of 𝝉𝒐 with unfiltered CLS (3/15/2011). (d) Same as c 218 
but with 150 km Gaussian filter. (e) Same as c but with CPOM. (f-h) Same as (c-e) but for 𝒘𝒆. Streamlines in (c-e) show the direction 219 
of 𝝉𝒐. Black contours in (c-h) mark the 15% ice concentration on 3/15/2011. 220 

 221 
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3 Results and Regional Statistics 222 

3.1 Arctic Ocean 223 

In this section, we provide a concise overview of the surface stress and the corresponding Ekman velocity fields. Figure 4a 224 

shows the time-averaged ocean-surface stress (𝜏!) field across the Arctic for 2011–2021. The highest 𝜏! appears in the ice-225 

free Nordic Seas, where strong wind-ocean interactions drive surface stress exceeding 0.3 N/m². In contrast, sea ice reduces 226 

momentum transfer and lower the 𝜏! in ice-covered regions. In the Seasonal Ice Zone (SIZ), marked by the March and 227 

September sea ice boundaries, 𝜏! typically remains below 0.05 N/m². Within the Perennial Ice Zone (PIZ), bounded by the 228 

September sea ice boundary, it drops further to below 0.02 N/m². 229 

The seasonal cycle of 𝜏! is the dominant temporal variability across the Arctic (Stroeve and Notz, 2018). The standard 230 

deviation (STD) shows a spatial distribution similar to the time-averaged 𝜏! (Figure 4b), with high variability (>0.1 N/m²) in 231 

ice-free regions like the Nordic Seas. Variability is significantly suppressed in the SIZ and PIZ, with values below 0.02 N/m² 232 

and 0.01 N/m², respectively. The coefficient of determination (R2, here is calculated as the proportion of variance explained 233 

by the seasonal cycle, i.e., 𝑅< = 1 − ∑ (>!2>"#$"%&$')(!
∑ (>!2>?)(!

) shows that in open-ocean regions, 40–60% of variance is explained by 234 

seasonal variability (Figure 4c). In ice-covered areas, this ratio drops to less than 30%. 235 

The time-mean Ekman pumping rate (𝑤(), alongside its STD and R2 patterns are given in Figure 4d-f. Strong upwelling (>50 236 

cm/day) is observed in the Nordic Seas, while strong downwelling (<-10 cm/day) occurs in the Beaufort and Chukchi Seas. 237 

The spatial pattern of STD 𝑤( is similar to that of 𝜏! (Figure 4e). Seasonal variability ranges from 10–20 cm/day in ice-free 238 

regions, 4–6 cm/day in SIZ, and falls below 4 cm/day in the PIZ. Seasonal variability accounts for up to 60% of 𝑤( variance 239 

south of the Denmark Strait, but in other regions, including both ice-covered and ice-free zones, it typically explains 10–30%. 240 

 241 
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 242 
Figure 4: Mean and variability of ocean-surface stress 𝝉𝒐  and Ekman pumping rate 𝒘𝒆  (positive indicates upwelling, negative 243 
indicates downwelling) in the Arctic region over 2011-2021. (a) Mean 𝝉𝒐, with streamlines indicating the direction of stress. (b) 244 
Standard deviation of 𝝉𝒐 seasonal variability. (c) R2, representing 𝝉𝒐 variance explained by seasonal variability. (d-f) Same as (a-c) 245 
but for 𝒘𝒆. Streamlines in (a) show the direction of 𝝉𝒐. The solid and dashed black lines represent the March and September sea ice 246 
boundaries, respectively, defined by 15% sea ice concentration averaged over 2011-2021. 247 

 248 

The seasonal cycle of area-averaged wind-ocean surface stress (𝜏$#) is marked by strong values in winter, peaking around 0.4 249 

N/m², and much weaker values in summer, dropping below 0.05 N/m² (Figure 5a). This variation corresponds to the seasonal 250 

retreat of sea ice and the associated expansion of open ocean during summer months. 251 

In ice-covered regions, the seasonal cycle of ice-ocean surface stress (𝜏"#) is similar to that of 𝜏$#, though with significantly 252 

lower magnitudes (Figure 5c). The seasonal peak of 𝜏"# is slightly higher in 2018 than 2013, increasing from 0.010 N/m² to 253 

nearly 0.018 N/m².  254 
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Due to the aforementioned uncertainties in sea ice boundary delineation, we do not present an analysis of the average Ekman 255 

pumping rates 𝑤(  after 2018, as these estimates become highly sensitive to edge conditions and are thus dominated by 256 

boundary artifacts. 257 

In ice-free regions, the average pumping rate 𝑤(,$# peaks during winter upwelling, reaching around 30 cm/day, and transitions 258 

to weak downwelling during the summer (Figure 5e). Annual variation in winter maximum upwelling rate is evident, with a 259 

notable decline to 10 cm/day by late 2018 (Figure 5f). In contrast, in ice-covered regions, 𝑤(,"# is predominantly negative 260 

(Figure 5g), although occasional summer upwelling events occur on daily scales. Notably, the winter downwelling rate has 261 

decreased from approximately -8 cm/day in 2013–2014 to about -4 cm/day by 2017. 262 

 263 
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  264 

Figure 5: Mean seasonal cycle and annual time series of area-averaged surface stress 𝝉𝒐 (red) and Ekman pumping rate 𝒘𝒆 (orange, 265 
positive indicates upwelling, negative indicates downwelling) for the Arctic region. Total areas 𝒂 of the corresponding areal coverage 266 
are also plotted in blue. Variables are subscripted 𝒂𝒘 when averaged/summed over ice-free open ocean, and are subscripted 𝒊𝒘 267 
when averaged/summed over ice-covered open ocean. Annual and monthly means are shown as dots in all panels. (a) Seasonal cycle 268 
of 𝝉𝒂𝒘 over the ice-free open ocean. (b) Timeseries of 𝝉𝒂𝒘 from 2011-2021. (c) Seasonal cycle of 𝝉𝒊𝒘 over the ice-covered ocean. (d) 269 
Timeseries of 𝝉𝒊𝒘 from 2011-2021. (e-h) same as (a-d) but for 𝒘𝒆 and 2011-2018. 270 
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 271 

3.2 Southern Ocean 272 

The spatial distribution of the time-mean 𝜏! in the Antarctic region is shown in Figure 6a. 𝜏! exhibits a prominent circumpolar 273 

pattern. In ice-free regions, 𝜏! typically ranges from 0.2 to 0.3 N/m². In the SIZ, 𝜏! decreases significantly, falling to 0.04–274 

0.06 N/m², with strong regional variability.  275 

The STD of 𝜏! seasonal variability is evidently strong near the September sea ice boundary, exceeding 0.1 N/m², particularly 276 

between 0-90°E (Figure 6b). Moving northward into subpolar open-ocean, the STD gradually declines to approximately 0.04 277 

N/m². Within the SIZ, seasonal variability diminishes further, typically ranging from 0.02 to 0.04 N/m². In the PIZ, it drops 278 

below 0.02 N/m². The R² shows that in regions such as the Indian Ocean and southeast Pacific, seasonality explains over 50% 279 

of the total variance, while in other areas, this proportion ranges from 20% to 40% (Figure 6c). 280 

The spatial structure of the time-mean 𝑤( reveals widespread upwelling south of 50°S (Figure 6d), extending nearly all the 281 

way to the coast of Antarctica. In contrast to the Arctic, where strong ice-ocean coupling leads to clear transitions between 282 

upwelling and downwelling across ice boundaries, the Southern Ocean does not exhibit this distinct pattern. Downwelling is 283 

generally found around 55°S and farther north, or more narrowly along the Antarctic coastline. 284 

The STD pattern of seasonal variability in 𝑤( is relatively consistent across the Southern Ocean (Figure 6e), regardless of sea-285 

ice coverage, with an average value of approximately 10 cm/day. Higher variability, reaching up to 20 cm/day, occurs only 286 

near the September ice boundary and is very localized. The R² pattern is also relatively homogeneous, with most areas showing 287 

seasonal variability accounting for about 30% of the variance. Along the east coast of Antarctica, the seasonal cycle explains 288 

more than 50% of the variance. 289 

 290 
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 291 
Figure 6: Mean and variability of ocean-surface stress 𝝉𝒐  and Ekman pumping rate 𝒘𝒆  (positive indicates upwelling, negative 292 
indicates downwelling) in the Antarctic region over 2013-2021. (a) Mean 𝝉𝒐, with streamlines indicating the direction of stress. (b) 293 
Standard deviation of 𝝉𝒐 seasonal variability. (c) R2, representing 𝝉𝒐 variance explained by seasonal variability. (d-f) Same as (a-c) 294 
but for 𝒘𝒆. Streamlines in (a) show the direction of 𝝉𝒐. The solid and dashed black lines represent the March and September sea ice 295 
boundaries, respectively, defined by 15% sea ice concentration averaged over 2013-2021.  296 

 297 

The seasonal cycle and time series of area-averaged air-water stress 𝜏$# in the Antarctic are shown in Figures 7a and 7b. In 298 

ice-free regions of the Antarctic, the average 𝜏$# peaks in August at 0.36 N/m² and reaches its minimum in January at 0.13 299 

N/m². Annual variability is relatively small, ranging between 0.022 and 0.026 N/m², with a notable positive anomaly in 2015, 300 

when the annual mean briefly increased to 0.028 N/m². 301 

In ice-covered regions, ice-water stress 𝜏"# shows a delayed seasonal cycle compared to 𝜏$# and peaks in September (Figure 302 

7c). It is approximately one-fifth to one-half of 𝜏$#, ranging between 0.02 N/m² and 0.08 N/m². The seasonal pattern is 303 
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asymmetrical and aligns with the seasonal cycle of sea ice coverage (Eayrs et al., 2019). Similar to the Arctic, the area-averaged 304 

summer minima of  𝜏"# is slightly higher in 2018 compared to 2013, increasing from 0.010 N/m² in to 0.022 N/m². 305 

Before 2019, the seasonal cycle of open-ocean Ekman pumping rate 𝑤(,$# is relatively weak (Figure 7e), with higher values 306 

in winter (12 cm/day) and lower values in summer (5 cm/day). The absence of a distinct seasonal signal is likely due to the 307 

weaker seasonal cycle observed in 2017 and 2018 (Figure 7f). The annual mean varies narrowly between 7 and 9 cm/day. 308 

In ice-covered regions, 𝑤(,"# is mostly positive throughout the year, with a brief downwelling period between January and 309 

April. A shift toward stronger downwelling occurs in February, with mean values decreasing from -2 cm/day in 2013 to nearly 310 

-10 cm/day by 2017. A notable anomaly occurred in 2015 when the annual mean rose sharply from 2 cm/day to 4 cm/day. 311 

 312 
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 313 

Figure 7: Timeseries and seasonal cycle of area-averaged surface stress 𝝉𝒐 (red) and Ekman pumping rate 𝒘𝒆 (orange, positive 314 
indicates upwelling, negative indicates downwelling) for the Antarctic region. Total areas 𝒂 of the corresponding areal coverage are 315 
also plotted in blue. Variables are subscripted 𝒂𝒘 when averaged/summed over ice-free open ocean, and are subscripted 𝒊𝒘 when 316 
averaged/summed over ice-covered open ocean. Annual and monthly means are shown as dots in all panels. (a) Seasonal cycle of 𝝉𝒂𝒘 317 
over the ice-free open ocean. (b) Timeseries of 𝝉𝒂𝒘  from 2013-2021. (c) Seasonal cycle of 𝝉𝒊𝒘  over the ice-covered ocean. (d) 318 
Timeseries of 𝝉𝒊𝒘 from 2013-2021. (e-h) same as (a-d) but for 𝒘𝒆 and 2013-2018. 319 
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4 Uncertainty and Data Quality Assessment 321 

4.1 Sensitivity Analysis of Ice-Water Drag Coefficient and uncertainty estimate 322 

The ice-water drag coefficient, 𝐶%,"# is often assumed to be constant across time and space due to the scarcity of direct 323 

observations that capture its spatiotemporal variability. However, 𝐶%,"# can vary significantly depending on environmental 324 

conditions such as wind and wave dynamics, ice roughness, sea ice concentration, and surface morphology (Lüpkes et al., 325 

2012; Lüpkes and Birnbaum, 2005; Cole & Stadler, 2019). Reported values for 𝐶%,"# range from 0.7 to over 10.0 × 10⁻³ 326 

(Overland, 1985; Guest and Davidson, 1987, 1991; McPhee, 2008; Cole et al., 2014), with some extreme cases reaching 327 

magnitudes on the order of 10.0 × 10⁻¹ (Kawaguchi et al., 2024). 328 

Commonly, a representative value of 5.5 × 10⁻³ has been widely adopted as a pragmatic approximation by the scientific 329 

community (Guest and Davidson, 1987; Anderson, 1987). However, this approximation may overlook important spatial and 330 

temporal variations in 𝐶%,"#, highlighting the need for ongoing efforts to improve observations and refine its parameterization. 331 

To evaluate the sensitivity of estimated 𝜏! to the variations in 𝐶%,"#, two sets of experiments are conducted for 2011: one with 332 

fixed 𝐶%,"# values ranging from 1.0 × 10-3 to 10.0 × 10-3, and another using a randomized weighting map, dynamically varying 333 

𝐶%,"# between between order of 10-3 and 10-2 on a daily basis at each grid cell.  334 

The amplitude of 𝜏! scales proportionally with 𝐶%,"#, as implied from Eq. 2 (Figure 8a). For fixed coefficients, the summer 335 

mean 𝜏! increases from 0.003 N/m² at 𝐶%,"# = 1.0 × 10-3, to 0.015 N/m² at 𝐶%,"# = 10.0 × 10-3, while winter means rise from 336 

0.012 N/m² to 0.053 N/m². Results from the random-weighted 𝐶%,"# experiment closely follows the fixed cases of 𝐶%,"# = 5.0-337 

6.0 × 10-3. Similarly, the annual mean 𝜏! and its standard deviation increase proportionally with 𝐶%,"# (Figure 8b), quadrupling 338 

the annual mean and raising the standard deviation from 0.003 N/m² to 0.017 N/m² as 𝐶%,"# increases. 339 

Figures 8c–h show the spatial distribution of 𝜏!  and 𝑤(  in response to varying 𝐶%,"#. Under low 𝐶%,"# circumstances, 340 

momentum transfer between ice and ocean is reduced, leaving small scale variability indistinct particularly in the central Arctic. 341 

As 𝐶%,"# increases, regions with high surface stress intensify, particularly in areas like Baffin Bay, the Chukchi Sea, and north 342 

of Fram Strait.  343 

At 𝐶%,"# = 1.0 × 10-3, the Ekman pumping rate in regions like the Fram Strait barely reach ±8 cm/day, whereas at 𝐶%,"# = 10.0 344 

× 10-3, it exceeds ±30 cm/day, with strong contrasting upwelling and downwelling patterns. additionally, while the random-345 

weighted 𝐶%,"# experiment introduces spatial noise, the broader spatial structures of both 𝜏! and 𝑤( remain consistent with 346 

fixed-coefficient runs. 347 

 348 
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 349 
Figure 8: Area-averaged ocean-surface stress 𝝉𝒐 and Ekman pumping rate 𝒘𝒆 regarding different 𝑪𝑫,𝒊𝒘. (a) annual cycle of 𝝉𝒐 of 350 
2011, area-averaged over the sea ice-cover region. Blue areas show total ice-cover areas (right axis); (b) annual mean of 𝝉𝒐 with 351 
shading indicating one standard deviation over a year. Red dashed line marks 𝑪𝑫,𝒊𝒘 = 5.5 × 10-3, black dotted line shows the annual 352 
mean of random 𝑪𝑫,𝒊𝒘 experiment. (c) Snapshot of 𝝉𝒐 with 𝑪𝑫,𝒊𝒘 = 1.0 × 10-3 (3/15/2011). (d) Same as c but with 𝑪𝑫,𝒊𝒘 = 10.0 × 10-3 . 353 
(e) Same as c but with random 𝑪𝑫,𝒊𝒘. (f-h) Same as (c-e) but for 𝒘𝒆. Streamlines in (c-e) show the direction of 𝝉𝒐. Black contours in 354 
(c-h) mark the 15% ice concentration on 3/15/2011.  355 

 356 

The final estimated uncertainty 𝜀"#, in the ice-water stress 𝜏"# is quantified daily through the integration of standard errors 357 

from sensitivity analyses of 𝐶%,"# and spatial Gaussian filter tests. Both filter tests and 𝐶%,"# tests are extended to the full 358 
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analysis period: eleven years (2011–2021) for the Arctic and nine years (2013–2021) for the Antarctic. Using the root-sum-359 

square method, the combined uncertainty is expressed as: 360 

𝜀"# = F(𝜀"#,@)< + (𝜀"#,A)< = A(
𝜎@
H𝑁.

)< + (
𝜎A
H𝑁<

)<																																																																																																																												(7) 361 

where 𝜎@ is the standard deviation of 𝜏"# from different Gaussian filter settings, and 𝜎A represents the standard deviation of 362 

𝜏"# from sensitivity analysis on varying 𝐶%,"#. The terms 𝑁. and 𝑁< denote the number of runs performed in each sensitivity 363 

analysis. This estimate assumes independence between 𝐶%,"#  and geostrophic fields (which were spatially filtered), with 364 

perturbations of comparable amplitude between the two sets of sensitivity analysis.  365 

Figure 9 shows the spatial distributions of relative uncertainty (𝜀"# to 𝜏"#) for the Arctic (March 15, 2013) and the Southern 366 

Ocean (September 15, 2013) during winter season. Overall, spatial filtering produces scattered patterns (Figures 9a–9d), while 367 

varying ice-water drag coefficient yield smoother distributions (Figures 9e–9h). Median uncertainties are comparable between 368 

the two sets of experiments, ranging from 14–18% in the Arctic to 22–25% in the Antarctic. The greater uncertainties in the 369 

Antarctic reflect higher local stress variability and increased sensitivity to parameter changes, which also manifests as the 370 

higher uncertainties observed in winter compared to summer (Figures 3 and 8). 371 

In the Arctic, combined uncertainties for zonal surface stress (𝜏B) typically range from 10–20%, while locally it could exceed 372 

100% along dynamic regions such as the Fram Strait and Beaufort Sea. Meridional stress (𝜏>) exhibits similar spatial 373 

distributions, but with higher uncertainties near the Mendeleev Ridge. Median uncertainty levels for both zonal and meridional 374 

components are below 20%. 375 

Conversely, Antarctic uncertainties are substantially higher, with median values around 40%. The highest uncertainties (>60%) 376 

are concentrated near the sea ice boundary, particularly in the eastern Weddell and Ross Seas. Regional hotspots include the 377 

Antarctic Peninsula and west of Ross Sea for 𝜏B, and Enderby Land and the Amundsen Sea for 𝜏>. 378 

 379 
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 380 
Figure 9: Estimated uncertainty fields for zonal and meridional ice-water surface stress, expressed as a ratio to the estimated ice-381 
water surface stress in the Arctic (3/15/2013) and Southern Ocean (9/15/2013). (a) standard error introduced by Gaussian filter in 382 
the Arctic, zonal direction; (b) error from filter in the Arctic, meridional direction; (c-d) same as (a-b) but for the Antarctic; (e-h) 383 
same as (a-d) but for standard error in ice-water drag coefficient 𝑪𝑫,𝒊𝒘; (i-l) same as (a-d) but for the combined uncertainty. 384 

 385 

In addition to the sensitivity analyses presented for drag coefficient magnitudes and spatial filtering, several other sources of 386 

uncertainty may influence the accuracy of the derived surface stress fields. First, uncertainties in the atmospheric reanalysis 387 

products used as forcing data—particularly in wind speed and direction over sea ice—can propagate directly into surface stress 388 

estimates. Prior studies have shown that different ice motion products can yield differences of at least 20–30% in polar regions 389 

due to discrepancies in boundary-layer representation, data assimilation techniques, and satellite retrieval biases (Sumata et 390 

al., 2014; Wang et al., 2022). These differences are especially pronounced in the marginal ice zone, where sharp gradients in 391 

atmospheric and surface properties are common (Wang et al., 2021; Boutin et al., 2020). 392 

 393 
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Second, the role of ocean and atmospheric stratification is not explicitly resolved in our parameterization, yet it can 394 

significantly affect stress transmission through the ice–ocean interface. Observational and modeling studies (Lüpkes & 395 

Gryanik, 2015; Lüpkes et al., 2012; Brenner et al., 2021) have shown that stability conditions in the atmospheric boundary 396 

layer modulate drag coefficients by altering turbulence and momentum fluxes—especially under stable stratification, common 397 

in winter Arctic conditions. Likewise, vertical stratification in the upper ocean can modify Ekman layer dynamics and the 398 

effective depth over which stress-induced velocities operate, introducing further uncertainty in estimates of vertical transport 399 

(Meneghello et al., 2018; Zhong et al., 2018). 400 

Third, the spatial and temporal scales over which stresses are calculated can introduce methodological uncertainty. Coarse 401 

averaging may obscure high-frequency processes such as synoptic wind events, inertial motions, or mesoscale eddies, while 402 

finer-scale estimates risk amplifying local noise or aliasing undersampled variability (Timmermans et al., 2008; Manucharyan 403 

& Thompson, 2017; Alberello et al., 2020). This is particularly relevant in the marginal ice zone, where surface properties 404 

evolve rapidly. A more detailed analysis of scale effects and filtering sensitivity is presented in the following section. 405 

Together, these factors point to the need for caution when interpreting surface stress magnitudes or derived quantities like 406 

Ekman pumping, particularly when used to constrain physical budgets or force ocean models. Future work should prioritize 407 

uncertainty quantification through ensemble reanalysis comparisons, the inclusion of stratification effects in drag 408 

parameterizations, and adaptive filtering techniques that respond to local dynamical conditions. 409 

4.2 Validation with ITP Observations 410 

Since surface stress is not usually directly measured, assessing the performance of our analysis is challenging. To address this, 411 

we revisit the assumption that surface velocity comprises both Ekman and geostrophic components, as described in Eq. (2). 412 

The geostrophic velocity (𝑈)) is derived from the dataset provided by Prandi et al. (2021), while the Ekman velocity component 413 

(𝑈() can be easily calculated from the ocean-surface stress using Eq. (4). 414 

This assumption provides a first-order approximation of surface velocity, and neglects other processes, such as ageostrophic 415 

motions, vertical shear, and submesoscale dynamics, which may introduce additional uncertainties. To robustly validate 416 

satellite-derived ocean surface stress estimates, we compared the derived surface velocity, i.e., sum of 𝑈) and 𝑈(,  with in situ 417 

measurements from Ice-Tethered Profilers (ITPs, Krishfield et al., 2008; Toole et al., 2011; http://www.whoi.edu/itp). In 418 

particular, several ITPs that equipped velocity sensors (ITP-V, Williams et al., 2010) are used. To align the temporal resolution 419 

of the datasets, we processed the ITP data by computing daily and weekly means, facilitating direct comparisons with daily 420 

satellite products. This approach avoids the uncertainties associated with interpolating satellite data to match the higher-421 

frequency ITP profiles, which could introduce significant errors due to the under-sampling nature of satellite observations. 422 

Despite this temporal alignment, inherent limitations persist due to spatial and temporal sampling discrepancies. ITPs provide 423 

high-resolution vertical profiles at specific locations, capturing fine-scale and transient oceanic features. In contrast, satellite 424 

observations offer broader spatial coverage but may not resolve such fine-scale variability, especially in polar regions where 425 

http://www.whoi.edu/itp
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data gaps are common due to persistent cloud cover and sea ice. These differences can lead to reduced correlation and increased 426 

bias in validation statistics, as observed in previous studies comparing satellite-derived sea surface salinity products with in 427 

situ observations (Thouvenin-Masson et al., 2022; Boutin et al., 2016; Vinogradova & Ponte, 2013). 428 

It is important to note that this comparison does not serve as a definitive validation of the absolute accuracy of our stress 429 

estimates. Instead, it assesses whether the foundational assumptions underpinning our analysis sufficiently represent the 430 

complex dynamics of the Arctic Ocean. 431 

We use velocity data collected from five ITP-V missions deployed on multiyear sea ice in the Canada Basin between 2011 432 

and 2019 (Figure 10; Table 2). Observations from ITP-77, ITP-78, and ITP-79 are truncated to exclude periods with significant 433 

data gaps and drifts near the end of their deployments. 434 

The five ITP-Vs are categorized into two groups based on deployment timing and drift trajectories. ITP-70 and ITP-80 were 435 

deployed during summer, operated for ~300 days, and primarily drifted between 75–80°N. In contrast, ITP-77, ITP-78, and 436 

ITP-79, deployed in March 2014, operated for less than 200 days and followed more constrained east-to-west trajectories 437 

between 73–75°N. 438 

 439 
Table 2: Details of the ITP-V records  440 

Unit ID Start Last # of Days # of Profiles 

Position Date Position Date 

ITP-70 76.81°N 

138.89°W 

8/26/2013 77.11°N 

156.51°W 

7/15/2014 324 3713 

ITP-77 73.37°N 

134.99°W 

3/11/2014 75.89°N 

158.50°W 

10/2/2014 206 

(153*) 

2367 

(1800*) 

ITP-78 74.36°N 

135.14°W 

3/12/2014 74.08°N 

145.43°W 

8/6/2014 148 

(130*) 

1694 

(1500*) 

ITP-79 75.38°N 

136.50°W 

3/22/2014 75.02°N 

148.37°W 

9/30/2014 193 

(143*) 

1694 

(1636*) 

ITP-80 77.36°N 

146.15°W 

8/14/2014 75.68°N 

151.79°W 

5/24/2015 284 3260 

* Data towards the end of the series exhibits quality issues that necessitate truncation. 441 

 442 
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 443 
Figure 10: ITP-V drift paths in the Arctic Ocean (colored curves). The deployment locations are marked by circles, latest locations 444 
by triangles, and the cutoff locations for ITP-77 and ITP-79 by stars. 445 

 446 

To account for temporal sampling differences and mitigate aliasing from high-frequency variability, the sub-daily ITP-V 447 

velocity data are first averaged to daily means before comparison with the satellite-derived velocity field (𝑈)+𝑈( ). The 448 

corresponding satellite values are then extracted at the nearest grid point along each ITP track (Figure 11). This approach 449 

reduces mismatch due to subsampling in the satellite product and ensures a more consistent temporal basis for comparison. 450 

Along the path of ITP-70 and ITP-80, satellite-derived ocean surface velocities exhibit moderate agreement with in situ 451 

observations, particularly in capturing high-frequency variability. In contrast, comparisons with ITP-77, ITP-78, and ITP-79 452 

reveal weaker correspondence, most notably in the zonal velocity components. For the meridional component, ITP-77 shows 453 

relatively better alignment during the initial ~100-day period until mid-July. 454 

 455 
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 456 
Figure 11: Daily mean timeseries of zonal and meridional surface velocity. (a) Zonal velocity along ITP-70 paths. (b) Zonal velocity 457 
along ITP-77 paths. (c) Zonal velocity along ITP-78 paths. (d) Zonal velocity along ITP-79 paths. (e) Zonal velocity along ITP-80 458 
paths. (f-j) same as (a-e) but for meridional velocity. Green curves represent velocity data retrieved from ITPs. Red curves are 459 
collocated obtained from the satellite-derived velocity fields, i.e., geostrophic plus Ekman velocity. 460 

 461 

Figure 12 presents the comparison of satellite‐derived surface velocity components against collocated ITP-V observations for 462 

the ITP-70 (panels a,b) and ITP-80 (panels c,d) paths. For ITP-70, the zonal component yields a Pearson correlation of r = 463 

0.31 and standard deviation of 0.022 m s⁻¹, while the meridional component gives r = 0.42 and STD = 0.020 m s⁻¹. ITP-80 464 

exhibits slightly stronger zonal agreement (r = 0.43) but weaker meridional agreement (r = 0.34). In both deployments, scatter 465 
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markedly decreases for observations taken after ∼200 days (warm colors), accompanied with the predominantly northward 466 

drift of ITP-70 and westward drift of ITP-80 seen in Figure 10. 467 

 468 

 469 
Figure 12: Scatterplots of collocated surface velocity pairs for ITPs with data spanning more than 200 days (unit: m/s). (a) Zonal 470 
velocity along ITP-70 paths. (b) Zonal velocity along ITP-80 paths. (c-d) Same as (a-b) but for meridional velocity. The total number 471 
of days (N) is given. Correlation coefficients, mean differences (DIF), and standard deviations (STD) of the differences between 472 
satellite-derived velocity and ITP observations are also displayed. 95% confidence ellipse (black contour), linear fitting (black dotted 473 
line) are also given in each panel.  474 

 475 

By contrast, Figure 13 summarizes the additional ITP observational periods (panels a–f), where correlation coefficients span 476 

r = 0.07–0.56, and STD = 0.021–0.025 m s⁻¹. One component reaches a moderate correlation (r = 0.56), while most remain 477 

weak (r < 0.40), and no coherent temporal clustering is apparent. Across all deployments, satellite‐derived velocities exhibit a 478 

slight northward bias and tend to underestimate ITP-measured surface speeds beyond 100 days post‐release. 479 
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 481 
Figure 13: Scatterplots of collocated surface velocity pairs for ITPs with data spanning less than 200 days (unit: m/s). (a) Zonal 482 
velocity along ITP-77 paths. (b) Zonal velocity along ITP-78 paths. (c) Zonal velocity along ITP-79 paths. (d-f) Same as (a-c) but 483 
for meridional velocity. The total number of days (N) is given. Correlation coefficients, mean differences (DIF), and standard 484 
deviations (STD) of the differences between satellite-derived velocity and ITP observations are displayed. 95% confidence ellipse 485 
(black contour), linear fitting (black dotted line) are also given in each panel. 486 
 487 

Table 2 and Figure 14 provide a comprehensive comparison between satellite-derived surface velocity estimates and in situ 488 

velocity measurements obtained from ITP-V across five deployments. The analysis includes both the zonal (east–west) and 489 

meridional (north–south) velocity components and considers statistics derived from both daily and weekly averaged timeseries. 490 

A consistent northward bias is evident in the satellite-derived velocities across most ITP paths. While the mean zonal velocities 491 

are generally in close agreement between satellite and ITP-V data—for instance, at ITP-70 both sources report a mean of –492 
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0.006 m/s—some deployments exhibit a more pronounced bias. ITP-77 and ITP-78, in particular, show a noticeable eastward 493 

offset, with satellite-derived zonal velocities being more positive than the ITP-V counterparts by approximately 0.005–0.01 494 

m/s. The meridional component aligns more closely overall, but satellite velocities still tend to be more northward. These 495 

biases are evident in the top-left panel of Figure 14, where most points lie above the 1:1 line, especially in the meridional 496 

direction. 497 

In addition to the bias, satellite-derived velocities systematically exhibit reduced variability compared to ITP-V observations. 498 

Across all deployments and components, the STD of satellite velocity is consistently lower than that observed in the ITP-V 499 

data. For example, while the average zonal STD in the ITP data is around 0.022 m/s, the corresponding satellite value is 500 

approximately 0.011 m/s. The top-right panel of Figure 14 illustrates this discrepancy clearly: all data points fall below the 1:1 501 

line, indicating that satellite products underestimate temporal variability. This reduced variability likely reflects the filtering 502 

and smoothing inherent in satellite altimetry products, which are designed to represent large-scale geostrophic flows and may 503 

not fully resolve the higher-frequency or smaller-scale fluctuations captured by the ITP instruments. 504 

Despite these limitations, satellite-derived velocity fields are able to explain a substantial portion of the observed variance in 505 

the ITP-V measurements on daily mean scale. The coefficient of determination (R²) values indicate that, on average, satellite 506 

products account for about 50% of the variability in the daily data. This explanatory power increases substantially when the 507 

analysis is performed on weekly averaged time series, with R² reaching as high as 0.77 for the zonal component at ITP-78 and 508 

0.60 for the meridional component at ITP-79. These results suggest that, although satellite estimates smooth out finer-scale 509 

variability, they capture the dominant patterns in large-scale motion effectively. However, the correlation coefficients between 510 

satellite and ITP-V velocities are more modest, typically ranging from 0.3 to 0.4 in the daily records. With weekly averaging, 511 

these correlations improve significantly, sometimes by more than 0.2, as illustrated in the bottom-left panel of Figure 14. This 512 

panel shows weekly-averaged points clustering nearer to or above the diagonal, particularly for ITP-78 and ITP-79, while daily 513 

correlations tend to remain lower and more scattered. 514 

The performance of the satellite velocity estimates varies by deployment. ITP-78 and ITP-79 demonstrate the strongest 515 

agreement. For example, ITP-78’s zonal component yields correlation coefficients of 0.42 for daily data and 0.78 for weekly 516 

data, with R² values of 0.32 and 0.77, respectively. Similarly, ITP-79’s meridional component shows a daily correlation of 517 

0.56 and a weekly correlation of 0.76, with corresponding R² values of 0.47 and 0.60. These high values underscore the ability 518 

of satellite altimetry to capture meaningful geophysical signals under favorable conditions. Conversely, performance is notably 519 

weaker at ITP-77, where the zonal velocity component yields a daily correlation of only 0.07 and a weekly correlation of 0.31, 520 

suggesting a diminished ability of satellite products to resolve local variability in that particular region or time frame. Such 521 

differences likely arise from a combination of regional oceanographic complexity and satellite data limitations, including issues 522 

related to proximity to sea ice or the presence of submesoscale activity not well resolved by gridded products. 523 

 524 
Table 2: Comparison of daily satellite-derived velocity to the ITP velocity along the ITP tracks. Correlations (r) with p<0.05 are in 525 
bold. Numbers in the bracket are from the weekly mean timeseries. 526 
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ITP-Vs Mean (ITP) Mean (Sat.) STD (ITP) STD (Sat.) r R2 

ITP-70 Zonal  -0.006 -0.006 0.022 0.014 0.31 (0.45) 0.12 (0.32) 

Meridional  -0.005 -0.003 0.021 0.015 0.42 (0.59) 0.20 (0.40) 

ITP-77 Zonal  -0.022 -0.016 0.023 0.011 0.07 (0.31) 0.11 (0.20) 

Meridional  -0.005 -0.004 0.024 0.021 0.37 (0.47) 0.01 (0.02) 

ITP-78 Zonal  -0.021 -0.011 0.022 0.014 0.42 (0.78) 0.32 (0.77) 

Meridional  -0.013 0.001 0.026 0.017 0.43 (0.61)   0.25 (0.32) 

ITP-79 Zonal  -0.006 -0.007 0.024 0.013 0.24 (0.38)   0.02 (0.11) 

Meridional  -0.020 -0.001 0.027 0.013 0.56 (0.76)   0.47 (0.60) 

ITP-80 Zonal  -0.004 -0.001 0.020 0.012 0.42 (0.61)   0.30 (0.60) 

Meridional  -0.002 0.010 0.024 0.012 0.34 (0.52) 0.23 (0.16) 

Mean Zonal  -0.010 -0.008 0.022 0.011 0.29 (0.50) 0.13 (0.40) 

Meridional  -0.009 0.002 0.023 0.016 0.42 (0.59) 0.22 (0.28) 

 527 
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 528 
Figure 14: Scatterplots of statistics of satellite-derived velocity and the ITP velocity. (a) Temporal mean and (b) standard deviation 529 
of the paired velocity (unit: m/s). (c) Correlation between satellite-derived velocity and the ITP velocity. (d) Coefficient of 530 
determination (R2) of the variation in the ITPs explained by satellite-derived velocity. 531 
 532 
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The comparison between satellite-derived ocean surface stress estimates and ITP observations, despite their differences in 533 

resolution and sampling, shows encouraging agreement at the first-order level. The satellite stress products successfully capture 534 

the broad spatial and temporal variability in surface velocity, supporting the utility of satellite-based estimates in reflecting 535 

first-order dynamical signals. This level of agreement supports the overall utility of satellite products in characterizing large-536 

scale stress variability and motivates their continued use in data-sparse polar regions. 537 

However, key limitations remain due to inherent mismatches in spatial and temporal sampling between the datasets. Satellite 538 

observations, with their typical resolution of ~25 km and daily sampling frequency, cannot resolve the submesoscale variability 539 

and high-frequency processes detectable in the pointwise and often sub-daily ITP profiles (Timmermans et al., 2008). This 540 

spatial averaging can smooth out gradients in wind, ice motion, or stress fields that may be sharply defined at smaller scales, 541 

particularly in regions such as the marginal ice zone (MIZ) where sea ice concentration and morphology are highly variable 542 

(Manucharyan & Thompson, 2017; Alberello et al., 2020). 543 

Temporally, satellite-derived surface stress products may fail to capture transient forcing events such as storm-driven 544 

accelerations, inertial oscillations, or short-lived leads in sea ice. In contrast, ITPs can resolve such high-frequency processes 545 

(Toole et al., 2011; Timmermans et al., 2012), leading to potential discrepancies when aligning the two datasets. Furthermore, 546 

since satellite estimates of stress are often derived from independent wind and ice motion products (e.g., National Centers for 547 

Environmental Prediction Reanalysis, NSIDC drift), their accuracy is subject to the limitations of those input fields (Sumata 548 

et al., 2014; Lavergne et al., 2010). The lack of fully collocated wind and ice motion fields at the exact time and location of 549 

ITP measurements compounds the uncertainty. 550 

These spatial and temporal mismatches further introduce representation errors, as mismatches are not due to sensor or 551 

algorithm flaws but rather due to sampling disparities (Janjić et al., 2008). Such errors have been well documented in the 552 

context of satellite sea surface salinity (Boutin et al., 2016; Vinogradova et al., 2019). These limitations are evident in the 553 

reduced agreement observed for ITP-77, ITP-78, and ITP-79, where several compounding factors likely contributed. First, the 554 

~25 km resolution of the satellite product may be insufficient to resolve submesoscale features and sharp velocity gradients. 555 

Second, the timing of deployment in March overlaps with a period of elevated kinetic energy in the Beaufort Gyre (Cassianides 556 

et al., 2023), during which intensified eddy activity in the Canada Basin enhances mesoscale variability (Son et al., 2022; 557 

Regan et al., 2020). This variability, well captured by the high-resolution ITP profiles, is easily aliased or smoothed out in the 558 

satellite-derived daily fields, further amplifying mismatches in direct comparisons. 559 

Moving forward, best practices in validation should account for these differences explicitly. The development of higher-560 

resolution satellite products (Auger et al., 2022; Lucas et al., 2023), along with assimilation into coupled models (Wang et al., 561 

2018), also offers a promising path forward. Increased density of ITP deployments, moored arrays, and coordinated airborne 562 

campaigns (Perovich et al., 2023) will be crucial for better spatial coverage in dynamic regions like the Beaufort Gyre and the 563 

MIZ. 564 

In conclusion, the comparison reveals that while satellite-derived velocities are subject to systematic biases and reduced 565 

variability relative to in situ observations, they nonetheless capture a significant portion of the observed variance, particularly 566 
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when considered at weekly timescales. The agreement is stronger for the meridional component and in regions where large-567 

scale geostrophic flows dominate. These results support the use of satellite-derived velocity products for basin-scale circulation 568 

studies, while also highlighting the need for caution in applications requiring high-frequency or fine-scale flow resolution. 569 

5 Data Availability 570 

Daily fields of ocean-surface stress vectors and derived vertical Ekman velocity for the polar oceans are provided for two 571 

periods: 2011–2021 for the Arctic (EPSG number 3408) and 2013–2021 for the Antarctic (EPSG number 3409) and are 572 

available at https://doi.org/10.5281/zenodo.15534576  (Liu & Yu, 2024). The datasets include three auxiliary fields: (i) land 573 

mask, (ii) grid longitudes and latitudes, and (iii) uncertainty estimates for ocean-surface stress.  574 

The input datasets can be found at NSIDC (ice motion: https://nsidc.org/data/nsidc-0116/versions/4; ice extent: 575 

https://nsidc.org/data/nsidc-0051/versions/2) and AVISO website (dynamic topography: 576 

https://www.aviso.altimetry.fr/en/data/products/sea-surface-height-products/regional/arctic-ocean-sea-level-heights.html). 577 

ITP-V data used in this work are retrieved from the WHOI website at https://www2.whoi.edu/site/itp/. CPOM-578 

DOT/geostrophic currents data are provided by the Centre for Polar Observation and Modelling, University College London 579 

(https://www.cpom.ucl.ac.uk/dynamic_topography). The associated scripts and packages used in this study are openly 580 

available on GitHub at (https://github.com/cydenyliu/Polar_Stress). 581 

6 Conclusions 582 

This work presents a daily, 25 km resolution dataset of satellite-derived ocean-surface stress for the Arctic (2011-2021) and 583 

Southern Oceans (2013-2021). The dataset provides detailed daily maps of 𝜏! across polar regions north of 60°N and south of 584 

50°S. This dataset achieves finer spatial and temporal resolution, enabling more precise analysis of short-term air-sea 585 

interactions and regional Ekman dynamics. In both the Arctic and Antarctic, it captures short-term and sharp transition between 586 

Ekman upwelling in ice-free regions and downwelling in ice-covered areas. 587 

Uncertainty in the derived ocean-surface stress fields arises primarily from two sources. The first is the spatial filter applied to 588 

the SSH datasets, which reduces small scale variability and enhances consistency between the sea level fields. The second 589 

source of uncertainty is related to the ice-water drag coefficient, which is poorly observed and can vary significantly between 590 

order of 10-3 and 10-2. These factors result in a median uncertainty of approximately 20% in the Arctic and about 40% in the 591 

Southern Ocean. 592 

The derived Ekman velocity is used to validate against ITP data from the Arctic's Canada Basin. Satellite-derived surface 593 

velocity, which combine Ekman and geostrophic components, capture over 50% of the observed variation in surface velocity. 594 

Correlation coefficients range from 0.6 to 0.8 on monthly and longer timescales, indicating moderate to strong agreement. It 595 

is important to consider the complex dynamics of the Arctic Ocean when interpreting these statistics. In addition to Ekman 596 

https://doi.org/10.5281/zenodo.12735198
https://nsidc.org/data/nsidc-0116/versions/
https://nsidc.org/data/nsidc-0051/versions/2
https://www.aviso.altimetry.fr/en/data/products/sea-surface-height-products/regional/arctic-ocean-sea-level-heights.html
https://www2.whoi.edu/site/itp/
https://www.cpom.ucl.ac.uk/dynamic_topography
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and geostrophic velocity (Regan et al., 2019), processes such as shallow eddy activity (Timmermans et al., 2008; Kenigson et 597 

al., 2021; Meneghello et al., 2021), turbulent mixing (Guthrie et al., 2013; Kawaguchi et al., 2014, 2019), and internal waves 598 

(Kawaguchi et al., 2016; Zhao et al., 2016) also contribute to the observed variability. Many of these processes remain 599 

challenging to observe and parameterize. 600 

While atmospheric reanalysis products such as ERA5 offer wind estimate in the polar regions, they do not explicitly capture 601 

sea ice interaction, and coupled models, though detailed, are computationally expensive and often opaque in their assumptions. 602 

Our product bridges this gap by offering a reproducible, observationally constrained dataset that supports process studies and 603 

model validation. Despite some simplifying assumptions, it has comparably spatial resolution to ERA5 over open ocean and 604 

offers added value in sea ice regions.  605 

Future updates will focus on two primary areas. We plan to extend the dataset’s temporal coverage through 2021 by 606 

incorporating updated versions of OAFlux and other relevant data products as they become available. This will ensure 607 

consistency across components while maintaining the dataset’s reliability. Second, the availability of reliable surface height 608 

products for the polar region will further enhance data accuracy. While awaiting these advancements, we will assess the 609 

potential impacts of transitioning to reanalysis data on our results. Additionally, future research will address key processes that 610 

remain underrepresented, such as variable Ekman depth and mesoscale turbulence, to refine the depiction of polar ocean 611 

dynamics. Incorporating these factors will improve the ability to capture localized features critical for understanding air-ice-612 

ocean interactions. 613 

 614 

Appendix A:  Glossary of Terminology  615 

Table A1: glossary of terminology and acronyms used in this study. 616 

Terminology/Acronyms Description 

EASE Equal-Area Scalable Earth grid 

SSH Sea Surface Height 

OAFlux Objectively Analyzed Air-Sea Fluxes 

NSIDC National Snow and Ice Data Center 

MEaSUREs Making Earth System Data Records for Use in Research Environments 

COARE Coupled Ocean–Atmosphere Response Experiment 

SSM/I Special Sensor Microwave/Imager 

AMSR-E Advanced Microwave Scanning Radiometer for EOS 

AVHRR Advanced Very High Resolution Radiometer 

MODIS Moderate Resolution Imaging Spectroradiometer 
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QuikSCAT Quick Scatterometer 

IABP International Arctic Buoy Programme 

CLS/PML Collecte Localisation Satellites / Plymouth Marine Laboratory 

SMMR Scanning Multichannel Microwave Radiometer 

DMSP Defense Meteorological Satellite Program 

SSM Special Sensor Microwave 

I-SSMIS Improved Special Sensor Microwave Imager/Sounder 

RMSD Root Mean Square Deviation 

CPOM Centre for Polar Observation and Modelling 

DOT Dynamic Ocean Topography 

SIZ Seasonal Ice Zone 

PIZ Perennial Ice Zone 

MIZ Marginal Ice Zone 

STD Standard Deviation 

R² Coefficient of Determination 

ITP Ice-Tethered Profiler 
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