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Abstract. Accurate estimation of land surface sensible heat flux (H) is crucial for comprehending the 15 

dynamics of surface energy transfer and the cycles of water and carbon. Yet, existing H products mainly 

are meteorological reanalysis datasets with coarse spatial resolutions and high uncertainties. FLUXCOM 

is the sole remotely sensed product with its 0.0833° spatial and 8-day temporal resolution spanning from 

2001 to 2015, so there is still a need for accurate and high spatial resolution global product based on 

satellite data. To address these issues, we generated the first global high resolution (1km) daily H product 20 

from 2000 to 2020 using long short-term memory (LSTM) deep learning models, incorporating data from 

the Global LAnd Surface Satellite (GLASS) product suite. Furthermore, considering that the difference 

between land surface temperature and air temperature (Tsa) is a key driver of H, we introduce the first 

global accurate satellite-based Tsa product. This product refines the uncertainty compared with obtaining 

Tsa directly from existing products by subtracting air temperature from land surface temperature. Our 25 

model, distinct from previous models that estimate H per pixel through physically-based models 

requiring parameters that are not readily accessible, can conveniently derive global values and efficiently 

capture nonlinear interactions. Additionally, it accounts for the temporal variation of H. Validation against 

independent in-situ measurements yielded a root mean square error (RMSE), mean absolute error (MAE), 

and coefficient of determination (R2) of 25.54 Wm⁻2, 18.649 Wm⁻2, and 0.54 for H, and 1.459 K, 1.071 30 
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K, and 0.53 for Tsa, respectively. The estimated H and Tsa values are more accurate than current products 

such as MERRA2, ERA5-Land, ERA5, and FLUXCOM under most conditions. Additionally, the new H 

product offers more detailed spatial information in diverse landscapes. The estimated global average land 

surface H from 2000 to 2020 is 35.29±0.71 Wm⁻2. These high-resolution H and Tsa products are 

invaluable for climatic researches and numerous other applications. The daily mean values for the first 35 

three days of each year can be freely downloaded from https://doi.org/10.5281/zenodo.14986255 (Liang 

et al., 2025), and the complete product will be available at www.glass.hku.hk (last access: 7 March 2025). 

1 Introduction 

Sensible heat flux (H) is the turbulent transfer of heat between the land surface and the atmosphere, 

primarily driven by temperature differences (T0‒Ta, also referred to Tsa, where T0 (K) represents the 40 

surface aerodynamic temperature and Ta (K) the air temperature) (Mito et al., 2012). As a major energy 

source for the lower atmosphere and a critical component of surface energy fluxes, H plays a vital role 

in land-atmosphere interactions, particularly in thermal exchanges between the land surface and the 

atmospheric boundary layer (Beamesderfer et al., 2023; Liao et al., 2019). The uneven distribution of H 

leads to alternating absorption or release of heat into the atmosphere, affecting monsoon circulation and 45 

local climate systems (Mito et al., 2012; Zhou and Huang, 2014; Zhou and Huang, 2010). Therefore, 

accurate estimation of H is essential for studying global energy flows and understanding the dynamic 

transfers of water, energy, and trace gases at the Earth’s surface (Watts et al., 1997).  

Currently, H can be derived from ground-based measurements or various products. Ground 

measurements, considered as “ground truth” values, are typically obtained using eddy covariance (EC) 50 

system (on the scale of hundreds of meters) and large aperture scintillometer (LAS, at the kilometer scale). 

The EC system measures instantaneous variations in vertical wind speed and scalar quantities (e.g. 

temperature, carbon dioxide concentration, and water vapor), determining H by calculating the 

covariance between these variables (Zhang, 2024). In contrast, LAS estimates H using the scintillation 

principle, measuring light signal disturbances caused by atmospheric turbulence (Liu et al., 2011). These 55 

instruments have shown reliable performance across scales from tens of meters to approximately 1 km, 

with reported differences of 2–3% in EC and LAS measurements (Liu et al., 2018; Liu et al., 2011; 

Baldocchi et al., 2001). However, their practical applications are limited to areas with flat, uniform terrain 
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and stable turbulent conditions, leading to shorter observation periods and sparse spatial coverage due to 

high maintenance costs (Mito et al., 2012). Another alternative for obtaining H is through existing 60 

products, including reanalysis products generated by merging available observations with land surface 

models and remotely sensed products derived from satellite data via machine learning techniques. Table 

1 lists the mainstream products utilized for analysis and evaluation across various global applications, 

including the Interim Reanalysis (ERA-Interim) and its latest version ERA5 and ERA5-Land from the 

European Centre for Medium-Range Weather Forecast (ECMWF), the Japanese 55-year Reanalysis 65 

(JRA-55), Climate Forecast System Reanalysis (CFSR) from the National Centers for Environmental 

Prediction (NCEP), the Modern-Era Retrospective analysis for Research and Applications Version2 

(MERRA2), The Global Land Data Assimilation System (GLDAS) and FLUXCOM. These products 

generally provide long temporal coverage but tend to have coarse spatial resolution and significant 

uncertainty, as illustrated in Table 1. Even FLUXCOM_RS, the most recent and only satellite product 70 

boasting the highest spatial resolution of 0.0833°, encounters a global uncertainty of 11.61% over an 8-

day period from 2001 to 2015, thereby restricting its utility for local-level applications. Products that 

combine high precision with finer resolution are crucial, particularly for supporting studies in regions 

with complex land cover and climate features, such as the Tibetan Plateau (Yizhe et al., 2019) and urban 

areas with complex human activities (Kato and Yamaguchi, 2005).  75 

Table 1. The mainstream global product information. 
Product Period Resolution Uncertainty Method Reference 
Reanalysis data products 
ERA5-Land 1950-present 0.1° × 0.1° 

1 hourly 
RMSE=38.21 
Wm-2 in TP at 
daily scale 

ECMWF land 
surface model 

(Xin et al., 2022; 
Muñoz-Sabater 
et al., 2021) 

ERA5 1950-present 0.25° × 0.25° 
1 hourly 

Similar to 
ERA5-Land 

ECMWF land 
surface model 

(Hersbach et al., 
2020) 

ERA-Interim 1979-2019 T255 (80 km) 
3 hourly 

RMSE=114.46 
Wm-2 in TP at 
daily scale 

ECMWF IFS 
(Cy31r2) 

(Xin et al., 2022; 
Berrisford, 
2011; Dee et al., 
2011) 

JRA55 1958-present T319 (∼55 km) 
3 hourly 

\ Similar 
algorithm as 
Beljaars et al. 
(Beljaars, 1995) 

(Kobayashi et 
al., 2015) 

CFSR 1979-2010 T382 (38 km) 
6 hourly 

RMSE=30‒70 
Wm-2 at monthly 

UA algorithm (Decker et al., 
2012) 
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scale 
MERRA2 1979-present 1hourly 

0.5° × 0.625° 
\ Updated 

Goddard Earth 
Observing 
System model 

(Buchard et al., 
2017) 

GLDAS 1948-present 3 hourly 
0.25° × 0.25° 

\ Data 
assimilation 

(Rodell et al., 
2004) 

Remotely sensed products 
FLUXCOM_RS 
/FLUXCOM_RS + 
METEO 

2001-2015 0.0833°× 0.0833°/0.5
°×0.5° 
8daily/daily 

11.61%/11.85%  
(1.59%/2.69% 
for Rn) in global 
at daily scale 

Model tree 
ensembles 

(Jung et al., 
2019) 

H estimation has traditionally relied on temperature-derived one-source and two-source models, 

incorporating ground-based observations of temperature and wind fields. One-source models, treating 

the land surface as “one-leaf”, have been extensively applied across various field crops at regional scales 

over the past decade (Hatfield et al., 1984; Seguin et al., 1982a, b). Two-source models attempt to mitigate 80 

this by distinguishing between soil (Ts) and canopy (Tc) temperatures, yet they frequently overlook the 

role of precipitation interception in influencing energy distribution and surface temperature dynamics 

(Anderson et al., 1997; Anderson et al., 2007; Colaizzi et al., 2014; Kustas and Norman, 1999; Asdak et 

al., 1998). Both models face common challenges in calculating aerodynamic resistance (rah) due to the 

complexities of Monin-Obukhov similarity theory (Monin and Obukhov, 1954; Brutsaert, 2013), and in 85 

accurately representing T0 under diverse conditions, leading to significant uncertainties. Despite attempts 

to use the more easily obtainable land surface temperature (LST) as a proxy for its linear correlation with 

T0 (Chehbouni et al., 2001), LST-related errors account for over half of the inaccuracies in these models 

(Timmermans et al., 2007; Stewart et al., 1994). Furthermore, the uncertainty associated with LST usage 

could be up to four times higher than that of simulating all-wave net radiation (Rn) and ground heat flux 90 

(G) (Costa-Filho et al., 2021). Since Tsa significantly influences H, its variability directly reflects in H 

fluctuations. Therefore, improving the accuracy of Tsa estimation and minimizing related errors is crucial 

for developing a reliable, globally applicable method for H estimation. 

Recent research has highlighted the significance of the Tsa, examining its influencing factors and 

mechanisms of variation. Bartlett et al. (2006) found that downward shortwave radiation (DSR) is the 95 

primary factor affecting Tsa, with an observed increase of 1.21 K for every additional 100 wm-2 of DSR. 

The absorbed DSR warms the land surface, influences Ta, alters H and enhances surface evaporation 
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(known as latent heat flux, hereinafter LE). In areas with dense vegetation, heightened evapotranspiration 

generally leads to evaporative cooling, which tends to reduce Tsa (Prakash et al., 2018; Gordon et al., 

2005). Furthermore, Feng et al. (2019) reported that although albedo shows a weaker positive correlation 100 

with Tsa compared to LST and Ta, the normalized difference vegetation index (NDVI) exhibits a stronger 

correlation with Tsa than albedo or atmospheric water vapor. Additionally, factors such as terrain features 

(elevation and slope), snow cover, and precipitation have also been identified as influencers of Tsa 

(Cermak and Bodri, 2016; Jiang et al., 2022; Sun et al., 2020). Collectively, these studies indicate that 

Tsa is subject to a complex interplay of atmospheric and surface elements, complicating the attribution 105 

of its variability to any single factor (Feng and Zou, 2019). Moreover, most previous research has been 

carried out on regional scales, relying on in-situ measurements and reanalysis or remote sensing products 

(Liao et al., 2019), potentially leading to discrepancies in scale. Additionally, estimating Tsa by 

subtracting Ta from LST, using the same or different products, can introduce significant uncertainties 

(Wang et al., 2020). 110 

Traditional physically-based model to get H mainly established in specific area and land surface 

condition with not easily accessible parameters (e.g. aerodynamic resistance to heat transfer, rah), it will 

have large uncertainties when applied in other areas. Therefore, there not have a suitable method for 

getting global values conveniently. Different from physically-base model, data-derive machine learning 

(ML) method has emerged as a formidable tool for enhancing the estimation of land surface parameters 115 

when adequate input data was adopted (Xu et al., 2022; Li et al., 2022b). Its superior performance and 

improved generalization capability position it as a potential solution for improving the accuracy and 

spatial resolution of Tsa and H on a global scale. Given the intricate interactions between Tsa and other 

land-atmosphere parameters, along with the significant temporal variations of H identified through our 

analysis, we utilized two machine learning methods, Random Forest (RF) and long short-term memory 120 

(LSTM), to predict Tsa and H, respectively. Initially, we employed the RF method, utilizing pertinent 

parameters mentioned above to precisely estimate Tsa, followed by an in-depth uncertainty analysis. 

Subsequently, a global H product for the period of 2000 to 2020 was generated using LSTM models, 

incorporating data from the Global LAnd Surface Satellite (GLASS) product suite and estimated Tsa. 

The remainder of this paper is organized as follows: Data and methodologies are detailed in Sections 2 125 

and 3, validation results for Tsa and H are examined in Section 4, and the study’s discussions and 
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conclusions are articulated in Sections 5 and 6. 

2 Dataset and Pre-processing 

This study utilized three distinct types of data: in-situ measurements, remotely sensed products, and 

reanalysis datasets. In-situ measurements were employed for both model development and independent 130 

validation. Remotely sensed products, including GMTED2010 DEM and GLASS product suite, 

supported the modeling and generation of new Tsa and H products, while FLUXCOM was used for 

comparison with H estimates. Reanalysis datasets were used for comparative analysis with H and Tsa 

estimates. Detailed descriptions of each dataset are provided in the subsequent sections.  

2.1 In-situ measurements 135 

In this study, data from 398 sites across eight observation networks were collected for the period 2000‒

2019. The spatial distribution of these sites is shown in Fig.1 (a). The sites were globally distributed, with 

elevations ranging from ‒4 m to 4104 m above sea level, and were predominantly located in the mid-to-

low latitudes of the Northern Hemisphere. These sites represent diverse land cover types and ecosystem 

conditions within various climatic zones. In this study, the land covers were categorized into ten major 140 

classes based on the International Geosphere-Biosphere Programme (IGBP): Barren land with sparse 

vegetation <BSV>, Cropland <CRO>, Mosaic of crops and natural vegetation <CVM>, Forest <FOR>, 

Grassland <GRA>, Ice and Snow <IAS>, Savannas <SAV>, Shrubland <SHR>, Tundra <TUN> and 

Wetland <WET>. All sites were used for studying the Tsa, while 140 sites, marked with red triangle 

symbols in Fig.1 (a), were specifically used for estimating H. The proportions of these sites across the 145 

ten land cover types and five elevation ranges for both Tsa and H studies are presented in Fig.1 (b-c). 

Furthermore, investigations by Li et al. (2022a), Jiang et al.(2023), and Yin et al.(2023) indicated that 

land cover types within a 5 km radius of most sites exhibited a high degree of similarity or equivalence. 

Consequently, these sites provide strong spatial representativeness and comprehensiveness.    
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 150 

Figure 1. (a) Spatial distribution of 398 sites from eight measurement networks. The proportions of all 

sites for (b) ten land cover types; and (c) five elevation ranges. 

Table 2 provides detailed descriptions of the eight observation networks encompassing the 398 sites, 

including Atmospheric Radiation Measurement (ARM), AsiaFlux, Baseline Surface Radiation Network 

(BSRN), the Institute for Marine and Atmospheric Research (IMAU), Lathuile (including FLUXNET 155 

and AmeriFlux), PROMICE, SURFRAD and National Tibetan Plateau/Third Pole Environment Data 

Center (TPDC). Selection of sites was predicated on the availability of specific measurements: those with 

Ta, downward longwave radiation (DLW), and upward longwave radiation (ULW) were utilized for Tsa 

calculation, whereas sites with LE, G, all four radiation components (DLW, ULW, DSR, and upward 

shortwave radiation <USR>) or Rn were used for H estimation. As indicated in Table 2, measurement 160 

data varied in frequency and format across the sites, necessitating the conversion of all quality-controlled 

measurements to local time. Subsequently, different methodologies were employed to calculate daily Tsa 

and H values. Tsa was determined at an instantaneous scale using Ta, DLW, and ULW measurements 
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according to Eq. (1). For sites recording data less frequently than hourly, Tsa data were compiled into 

hourly averages, tolerating a maximum of 10 minutes of missing data per hour. These hourly values were 165 

then aggregated into daily means with no missing data. Conversely, daily H values were computed 

directly from days with over 75% of valid observations, and subsequently adjusted for energy imbalance 

using the method proposed by Twine et al. (2000) (Eq. (2)). Rn measurements were acquired directly 

from the sites or derived by summing the radiative components (Eq. (2a)). All calculated daily values 

underwent manual verification to eliminate any implausible figures. The equations below detail the 170 

procedures for calculating instantaneous Tsa and adjusting daily H values: 

 𝑇𝑇𝑇𝑇𝑇𝑇 = (𝑈𝑈𝑈𝑈𝑈𝑈−(1−𝜀𝜀)×𝐷𝐷𝐷𝐷𝐷𝐷
𝜎𝜎×𝜀𝜀

)1/4 − 𝑇𝑇𝑎𝑎 (1) 

Where ε represent the surface broadband emissivity and σ is the Stefan– Boltzmann constant 

(5.67×10−8 Wm−2 K−4). 

 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑅𝑅𝑛𝑛−𝐺𝐺
𝐻𝐻𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢+𝐿𝐿𝐸𝐸𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

× 𝐻𝐻𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  (2) 175 

 𝑅𝑅𝑅𝑅 = 𝐷𝐷𝑆𝑆𝑆𝑆 − 𝑈𝑈𝑈𝑈𝑈𝑈 + 𝐷𝐷𝐷𝐷𝐷𝐷 − 𝑈𝑈𝑈𝑈𝑈𝑈 (2a) 

Where Hcor is corrected H; LEuncor and Huncor are uncorrected LE and H, respectively. 

Table 2. The detailed information about eight observation networks 
Abbreviation No. of 

sites 
Time Span Instrument Temporal resolution 

ARM 33 2000-2019 Kipp&Zonen Pyrgeometer 1 min 
AsiaFlux 21 (5) 2000-2013, 

2015-2018 
Kipp&Zonen CNR-1 30 min 

BSRN 20 2000-2019 Eppley, PIR/Kipp&Zonen CG4 1 or 3min 
IMAU 3 2016-2019 Kipp & Zonen, CNR-1 30min 
Lathuile 267 (116) 2000-2019 Kipp&ZonenCNR-1,etc 30min 
PROMICE 27 2007-2019 Kipp & Zonen CNR-1/CNR-2 1 hour 
SURFRAD 7 2000-2019 Eppley, PIR 3min 
TPDC 20 (19) 2008-2010, 

2012-2019 
CNR-4 10min 

Ultimately, a total of 649,895 daily Tsa measurements and 216,542 daily H in-situ measurements were 

collected from 2000 to 2019 to estimate Tsa and H on a global scale. Due to significant gaps in the daily 180 

in-situ measurements of H after stringent quality control, a distinct strategy was implemented to segregate 

the samples for H and Tsa. For H, the methodology involved selecting monthly datasets with fewer than 

10% missing values for the training set, while the rest were allocated to an independent validation set. 

Linear interpolation was employed to impute missing values within the training set, ensuring the integrity 
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of the monthly datasets. A five-fold cross-validation was then applied, partitioning the data such that 80% 185 

of the months were designated for training and the remaining 20% for testing during each iteration. This 

process yielded a training set encompassing 121,542 daily H samples and an independent validation set 

containing 97,982 samples. In contrast, the Tsa analysis designated measurements from 2018 to 2019 as 

the independent validation set, with data from preceding years allocated to the training set. Specifically, 

for each site, 70% of the 2000 to 2017 samples were randomly selected for the training set, and the 190 

remaining 30% for testing. As a result, the Tsa training set included 564,918 daily samples, and the 

independent validation set comprised 84,977 daily Tsa samples. 

2.2 Remotely sensed data  

2.2.1 GMTED2010 DEM 

The Global Multi-resolution Terrain Elevation Data 2010 elevation dataset (GMTED2010, 195 

https://www.usgs.gov/coastal-changes-and-impacts/gmted2010, last access: 7 March 2025), developed 

by the United States Geological Survey (USGS), provides an advanced level of detail in global 

topographic data (Danielson and Gesch, 2011). It replaces Global 30 Arc-Second Elevation (GTOPO30) 

as the preferred choice for global and continental-scale applications. GMTED2010 is produced by 

combining multiple high-quality digital elevation model (DEM) datasets from various international 200 

institutions. This dataset offers seven raster elevation products across three spatial resolutions: 30-, 15-, 

and 7.5-arc-second. In this study, the 30 arc-second resolution product, which spans from 84°N to 90°S, 

was employed to derive terrain attributes such as elevation, slope, and aspect. Detailed methodologies 

for calculating slope and aspect are documented in the study of Liang et al (2023).      

2.2.2 GLASS product suite 205 

The GLASS product suite (www.glass.hku.hk, last access: 7 March 2025) provides approximately 

20 land surface variables with high spatial resolution (up to 250m) and long-term temporal coverage, 

with many products extending from 1981 to the present. These products have gained widespread use in 

land surface studies, attributed to their data integrity (no missing data) and superior quality (Liang et al., 

2021). The accuracy of GLASS products has been corroborated through numerous validations against 210 
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in-situ measurements and other existing datasets (Yin et al., 2023; Xie et al., 2022; Yang et al., 2023). In 

this study, eleven GLASS products, covering the period from 2000 to 2020, were selected based on their 

documented impact on H variations (Zhuang et al., 2016; Trenberth et al., 2009). These products are 

predominantly sourced from Advanced Very High Resolution Radiometer (AVHRR) and Moderate 

Resolution Imaging Spectroradiometer (MODIS) observations, supplemented by other satellite and 215 

ancillary data. Comprehensive details on these eleven products are provided in Table 3. The BBE product 

was specifically used to acquire in-situ LST measurements, and the Ta and LST products were integrated 

to get GLASS Tsa for comparison with the estimated daily Tsa. Additionally, eight other products—

surface broadband albedo (ABD), DLW, DSR, Rn, ET, FVC, NDVI and LAI—were employed to identify 

the optimal parameters for estimating H and to generate daily Tsa and H estimates. Specifically, LST, 220 

DLW, DSR, NDVI were used as model inputs for Tsa estimation, while the estimated Tsa, in conjunction 

with ABD, DLW, FVC, Rn, and ET, facilitated the estimation of daily H. To maintain spatial consistency, 

the DSR, DLW, and Rn products, originally at a 0.05° spatial resolution, and the NDVI and LAI products, 

at 250 m resolution, were resampled to 1 km using the bilinear interpolation method. Subsequently, 

values from these products were extracted according to the in-situ measurement locations.     225 

Table 3. Summary of eleven GLASS series products used in this study 
Variables Spatial 

resolution 
Temporal 
Resolution 

Usage Reference 

Land surface temperature (LST) 1km daily Model input, 
comparison 

(Li et al., 2024) 

Air temperature (Ta) 1km daily Comparison (Chen et al., 2021) 
Surface Broadband Albedo 
(ABD) 

1km 8 day Model input (Qu et al., 2014) 

Broadband Emissivity (BBE) 1km 8 day Calculate in 
situ Ts 

(Cheng et al., 
2016; Cheng and 
Liang, 2013) 

Downward longwave radiation 
(DLW) 

0.05° daily Model input (Xu et al., 2022) 

Downward Shortwave 
Radiation 
(DSR) 

0.05° daily Model input (Zhang et al., 
2014b) 

surface all-wave net radiation 
(Rn) 

0.05° daily Model input (Jiang et al., 2015; 
Yin et al., 2023) 

Evapotranspiration (ET) 1km 8 day Model input (Xie et al., 2022) 
Fractional Vegetation Coverage 
(FVC) 

1km 8 day Model input (Jia et al., 2015) 
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normalized difference 
vegetation index (NDVI) 

250m 8 day Model input (Xiong et al., 
2023) 

Leaf are index (LAI) 250m 8 day Variable 
selection 

(Ma and Liang, 
2022) 

2.2.3 FLUXCOM 

The FLUXCOM initiative (www.fluxcom.org, last access: 7 March 2025) aims to improve the 

comprehension of the diverse sources and aspects of uncertainties in empirical upscaling, ultimately 

providing an ensemble of machine learning-based global flux products to the scientific community (Jung 230 

et al., 2019). It presents two product versions: one derived exclusively from MODIS satellite observations 

(FLUXCOM_RS) and another that integrates meteorological data from global climate forcing datasets 

(FLUXCOM_RS + METEO). The spatial resolution and temporal coverage of FLUXCOM_RS are 

constrained by its dependency on MODIS data. Moreover, both products omit unvegetated regions, 

including barren landscapes, permanent snow or ice, water bodies (such as Antarctica and Greenland), 235 

vast deserts (notably the Sahara), and much of the Tibetan Plateau. In this study, FLUXCOM_RS was 

chosen for its comparatively higher spatial resolution and marginally superior accuracy over 

FLUXCOM_RS + METEO. This version was utilized to assess the estimated H values derived from the 

LSTM model, with the annual data being interpolated to a 1 km spatial resolution for consistency.    

2.3 Reanalysis data  240 

In this study, we utilized three reanalysis datasets: ERA5, ERA5-Land, and MERRA2. The ERA5-Land 

was employed to evaluate the performance of the generated daily Tsa, while all three reanalysis products 

were used to assess the accuracy of the generated daily H product. For the period from 2000 to 2020, all 

product values were initially resampled to a 1 km resolution using the bilinear interpolation method 

(downward fluxes considered positive). Below are detailed descriptions of these datasets:  245 

(1) ERA5 

ERA5 (https://www.ecmwf.int/en/forecasts/dataset/, last access: 7 March 2025) represents the latest 

iteration of the ERA reanalysis series (Hersbach et al., 2020). With its 1-hour intervals and 31 km spatial 

resolution, ERA5 provides enhanced spatiotemporal precision over its predecessor, the ECMWF Interim 

Re-Analysis (ERA-Interim). Its parameters have been widely validated and exhibit strong performance 250 
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across diverse applications (Li et al., 2022a; Tarek et al., 2020; Liang et al., 2022). In this study, we 

converted the hourly H values from ERA5 to local time and aggregated them into daily values, which 

were then compared with estimated H values against in-situ measurements.  

(2) ERA5-Land 

The ERA5-Land (https://www.ecmwf.int/en/era5-land, last access: 7 March 2025) offers a higher 255 

spatiotemporal resolution of 1 hour and 9 km. It is produced through high-resolution global numerical 

integrations of the ECMWF land surface model, using downscaled meteorological forcing from the 

ERA5 climate reanalysis. The uncertainties present in ERA5-Land are inherited from the ERA5 dataset 

(Muñoz-Sabater et al., 2021). In this study, we used the daily Tsa and H values from ERA5-Land for 

comparison with our estimated Tsa and H values. We converted all product values to local time and 260 

computed daily averages for comparison against in-situ measurements. 

(3) MERRA2 

The MERRA2 (https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/, last access: 7 March 2025) is the 

most recent atmospheric reanalysis from NASA Global Modeling and Assimilation Office (GMAO) at 

the modern satellite era. MERRA2 continues the climate record of its predecessor, MERRA, with 265 

enhancements from the updated Goddard Earth Observing System (GEOS) model and analysis program 

(Gelaro et al., 2017). It offers a spatial resolution of 1∕2°×2∕3° on an hourly basis. In this study, we 

aggregated the hourly H data into daily values after converting them to local time.    

3 Methods 

Figure 2 presents the flowchart of this study. Initially, four GLASS products (LST, DLW, DSR, and 270 

NDVI) along with GMTED2010 DEM data (including elevation, slope, and aspect) were used to estimate 

Tsa through an RF model. Subsequent analysis involved in-situ Tsa measurements and eight additional 

GLASS products (LAI, DSR, DLW, FVC, Rn, ABD, ET and NDVI) to identify the optimal variables for 

estimating H through two methods: Variance Inflation Factor (VIF) and Pearson Correlation Analysis 

(referred to as Pearson). Based on the analyses, five GLASS products (DLW, Rn, FVC, ET, and ABD) 275 

and the estimated Tsa values were applied to derive H using LSTM models to account for the temporal 

variation of H. Considering the unavailability of ABD data during the polar night, two models were 

developed: mod1 for regions with ABD data and mod2 for those without, with the latter differing from 
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mod1 only in the exclusion of ABD. The performance of all models was subsequently evaluated against 

in-situ measurements and other products, comparing the efficacy of H estimates across three different 280 

methods: RF, Deep Belief Network (DBN), and Transformer.  

 

Figure 2. The flowchart of this study. 

3.1 Model building of the daily Tsa  

Based on the previous studies mentioned in the Introduction section and multiple experiments, the Tsa 285 

was estimated as: 

 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑓𝑓(𝐿𝐿𝐿𝐿𝐿𝐿,𝐷𝐷𝐷𝐷𝐷𝐷,𝐷𝐷𝐷𝐷𝐷𝐷,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑑𝑑𝑑𝑑𝑑𝑑) (3) 

Where doy is the day of the year. 

Afterwards, the Tsa estimated model was built by using the RF method (Breiman, 1996). The RF is a 

widely used non-linear machine learning algorithm that constructs an ensemble of regression or 290 

classification trees. It has gained popularity in parameter prediction and estimation due to its high 

accuracy, ease of implementation, low computational cost, and fast processing speed (Babar et al., 2020; 

Liang et al., 2023; Li et al., 2022a; Jiang et al., 2023). In this study, RF regression was applied, with the 

final results determined by averaging the ensemble of regression output (Fig.4a). To address common 

machine learning challenges such as under-fitting and over-fitting, several key hyper-parameters were 295 

fine-tuned, including the number of trees in the forest <n-estimators>, the maximum depth of each tree 
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<max depth>, minimum number of samples required to split a node <min samples split>, minimum 

number of samples per leaf < min samples leaf >, and etc (Babar et al., 2020). After plenty of experiments, 

we identified four hyper-parameters as critical for estimating Tsa. To mitigate overfitting, we adopted a 

circular approach that minimizes the root mean-squared error (RMSE) between the training and testing 300 

phases in the RF model, in accordance with the methodology proposed by Li et al. (2022a). Consequently, 

the optimal hyper-parameters for the RF model were ascertained using these two strategies, and the 

results are presented in Table 4. This model is implemented on Scikit-learn toolbox (Pedregosa et al., 

2012) on the Python platform within a Microsoft Windows 10 system with 32 GB of memory.  

Table 4. Hyper-parameter settings used to identify optimal model for estimating Tsa. The three values in 305 

brackets for each Hyper-parameter of every model represent the start, interval, and end values, 
respectively, the values in parentheses represent the value of the confirming hyper-parameter.    

n-estimators max depth min samples split min samples leaf 

[50,10,110] (80) [10,5,50] (25) [2,5,22] (7) [2,5,22] (2) 

 

3.2 Model building of the daily H  

3.2.1 Land surface parameters selectin  310 

Previous studies indicate that H is influenced by a variety of land surface parameters (Nayak et al., 

2022; Wulfmeyer et al., 2022). In this study, nine pertinent parameters were selected to determine the 

optimal variables for H estimation. These included three vegetation-related parameters (LAI, NDVI, and 

FVC) and six radiation-related parameters (Tsa, DLW, Rn, ABD, DSR, and ET). The significant 

correlations among these parameters are well-established; for instance, DSR is frequently utilized to 315 

calculate Rn, while both NDVI and FVC are indices associated with LAI (Xiong et al., 2023; Jiang et al., 

2015; Jiang et al., 2023). To mitigate multicollinearity and incorporate these interrelated variables, this 

study employed two statistical methods for correlation analysis—VIF and Pearson—to identify the 

optimal parameters for estimating H. Further details on these methods are provided below.  

The VIF serve as a critical statistical metric for identifying multicollinearity within regression models, 320 

can quantify the degree of linear correlation between one independent variable and the rest (Jiao et al., 

2017; Rehman et al., 2024), thereby enhancing the model’s explanatory power and predictive accuracy. 

As the VIF value rises, so does the degree of collinearity. A VIF value exceeding 10 signals significant 
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collinearity, warranting the variable’s exclusion. The method for calculating the VIF is detailed in Eq. 

(4):  325 

 𝑉𝑉𝑉𝑉𝐹𝐹𝑖𝑖 = 1
1−𝑧𝑧𝑖𝑖

2 (4) 

Where zi
2 is the coefficient of determination when the ith independent variable is regressed against 

all other independent variables. 

Pearson are used to measure the strength and direction of the linear relationship between two 

continuous variables (Pearson, 1896). This method is widely used in various fields to identify and 330 

quantify relationships between variables, understand data patterns and develop predictive models (Wei 

et al., 2022; Yan et al., 2023). The calculation method is presented below:  

 𝑟𝑟 = ∑  𝑛𝑛
𝑖𝑖=1 (𝑀𝑀𝑖𝑖−𝑀𝑀�)(𝑁𝑁𝑖𝑖−𝑁𝑁�)

�∑  𝑛𝑛
𝑖𝑖=1 (𝑀𝑀𝑖𝑖−𝑀𝑀�)2�∑  𝑛𝑛

𝑖𝑖=1 (𝑁𝑁𝑖𝑖−𝑁𝑁�)2
 (5) 

Where Mi and Ni are single sample points of variables M and N, 𝑀𝑀�  and 𝑁𝑁�  are the mean of the 

variables M and N. The correlation coefficient r ranges from ‒1 to 1. If r is greater than 0, it means that 335 

the two variables are linearly positive correlated, and vice versa. The absolute value of r, denoted as |r| 

value, measures the strength of the linear correlation: the closer |r| is to 1, the stronger the linear 

correlation between the two variables. Conversely, if the |r| value is closer to 0, there is little to no linear 

correlation between the two variables. 

Figure 3 presents the results of the multi-collinearity analysis conducted on nine land surface 340 

parameters using the two aforementioned methods. Note that the Tsa values were obtained from in-situ 

measurements which considered as “true values”, while the other eight parameters were derived from the 

GLASS product suite. As depicted in Fig. 3a (orange bars), the VIF values for DSR, FVC, Rn, and NDVI 

surpass the threshold of 10, indicating the presence of multicollinearity. Given the functional 

relationships among FVC, NDVI, and LAI, coupled with the Pearson correlation outcomes shown in 345 

Figure 3b, FVC was chosen due to its notably negative correlation (‒0.12) in comparison to LAI (0.02) 

and NDVI (‒0.05). Despite DSR exhibiting a higher Pearson coefficient than Rn, Rn was preferred for 

its applicability in nocturnal conditions and its enhanced predictive capability, potentially owing to Rn’s 

reduced uncertainty relative to DSR, as evidenced in our experimental findings. Ultimately, six land 

surface parameters were selected, with none exhibiting multicollinearity issues, as illustrated in Figure 350 

3a (green bars).  
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Figure 3. The results of the multi-collinearity analysis for nine land surface parameters using (a) the VIF 
method and (b) the Pearson method. The orange bars represent pre-filter variables, while the green bars 
represent post-filter variables. 355 

3.2.2 Modeling building  

According to the results presented in Section 3.2.1, six variables were used in estimating daily H. 

Furthermore, due to the unavailability of ABD data during the polar night, two models were developed: 

one for areas with ABD data (designated as mod1) and another for areas without ABD data (designated 

as mod2). Thus, the H estimation model is expressed mathematically as follows: 360 

 𝐻𝐻 = �𝑓𝑓(𝑇𝑇𝑇𝑇𝑇𝑇,𝐴𝐴𝐴𝐴𝐴𝐴,𝐷𝐷𝐷𝐷𝐷𝐷,𝐹𝐹𝐹𝐹𝐹𝐹,𝑅𝑅𝑛𝑛,𝐸𝐸𝐸𝐸), 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝐴𝐴𝐴𝐴𝐴𝐴
𝑓𝑓(𝑇𝑇𝑇𝑇𝑇𝑇,𝐷𝐷𝐷𝐷𝐷𝐷 ,𝐹𝐹𝐹𝐹𝐹𝐹,𝑅𝑅𝑛𝑛,𝐸𝐸𝐸𝐸), 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝐴𝐴𝐴𝐴𝐴𝐴     (6)   

Subsequently, the LSTM was used to constructed the estimated model of daily H. LSTM network, an 

extension of the traditional Recurrent Neural Network (RNN), is a feedforward network with a feedback 

loop and internal memory (Lyu et al., 2016). LSTM addresses the issues of exploding and vanishing 

gradients by incorporating memory blocks and gating mechanisms. Each layer of the network contains 365 

three gates—input, forget, and output gates—as well as a cell state (Xiong et al., 2023). This design 

allows LSTM to maintain long-term memory more effectively than RNNs, making it better suited for 

handling long-term dependencies. Further details have been provided by Ma et al (2022). In this study, 

the two LSTM models have same structure and hyper-parameters, each one was designed with one input 

layer, two LSTM layers consisting of 400 and 250 neurons, and one regression layer. The structure is 370 

illustrated in Fig.4(b). In model training stage, after extensive experimentation, the Adam optimizer was 

selected and the parameters of batch size, max epochs and learning rate were set to 16, 100 and 0.001, 

respectively. The entire process was implemented in Python platform using the LSTM module from the 
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Keras toolbox (https://github.com/keras-team/keras/), on a Microsoft Windows 10 system with 32 GB of 

memory.  375 

3.3 Comparing daily H estimated model 

Three methods were picked for their representativeness to compare with LSTM in estimating daily H, 

including RF, DBN and Transformer. The introduction to RF is provided in Section 3.2 and its optimal 

hyper-parameters setting is provided in Table.5. The details of the DBN and Transformer methods are 

described below, with their structures illustrated in Fig. 4 (c-d). 380 

Table 5. Same as Table3 but for estimating H.    

 Hyper-parameters 

 n-estimators max depth min samples split min samples leaf 

mod1 [50,10,110] (10) [10,5,50] (10) [2,5,22] (17) [2,5,22] (2) 

mod2 [10,10,100] (80) [10,5,30] (5) [2,5,22] (5) [2,5,22] (5) 

(1) Deep Belief Network 

The DBN, introduced by Hinton et al. (2006), has become one of the widely used deep learning models 

for estimating lad surface parameters (Zang et al., 2019; Li et al., 2017; Shen et al., 2020). As a Bayesian 

probabilistic generation model, DBN typically consists of multiple Restricted Boltzmann Machines 385 

(RBMs) and a backpropagation (BP) layer as Fig.4 (a) shows. The RBM, an energy-based model, 

addresses challenges like local optima and gradient vanishing by pre-training neural networks (Hinton et 

al., 2006). This is done by adjusting model parameters using contrastive divergence, ensuring the 

probability distribution of visible units closely aligns with the input data (Shen et al., 2020). An RBM 

generally consists of a visible layer and a hidden layer, with the hidden layer of one RBM acting as the 390 

visible layer for the subsequent RBM in the DBN (Shen et al., 2018). The BP layer is typically employed 

for classification or regression tasks. In this study, the batch size, activation function, network structure, 

and learning rate were optimized. Following extensive experimentation, the DBN model was constructed 

with one RBM layer and one hidden layer, and the optimal hyper-parameter combination is provided in 

Table 6. 395 

Table 6. The hyper-parameter setting for two models. The optimal parameter values for mod1 and mod2 
are listed in the last two columns  

Hyper-parameters values The optimal parameters 
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mod1 mod2 

batch size 16,32,64,128,256,512,1024,2048 32 16 

activation function Relu, Tanh, Sigmoid Relu Relu 

neurons of hidden 

layer 

16,32,64,128,256,512,1024,2048 256 128 

Learning rate 0.01,0.05,0.001,0.005 0.05 0.05 

Learning rate of RBM 0.01,0.05,0.001,0.005 0.05 0.005 

(2) Transformer 

The Transformer, introduced by Vaswani et al. (2017), is a sequence-to-sequence model based on a 

self-attention mechanism. This design enables it to focus on different parts of the input sequence 400 

simultaneously, and leads to better performance with fewer parameters in certain cases. Therefore, the 

Transformer excels at parallel processing of long sequences, which leads to significant improvements in 

training efficiency, easily capturing long-term dependencies while being less vulnerable to gradient-

related issues (Tay et al., 2020). Currently, The Transformer model and its variants have been widely 

used in time series forecasting with good results (Lim et al., 2021; Zhou et al., 2021). Typically, the 405 

Transformer is composed of an encoder-decoder structure, where both the encoder and decoder utilize 

layers of self-attention and feedforward networks. In this study, the encoder layers applied two 

transformer blocks, each containing a multi-head self-attention mechanism with 70 heads and a head size 

of 10 along with a fully connected feedforward network with 32 neurons. However, the decoder layer 

primarily utilized a Multilayer Perceptron (MLP), which was more suitable for the task. The construction 410 

of the Transformer network illustrated in Fig. 4 (b).  
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Figure 4. The structure diagram of (a) RF model, (b)LSTM, (c) Transformer model and (d) DBM model 
in this study. Add and Norm are the Residual Connection and Layer Normalization. GPA represents the 
global average-pooling operations.  415 

3.4 Evaluation approaches 

Three statistical measures were used to represent the validation accuracy: RMSE, Mean Absolute 

Error (MAE), and the coefficient of determination (R2). 

 𝑀𝑀𝑀𝑀𝑀𝑀 = ∑  𝑁𝑁
𝑖𝑖=1 |(𝑌𝑌𝑖𝑖−𝑋𝑋𝑖𝑖)|

𝑁𝑁
 (7) 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑁𝑁
∑  𝑁𝑁
𝑖𝑖=1 (𝑋𝑋𝑖𝑖 − 𝑌𝑌𝑖𝑖)2 (8) 420 

 𝑅𝑅2 = 1 − ∑  𝑁𝑁
𝑖𝑖=1 (𝑋𝑋𝑖𝑖−𝑌𝑌𝑖𝑖)2

∑  𝑁𝑁
𝑖𝑖=1 (𝑋𝑋𝑖𝑖−𝑋𝑋�)2

 (9) 

where Yi and Xi are the estimation and the measurement values of the ith group of samples, and N 

represents the number of samples.  

4 Results 

4.1 Uncertainty quantification of Tsa model 425 

As described in Section 2.1, the measurement values from 2000 to 2017 were used for training, while 

data from the subsequent two years, 2018 and 2019, served as independent validation samples to assess 

the model’s performance. Figure 5 illustrates the training and independent validation accuracy of the 

https://doi.org/10.5194/essd-2025-136
Preprint. Discussion started: 25 March 2025
c© Author(s) 2025. CC BY 4.0 License.



20 
 

estimated Tsa RF model. The overall accuracy of the estimated Tsa on independent validation samples is 

satisfactory, with an RMSE of 1.459 K, a MAE of 1.071 K, and an R2 of 0.53 (Fig. 5b). And there is a 430 

slight deviation from the training accuracy, as indicated by an increase of 0.757 K in the RMSE (Fig. 5a). 

 

Figure 5. The overall results of the (a) training and (b) independent accuracy of validation by using RF 
method during 2018-2019. 

Subsequently, the accuracy of the estimated Tsa using the RF model was compared to that of GLASS 435 

and ERA5-Land, both of which possess relatively high spatial resolution, using the same set of 

independent validation samples (n = 83,284). The Tsa values for these two products were calculated by 

subtracting Ta from LST. The estimated Tsa (Fig. 6a) achieved an RMSE of 1.46 K, a MAE of 1.073 K, 

and an R2 of 0.52, significantly outperforming GLASS and ERA5-Land (Fig. 6b and c), which yielded 

RMSEs of 2.238 K and 2.037 K, MAEs of 1.667 K and 1.394 K, and R2 values of 0.11 and 0.32, 440 

respectively. Moreover, the estimated Tsa values more closely align with the 1:1 line in the scatter plot, 

whereas GLASS Tsa displays a divergent pattern and ERA5-Land significantly underestimates values 

below 0 K. Such discrepancies likely stem from variations in land cover types, highlighting the robust 

performance of the proposed RF model in estimating Tsa.      

 445 

Figure 6. Comparison of the validation accuracy against in-situ measurements by using common samples 
in Tsa from (a) the estimated values by using RF model in this study, (b) GLASS and (c) ERA5-Land. 
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For further exploration, the validation accuracies of the estimated Tsa model and two other products 

at a daily scale were further examined across various conditions, including five elevation ranges (0‒200m, 

200‒500m, 500‒1000m, 1000‒1500m and >1500m), five NDVI ranges (0‒0.2, 0.2‒0.4, 0.4‒0.6,0.6‒0.8 450 

and 0.8‒1), six slope ranges (0-2°, 2-4°, 4-6°, 6-8°, 8-10° and >10°) and nine land cover types (BSV, 

CRO, CVM, FOR, GRA, IAS, SAV, SHR and WET). The evaluation results are presented in Fig.7. 

Overall, the RF estimated model exhibited superior accuracy in various conditions, followed by ERA5-

Land, aligning with findings from Fig. 6. In terms of terrain factors like elevation and slope (Fig. 7 a and 

g), the RF model showed significant improvements, especially within the 500–1000 m and >1500 m 455 

elevation ranges, and the 2–6° and >8° slope ranges, with RMSE improvements of approximately 1 K 

for elevation and between 0.7 K and 1.4 K for slope. Regarding NDVI (Fig.7 e), a notable improvement 

was observed in the 0–0.2 range, with an RMSE of ~1 K. These outcomes suggest that the RF model 

more accurately reflects Tsa variations influenced by vegetation and terrain, which are key factors 

mentioned in the Introduction. Additionally, the performance across different land cover types was 460 

evaluated in Fig. 7 c. The RF model performed well across all types, except for a site in CVM, which 

had an RMSE of approximately 2.2 K and an MAE of 1.8 K, slightly higher than GLASS and ERA5-

Land by 0.3 K and 0.5 K in RMSE, respectively. Among the eight land cover types evaluated, the RF 

model demonstrated exceptional performance, especially in areas with high albedo (IAS) and those 

subject to seasonal variations (WET). In these cases, ERA5-Land recorded an RMSE of approximately 465 

3.3 K for IAS, while GLASS reported around 2.9 K, implying the need for caution when applying these 

products to studies of icy regions. Regarding the BSV, the accuracy of the RF model was on par with 

ERA5-Land and surpassed that of GLASS, suggesting that the RF model and ERA5-Land effectively 

incorporate critical information.    
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 470 
Figure 7. The validation accuracy of estimated Tsa, ERA5-Land and GLASS across different conditions: 
(a) elevation within 0‒200m, 200‒500m, 500‒1000m, 1000‒1500m and >1500m, (b) land cover 
described in Fig.1, (c) NDVI with an interval of 0.2 and (d) slope with an interval of 2°. The pie charts 
in (b), (d), (f) and (h) display the corresponding sample sizes for each condition.  

In summary, the accuracy of the RF model and the two comparison products varied significantly under 475 

different conditions, with the RF model consistently outperforming the others as indicated by the lowest 

RMSE and MAE in almost all cases. Consequently, the RF model was used to generate daily Tsa values 

globally from 2000 to 2020 for the calculation of daily H. 

4.2 Evaluation of model accuracy for H estimation 

Table 7 presents the training and validation accuracy of estimated daily H from two LSTM models 480 

against in-situ measurements using the same samples. The independent validation results of two models 

were different but acceptable, with RMSEs of 25.533 and 27.051 Wm-2, MAEs of 18.641 and 20.034 

Wm-2, and R2 of 0.54 and 0.51. Compared to the training accuracy, the validation results showed a slight 

increase in RMSE (3.24 and 2.232 Wm-2) and MAE (2.147 and 1.469 Wm-2), but these differences were 
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considered acceptable. Additionally, incorporating ABD into the model improved accuracy, reducing 485 

RMSE to 1.518 Wm-2 and MAE to 1.393 Wm-2, underscoring the significance of ABD. Overall, all 

models exhibited satisfactory performance, as evidenced by their comparable training and validation 

results.      

Table 7. The training and independent validation accuracy of two LSTM models based on the same 
samples, both with and without the use of ABD data. Units of RMSE and Bias are Wm-2. 490 

 Training 
(No. of samples = 121,542) 

Independent validation 
(No. of samples = 97,982) 

 RMSE MAE R2 RMSE MAE R2 
mod1 22.293 16.494 0.71 25.533 18.641 0.54 
mod2 24.819 18.565 0.64 27.051 20.034 0.51 

Due to the lack of ABD data during the polar night, two models were developed. In the final validation 

phase, the polar night results from model 1 were substituted with those from model 2, as depicted in 

Fig.8. The overall validation accuracy was deemed satisfactory, with an RMSE of 25.54 Wm-2, MAE of 

18.649 Wm-2 and R2 of 0.54. Furthermore, the spatial distribution of the performance of daily H, 

represented by the RMSE at each validation site, was calculated and illustrated in Fig 9. It was observed 495 

that the LSTM model exhibited the highest level of robustness on a global scale, with 80% of the sites 

(107 sites) reporting an RMSE below 30Wm-2 (indicated in red and orange in Fig. 9). Nonetheless, some 

sites (eight sites) displayed suboptimal performance with RMSE values exceeding 40 Wm-2. 

 

Figure 8. The overall validation accuracy of the estimated H based on all independent in-situ validation 500 

samples. The values were obtained by replacing the results for areas with missing ABD in mod1 with 
those from mod2.  
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Figure 9. The spatial distribution of the validation accuracy of all sites (represented by RMSE). 

Afterwards, three different methods were employed to estimate H for a comparative analysis with the 505 

accuracy of the LSTM models. The independent validation results were presented in Fig. 10 based on 

the same samples as Fig.8. The three methods produced closely aligned results, with RMSE values 

ranging from 25.341 to 26.01 Wm-2, MAE values between 18.757 and 19.165 Wm-2, and R2 values from 

0.52 to 0.55, compared to the LSTM model’s RMSE of 25.54 Wm-2, MAE of 18.649 Wm-2 and R2 of 

0.54 (as shown in Fig.8). However, all models exhibited varying degrees of underestimation for high 510 

values and overestimation for low values. While this issue was particularly pronounced in the 

Transformer and RF methods, the DBN and LSTM models demonstrated relatively better performance, 

albeit with similar tendencies. Remarkably, the LSTM model surpassed the DBN model, achieving 

improvements of 0.47 Wm-2 in RMSE and 0.516 Wm-2 in MAE. To further clarify the performance of 

these models, we examined each site and randomly selected three sites to illustrate the temporal variations 515 

in the values of H based on these four methods and in-situ measurements, compared against validation 

samples. As shown in Fig.11, the LSTM model effectively captures the temporal variation of H in relation 

to in-situ measurements, while the other three models exhibit relatively poorer performance on certain 

days. A notable mismatch is observed in the RF, DBN, and Transformer models around the 268th day of 

2012 at Lath_AU-Dry (Fig.11 a), with RF displaying only a single value and the other two methods 520 

showing underestimation on those days. Furthermore, RF and DBN exhibit opposing trends comparing 

to in-situ measurements during the 152nd and 218th days of 2011 at Lath_US-SRC (Fig.11 c). The 

variations of the four models at Lath_US-Dia (Fig.11 b) generally coincide with in-situ measurements, 
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but RF shows slight overestimation around the 248th day of 2011 and DBN underestimates before the 

196th day of 2012. Therefore, the LSTM model demonstrated superior performance, effectively 525 

mitigating the challenges of overestimating low values and underestimating high values in this study, 

likely due to its incorporation of time series information.         

 

Figure 10. Validation accuracy against in-situ measurements using the common validation samples as 
LSTM for (a) DBN, (b) RF and (c) Transformer methods. 530 

 

Figure 11. Temporal variations in the values of H based on the LSTM (red line), DBN (purple line), RF 
(blue line), Transformer (green line) and in-situ measurements (black dot) using the validation samples 
at (a) Lath_AU-Dry, (b) Lath_US-Dia and (c) Lath_US-SRC. Note that the time given on the abscissa is 
not continuous in (a)―(c)    535 

In summary, the LSTM models employed for estimating daily H, which integrate the estimated Tsa 
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and other GLASS products, have shown satisfactory accuracy. Consequently, this method is deemed 

appropriate for global 1km resolution mapping of daily H, establishing it as a viable and dependable 

approach for these applications.  

4.3 Daily H product generation 540 

In this study, daily H estimates were generated globally for the period 2000–2020 by integrating two 

LSTM models. Specifically, mod2 was applied under polar night conditions when ABD data were 

unavailable. To assess the accuracy of the estimated H, we examined its spatial and temporal variations 

and compared the daily estimated H values with other existing products, as outlined below.  

4.3.1 The spatial and temporal variation of H 545 

Figure 12 presents the results of calculating monthly average values across different latitude zones 

with a 10° range for all years. It reveals that the variation in H demonstrates distinct seasonal patterns, 

with higher values observed during the summer months in both hemispheres. This trend aligns with Tsa 

variations, highlighting the impact of solar radiation on surface properties, which in turn affects the 

energy balance and flux dynamics (Jiang et al., 2022). Specifically, high H values are found in three 550 

regions: between 30‒60°N from May to August, 20‒50°S from January to March, and 10‒50°S from 

October to December, peaking in January (82.15 Wm-2) at 40‒50°S. Conversely, winter months at higher 

latitudes exhibit low values, with the lowest recorded in June (‒3.8 Wm-2) at 60‒70°S. Generally, H 

values in polar regions remain below 15 Wm-2, occasionally dropping below 0 Wm-2. Nevertheless, in 

March, April, and September, H values surpass 40 Wm-2 around 80°S. The scarcity of observation sites 555 

in polar regions might increase uncertainty in our models, particularly in the South Pole region (>70°S), 

thus caution is advised when using H values.  
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Figure 12. Variation of monthly H in latitude zones (10°) and months zones from 2000‒2020.  

To better illustrate the spatial and temporal variations in global H during 2000‒2020, Fig. 13 displays 560 

the anomaly values of land surface H across latitude zones (1°) for each day. There is a clear annual 

pattern influenced by the sun’s position evident across these years. The position of the sun directly 

influences the distribution of DSR, which in turn affects Tsa, and ultimately altering the distribution of 

H. Additionally, a distinct cyclic trend is noticeable in both latitudinal and temporal variations, reflecting 

seasonal changes across latitudinal zones and underscoring dynamic shifts in H distribution over time. 565 

These shifts may result from a combination of regional climatic changes, land surface properties, and 

interactions with atmospheric processes. These findings underscore the importance of long-term satellite-

based remote sensing for capturing spatiotemporal variations in land-atmosphere energy exchanges. Such 

observations are essential for understanding the mechanisms behind energy flux dynamics and their 

sensitivity to environmental and climatic changes.  570 

 
Figure 13. The anomalies of land surface H in latitude zones (1°) at daily scales from 2000‒2020.  

In summary, the spatial and temporal variations observed in the estimated H data align with theoretical 

expectations, yet they necessitate further validation. To this end, we conducted a comparison of the 

estimated H with other existing products to provide a more thorough evaluation. 575 
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4.3.2 Inter-comparison with other products 

Three reanalysis products (MERRA2, ERA5 and ERA5-Land) and one remotely sensed-based product 

(FLUXCOM) were further compared. Fig. 14 (a1-a5) illustrates the spatial distributions of these four 

products and the estimated H on the 121st day of 2010 at a global scale. The spatial distribution of the 

estimated H is logical and closely resembles that of MERRA2, ERA5-Land, and ERA5, while 580 

FLUXCOM exhibits relatively lower values compared to the other products. Additionally, we provide a 

further comparison of the estimated H values with other products in the Tibetan Plateau region, 

characterized by its complex terrain, as shown in Fig. 14 (b1-b5), corresponding to the black box in Fig. 

14 (a1-a5). The spatial distribution of the three reanalysis products is noticeably smoother than that of 

the estimated H, and FLUXCOM lacks most data in this region. The estimated H effectively captures the 585 

intricate details of the rugged terrain, thanks to its higher spatial resolution, a detail that is not as 

prominently reflected in the other four products (Fig.14 c1-c5). This comparison highlights the 

importance of high-resolution H products for accurately depicting complex landscapes.   
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Figure 14. (a1-a5) display the daily values on the 121th day of 2010 for the estimated H, FLUXCOM, 590 

MERRA2, ERA5-Land and ERA5. The black box in (a1-a5) represents the location of (b1-b5) and (c1-
c5) is the location of black box in (b1-b5). 

Figure 14 reveals significant discrepancies in the estimated H values in certain areas when compared 

to the other products. Therefore, we further employ in-situ measurements to evaluate the accuracy of the 

estimated H values in the subsequent sections. To ensure spatial consistency, all products were 595 

interpolated to a resolution of 1 km. FLUXCOM_RS was evaluated separately as it is the sole publicly 

available global remote sensing product that offers an 8-day temporal resolution spanning from 2001 to 

2015. In contrast, the reanalysis products feature higher temporal resolutions (hourly) and encompass a 

broader timeframe (1950 to the present). 
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4.3.2.1 Reanalysis products  600 

Figure 15 illustrates the performance of the estimated H values in comparison to three reanalysis 

products (MERRA2, ERA5 and ERA5-Land), utilizing 97,045 independent validation samples. The 

independent validation results show that the estimated H values outperformed those of the three 

reanalysis products, achieving the lowest RMSE of 26.587 Wm-2 and MAE of 19.191 Wm-2. Remarkably, 

the estimated H exhibited significantly lower uncertainty compared to the other products, with reductions 605 

in RMSE of 9.351, 5.497 and 4.573 Wm-2 and in MAE of 6.996, 4.342 and 3.562 Wm-2 for MERRA2, 

ERA5-Land and ERA5, respectively. Moreover, the estimated H demonstrated enhanced accuracy for 

values approaching zero, in contrast to the significant uncertainty observed in the reanalysis products for 

small H values, potentially indicative of winter conditions (highlighted by the red circles in the Fig. 15 

b, c and d). These findings suggest that caution is advised when employing MERRA2, ERA5, and ERA5-610 

Land for small absolute H values.     

 
Figure 15. Comparison of the validation accuracy against in-situ measurements by using common 
samples in H from (a) the estimated H in this study, (b) MERRA2 and (c) ERA5-Land and (d) ERA5. 

Additionally, to provide a more comprehensive evaluation, we compared the performance of the 615 

estimated daily H using validation samples against three other products across seven land cover types. 

The comparison results, depicted in Fig. 16(a‒c), include RMSEs, MAEs, and R² values, while Fig. 16(d) 
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provides the sample sizes for each land cover category. These results demonstrate that the accuracy of 

the estimated H varies by land cover type, with RMSEs ranging from 23.87 to 32.39 Wm-2, MAEs from 

17.66 to 23.21 Wm-2, and R2 from 0.31 to 0.58. Overall, the estimated daily H outperformed the three 620 

other datasets, followed by ERA5 (with RMSEs between 19.05 and 42.12 Wm-2 and MAEs between 

14.61 and 31.58 Wm-2), ERA5-Land (with RMSEs between 20.19 and 48.46 Wm-2 and MAEs between 

15.72 and 36.34 Wm-2) and MERRA2 (with RMSEs between 28.11 and 54.42 Wm-2 and MAEs between 

21.47 and 39.46 Wm-2). Specifically, the estimated daily H exhibited superior performance for land cover 

types such as WET (27.38 Wm-2 in RMSE and 19.71 Wm-2 in MAE), SHR (25.29 Wm-2 in RMSE and 625 

18.72 Wm-2 in MAE), GRA (23.87 Wm-2 in RMSE and 17.66 Wm-2 in MAE), FOR (27.86 Wm-2 in 

RMSE and 19.78 Wm-2 in MAE), and CRO (26.37 Wm-2 in RMSE and 19.51 Wm-2 in MAE), with the 

RMSE and MAE values significantly lower than those of ERA5, ERA5-Land and MERRA. However, 

the estimated daily H showed marginally lower performance for SAV and BSV, with all datasets yielding 

relatively similar RMSEs (ranging from 25.29 to 29.7 Wm-2) and MAEs (from 18.72 to 22.15 Wm-2). 630 

This indicates that the estimation methods produce comparable results for these specific land cover types.  

 
Figure 16. The (a) RMSE, (b) Bias, (c)R2 of LSTM model with ERA5, ERA5-Land and MERRA2 in 
various land cover types. The corresponding sample size in different land cover provided in (d). 

To further assess the performance across different regions, we compared the daily H estimates with 635 

other datasets using in-situ measurements across six continents, as illustrated in Fig. 17 (a1-a6). The 

comparison reveals that the estimated H achieved commendable performance in North America, Europe, 

Asia, and Australia, with RMSEs of 26.55, 27.15, 25.87, and 26.63 Wm-2, respectively. Notably, the 
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RMSEs associated with the estimated H decreased significantly comparing with other three products, 

ranging from 5.14 to 10.21 Wm-2 in North America, 4.36 to 6.02 Wm-2 in Europe, 7.04 to 21.5 Wm-2 in 640 

Asia, and 2.42 to 8.48 Wm-2 in Australia. Conversely, the estimated H exhibited weaker performance in 

South America and Africa, where the validation was constrained to a limited number of sites—

specifically, one site (N = 548) in South America and two sites (N = 1048) in Africa, as shown in Fig. 9 

and Fig. 17(a7). In South America, the estimated H reported an RMSE of 19.12 Wm-2, with ERA5 

outperforming other datasets by achieving the lowest RMSE of 12.09 Wm-2. In Africa, the difference in 645 

RMSE between the estimated H and MERRA2 was minimal, at merely 3.03 Wm-2, whereas the greatest 

discrepancy was noted with ERA5-Land, which exhibited a difference of 6.53 Wm-2.      

 

Figure 17. The RMSE values for four datasets across six continents: (a1) North America, (a2) South 
America, (a3) Europe, (a4) Africa, (a5) Asia, and (a6) Australia. A-D represent the estimated H, ERA5, 650 

ERA5-Land, and MERRA2, respectively. (a7) shows the corresponding sample sizes for each continent.  

4.3.2.2 FLUXCOM 

The H estimates derived from LSTM were compared with the sole publicly remotely sensed-based 

product, FLUXCOM, through independent validation samples spanning 2001 to 2015 (as shown in 

Fig.18). The accuracy of the H estimates surpassed that of FLUXCOM, as evidenced by lower RMSE 655 

and MAE values of 24.5 and 18.14 Wm-2, respectively, in comparison to FLUXCOM’s RMSE and MAE 

of 29.21 and 21.82 Wm-2 (Figure 18, panels a1 and b1). Furthermore, the majority of sites with estimated 

H exhibited RMSE values below 30 Wm-2, predominantly located in Eastern Asia, European, Eastern 

American, and the Northern and Southeastern regions of Australia, as depicted in Fig. 18 a2 and b2. In 
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contrast, the spatial distribution of FLUXCOM demonstrated significant variability across continents, 660 

with RMSE values ranging from 10 to approximately 40 Wm-2 even within the same continent or adjacent 

regions.   

 
Figure 18. The overall validation accuracy against in-situ measurements by using common samples from 
(a1) the estimated H in this study and (b1) FLUXCOM_RS. (a2) and (b2) show their corresponding 665 

spatial distribution of site overall validation accuracy (represented by RMSE). 

Based on the preceding results, the estimated H exhibits superior performance compared to 

FLUXCOM. To ensure a more thorough evaluation, we further assessed the validation accuracy of both 

products across various months, land-cover types, and elevation ranges, utilizing the same samples 

depicted in Fig. 18. Here, we present the RMSE values, which have been determined to accurately reflect 670 

the performance in each scenario following an extensive evaluation. Overall, the accuracy of both 

products exhibited variability under different conditions, yet the estimated H consistently surpassed 

FLUXCOM in all scenarios. Figure 19a reveals a distinct seasonal variation in accuracy, characterized 

by reduced RMSE values in the winter months and increased values during the summer. A similar trend 

was observed for Rn, which informed the derivation of H in this study (Yin et al., 2023). This seasonal 675 

fluctuation is likely due to seasonal differences in cloud cover and water vapor content, which influence 

radiation estimates and thus affect the H estimates. The disparity in RMSE values between the two 

products ranged from 1.86 to 7.5 Wm-2, with the most significant differences noted in May and June. For 
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different land-cover types (Fig. 19 b), the estimated H demonstrated stable performance, with RMSE 

values ranging from 24 to 30 Wm-2, indicating that the LSTM method effectively captured the features 680 

of each land cover type. In terms of accuracy for CRO and GRA, both products were comparable, with 

a nominal RMSE disparity of approximately 1.5 Wm-2. However, both products demonstrated relatively 

weaker performance in SHR, with RMSEs of 29.78 Wm-2 for the estimated H and 34.94 Wm-2 for 

FLUXCOM. Notably, the estimated H achieved significant improvements in WET and FOR, with RMSE 

improvements of 7.67 Wm-2 and 6 Wm-2, respectively. The comparison of accuracy across five elevation 685 

ranges is depicted in Fig. 19c. With increasing elevation, the accuracy of both products diminished. In 

regions exceeding 1500 m in elevation, the RMSE values reached 30.38 Wm-2 for the estimated H and 

35.09 Wm-2 for FLUXCOM. Conversely, at elevations below 1500 m, the estimated H maintained a more 

consistent performance, with RMSE values spanning from 23.11 to 25.25 Wm-2, in contrast to the RMSE 

values of FLUXCOM, which varied from 26.17 to 32.05 Wm-2. 690 

 

Figure 19. Comparison of the validation accuracy (represented by RMSE) in H under three conditions: 
(a) twelve months, (b) land-cover types and (c) elevation ranges (200m, 200‒500m, 500‒1000, 1000‒
1500m, and >1500m) 

Overall, the daily H estimates over a 1 km resolution from 2000 to 2020, derived through the 695 

application of LSTM models based on calculated Tsa, exhibit significant potential for broad application. 

This potential arises from their commendable accuracy and their proficiency in capturing surface 

characteristics, as compared to other existing products.  
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5 Discussion  

Global H products encounter limitations, including coarse spatial resolution and significant 700 

uncertainties. Given that Tsa is a crucial factor in deriving H, this study employs it to obtain H. 

Nevertheless, the accuracy of Tsa calculations frequently suffers when derived from existing datasets by 

subtracting Ta from the LST. To overcome this limitation, we employed the RF method to estimate daily 

Tsa on a global scale from 2000 to 2020, incorporating atmospheric and surface factors. Subsequently, 

we utilized two LSTM models to generate global daily estimates of H for the same period, based on the 705 

RF-estimated Tsa and additional GLASS products. The performance of both RF and LSTM models is 

comprehensively assessed in Section 4, including benchmarking against various datasets and 

methodologies under diverse conditions. For contextual comparison, we determined the global average 

land surface H to be 35.29±0.71 Wm-2 over the 2000‒2020 period, surpassing the previously reported 

estimates of 27 Wm-2 by Trenberth et al. (2009) and 32 Wm-2 by Jung et al. (2019) , and aligning closely 710 

with the 36-40 Wm-2 range reported by Siemann et al.(2018). Despite these advancements, certain aspects 

still require discussion, particularly regarding the optimal selection of input data for estimating Tsa and 

the application of accurate Tsa. 

Existing research indicates that Tsa is affected by a blend of atmospheric and surface factors (Feng 

and Zou, 2019). Theoretically, when the spatial resolution of terrain is finer than 5 km, it can modify the 715 

distribution of DSR and DLW reaching the land surface (Wang et al., 2004; Liang et al., 2024), which in 

turn influences the distribution of LST. Variations in LST, driven by differences in terrain characteristics 

and land cover types, can warm the atmosphere, altering atmospheric conditions and consequently 

affecting radiation variation. In this study, we utilized terrain, vegetation, and radiation-related variables 

to estimate daily Tsa on a global scale. The relative importance of each variable within the RF model was 720 

quantified and ranked, with the findings detailed in Fig. 20. Among the variables analyzed, the NDVI, as 

a key vegetation parameter, exhibited the highest relative importance score of 25.2%. This underscores 

its pivotal role in estimating Tsa. Subsequent contributors included slope, LST, elevation, and DSR, with 

respective importance scores of 16.38%, 15.17%, 12.96%, and 11.16%. These findings suggest that both 

terrain and radiation-related variables are integral to accurately estimating Tsa. Notably, slope and 725 

elevation were more critical than the other terrain-related variable, aspect, which accounted for 7.37%. 

Similarly, LST and DSR proved to be more impactful than DLW, which held a contribution of 4.98%.  
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Figure 20. The relative importance (%) of each variable in RF model. 

Moreover, Tsa is pivotal in influencing various land processes, boundary layer dynamics, weather 730 

forecasting, climate studies, and atmospheric profile retrievals. Its critical role extends to understanding 

atmospheric circulation, weather patterns, agricultural productivity, and ecological systems (Ghent et al., 

2015; Zhang et al., 2014a). Previous studies have highlighted Tsa’s significant influence on summer 

precipitation in the middle and lower Yangtze River (Liu et al., 2009; Zhou and Huang, 2006), and its 

application in assessing soil desertification (Ai and Guo, 2003). Moreover, Tsa is instrumental in 735 

reflecting various crop development stages, such as seed germination, seedling emergence, and 

photosynthesis, and affects soil microbial activity and the prevalence of crop diseases and pests (Gu et 

al., 2012). Additionally, it serves as a crucial parameter in process-based Earth system models, indicating 

the intensity of land-atmosphere interactions, energy fluxes, and driving key ecological and biophysical 

processes (Lensky et al., 2018; Qiang et al., 2011). The estimation of Tsa in this study further facilitates 740 

the accurate derivation of Ta values. We estimated daily Ta globally by subtracting the estimated Tsa 

from the GLASS LST product. For validation, we compared our Ta estimates with those from GLASS 

Ta using the same set of validation samples (No. of samples = 84,771. As depicted in Fig.21, the 

estimation Ta achieved an RMSE of 2.621 K, a MAE of 1.971 K, and an R2 of 0.95, demonstrating 

competitive accuracy compared to GLASS Ta (RMSE = 2.307 K, MAE = 1.692 K, R2 = 0.96). These 745 

results underscore the critical role of Tsa in a wide range of environmental and agricultural applications, 

highlighting its significant potential for global Ta estimation and further validating the accuracy of the 

Tsa model. 
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Figure 21. The direct validation result of Ta estimated by (a) GLASS Ta and (b) derived from GLASS 750 

LST and the estimated Tsa against in-situ measurements.  

On the other hand, we investigated whether the estimated daily Tsa could enhance the accuracy of 

daily H values obtained from the physical model mentioned in the Introduction, compared to other data 

sources typically employed in existing research. To evaluate the uncertainty introduced by varying Tsa 

data sources, we calculated daily H using the temperature-derived method in Eq. (10): 755 

  𝐻𝐻 = 𝜌𝜌𝐶𝐶𝑃𝑃(𝑇𝑇0 − 𝑇𝑇𝑎𝑎)/𝑟𝑟𝑎𝑎ℎ (10) 

 r𝑎𝑎ℎ = 1
𝑘𝑘𝑢𝑢∗

[ln((𝑧𝑧𝑚𝑚‒d)
𝑧𝑧𝑜𝑜𝑜𝑜

)‒𝛹𝛹(h)  +  ln(𝑧𝑧𝑜𝑜𝑜𝑜
𝑧𝑧𝑜𝑜ℎ

)] (10a) 

Where ρ (kg/m3) is the air density, Cp (J/kg/K) is the specific heat capacity of air at constant pressure 

(1013), rah is the aerodynamic resistance to heat transfer, zom (m) is roughness length for momentum 

transport, k is the von Karman’s constant (0.41), u* is friction velocity, d is zero plane displacement 760 

height, zm (m) is the reference height, zoh is the roughness length for heat and related to the aerodynamic 

parameter KB−1 and zom (KB−1 = ln(zom/zoh)), Ψ(h) represent the stability correction functions for heat, 

T0‒Ta represents the Tsa and data were obtained from GLASS with 1 km resolution, estimated 1 km Tsa 

using a random forest (RF) model, and in-situ measurements.  

Table 8 presents the results of daily H calculated from physical model by using different data sources. 765 

A total of 3,391 independent validation samples were acquired. Note that the uncertainty associated with 

𝑟𝑟𝑎𝑎ℎ and 𝜌𝜌𝐶𝐶𝑃𝑃 were not addressed in this study. Overall, using GLASS and estimated Tsa resulted in 

uncertainties of 13.5% and 5.3%, respectively, with RMSEs of 58.28 Wm-² and 54.08 Wm-², compared 

to Tsa from in-situ measurements (RMSE = 51.35 Wm-²). Additionally, the uncertainty varied across 

different land cover types, as shown in Table 8. Utilizing Tsa from GLASS and estimated Tsa, uncertainty 770 

ranged from 6.01% to 23.1%, with the highest and lowest uncertainties observed in GLASS for FOR and 

SAV, yielding RMSEs of 65.72 Wm-² and 59.45 Wm-², respectively. However, for certain land cover 
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types such as CRO and GRA, lower RMSEs were noted when employing Tsa from GLASS and estimated 

Tsa compared to in-situ measurements, specifically. Specially, the RMSEs were 35.62 Wm-² and 46.2 

Wm-² for CRO, and 46.14 Wm-² and 45.76 Wm-² for GRA. Moreover, across all five land cover types, 775 

RMSE values consistently exceeded 35 Wm-² when utilizing different Tsa data sources. This could be 

due to the fact that the uncertainty of parameterized method in getting 𝑟𝑟𝑎𝑎ℎ  was not accounted for. 

Therefore, accurately estimating 𝑟𝑟𝑎𝑎ℎ is curial in physical model and the machine learning method used 

in this study effectively mitigates this issue after our experiments.  

Table 8. The RMSE values of daily H calculated from physical model across five land cover types using 780 

the Tsa obtained from GLASS, Estimated Tsa and in-situ measurements.  

Land cover 
Data source of Tsa 

No. of samples 
GLASS Estimated Tsa sites 

CRO 35.62 46.2 46.25 385 
FOR 65.72 57.46 53.4 1894 
GRA 46.14 45.76 47.16 648 
SAV 59.45 62.04 56.08 369 
SHR 41.44 26.35 34.95 95 

6 Data availability 

The daily mean values for the first three days of each year can be freely downloaded from 

https://doi.org/10.5281/zenodo.14986255 (Liang et al., 2025), and the complete products will be 

available to the public at www.glass.hku.hk as soon as the manuscript is accepted. 785 

7 Conclusions  

To address the shortage of high-resolution and accurate data on daily land surface H, we 

employed LSTM deep learning model to produce a global daily H dataset at a resolution of 1 km for the 

years 2000–2020. Additionally, due to the unavailability of ABD data during the polar night, we 

developed two LSTM model: one that utilizes ABD data and another that does not. Recognizing that Tsa 790 

is a crucial driver of H and that significant uncertainty arises from the method of subtracting Ta from the 

LST, we introduced RF-based refined Tsa values to enhance the accuracy of H, in conjunction with five 

other GLASS products, including ABD, FVC, DLW, ET and Rn. The estimation process for Tsa 

integrated variables related to vegetation (NDVI), terrain (slope, aspect, and elevation), and radiation 

(DSR and DLW). Validation against ground measurements demonstrated that this process for obtaining 795 
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H is more effective than other methods and products. It successfully addressed the underestimation of 

high H values and the overestimation of low H values, potentially due to the incorporation of time series 

information. When compared to the sole satellite-based H product, FLUXCOM, this method achieved 

the lowest RMSE of 24.5 Wm-2 and MAE of 18.14 Wm-2, while FLUXCOM exhibited an RMSE of 

29.21 Wm-2 and MAE of 21.82 Wm-2. Furthermore, it demonstrated significant improvements over three 800 

other reanalysis products, with RMSE reductions of 9.351, 4.573, and 5.497 Wm-2 and MAE reductions 

of 6.996, 3.562, 4.34 Wm-2 for MERRA2, ERA5, and ERA5-Land, respectively. Several conclusions can 

be drawn based on the results of this study: (1) H variation exhibits clear seasonal patterns akin to those 

of Tsa. (2) The estimated H offer more detailed insights into heterogeneous surfaces. (3) The RF-based 

refined Tsa demonstrated commendable and more robust performance. (4) Terrain significantly 805 

influences Tsa estimation, with slope being the most crucial terrain-related factor. (5) The uncertainty in 

the physical model was 13.5% using GLASS and 5.3% with estimated Tsa.  

Overall, the daily H estimates derived from the LSTM method have demonstrated accuracy following 

extensive validation across diverse conditions and various products. However, significant uncertainties 

persist in the South Pole region (latitude greater than 70°S) due to data scarcity, and efforts are being 810 

made to enhance the performance in these areas. 

Author contributions 

HL and SL contributed to the design of this study and developed the overall methodology. HL carried 

out the experiment and produced the product. SL supervised the research. HL wrote the first draft. All 

the co-authors reviewed and revised the manuscript. 815 

Competing Interest  

The authors declare that they have no conflict of interest. 

Acknowledgements 

This work was supported by the National Natural Science Foundation of China (Grant number: 

42090011). The authors gratefully acknowledge the ECMWF team for providing the ERA5 series 820 

product, the GLASS team for the GLASS product suite, the NASA team for MERRA2 and FLUXCOM 

https://doi.org/10.5194/essd-2025-136
Preprint. Discussion started: 25 March 2025
c© Author(s) 2025. CC BY 4.0 License.



40 
 

team. We thank the various networks/programs for providing in-situ measurements, including ARM, 

AsiaFlux, BSRN, IMAU, Lathuile (including FLUXNET and AmeriFlux), PROMICE, SURFRAD and 

TPDC. We also acknowledge data support from the "National Earth System Science Data Center, 

National Science & Technology Infrastructure of China" (http://www.geodata.cn). During the preparation 825 

of this manuscript, the authors utilized ChatGPT to enhance the language clarity and readability of the 

text. All content generated by the AI tool was rigorously reviewed and edited by the authors to ensure 

scientific accuracy and adherence to the original research intent. 

Reference 

Ai, L. and Guo, w.: The desertification over North China through comparing the long-time variation of 830 

air temperature and 0 cm soil temperature, Acta Geographica Sinica, 108-116, 
https://doi.org/10.11821/xb20037s013, 2003. 
Anderson, M., Norman, J., Mecikalski, J., Otkin, J., and Kustas, W.: A climatological study of 
evapotranspiration and moisture stress across the continental United States based on thermal remote 
sensing: 1. Model formulation, Journal of Geophysical Research, 112, 835 

https://doi.org/10.1029/2006JD007506, 2007. 
Anderson, M. C., Norman, J. M., Diak, G. R., Kustas, W. P., and Mecikalski, J. R.: A two-source time-
integrated model for estimating surface fluxes using thermal infrared remote sensing, Remote Sensing of 
Environment, 60, 195-216, https://doi.org/10.1016/S0034-4257(96)00215-5, 1997. 
Asdak, C., Jarvis, P. G., van Gardingen, P., and Fraser, A.: Rainfall interception loss in unlogged and 840 

logged forest areas of Central Kalimantan, Indonesia, Journal of Hydrology, 206, 237-244, 
https://doi.org/10.1016/S0022-1694(98)00108-5, 1998. 
Ashish Vaswani, N. S., Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia 
Polosukhin: Attention Is All You Need, Advances in Neural Information Processing Systems, 
https://doi.org/10.48550/arXiv.1706.03762, 2017. 845 

Babar, B., Luppino, L. T., Boström, T., and Anfinsen, S. N.: Random forest regression for improved 
mapping of solar irradiance at high latitudes, Solar Energy, 198, 81-92, 
https://doi.org/10.1016/j.solener.2020.01.034, 2020. 
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, 
K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, J., 850 

Oechel, W., and Richardson, F.: FLUXNET: A New Tool to Study the Temporal and Spatial Variability 
of Ecosystem–Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities, ©2001 American 
Meteorological Society, 82, https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2, 
2001. 
Bartlett, M. G., Chapman, D. S., and Harris, R. N.: A Decade of Ground–Air Temperature Tracking at 855 

Emigrant Pass Observatory, Utah, Journal of Climate, 19, 3722-3731, 
https://doi.org/10.1175/JCLI3808.1, 2006. 
Beamesderfer, E. R., Biraud, S. C., Brunsell, N. A., Friedl, M. A., Helbig, M., Hollinger, D. Y., Milliman, 
T., Rahn, D. A., Scott, R. L., Stoy, P. C., Diehl, J. L., and Richardson, A. D.: The role of surface energy 

https://doi.org/10.5194/essd-2025-136
Preprint. Discussion started: 25 March 2025
c© Author(s) 2025. CC BY 4.0 License.



41 
 

fluxes in determining mixing layer heights, Agricultural and Forest Meteorology, 342, 860 

https://doi.org/10.1016/j.agrformet.2023.109687, 2023. 
Beljaars, A.: The parametrization of surface fluxes in large‐scale models under free convection, Quarterly 
Journal of the Royal Meteorological Society, 121, 255-270, https://doi.org/10.1002/qj.49712152203, 
1995. 
Berrisford, P., Dee, DP, Poli, P, Brugge, R, Fielding, M, Fuentes, M, Kållberg, PW, Kobayashi, S, Uppala, 865 

S,: The ERA-Interim archive Version 2.0, report, 2011. 
Breiman, L.: Bagging predictors, Machine Learning, 24, 123-140, 
https://doi.org/10.1023/A:1018054314350, 1996. 
Brutsaert, W.: Evaporation into the atmosphere: theory, history and applications, Springer Science & 
Business Media, https://doi.org/10.1029/EO063i051p01223-04, 2013. 870 

Buchard, V., Randles, C. A., da Silva, A. M., Darmenov, A., Colarco, P. R., Govindaraju, R., Ferrare, R., 
Hair, J., Beyersdorf, A. J., Ziemba, L. D., and Yu, H.: The MERRA-2 Aerosol Reanalysis, 1980 Onward. 
Part II: Evaluation and Case Studies, Journal of Climate, 30, 6851-6872, https://doi.org/10.1175/jcli-d-
16-0613.1, 2017. 
Cermak, V. and Bodri, L.: Attribution of precipitation changes on ground–air temperature offset: Granger 875 

causality analysis, International Journal of Earth Sciences, 107, https://doi.org/10.1007/s00531-016-
1351-y, 2016. 
Chehbouni, A., Nouvellon, Y., Lhomme, J. P., Watts, C., Boulet, G., Kerr, Y. H., Moran, M. S., and 
Goodrich, D. C.: Estimation of surface sensible heat flux using dual angle observations of radiative 
surface temperature, Agricultural and Forest Meteorology, 108, 55-65, https://doi.org/10.1016/S0168-880 

1923(01)00221-0, 2001. 
Chen, Y., Liang, S., Ma, H., Li, B., He, T., and Wang, Q.: An all-sky 1 km daily land surface air 
temperature product over mainland China for 2003–2019 from MODIS and ancillary data, Earth System 
Science Data, 13, 4241-4261, https://doi.org/10.5194/essd-13-4241-2021, 2021. 
Cheng, J. and Liang, S.: Estimating global land surface broadband thermal-infrared emissivity using 885 

advanced very high resolution radiometer optical data, International Journal of Digital Earth, 6, 34, 
https://doi.org/10.1080/17538947.2013.783129, 2013. 
Cheng, J., Liang, S., Verhoef, W., Shi, L., and Liu, Q.: Estimating the Hemispherical Broadband 
Longwave Emissivity of Global Vegetated Surfaces Using a Radiative Transfer Model, IEEE 
Transactions on Geoscience and Remote Sensing, 54, 905, https://doi.org/10.1109/TGRS.2015.2469535, 890 

2016. 
Colaizzi, P., Agam, N., Tolk, J., Evett, S., Howell, T., Gowda, P., O'Shaughnessy, S., Kustas, W., and 
Anderson, M.: Two-Source Energy Balance Model to Calculate E, T, and ET: Comparison of Priestley-
Taylor and Penman-Monteith Formulations and Two Time Scaling Methods, Transactions of the ASABE 
(American Society of Agricultural and Biological Engineers), 57, 479-498, 895 

https://doi.org/10.13031/trans.57.10423, 2014. 
Costa-Filho, E., Chávez, J. L., Zhang, H., and Andales, A. A.: An optimized surface aerodynamic 
temperature approach to estimate maize sensible heat flux and evapotranspiration, Agricultural and 
Forest Meteorology, 311, https://doi.org/10.1016/j.agrformet.2021.108683, 2021. 
Danielson, J. and Gesch, D.: Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010), 900 

https://doi.org/10.3133/ofr20111073, 2011. 
Decker, M., Brunke, M. A., Wang, Z., Sakaguchi, K., Zeng, X., and Bosilovich, M. G.: Evaluation of the 
Reanalysis Products from GSFC, NCEP, and ECMWF Using Flux Tower Observations, Journal of 

https://doi.org/10.5194/essd-2025-136
Preprint. Discussion started: 25 March 2025
c© Author(s) 2025. CC BY 4.0 License.



42 
 

Climate, 25, 1916-1944, https://doi.org/10.1175/JCLI-D-11-00004.1, 2012. 
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, 905 

M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., 
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. 
V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, 
J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N., and Vitart, F.: The ERA-Interim 
reanalysis: configuration and performance of the data assimilation system, Quarterly Journal of the Royal 910 

Meteorological Society, 137, 553-597, https://doi.org/10.1002/qj.828, 2011. 
Feng, H. and Zou, B.: A greening world enhances the surface-air temperature difference, Sci Total 
Environ, 658, 385-394, https://doi.org/10.1016/j.scitotenv.2018.12.210, 2019. 
Gelaro, R., McCarty, W., Suarez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C., Darmenov, A., 
Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., 915 

Conaty, A., da Silva, A., Gu, W., Kim, G. K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, 
G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-
Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), J Clim, Volume 30, 
5419-5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017. 
Ghent, D., Veal, K. L., Taylor, C., and Gallego-Elvira, B.: Relating trends in land surface skin-air 920 

temperature difference to soil moisture and evapotranspiration, AGU Fall Meeting Abstracts, December 
01, 20152015. 
Gordon, L., Steffen, W., Jönsson, B., Folke, C., Falkenmark, M., and Johannessen, Å.: Human 
Modification of Global Water Vapor Flows From the Land Surface, Proceedings of the National Academy 
of Sciences of the United States of America, 102, 7612-7617, https://doi.org/10.1073/pnas.0500208102, 925 

2005. 
Gu, X., Zhang, Y., and Huang, D.: Temporal and spatial characteristics of soil-air temperature difference 
(Ts-Ta) in southeast Guizhou last 50 years, Chinese Journal of Agrometeorology, 33, 71-77+85, 2012. 
Hatfield, J., Reginato, R., and Idso, S. B.: Evaluation of canopy temperature—evapotranspiration models 
over various crops, Agricultural and Forest Meteorology, 32, 41-53, https://doi.org/10.1016/0168-930 

1923(84)90027-3, 1984. 
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, 
C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., 
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., 
Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., 935 

Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., 
Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Quarterly Journal of the 
Royal Meteorological Society, 146, 1999-2049, https://doi.org/10.1002/qj.3803, 2020. 
Hinton, G., Osindero, S., and Teh, Y.-W.: A Fast Learning Algorithm for Deep Belief Nets, Neural 
computation, 18, 1527-1554, https://doi.org/10.1162/neco.2006.18.7.1527, 2006. 940 

Jia, K., Liang, S., Liu, S., Li, Y., Xiao, Z., Yao, Y., Jiang, B., Zhao, X., Wang, X., Xu, S., and Cui, J.: 
Global Land Surface Fractional Vegetation Cover Estimation Using General Regression Neural 
Networks from MODIS Surface Reflectance, IEEE Transactions on Geoscience and Remote Sensing, 53, 
4787, https://doi.org/10.1109/TGRS.2015.2409563, 2015. 
Jiang, B., Han, J., Liang, H., Liang, S., Yin, X., Peng, J., He, T., and Ma, Y.: The Hi-GLASS all-wave 945 

daily net radiation product: Algorithm and product validation, Science of Remote Sensing, 7, 
https://doi.org/10.1016/j.srs.2023.100080, 2023. 

https://doi.org/10.5194/essd-2025-136
Preprint. Discussion started: 25 March 2025
c© Author(s) 2025. CC BY 4.0 License.



43 
 

Jiang, B., Zhang, Y., Liang, S., Wohlfahrt, G., Arain, A., Cescatti, A., Georgiadis, T., Jia, K., Kiely, G., 
Lund, M., Montagnani, L., Magliulo, V., Ortiz, P. S., Oechel, W., Vaccari, F. P., Yao, Y., and Zhang, X.: 
Empirical estimation of daytime net radiation from shortwave radiation and ancillary information, 950 

Agricultural and Forest Meteorology, 211-212, 23-36, https://doi.org/10.1016/j.agrformet.2015.05.003, 
2015. 
Jiang, K., Pan, Z., Pan, F., Wang, J., Han, G., Song, Y., Zhang, Z., Huang, N., Ma, S., Chen, X., Zhang, 
Z., and Men, J.: The global spatiotemporal heterogeneity of land surface-air temperature difference and 
its influencing factors, Sci Total Environ, 838, 156214, https://doi.org/10.1016/j.scitotenv.2022.156214, 955 

2022. 
Jiao, L., Xu, G., Jin, J., Dong, T., Liu, J., Wu, Y., and Zhang, B.: Remotely sensed urban environmental 
indices and their economic implications, Habitat International, 67, 22-32, 
https://doi.org/10.1016/j.habitatint.2017.06.012, 2017. 
Jung, M., Koirala, S., Weber, U., Ichii, K., Gans, F., Camps-Valls, G., Papale, D., Schwalm, C., 960 

Tramontana, G., and Reichstein, M.: The FLUXCOM ensemble of global land-atmosphere energy fluxes, 
Sci Data, 6, 74, https://doi.org/10.1038/s41597-019-0076-8, 2019. 
Kato, S. and Yamaguchi, Y.: Analysis of urban heat-island effect using ASTER and ETM+ Data: 
Separation of anthropogenic heat discharge and natural heat radiation from sensible heat flux, Remote 
Sensing of Environment, 99, 44-54, https://doi.org/10.1016/j.rse.2005.04.026, 2005. 965 

Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, 
C., Endo, H., Miyaoka, K., and Takahashi, K.: The JRA-55 Reanalysis: General Specifications and Basic 
Characteristics, Journal of the Meteorological Society of Japan. Ser. II, 93, 5-48, 
https://doi.org/10.2151/jmsj.2015-001, 2015. 
Kustas, W. and Norman, J.: Evaluation of soil and vegetation heat flux predictions using a simple two-970 

source model with radiometric temperatures for partial canopy cover, Agricultural and Forest 
Meteorology, 94, 13-29, https://doi.org/10.1016/S0168-1923(99)00005-2, 1999. 
Lensky, I. M., Dayan, U., and Helman, D.: Synoptic Circulation Impact on the Near-Surface Temperature 
Difference Outweighs That of the Seasonal Signal in the Eastern Mediterranean, Journal of Geophysical 
Research: Atmospheres, 123, 11,333-311,347, https://doi.org/10.1029/2017jd027973, 2018. 975 

Li, B., Liang, S., Ma, H., Dong, G., Liu, X., He, T., and Zhang, Y.: Generation of global 1 km all-weather 
instantaneous and daily mean land surface temperatures from MODIS data, Earth System Science Data, 
16, 3795-3819, https://doi.org/10.5194/essd-16-3795-2024, 2024. 
Li, S., Jiang, B., Peng, J., Liang, H., Han, J., Yao, Y., Zhang, X., Cheng, J., Zhao, X., Liu, Q., and Jia, K.: 
Estimation of the All-Wave All-Sky Land Surface Daily Net Radiation at Mid-Low Latitudes from 980 

MODIS Data Based on ERA5 Constraints, Remote Sensing, 14, 33, https://doi.org/10.3390/rs14010033, 
2022a. 
Li, S., Jiang, B., Liang, S., Peng, J., Liang, H., Han, J., Yin, X., Yao, Y., Zhang, X., Cheng, J., Zhao, X., 
Liu, Q., and Jia, K.: Evaluation of nine machine learning methods for estimating daily land surface 
radiation budget from MODIS satellite data, International Journal of Digital Earth, 15, 1784-1816, 985 

https://doi.org/10.1080/17538947.2022.2130460, 2022b. 
Li, T., Shen, H., Yuan, Q., Zhang, X., and Zhang, L.: Estimating Ground-Level PM2.5 by Fusing Satellite 
and Station Observations: A Geo-Intelligent Deep Learning Approach, Geophysical Research Letters, 44, 
https://doi.org/10.1002/2017gl075710, 2017. 
Liang, H., Jiang, B., Peng, J., Li, S., Han, J., and Yin, X.: Estimating daily surface downward shortwave 990 

radiation over rugged terrain without bright surface at 30 m on clear-sky days using CERES data, 

https://doi.org/10.5194/essd-2025-136
Preprint. Discussion started: 25 March 2025
c© Author(s) 2025. CC BY 4.0 License.



44 
 

International Journal of Digital Earth, 16, 4317-4345, https://doi.org/10.1080/17538947.2023.2263421, 
2023. 
Liang, H., Liang, S., Jiang, B., He, T., Tian, F., Xu, J., Li, W., Zhang, F., and Fang, H.: Global 1 km daily 
land surface - air temperature difference and sensible heat flux products from 2000 to 2020, Zenodo 995 

[dataset], 10.5281/zenodo.14986255, 2025. 
Liang, H., Jiang, B., Liang, S., Wen, J., He, T., Zhang, X., Peng, J., Li, S., Han, J., and Yin, X.: A Novel 
Terrain Correction Sinusoidal Model for Improving Estimation of Daily Clear-Sky Downward 
Shortwave Radiation, IEEE Transactions on Geoscience and Remote Sensing, 62, 1-15, 
https://doi.org/10.1109/tgrs.2024.3452791, 2024. 1000 

Liang, H., Jiang, B., Liang, S., Peng, J., Li, S., Han, J., Yin, X., Cheng, J., Jia, K., Liu, Q., Yao, Y., Zhao, 
X., and Zhang, X.: A global long-term ocean surface daily/0.05° net radiation product from 1983–2020, 
Scientific Data, 9, https://doi.org/10.1038/s41597-022-01419-x, 2022. 
Liang, S., Cheng, J., Jia, K., Jiang, B., Liu, Q., Xiao, Z., Yao, Y., Yuan, W., Zhang, X., Zhao, X., and 
Zhou, J.: The global land surface satellite (GLASS) product suite, Bulletin of the American 1005 

Meteorological Society, 102, E323, https://doi.org/10.1175/BAMS-D-18-0341.1, 2021. 
Liao, Y., Chen, D., and Liu, Q.: The spatiotemporal characteristics and long-term trends of surface-air 
temperatures difference in China. Advances in Climate Change Research, Advances in Climate Change 
Research, 15, 374-384, https://doi.org/10.12006/j.issn.1673-1719.2018.199, 2019. 
Lim, B., Arık, S., Loeff, N., and Pfister, T.: Temporal Fusion Transformers for interpretable multi-horizon 1010 

time series forecasting, International Journal of Forecasting, 37, 
https://doi.org/10.1016/j.ijforecast.2021.03.012, 2021. 
Liu, S., Xu, Z., Wang, W., Jia, Z., Zhu, M., Bai, J., and Wang, J.: A comparison of eddy-covariance and 
large aperture scintillometer measurements with respect to the energy balance problem, Hydrology and 
Earth System Sciences - HYDROL EARTH SYST SCI, 15, 1291-1306, https://doi.org/10.5194/hess-15-1015 

1291-2011, 2011. 
Liu, S., Li, X., Xu, Z., Che, T., Xiao, Q., Ma, M., Liu, Q., Jin, R., Guo, J., Wang, L., Wang, W., Qi, Y., 
Li, H., Xu, T., Ran, Y., Hu, X., Shi, S., Zhu, Z., Tan, J., Zhang, Y., and Ren, Z.: The Heihe Integrated 
Observatory Network: A Basin-Scale Land Surface Processes Observatory in China, Vadose Zone 
Journal, 17, https://doi.org/10.2136/vzj2018.04.0072, 2018. 1020 

Liu, Y., Xu, X., and Shi, x.: Distribution of Differences between Ground and Air Temperature in Spring 
and Its Impact on Precipitation in Mid-Lower Reaches of Yangtze River, METEOROLOGICAL 
SCIENCE AND TECHNOLOGY, 37, 301-305, 2009. 
Lyu, H., Lu, H., and Mou, L.: Learning a Transferable Change Rule from a Recurrent Neural Network 
for Land Cover Change Detection, https://doi.org/10.3390/rs8060506,  2016. 1025 

Ma, H. and Liang, S.: Development of the GLASS 250-m leaf area index product (version 6) from 
MODIS data using the bidirectional LSTM deep learning model, Remote Sensing of Environment, 273, 
https://doi.org/10.1016/j.rse.2022.112985, 2022. 
Mito, C. O., Boiyo, R. K., and Laneve, G.: A simple algorithm to estimate sensible heat flux from 
remotely sensed MODIS data, International Journal of Remote Sensing, 33, 6109-6121, 1030 

https://doi.org/10.1080/01431161.2012.680616, 2012. 
Monin, A. S. and Obukhov, A. M.: Basic laws of turbulent mixing in the surface layer of the atmosphere, 
Contrib. Geophys. Inst. Acad. Sci. USSR, 151, e187, 1954. 
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., 
Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, 1035 

https://doi.org/10.5194/essd-2025-136
Preprint. Discussion started: 25 March 2025
c© Author(s) 2025. CC BY 4.0 License.



45 
 

N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis 
dataset for land applications, Earth System Science Data, 13, 4349-4383, https://doi.org/10.5194/essd-
13-4349-2021, 2021. 
Nayak, H. P., Nayak, S., Maity, S., Patra, N., Singh, K. S., and Dutta, S.: Sensitivity of Land Surface 
Processes and Its Variation during Contrasting Seasons over India, Atmosphere, 13, 1040 

https://doi.org/10.3390/atmos13091382, 2022. 
Pearson, K.: IV. Mathematical contributions to the theory of evolution.—V. On the reconstruction of the 
stature of prehistoric races, Philosophical Transactions of the Royal Society of London. Series A, 
Containing Papers of a Mathematical or Physical Character, 192, 169-244, 
https://doi.org/10.1098/rsta.1899.0004, 1896. 1045 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, 
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., 
Duchesnay, E., and Louppe, G.: Scikit-learn: Machine Learning in Python, Journal of Machine Learning 
Research, 12, https://dl.acm.org/doi/10.5555/1953048.2078195, 2012. 
Prakash, S., Shati, F., Norouzi, H., and Blake, R.: Observed differences between near-surface air and skin 1050 

temperatures using satellite and ground-based data, Theoretical and Applied Climatology, 137, 587-600, 
https://doi.org/10.1007/s00704-018-2623-1, 2018. 
Qiang, Z., Zhang, J., Qiao, J., and Wang, S.: Relationship of atmospheric boundary layer depth with 
thermodynamic processes at the land surface in arid regions of China, Science China Earth Science, 54, 
1586-1594, https://doi.org/10.1007/s11430-011-4207-0, 2011. 1055 

Qu, Y., Liu, Q., Liang, S., Wang, L., Liu, N., and Liu, S.: Direct-estimation algorithm for mapping daily 
land-surface broadband albedo from modis data, IEEE Transactions on Geoscience and Remote Sensing, 
52, 907, https://doi.org/10.1109/TGRS.2013.2245670, 2014. 
Rehman, S., Iqbal, Z., Qureshi, R., Khan, A. M., Qaseem, M. F., and Siddiqui, M. H.: Bioclimatic and 
remote sensing factors are better key indicators than local topography and soil: Vegetation composition 1060 

variability in forests of Pakistan's Spin Ghar Mountain range, Ecological Indicators, 163, 112111, 
https://doi.org/10.1016/j.ecolind.2024.112111, 2024. 
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C. J., Arsenault, K., Cosgrove, 
B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., and Toll, D.: The Global 
Land Data Assimilation System, Bulletin of the American Meteorological Society, 85, 381-394, 1065 

https://doi.org/10.1175/bams-85-3-381, 2004. 
Seguin, B., Baelz, S., Monget, J.-M., and Petit, V.: Utilisation de la thermographie IR pour l'estimation 
de l'évaporation régionale I. Mise au point méthodologique sur le site de la Crau, Agronomie, 2, 7-16, 
https://doi.org/10.1051/agro:19820102, 1982a. 
Seguin, B., Baelz, S., Monget, J.-M., and Petit, V.: Utilisation de la thermographie IR pour l'estimation 1070 

de l'évaporation régionale II.-Résultats obtenus à partir des données de satellite, Agronomie, 2, 113-115, 
https://doi.org/10.1051/agro:19820202, 1982b. 
Shen, H., Li, T., Yuan, Q., and Zhang, L.: Estimating Regional Ground-Level PM2.5 Directly From 
Satellite Top-Of-Atmosphere Reflectance Using Deep Belief Networks, Journal of Geophysical Research: 
Atmospheres, 123, https://doi.org/10.1029/2018JD028759, 2018. 1075 

Shen, H., Jiang, Y., Li, T., Cheng, Q., Zeng, C., and Zhang, L.: Deep learning-based air temperature 
mapping by fusing remote sensing, station, simulation and socioeconomic data, Remote Sensing of 
Environment, 240, 111692, https://doi.org/10.1016/j.rse.2020.111692, 2020. 
Siemann, A. L., Chaney, N., and Wood, E. F.: Development and Validation of a Long-Term, Global, 

https://doi.org/10.5194/essd-2025-136
Preprint. Discussion started: 25 March 2025
c© Author(s) 2025. CC BY 4.0 License.



46 
 

Terrestrial Sensible Heat Flux Dataset, Journal of Climate, 31, 6073-6095, https://doi.org/10.1175/JCLI-1080 

D-17-0732.1, 2018. 
Stewart, J. B., Kustas, W. P., Humes, K. S., Nichols, W. D., Moran, M. S., and de Bruin, H. A. R.: Sensible 
Heat Flux-Radiometric Surface Temperature Relationship for Eight Semiarid Areas, Journal of Applied 
Meteorology and Climatology, 33, 1110-1117, https://doi.org/10.1175/1520-
0450(1994)033<1110:SHFRST>2.0.CO;2, 1994. 1085 

Sun, T., Sun, R., and Chen, L.: The Trend Inconsistency between Land Surface Temperature and Near 
Surface Air Temperature in Assessing Urban Heat Island Effects, Remote Sensing, 12, 
https://doi.org/10.3390/rs12081271, 2020. 
Tarek, M., Brissette, F. P., and Arsenault, R.: Evaluation of the ERA5 reanalysis as a potential reference 
dataset for hydrological modelling over North America, Hydrol. Earth Syst. Sci., 24, 2527-2544, 1090 

https://doi.org/10.5194/hess-24-2527-2020, 2020. 
Tay, Y., Dehghani, M., Bahri, D., and Metzler, D.: Efficient transformers: A survey., arXiv preprint 
arXiv:2009.06732., https://doi.org/10.48550/arXiv.2009.06732, 2020. 
Timmermans, W. J., Kustas, W. P., Anderson, M. C., and French, A. N.: An intercomparison of the Surface 
Energy Balance Algorithm for Land (SEBAL) and the Two-Source Energy Balance (TSEB) modeling 1095 

schemes, Remote Sensing of Environment, 108, 369-384, https://doi.org/10.1016/j.rse.2006.11.028, 
2007. 
Trenberth, K. E., Fasullo, J. T., and Kiehl, J. T.: Earth's Global Energy Budget, Bulletin of the American 
Meteorological Society, 90, 311-323, https://doi.org/10.1175/2008BAMS2634.1, 2009. 
Twine, T., Kustas, W. P., Norman, J., Cook, D., Houser, P., Teyers, T. P., Prueger, J., Starks, P., and Wesely, 1100 

M.: Correcting Eddy-Covariance Flux Underestimates over a Grassland, Agricultural and Forest 
Meteorology, 103, https://doi.org/10.1016/S0168-1923(00)00123-4, 2000. 
Wang, K., Zhou, X., and Liiu, J.: The Effects of Comples Terrain on the Computed Surface Solar short-
wave Radiation, Chinese Journal of Atmospheric Sciences, 28, 625-633, 
https://doi.org/10.3878/j.issn.1006-9895.2004.04.14, 2004. 1105 

Wang, X., Chen, D., Pang, G., Ou, T., Yang, M., and Wang, M.: A climatology of surface–air temperature 
difference over the Tibetan Plateau: Results from multi‐source reanalyses, International Journal of 
Climatology, 40, 6080-6094, https://doi.org/10.1002/joc.6568, 2020. 
Watts, C. J., Chehbouni, A., Kerr, Y., de Bruin, H., Hartogensis, O., and Rodriguez, J.: Sensible heat flux 
estimates using AVHRR and scintillometer data over grass and mesquite in Northwest Mexico, 1997. 1110 

Wei, X., Huang, Q., Huang, S., Leng, G., Qu, Y., Deng, M., Han, Z., Zhao, J., Liu, D., and Bai, Q.: 
Assessing the feedback relationship between vegetation and soil moisture over the Loess Plateau, China, 
Ecological Indicators, 134, 108493, https://doi.org/10.1016/j.ecolind.2021.108493, 2022. 
Wulfmeyer, V., Pineda, J. M. V., Otte, S., Karlbauer, M., Butz, M. V., Lee, T. R., and Rajtschan, V.: 
Estimation of the Surface Fluxes for Heat and Momentum in Unstable Conditions with Machine Learning 1115 

and Similarity Approaches for the LAFE Data Set, Boundary-Layer Meteorology, 186, 337-371, 
https://doi.org/10.1007/s10546-022-00761-2, 2022. 
Xie, Z., Yao, Y., Zhang, X., Liang, S., Fisher, J. B., Chen, J., Jia, K., Shang, K., Yang, J., Yu, R., Guo, X., 
Liu, L., Ning, J., and Zhang, L.: The Global LAnd Surface Satellite (GLASS) evapotranspiration product 
Version 5.0: Algorithm development and preliminary validation, Journal of Hydrology, 610, 1120 

https://doi.org/10.1016/j.jhydrol.2022.127990, 2022. 
Xin, Y., Liu, J., Liu, X., Liu, G., Cheng, X., and Chen, Y.: Reduction of uncertainties in surface heat flux 
over the Tibetan Plateau from ERA‐Interim to ERA5, International Journal of Climatology, 42, 6277-

https://doi.org/10.5194/essd-2025-136
Preprint. Discussion started: 25 March 2025
c© Author(s) 2025. CC BY 4.0 License.



47 
 

6292, https://doi.org/10.1002/joc.7589, 2022. 
Xiong, C., Ma, H., Liang, S., He, T., Zhang, Y., Zhang, G., and Xu, J.: Improved global 250 m 8-day 1125 

NDVI and EVI products from 2000–2021 using the LSTM model, Scientific Data, 10, 
https://doi.org/10.1038/s41597-023-02695-x, 2023. 
Xu, J., Liang, S., Ma, H., and He, T.: Generating 5 km resolution 1981–2018 daily global land surface 
longwave radiation products from AVHRR shortwave and longwave observations using densely 
connected convolutional neural networks, Remote Sensing of Environment, 280, 1130 

https://doi.org/10.1016/j.rse.2022.113223, 2022. 
Yan, X., Li, J., Smith, A., Yang, D., Ma, T., Su, Y., and Shao, J.: Evaluation of machine learning methods 
and multi-source remote sensing data combinations to construct forest above-ground biomass models, 
International Journal of Digital Earth, 16, 4471-4491, https://doi.org/10.1080/17538947.2023.2270459, 
2023. 1135 

Yang, S., Zhang, X., Guan, S., Zhao, W., Duan, Y., Yao, Y., Jia, K., and Jiang, B.: A review and 
comparison of surface incident shortwave radiation from multiple data sources: satellite retrievals, 
reanalysis data and GCM simulations, International Journal of Digital Earth, 16, 1332-1357, 
https://doi.org/10.1080/17538947.2023.2198262, 2023. 
Yin, X., Jiang, B., Liang, S., Li, S., Zhao, X., Wang, Q., Xu, J., Han, J., Liang, H., Zhang, X., Liu, Q., 1140 

Yao, Y., Jia, K., and Xie, X.: Significant discrepancies of land surface daily net radiation among ten 
remotely sensed and reanalysis products, International Journal of Digital Earth, 16, 3725-3752, 
https://doi.org/10.1080/17538947.2023.2253211, 2023. 
Yizhe, H., Weiqiang, M., Yaoming, M., and Cuiyan, S.: Variations of surface heat fluxes over the Tibetan 
Plateau before and after the onset of the South Asian summer monsoon during 1979–2016, 1145 

https://doi.org/10.1007/s13351-019-8616-x, 2019. 
Zang, H., Cheng, L., Ding, T., Cheung, K., Wang, M., Wei, Z., and Sun, G.: Application of functional 
deep belief network for estimating daily global solar radiation: A case study in China, Energy, 191, 
116502, https://doi.org/10.1016/j.energy.2019.116502, 2019. 
Zhang, J., Li, Z., Li, J., and Li, J.: Ensemble retrieval of atmospheric temperature profiles from AIRS, 1150 

Advances in Atmospheric Sciences, 31, https://doi.org/10.1007/s00376-013-3094-z, 2014a. 
Zhang, X., Liang, S., Zhou, G., Wu, H., and Zhao, X.: Generating Global LAnd Surface Satellite incident 
shortwave radiation and photosynthetically active radiation products from multiple satellite data, Remote 
Sensing of Environment, 152, 318-332, https://doi.org/10.1016/j.rse.2014.07.003, 2014b. 
Zhang, Y.: Correction of Sensible Heat Flux from Flux-Gradient Method to Eddy Covariance Method 1155 

Based on Multi-Layer Perceptron, Applied and Computational Engineering, 98, 65-70, 
https://doi.org/10.54254/2755-2721/98/20241120, 2024. 
Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., and Zhang, W.: Informer: Beyond Efficient 
Transformer for Long Sequence Time-Series Forecasting, Proceedings of the AAAI Conference on 
Artificial Intelligence, 35, 11106-11115, https://doi.org/10.1609/aaai.v35i12.17325, 2021. 1160 

Zhou, L.-T. and Huang, R.: Regional differences in surface sensible and latent heat fluxes in China, 
Theoretical and Applied Climatology, 116, 625-637, https://doi.org/10.1007/s00704-013-0975-0, 2014. 
Zhou, L. and Huang, R.: Characteristics of Interdecadal Variability of the Difference Between Surface 
Temperature and Surface Air Temperature in Spring in Arid and Semi-Arid Region of Northwest China 
and Its Impact on Summer Precipitation in North China, Climatic and Environmental Research, 11, 1-13, 1165 

https://doi.org/10.3878/j.issn.1006-9585.2006.01.01, 2006. 
Zhou, L. and Huang, R.: Interdecadal variability of summer rainfall in Northwest China and its possible 

https://doi.org/10.5194/essd-2025-136
Preprint. Discussion started: 25 March 2025
c© Author(s) 2025. CC BY 4.0 License.



48 
 

causes, International Journal of Climatology, 30, https://doi.org/10.1002/joc.1923, 2010. 
Zhuang, Q., Wu, B., Yan, N., Zhu, W., and Xing, Q.: A method for sensible heat flux model 
parameterization based on radiometric surface temperature and environmental factors without involving 1170 

the parameter KB−1, International Journal of Applied Earth Observation and Geoinformation, 47, 50-59, 
https://doi.org/10.1016/j.jag.2015.11.015, 2016. 

https://doi.org/10.5194/essd-2025-136
Preprint. Discussion started: 25 March 2025
c© Author(s) 2025. CC BY 4.0 License.


