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Abstract. Accurate cropland mapping is essential for understanding agricultural dynamics in Africa, a critical global issue 

with significant implications for the achieving Sustainable Development Goals (e.g.,like Zero Hunger). Large-scale cropland 25 

mapping encounters several challenges, including the varying landscape characteristics of cropland across different regions, 

extended cultivation periods, and the limited availability of reference data. The study developed a 30-meter resolution African 

annual cropland distribution (namely AFCD) dataset for Africa spanning the years 2000 to 2022. To extract this large-scale 

cropland distribution data, we employed random forest classification and Continuous Change Detection algorithms on the 

Google Earth Engine platform. Robust training samples were generated, and a locally adaptive model was applied for cropland 30 

extraction. The final output consists of annual binary Crop/Non-Crop maps from 2000 to 2022. Independent validation samples 

from numerous third-party sources confirm that the map’s accuracy is 0.86±0.01. A comparison of the cropland area estimates 

from AFCD with those of the FAO for Africa yielded an R2 value of 0.86. According to our estimates, Africa’s cropland 

expanded from 194.35 Mha in 2000 to 210.92 Mha by 2022, marking a net increase of 8.53%. Prior to 2005, changes in 

Africa’s cropland area were gradual, but after 2006, there was a marked acceleration in cropland expansion. Despite this 35 

continued growth, Africa also experienced significant cropland abandonment. By 2018, abandoned cropland accounted for 

11.52% of the total active cropland area. AFCD also avoided the misclassification of buildings, roads, and trees surrounding 
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cropland, common in existing products. The study further highlights the unique advantage of AFCD in providing a dynamic 

annual cropland dataset at 30-meter resolution for Africa. This dataset is a crucial resource for understanding the spatial-

temporal dynamics of cropland and can support policies on food security and sustainable land management. The cropland 40 

dataset is available at https://doi.org/10.5281/zenodo.14920706 (Lou et al., 2025). 

1 Introduction 

According to the Food and Agriculture Organization (FAO), croplands play is are of critical importance to global food 

sustainable development, and poverty alleviation. The FAO's State of Food Security and Nutrition in the World (SOFI) 

reported highlights that monitoring and managing agricultural lands was crucial for achieving the UN's Sustainable 45 

Development Goals (SDGs), particularly in addressing food security challenges and balancing agricultural production with 

ecosystem services (FAO et al., 2024). Agricultural land directly or indirectly contributes to 90% of global food calories 

(Cassidy et al., 2013). Beyond supplying food, farmcropland plays a crucial role as a provider of various ecosystem 

services(Pereira et al., 2018; Stephens et al., 2018), not only mitigating climate change through carbon sequestration and water 

and soil regulation (Lana-Renault et al., 2020), but also influencing biodiversity (Traba and Morales, 2019). Emerging 50 

agricultural paradigms prioritize climate-smart cultivation practices(Xiao et al., 2024), rational land-use policymaking (Duan 

et al., 2021), and productivity enhancement for smallholder farmers. The expansion and abandonment of croplands have long 

been focal points of research, as the extent, distribution, and characteristics of cropland often influence a region's agricultural 

development pathways, food security, and poverty alleviation efforts (Jayne et al., 2014). 

The SOFI report revealed that 20.4% of Africa’s population faces hunger, with one in five people undernourished, severely 55 

hindering progress toward UN Sustainable Development Goals SDGs (SDGs) such as “No Poverty and Zero Hunger” and 

sustainable agricultural-ecosystem balance (FAO et al., 2024; Ibrahim et al., 2023). While Africa accounted for 34% of global 

cropland expansion since 2000, driven by its perceived land abundance (Searchinger et al., 2015; Schneider et al., 2024), this 

growth had largely involved converting natural vegetation, causing significant deforestation and habitat destruction (Crawford 

et al., 2024; Kehoe et al., 2017). However, the economic and ecological trade-offs of such expansion remain understudied, 60 

necessitating nuanced land-use assessments (Chamberlin et al., 2014). Sub-Saharan Africa’s food systems, dominated by 

small-scale farms (<1 hectare), grapple with stagnant yields and rising imports (Fader et al., 2013; Giller et al., 2021) , while 

larger farms (>1 hectare) demonstrate higher productivity and food security through land consolidation (Nilsson, 2019). Yet 

unchecked agricultural intensification risks biodiversity and ecosystem stability (Adolph et al., 2023; Mano et al., 2020) , 

highlighting the urgency to monitor cropland dynamics. Detailed annual mapping of land-use changes is critical for guiding 65 

sustainable policies on food security, resource management, and environmental protection (Debonne et al., 2021; Waldner et 

al., 2015), balancing Africa’s agricultural needs with ecological preservation.  

The rapid development of remote sensing technology has enabled accurate cropland mapping through synergistic use of multi-

source satellite data. Moderate Resolution Imaging Spectroradiometer (MODIS) imagery offers unique advantages for large-
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scale cropland extent monitoring (Xiong et al., 2017a; Zhang et al., 2015, 2022), while higher-resolution sensors aboard 70 

Landsat and Sentinel-2 satellites provide precise boundary delineation capabilities. Global and regional land use/land cover 

(LULC) products, such as MCD12Q1 (Friedl and Sulla-Menashe, 2022), CCI Land cover (2017), GLC_FCS30D (Zhang et 

al., 2024b), and WorldCover, offer multi-scale data support for studying cropland distribution in Africa across a range of 

spatial resolutions (10-500 meters). However, their accuracy is generally limited, and they exhibit significant spatial 

inconsistencies (Cui et al., 2024; Song et al., 2022). These discrepancies arise from varying land cover definitions, temporal 75 

gaps due to cloud cover interference in remote sensing data, and the highly fragmented nature of African cropland landscapes 

(Xiong et al., 2017b). While specialized cropland products, such as the Landsat Global Cropland Extent (Potapov et al., 2022), 

GFSAD Landsat-Derived Global Rainfed and Irrigated-Cropland Product (LGRIP) (Teluguntla et al., 2023), GFSAD Global 

Cropland Extent Product (GCEP) (Thenkabail et al., 2021), and Digital Earth Africa (Burton et al., 2022), offer high spatial 

resolution (ranging from 10 to 30 meters), allowing for detailed landscape characterization. However, their temporal coverage 80 

is often limited to single years or sparse intervals, which significantly restricts their ability to track rapid interannual changes 

in African agricultural systems (Kerner et al., 2024).  

Key processes, such as cropland expansion into natural ecosystems and cyclical abandonment patterns, remain poorly 

understood and inadequately quantified due to these temporal gaps. Current LULC products are mainly based on single or 

multi-year remote sensing data, combined with expert-driven classification systems or machine learning algorithms such as 85 

random forests. However, challenges such as the scarcity of ground validation samples and significant surface heterogeneity 

in Africa hinder the improvement of classification accuracy. Notably, the successful application of sample generation methods 

in crop recognition (Hu et al., 2024; Zhang et al., 2024a) and coastal zone monitoring (Zuo et al., 2025) demonstrates the 

potential of overcoming data bottlenecks through innovative sample construction techniques. Therefore, there is an urgent 

need to develop consensus label generation methods that integrate multiple LULC products (Kerner et al., 2024; Tubiello et 90 

al., 2023a). By leveraging the strengths of existing cropland datasets, this would enable the creation of high temporal resolution 

dynamic cropland maps for Africa. Furthermore, establishing a unified cropland classification standard system could 

effectively reduce spatial inconsistencies across existing products, providing more accurate spatial information to support 

sustainable agricultural development and food security decision-making in Africa. 

In summary, in recent decades, a lot of global or regional cropland mapping and monitoring has been made significant progress. 95 

However, a 30 m annual cropland extent time-series product derived from change-detection algorithms are still lacking. The 

aims of this study are (1) to construct locally optimal consensus Crop/Non-crop labels using LULC/cropland extent products 

from 2000 to 2022, which will serve as training samples; (2)utilizing the continuous change-detection (CCD) algorithm and 

the full time series of Landsat observations to generate the first African 30m annual cropland extent product that covers the 

period from 2000 to 2022, known named as AFCD; (23) to quantitatively analyze the performance of AFCD product using 100 

multisource validation datasets. 
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2 Datasets 

2.1 Previous LUCC & Cropland Datasets 

To investigate the spatial distribution of Africa within the study's temporal scope, we amassed a comprehensive dataset from 

Google Earth Engine (GEE) and its community platform encompassing global or Africa-specific land use/cover change (LUCC) 105 

datasets as well as cropland distribution, with a spatial resolution finer than 500 meters, spanning the period from 2000 to 2022 

(as summarized in Table 1). However, definitions of cropland and other land use/cover types exhibit variations across different 

datasets. In this context, both GLC_FCS30D and ESA CCI employ the FAO's Land Cover Classification System (LCCS) 

(ESA, 2017; Zhang et al., 2024b). The LCCS has been utilized to define diverse land cover types, demonstrating both flexibility 

and effectiveness across various geographical contexts (Ahlqvist, 2008) while simultaneously promoting interoperability for 110 

land-cover data and facilitating the scrutiny of classification processes (Herold et al., 2006). ESRI LUCC、ESA WorldCover 

and Dynamic World all employ a multi-tiered land cover classification system, defining cropland as areas planted or sown by 

humans with cereals, grasses, and other crops that can be harvested within a year, excluding perennial woody crops (Karra et 

al., 2021; Van De Kerchove et al., 2021; Brown et al., 2022). Specialized cropland products define cropland as areas used for 

growing annual or perennial crops (Burton et al., 2022; Potapov et al., 2022), including forage and biofuel crops, under both 115 

rainfed and irrigated systems (Teluguntla et al., 2023), and also consider land permanently used for plantations like orchards 

and vineyards as cropland (Thenkabail et al., 2021).  

Table 1 Description of map data products utilized in this study. 

Dataset Year(s) 
Res. 

(m/px) 
Coverage Definition of cropland 

Cropland 

class 

no.Reference 

GLC_FCS30D 

1985; 1990; 

1995; 2000-

2022 

30m Global 

Irrigated cropland, Rainfed cropland, 

Herbaceous cover cropland, Tree or shrub 

cover cropland (Zhang et al., 2024b). 

10, 11, 12, 

20(Zhang et al., 

2024b) 

ESRI 10m Annual 

Land Cover 
2017-2023 10m Global 

Crops Human planted/plotted cereals, 

grasses, and crops not at tree height; 

examples: corn, wheat, soy, fallow plots 

of structured land (Karra et al., 2021). 

5(Karra et al., 

2021) 

ESA WorldCover 2020; 2021 10m Global 

Land covered with annual cropland that 

is sowed/planted and harvestable at least 

once within the 12 months after the 

sowing/planting date. The annual 

cropland produces a herbaceous cover 

and is sometimes combined with some 

40(Zanaga et al., 

2021, 2022) 
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tree or woody vegetation. Note that 

perennial woody crops will be classified 

as the appropriate tree cover or shrub 

land cover type. Greenhouses are 

considered as built-up (Zanaga et al., 

2021, 2022). 

Dynamic World 2015-now 10m Global 
Estimated probability of complete 

coverage by crops(Brown et al., 2022). 

4(Brown et al., 

2022) 

ESA CCI 1992-2020 300m Global 

Rainfed cropland, irrigated or post-

flooding cropland, Mosaic cropland 

(>50%) / natural vegetation (tree, shrub, 

herbaceous cover) (<50%) (ESA, 2017). 

10, 20, 30(ESA, 

2017) 

Digital Earth Africa 

Cropland Extent 
2019 10m Continent 

Sowed/planted and harvestable at least 

once within the 12 months after the 

sowing/planting date (Burton et al., 

2022). 

1(Burton et al., 

2022) 

GFSAD global 

cropland maps 
2015 30m Global 

Rainfed cropland (cropland areas that are 

purely dependent on direct precipitation), 

irrigated cropland (cropland that had at 

least one irrigation during the crop 

growing period) (Thenkabail et al., 

2021). 

1, 2(Thenkabail 

et al., 2021) 

GLAD Global 

Cropland Maps 

2003, 2007, 

2011, 2015, 

2019 

30m Global 

Land used for annual and perennial 

herbaceous crops for human 

consumption, forage (including hay) and 

biofuel. Perennial woody crops, 

permanent pastures and shifting 

cultivation are excluded from the 

definition. The fallow length is limited to 

4 years for the cropland class (Potapov et 

al., 2022). 

1(Potapov et al., 

2022) 

Africa Cropland Mask 2016 30m Continent 

Agricultural annual standing croplands, 

cropland fallows, and permanent 

plantation crops (Nabil et al., 2022). 

1(Nabil et al., 

2022) 
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2.2 Continuous Landsat imagery from 2000 to 2022 120 

All available surface reflectance (SR) from Landsat imagery (Level 2, Collection 2, Tier 1) spanning 2000 to 2022, including 

Landsat 5, 7, 8, and 9, stored in the GEE computational platform, were collected to monitor the spatiotemporal dynamics of 

cropland extent in Africa. To minimize the spectral discrepancies among different Landsat sensors, calibration coefficients 

were applied to recalibrate the surface reflectance data from TM and ETM+ to align with the comparable standards of OLI 

(Roy et al., 2016). Subsequently, the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) as well as the 125 

Land Surface Reflectance Code (LaSRC) algorithms were employed to perform atmospheric correction on Landsat imagery 

and construct a high-quality, continuous Landsat temporal dataset (Vermote and Saleous, 2007; Vermote and Kotchenova, 

2008). As shown in Figure 1a–e, the spatial distribution of valid Landsat observations over five time periods exhibits significant 

spatiotemporal variability, which can directly affect the accuracy of cropland mapping. To mitigate this influence and enhance 

spatial consistency, we incorporated a cropland consensus layer derived from six global LULC/cropland products, where 130 

cropland agreement levels are categorized from SA1 to SA6 (Figure 1f) (Tubiello et al., 2023a, b). This consensus informed 

the construction of a 2° × 2° grid framework, delineated by red lines in Figure 1f, with each grid cell served as the minimum 

classification unit for the cropland mapping process.o 

 

Figure 1 Temporal and Spatial Distribution of Available Landsat Imagery Data Over Africa and (a-e) and Spatial Distribution of Cropland 135 
(f) derived from six global LULC/cropland products (f). In (f), SA1–SA6 represent increasing cropland agreement levels (Tubiello et al., 

2023a, b). 
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2.3 Validation datasets 

To comprehensively analyze the accuracy metrics of the AFCD map, we collected two validation datasets: cropland samples 

across Africa in 2016 and 2019. Initially, we utilized 3,386 independent validation samples provided by Kerner et al. (2024), 140 

collected through field surveys and visual interpretation across eight countries in sub-Saharan Africa (shown as Fig. 2 (a)). 

Additionally, we utilized crowdsourced data provided by (Laso Bayas et al., 2017), collected via the Geo-Wiki platform, for 

validation (Fig. 2 (b)). The dataset includes 35,866 cropland samples collected globally through a crowdsourcing campaign on 

the Geo-Wiki platform, with 7,313 samples located in Africa. Each sample corresponds to a 300 m × 300 m PROBA-V grid 

cell and records the proportion of cropland within the frame, based on visual interpretation by participants. To ensure data 145 

quality, a subset of samples was randomly selected for secondary validation by three trained students (provide as control 

samples). Samples with inconsistent results among the student interpretations were excluded. Additionally, experts further 

reviewed and validated the control samples to enhance the overall reliability of the dataset (provide as expert samples)(Laso 

Bayas et al., 2017).The dataset selected cropland samples within the African region corresponding to the 300m x 300m grid 

of PROBA-V imagery. Globally, 35,866 samples were set, with 7,313 located in Africa. Based on participant collection, 150 

samples were randomly selected for further validation by students and experts. Each sample recorded the proportion of 

cropland area within the 300m×300m frame. 

 

Figure 2 Spatial distribution of validation points for regional and time-series. 

 155 

3. Methodology 

As the framework shows in Fig. 2Figure 3, we have proposed a landcover change detection-based approach that combines 

combined machine learning and continuous change detection algorithm for mapping annual cropland extent in Africa. 

Therefore, we defined the cropland as land used for annual and perennial herbaceous crops for human consumption, forage 
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(including hay) and biofuel. Perennial woody crops, permanent pastures, and crop rotations are excluded from the definition. 160 

The identification of active cropland relies on significant variations in vegetation signals within time-series remote sensing 

data over a 12-month period, indicating planting and harvesting activities. When periodic vegetation signals exhibit anomalies, 

we hypothesize that changes in cropping patterns or systems may have occurred.  

 

Figure 3 Flowchart of this study for mapping African annual cropland extent spanning the years 2000 to 2022. 165 

 

3.1 1 Generate training datasets 

In the process of generating training data, we employed a dual-window sliding window strategy for the creation of cropland 

and non-cropland training samples. Prior studies have revealed that the distribution of training data (proportional to area and 

equally distributed) as well as data balance significantly impact classification outcomes. Quantitative analyses have 170 

demonstrated that the proportional allocation method typically achieves higher overall accuracy compared to an equally 

distributed approach (Jin et al., 2014; Zhu et al., 2016). Specifically, our procedure for generating reference samples is as 

follows: 

- All annual and multi-year products were categorized into five groups, centred around the years 2000, 2005, 2010, 2015, 

and 2020, each group encompassing the product from the respective centre year plus or minus two years. 175 

- Based on the cropland definitions and class label numbers in Table 1, each LULC product was reclassified into cropland 

and non-cropland After remapping the classification systems of different products, the categories were binarized 



9 

 

(excluding categories with significant discrepancies from other products). The data were then resampled to the WGS84 

coordinate system with a spatial resolution of 0.0002875 degrees (approximately 30 meters at the equator). For multi-

year products, areas where various land cover types had not changed were extracted; for single-year products, they were 180 

used directly.  

- A dual-window methodology was applied to assess binary image classification, requiring complete category occupancy 

within a 150m×150m inner window for homogeneity, and at least 80% dominance in a 330m×330m outer window, 

ensuring spatial stability of the central pixel as a representative sample point. 

- An evaluation was performed to ascertain the recognition consistency of the central pixel's classification across various 185 

products.  

- A hexagonal grid dataset with a resolution of 0.01 degrees was employed to randomly filter the generated excess sample 

points. Within each grid cell, a maximum of 10 samples of the same category with the highest recognition level were 

retained. 

 190 

Figure 4 Schematic Diagram of Training Sample Dataset Generation Using a Dual-Window Approach. 

Through the procedures, a total of five sets of sample datasets were generated, each corresponding to the classification sample 

data for a central year and the two preceding and following years. 

 

3.2 2 Cropland Mapping with classification methods 195 

3.32.1 Original cropland mapping 

The temporal scope for cropland extraction was extended from 2000 to 2022. Utilizing multi-temporal Landsat Surface 

Reflectance (SR) imagery is a primary method for preprocessing in contemporary land use classification. This approach 



10 

 

mitigates the limitations of single-scene imagery by facilitating the extraction of seasonal changes on the Earth's surface. 

Consequently, two methods for temporal data synthesis have been developed: seasonal composites (e.g., 16-day, monthly, and 200 

seasonal composites) and metrics composites. The metrics composite method, introduced by Hansen et al.(2013), captures 

phenological and land cover changes without requiring assumptions or prior knowledge about seasonal timing, making it 

globally applicable without location-specific modifications. 

In this study, five spectral bands from Landsat, excluding the blue band, were used, along with four spectral indices: Enhanced 

Vegetation Index (EVI), Soil-Adjusted Vegetation Index (SAVI), Normalized Difference Water Index (NDWI), and 205 

Normalized Burn Ratio (NBR). From these nine spectral features, five percentiles (10th, 25th, 50th, 75th, and 90th) were 

calculated, resulting in a total of 45 spectral features. Additionally, topographic parameters (elevation, slope, and aspect) were 

derived from the global 30m Digital Elevation Model (DEM) provided by ASTER GDEM. Texture features (variance, 

homogeneity, contrast, dissimilarity, entropy, and correlation) were generated from the gray-level co-occurrence matrix based 

on the Near Infrared (NIR) band, yielding a total of 54 feature parameters for subsequent classification tasks. 210 

For classifier selection, we utilized the ee.Classifier.smileRandomForest() method available on the GEE cloud platform. This 

algorithm determines pixel class membership by adjusting two key parameters: the number of decision trees (Ntree) and the 

number of predictor variables (Mtry) at each node split, using a combination of training samples and multivariate features. 

Previous studies have shown that the classification accuracy of this algorithm is not significantly affected by the specific 

parameter values (Belgiu, 2016; Zhang et al., 2019). Therefore, Ntree was set to the default value of 500, and Mtry was set to 215 

the square root of the total number of input features. A separate classifier was trained for each 2° grid (Fig. 1 f) cell using the 

Random Forest method, with training samples drawn from the four neighboring grid cells surrounding the target grid unit. 

3.32.2 Change detection by CCD algorithm and updating changes 

Changes in cropland are generally more complex than other forms of land use changes, such as deforestation and urban 

expansion. These changes can be categorized as follows: (1) Acquisition of new agricultural land, achieved through clearing 220 

forests or converting savannah regions into arable land; (2) Short-term fallowing, which involves temporarily resting the land 

to restore soil fertility; (3) Abandonment, where agricultural land is left unused due to various factors; and (4) Urban 

replacement, where agricultural fields are progressively replaced by urban areas as a result of socio-economic development. 

In this study, the CCD algorithm (Zhu and Woodcock, 2014) was applied to identify changes in cropland areas. This algorithm 

employs Fourier transform techniques to model time-series observations using trend terms (to estimate trend changes) and 225 

harmonic terms (to describe periodic changes), then identifies potential land use disruptions when the time-series reflectance 

data exhibits six consecutive outliers that significantly deviate from the model-fitted curve (Zhu and Woodcock, 2014). This 

detection criterion typically corresponds to substantial surface modifications, including but not limited to afforestation 

initiatives (Decuyper et al., 2022), agricultural reclamation projects (Chen et al., 2023), or spontaneous cropland abandonment, 

thereby facilitating precise detection of changes in cropland regions. Specifically, the algorithm first decomposes the time-230 

series data into trend and periodic components using the Fourier transform, as shown in Eq. (1): 



11 

 

�̂�(𝑖, 𝑡) = 𝑎0,𝑖 + 𝑐1,𝑖 × 𝑡 + ∑  𝑛
𝑘=1 (𝑎𝑘,𝑖 × cos (

2𝑘𝜋

𝑇
𝑡) + 𝑏𝑘,𝑖 × sin (

2𝑘𝜋

𝑇
𝑡)),     (1) 

Where �̂�(𝑖, 𝑡) represents the estimated value at Julia day 𝑡 and band 𝑖. The parameter 𝑎0,𝑖  is the intercept term at band 𝑖, 

reflecting the average level of the time series, while 𝑐1,𝑖 is the linear trend coefficient, indicating the linear change over time 

at that location. The summation ∑  𝑛
𝑘=1  includes the harmonic components, where 𝑛  is the number of harmonics. The 235 

coefficients 𝑎𝑘,𝑖 and 𝑏𝑘,𝑖 are the cosine and sine coefficients for the 𝑘-th harmonic, describing the amplitude and phase of 

periodic changes. The functions cos (
2𝑘𝜋

𝑇
𝑡) and sin (

2𝑘𝜋

𝑇
𝑡) are the cosine and sine functions for the 𝑘-th harmonic, with T 

being the period length (default is 365.25), used to capture periodic variations (Xian et al., 2022).  

In this study, we utilized the JavaScript API provided by the GEE platform, specifically the 

ee.Algorithms.TemporalSegmentation.Ccdc() function, to detect land use changes. This algorithm identifies change points in 240 

land use by analysing time-series data. In this study, we applied the CCD algorithm alongside continuous Landsat imagery 

data to determine the stable time intervals of agricultural land pixels and identify specific temporal points of land use changes. 

This approach also enabled the identification and correction of misclassifications occurring during these stable periods by 

majority voting. 

3.4 3 Accuracy assessment 245 

The validation of the African cropland product involved three complementary approaches. First, we evaluated the accuracy of 

AFCD by comparing its national-scale area statistics with official FAO reports and other existing cropland products, using R-

square (𝑅2 , shown as Eq. 2) as the evaluation metric. Second, we performed sample-based validation using multiple 

independent datasets. Third, we performed spatial consistency analysis by comparing our product with existing remote sensing-

derived cropland maps. 250 

𝑅2 = 1 −
∑(𝑦𝑖−�̂�𝑖)

2

∑(𝑦𝑖−�̅�𝑖)
2           (2) 

For the sample-based validation, we employed three distinct strategies: (1) We reserved 30% of consensus samples from model 

training for internal validation of classification accuracy; (2) Utilized the cropland/non-cropland samples from sub-Saharan 

Africa compiled by Kerner et al., (2024) for independent accuracy assessment (as described in 2.3); and (3) Applied the global 

cropland sample dataset from Laso Bayas et al., (2017) for sample-based area estimation validation (as described in 2.3). The 255 

first two validation approaches employed four key accuracy metrics calculated through confusion matrix analysis, as shown 

in Eq. (3): 
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𝑃𝐴𝑘 =
𝑝𝑘𝑘

𝑝𝑘⋅

𝑈𝐴𝑘 =
𝑝𝑘𝑘

𝑝⋅𝑘

𝑂𝐴 =
∑ 𝑝𝑘𝑘
𝑚−1
𝑘=01

𝑁

𝐹1𝑘 =
2⋅𝑃𝐴𝑘⋅𝑈𝐴𝑘

𝑃𝐴𝑘+𝑈𝐴𝑘

𝐾𝑎𝑝𝑝𝑎 =
𝑁∑ 𝑝𝑘𝑘

𝑚−1
𝑘=10 −∑ 𝑝𝑘⋅

𝑚−1
𝑘=10 𝑝⋅𝑘

𝑁2−∑ 𝑝𝑘⋅
𝑚−1
𝑘=10 𝑝⋅𝑘

         

 (3) 

For binary classification (cropland vs. non-cropland), we define the number of classes as m = 2, corresponding to class labels 260 

0 and 1. Let N be the total number of validation samples and Let 𝑝𝑖𝑗  denote the number of samples belonging to class 𝑖 but 

classified as class 𝑗 , with 𝑝𝑘𝑘  representing correctly classified cases. The marginal sums 𝑝𝑘⋅ = ∑ 𝑝𝑘𝑗𝑗  and 𝑝⋅𝑘 = ∑ 𝑝𝑖𝑘𝑖  

correspond to row and column totals respectively. 

For the Laso Bayas et al. (2017) dataset validation, we calculated mean absolute error (MAE) by comparing our mapped 

cropland area proportions against reference values within 300×300m sample units. The MAE computation is shown in Eq. (4): 265 

MAE =
1

𝑛
∑|𝐴𝑚 − 𝐴𝑟|           (4) 

Where 𝐴𝑚 denotes the mapped cropland proportion, 𝐴𝑟 is the reference proportion, and n is the sample count. 

In addition, we evaluated the similarity of AFCD with other multi-source remote sensing cropland extent maps through 

comparative analysis. First, five representative agricultural zones were selected as sample areas based on farmcropland 

intensification levels and spatial continuity characteristics, including: (1) contiguous irrigated agricultural zones, (2) dispersed 270 

traditional rain-fed agricultural areas, (3) mountainous terrace farming systems, (4) semi-intensive agro-pastoral transition 

areas, and (5) fragmented transitional farmland cropland regions (see Figure 2). Within each sample area, 1,500 validation 

points were systematically collected, with similarity matrices (Phalke et al., 2020) employed to compare our maps with other 

remote sensing-based land cover products. From these matrices, we computed standard accuracy metrics including PA, UA, 

F1-score, and overall similarity (equivalent in calculation to OA). It should be specifically noted that the comparative datasets 275 

(e.g., GLAD, as described in Section 2.1) exhibit significant discrepancies in farmcropland definitions, spatial resolution, 

mapping years, and classification methodologies. To mitigate the impacts of these disparities during comparison, spatial 

resampling of our map products was occasionally required, along with temporal alignment using outputs from identical 

reference years as comparator products. 

 280 
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4 Results 

4.1 Classification results 

The outcome of this study is an annual 30-m cropland dynamics map for Africa (Fig. 5), which demonstrates strong 

performance in capturing cultivated areas across diverse agricultural landscapes. As illustrated in Figure 5, five representative 

regions were selected to evaluate the AFCD’s capability in recognizing varying cropland patterns under different agricultural 285 

conditions. The result of this study is developing a new annual cropland dynamic map of Africa at 30-m (Fig. 5). The visual 

evaluation of the current cropland product shows that cultivated areas are accurately represented across diverse agricultural 

landscapes throughout Africa (Fig. 5). As shown in the figure above, five regions were selected to assess the AFCD’s 

recognition capabilities, each representing different agricultural characteristics. The contiguous irrigated agricultural zones in 

Egypt, characterized by large, contiguous cropland due to intensive agriculture, were easily identified (Fig. 5b). Similarly, the 290 

dispersed traditional rain-fed agricultural areas in Senegal were accurately captured (Fig. 5b). The mountainous terrace farming 

systems in Rwanda were also well mapped (Fig. 5b), along with the semi-intensive agro-pastoral transition areas in Kenya 

(Fig. 5b). Lastly, the fragmented transitional farmcropland regions in Sudan were correctly identified, showcasing the AFCD’s 

capacity to detect various agricultural systems across different landscapes. 
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 295 
Figure 5 Cropland Extent Map of Africa in 2022 at 30m Resolution by the Africa Cropland Dynamic map (AFCD) Project (a); Visual 

Interpretation of Cropland Extent for Selected African Countries (b), and interannual variations in cropland areas across Africa during the 

21st (c). Yellow colour represents the cropland mask, and background is the natural colour composite high-resolution imagery available in 

Google Earth Engine. 

4.1 Independent accuracy assessment of AFCD map 300 

We performed pixel-wise accuracy assessment of annual cropland map based on the validation sample set. The F1 score, OA, 

UA, PA, and Kappa coefficient of annual maps on average were 0.86 ± 0.01, 0.97 ± 0.01, 0.88 ± 0.07, 0.77 ± 0.07, and 0.93 ± 

0.01, respectively. Spatially, mapping accuracy can vary across different tiles, likely due to the sparse distribution of cropland. 

The overall classification accuracy of the model exceeds 90% across most regions, except for central and southern Niger, 

where the accuracy is lower. In most areas, the F1 scores are above 0.80, and both omission and commission errors are less 305 
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than 0.2. For the sample data provided by Kerner for eight countries in sub-Saharan Africa, the sample collection year is 2019. 

Consequently, we selected cropland extraction results from this time frame for validation. The outcomes and comparisons with 

other products are presented in Table 1. We primarily utilized this sample to evaluate our product, while the accuracy metrics 

for other products were sourced from the study by Kerner et al., (2024). Based on four evaluation metrics and results from 

eight target countries, we compared the performance of our product against other nations and the average level. Our cropland 310 

identification model performed exceptionally well in countries such as Kenya and Mali, achieving an accuracy of 0.96 and an 

F1 score of 0.92, indicating a strong balance between precision and recall. However, the model's performance was relatively 

weaker in Zambia, Togo, and Uganda, with accuracies of 0.82 and 0.78, respectively. 

Table 2 Performance metrics and associated standard errors for our results and other maps based Kerner’s reference dataset. The 

highest value in each row is highlighted in bold blue and the second highest in bold black. 315 

Country Metric Our Result GFSAD GLAD Copernicus GlobCover ASAP Mean 

Kenya 

Accuracy 0.96 ± 0.00 0.92 ± 0.01 0.95 ± 0.01 0.90 ± 0.01 0.76 ± 0.01 0.92 ± 0.01 0.91 ± 0.05 

F1 0.66 ± 0.02 0.63 ± 0.14 0.75 ± 0.19 0.50 ± 0.18 0.29 ± 0.11 0.62 ± 0.17 0.55 ± 0.13 

Precision (UA) 0.67 ± 0.03 0.47 ± 0.06 0.68 ± 0.07 0.38 ± 0.06 0.18 ± 0.03 0.48 ± 0.07 0.48 ± 0.16 

Recall (PA) 0.64 ± 0.02 0.95 ± 0.03 0.83 ± 0.05 0.73 ± 0.07 0.74 ± 0.07 0.85 ± 0.05 0.73 ± 0.15 

Malawi 

Accuracy 0.83 ± 0.00 0.77 ± 0.03 0.86 ± 0.03 0.84 ± 0.03 0.75 ± 0.03 0.77 ± 0.03 0.81 ± 0.04 

F1 0.61 ± 0.01 0.63 ± 0.19 0.66 ± 0.24 0.67 ± 0.22 0.50 ± 0.23 0.63 ± 0.17 0.59 ± 0.14 

Precision (UA) 0.55 ± 0.01 0.50 ± 0.07 0.71 ± 0.09 0.61 ± 0.08 0.43 ± 0.08 0.48 ± 0.07 0.58 ± 0.09 

Recall (PA) 0.68 ± 0.03 0.85 ± 0.05 0.62 ± 0.07 0.74 ± 0.07 0.61 ± 0.08 0.92 ± 0.05 0.67 ± 0.23 

Mali 

Accuracy 0.94 ± 0.01 0.91 ± 0.01 0.96 ± 0.01 0.93 ± 0.01 0.80 ± 0.01 0.95 ± 0.01 0.92 ± 0.05 

F1 0.23 ± 0.07 0.15 ± 0.20 0.33 ± 0.29 0.18 ± 0.23 0.07 ± 0.08 0.21 ± 0.38 0.21 ± 0.14 

Precision (UA) 0.16 ± 0.05 0.10 ± 0.05 0.23 ± 0.08 0.12 ± 0.06 0.04 ± 0.02 0.17 ± 0.11 0.14 ± 0.10 

Recall (PA) 0.42 ± 0.13 0.37 ± 0.15 0.61 ± 0.16 0.37 ± 0.15 0.42 ± 0.16 0.27 ± 0.15 0.44 ± 0.25 

Rwanda 

Accuracy 0.76 ± 0.00 0.74 ± 0.04 0.77 ± 0.04 0.77 ± 0.04 0.61 ± 0.05 0.71 ± 0.05 0.75 ± 0.07 
F1 0.63 ± 0.01 0.73 ± 0.18 0.72 ± 0.18 0.75 ± 0.18 0.61 ± 0.18 0.74 ± 0.16 0.69 ± 0.11 

Precision (UA) 0.82 ± 0.02 0.67 ± 0.07 0.84 ± 0.07 0.73 ± 0.07 0.53 ± 0.07 0.64 ± 0.07 0.77 ± 0.14 

Recall (PA) 0.51 ± 0.01 0.79 ± 0.05 0.64 ± 0.05 0.78 ± 0.05 0.72 ± 0.05 0.88 ± 0.04 0.68 ± 0.17 

Tanzania 

Accuracy 0.83 ± 0.01 0.88 ± 0.01 0.86 ± 0.01 0.86 ± 0.01 0.70 ± 0.01 0.83 ± 0.01 0.81 ± 0.06 

F1 0.72 ± 0.02 0.76 ± 0.06 0.69 ± 0.05 0.72 ± 0.06 0.51 ± 0.06 0.65 ± 0.05 0.61 ± 0.16 

Precision (UA) 0.89 ± 0.02 0.89 ± 0.02 0.95 ± 0.01 0.86 ± 0.02 0.60 ± 0.03 0.92 ± 0.02 0.87 ± 0.11 

Recall (PA) 0.61 ± 0.02 0.67 ± 0.02 0.54 ± 0.02 0.61 ± 0.02 0.45 ± 0.02 0.50 ± 0.02 0.49 ± 0.16 

Togo 

Accuracy 0.77 ± 0.01 0.77 ± 0.03 0.86 ± 0.03 0.78 ± 0.03 0.74 ± 0.03 0.69 ± 0.03 0.78 ± 0.06 

F1 0.45 ± 0.03 0.64 ± 0.18 0.75 ± 0.15 0.63 ± 0.19 0.46 ± 0.20 0.49 ± 0.20 0.55 ± 0.20 

Precision (UA) 0.68 ± 0.02 0.60 ± 0.07 0.88 ± 0.06 0.64 ± 0.07 0.56 ± 0.09 0.48 ± 0.07 0.70 ± 0.14 

Recall (PA) 0.33 ± 0.03 0.68 ± 0.05 0.66 ± 0.05 0.62 ± 0.05 0.38 ± 0.05 0.51 ± 0.06 0.50 ± 0.22 

Uganda 

Accuracy 0.86 ± 0.01 0.79 ± 0.02 0.84 ± 0.02 0.77 ± 0.02 0.57 ± 0.02 0.70 ± 0.02 0.78 ± 0.10 

F1 0.53 ± 0.02 0.48 ± 0.21 0.57 ± 0.23 0.40 ± 0.20 0.31 ± 0.12 0.38 ± 0.16 0.44 ± 0.08 

Precision (UA) 0.42 ± 0.02 0.35 ± 0.07 0.46 ± 0.08 0.29 ± 0.06 0.19 ± 0.04 0.25 ± 0.05 0.38 ± 0.15 

Recall (PA) 0.72 ± 0.01 0.73 ± 0.07 0.76 ± 0.07 0.67 ± 0.09 0.80 ± 0.07 0.79 ± 0.07 0.66 ± 0.18 

Zambia 

Accuracy 0.96 ± 0.00 0.94 ± 0.01 0.97 ± 0.01 0.94 ± 0.01 0.90 ± 0.01 0.91 ± 0.01 0.94 ± 0.03 

F1 0.51 ± 0.06 0.60 ± 0.23 0.73 ± 0.27 0.58 ± 0.24 0.20 ± 0.23 0.45 ± 0.21 0.56 ± 0.15 

Precision (UA) 0.47 ± 0.05 0.46 ± 0.09 0.68 ± 0.10 0.45 ± 0.09 0.15 ± 0.06 0.32 ± 0.07 0.49 ± 0.19 

Recall (PA) 0.58 ± 0.08 0.85 ± 0.07 0.79 ± 0.08 0.80 ± 0.08 0.29 ± 0.10 0.78 ± 0.08 0.71 ± 0.17 

Mean 

Accuracy 0.86 ± 0.01 0.84 ± 0.01 0.88 ± 0.01 0.85 ± 0.01 0.73 ± 0.01 0.81 ± 0.01 - 

F1 0.54 ± 0.03 0.58 ± 0.05 0.65 ± 0.08 0.55 ± 0.06 0.37 ± 0.07 0.52 ± 0.09 - 
Precision (UA) 0.58 ± 0.03 0.51 ± 0.02 0.68 ± 0.03 0.51 ± 0.02 0.34 ± 0.03 0.47 ± 0.03 - 

Recall (PA) 0.56 ± 0.04 0.74 ± 0.04 0.68 ± 0.04 0.67 ± 0.04 0.55 ± 0.04 0.69 ± 0.04 - 

 

Secondly, we utilized the crowd sourced sample data provided by Laso Bayas et al. (2017) to extract the proportion of cropland 

area within a 300m × 300m radius around each point. We then calculated the MAE between the extraction results and visual 

interpretation, the result indicated that 15.07 ± 1.70% for all samples, 10.78 ± 1.56% for control samples, and 31.45 ± 8.47% 

for expert samples.  320 

4.2 Comparison of cropland areas 

The net cropland area for Africa were estimated from 19238.65 Mha in 2000 to 21092.43 Mha in 2022. This estimate is in line 

with other remote sensing-based estimates, although major differences exist. This study conducted cross-validation between 

national-scale cultivated land area estimations and statistical data from the FAO covering 50 African countries/regions (partial 

areas excluded due to data gaps), demonstrating strong concordance (R² = 0.83, Fig. 6a). It should be specifically noted that 325 



16 

 

our total farmcropland estimates exhibit a 10%–24% discrepancy range compared with official FAO statistics. This divergence 

may originate from two principal factors: (1) FAO's statistical framework heavily relies on self-reported national data, 

inherently constrained by inconsistent survey methodologies and update delays (Fritz et al., 2015); (2) our remote sensing 

interpretation protocol using growing-season NDVI threshold classification potentially underestimates intermittently fallowed 

croplands. Comparative analysis with independent remote sensing products (GLAD and IGRIP) revealed three critical findings: 330 

First, the 30-m resolution GLAD dataset showed optimal linear agreement with our estimates (intercept = 0.30 × 10³ ha, R² = 

0.94, Fig. 6b). Second, the 100-m resolution IGRIP dataset exhibited a larger intercept of 1.19 × 10³ ha (R² = 0.86, Fig. 6c). 

Notably, the minimal area discrepancy between GLAD and our study (slope coefficient = 0.98 ± 0.03) primarily stems from 

mutual adoption of 30-m resolution detection criteria. However, the observed high consistency with IGRIP (R² = 0.86) mainly 

reflects mutual recognition of dominant farmcropland types, given IGRIP's emphasis on rainfed/irrigated classifications 335 

(unaddressed in our study) and Africa's overwhelming predominance of rainfed cultivation systems (FAO, 2020). 

 

Figure 6 Comparison of AFCD with FAO Statistical Cropland Area (a) and Other LULC/Cropland Products (b-f) (2000–2022). In (b–f), 

blue and red dots show the differences from FAO estimates for AFCD and other products, respectively. The purple line indicates the linear 

fit between AFCD and each product. 340 
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4.3 Map to map comparison results 

The comparison of cropland maps derived from this study with the cropland labels in GLAD2019 reveals a high level of 

agreement across the entire study area, with an overall similarity of 87.7%. Specifically, the producer’s cropland similarity 

was 85.2% (corresponding to an omission error of 14.8%), while the user’s cropland similarity was slightly higher at 86.9% 345 

(resulting in a commission error of 13.1%). Among the selected regions, Nigeria exhibited the highest similarity at 94.6%, 

with an F1-Score of 0.963. Senegal followed closely with an overall similarity of 94.4% (F1-Score = 0.858), while Rwanda 

showed the lowest similarity at 76.7% (F1-Score = 0.766). Visual comparisons highlighted the successful identification of 

major irrigated agricultural zones (such as in Egypt) and rainfed cultivation areas (notably in Nigeria). 

When compared with the 10m African cropland product from Digital Earth Africa (DEA) for 2019, the similarity in Egypt 350 

was particularly high, with an overall similarity of 90.1% (F1-Score = 0.913). In this case, the producer’s cropland similarity 

was 86.5% (omission error = 13.5%), while the user’s cropland similarity reached 96.5% (commission error = 3.5%). The 

primary cause of discrepancies is the use of Sentinel-2 10m-resolution imagery in the DEA product, which improves boundary 

delineation between cropland and adjacent land covers, reducing mixed-pixel effects. As a result, our AFCD product tends to 

show more omission errors compared to DEA, while the commission errors remain below 5%, highlighting its strong 355 

performance in detecting cropland areas. 

A cross-comparison with the LGRIP30 global 30m irrigated/rainfed cropland dataset (2015 vintage) in Nigeria’s 

predominantly rainfed systems showed an overall similarity of 89.7% (F1-Score = 0.932). The producer’s cropland similarity 

was notably high at 95.8% (omission error = 4.2%), while the user’s cropland similarity was 88.4% (commission error = 

11.6%). The discrepancy is mainly due to occasional misclassifications in the LGRIP30 dataset, where buildings, roads, and 360 

neighboring woodlands are sometimes incorrectly labeled as cropland. Nevertheless, the spatial agreement between the AFCD 

and LGRIP30 datasets remains substantial, with a similarity of nearly 90%. 
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Figure 7 Visual comparison of cropland and non-cropland classification results from AFCD and Potapov et al. (glad) across multiple African 

countries, and background is the natural colour composite high-resolution imagery available in Google Earth Engine. 365 
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Figure 8 Map to map comparison of cropland extent develop by AFCD and LGRIP30 in Egypt and Nigeria, and background is the natural 

colour composite high-resolution imagery available in Google Earth Engine. 

 

5. Discussion 370 

5.1 Cropland dynamics in Africa 

Based on the produced AFCD map, we calculated country-level net changes in cropland area between 2000 and 2022, and we 

plotted annual cropland area dynamics at the continental scale. Overall, Africa's total cropland grew from 194.35 Mha in 2000 

to 210.92 Mha in 2022 (Fig. 5c), a net increase of 16.57 Mha (8.53%). In terms of temporal changes, before 2005, the changes 

in arable land followed a wave-like pattern, with gradual fluctuations. However, after 2006, a sharp increase was observed (as 375 

shown in Fig. 9b). As seen in Fig. 9a, the overall arable land area in Africa shows a spatial increasing trend. Countries such as 

the Democratic Republic of the Congo, Tanzania, and Mozambique have seen increases of over 1.5 million hectares (Mha), 

while most countries experienced an increase of less than 500,000 hectares (kha). For example, in the Democratic Republic of 

the Congo, 1,533.46 kha of land have been converted into arable land since the 21st century. In contrast, a few countries, 

including Zimbabwe (460.54 kha), South Sudan (88.70 kha), and Libya (0.25 kha), have seen a decline in arable land area. 380 
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This trend is linked to factors such as the growth of the mining industry in African nations, rural labor migration to mining 

areas, or regional conflicts leading to the abandonment of arable land. 

 

Figure 9 Cropland area changes in Africa between 2000 and 2022. (a) Country-level cropland change patterns based on AFCD data; (b) 

Continent-wide annual cropland dynamics. 385 

From 2000 to 2022, Africa's cropland area steadily increased; however, the area of abandoned cropland also rose. According 

to the FAO, cropland abandonment refers to formerly cultivated land that has not been used for agricultural production for a 

period exceeding five consecutive years. By 2018, abandoned cropland accounted for 11.52% (24.70 Mha) of active cropland. 

In 2022, the increase in potentially abandoned cropland, projecting that abandoned cropland will constitute 13.31% of active 

cropland. The abandonment of cropland is driven by a combination of natural constraints, land degradation, demographic shifts, 390 

socio-economic factors, and institutional frameworks, which interact across different spatial and temporal scales (Zumkehr 

and Campbell, 2013). This study quantitatively evaluates the spatiotemporal trends and primary drivers of cropland 

abandonment in Africa (shown as Fig. 10). Countries situated between 23°E and 39°E, including Egypt, Sudan, South Sudan, 

Uganda, Malawi, and Zimbabwe, account for 50.1% of the continent’s abandoned cropland. Nationally, we found that most 

abandoned cropland remains unused for over five years. South Africa and Sudan exhibit the highest reclamation rates, with 395 

10% of active cropland regenerated from previously abandoned areas, while most other nations have rates below 5%. 

Cropland abandonment is influenced by a myriad of objective factors, encompassing agricultural conditions and the degree of 

regional development. Furthermore, economic circumstances, demographic shifts, and urban expansion also significantly 
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contribute to this phenomenon. A national-level analysis of cropland abandonment across Africa offers a spatial perspective 

on the magnitude of abandonment, simultaneously reflecting the alterations in socioeconomic variables that underlie this trend. 400 

The heatmap reveals that countries such as Burundi, the Central African Republic, and Ghana exhibit both low areas and ratios 

of cropland abandonment (< 5%). Conversely, nations like Algeria, Burkina Faso, Mali, and Zambia consistently maintain 

higher levels of cropland abandonment annually, with abandoned areas exceeding 25% of active cropland. Furthermore, South 

Africa, Nigeria, Zimbabwe, and Sudan demonstrate elevated abandonment levels, notably with Nigeria experiencing 

significant abandonment around 2015. 405 

 

Figure 10 Spatial distribution of cropland abandonment in Africa, indicating the year abandonment began. Includes a summary of abandoned 

cropland area and the ratio of abandoned to active cropland at 2° longitude and latitude intervals.  

Cropland, a heavily modified landscape within the wildland-urban interface (WUI), is a critical source of carbon emissions 

due to agricultural biomass burning, which substantially influences climate change (Mallet et al., 2024). In Africa, rain-fed 410 

cropland predominates over irrigated farmcropland. As a result, farming activities are concentrated in the rainy season when 
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water resources are abundant. During the dry season, arid conditions and natural vegetation growth create favorable conditions 

for wildfires, driven by meteorological and fuel moisture dynamics. Studies indicate a global rise in wildfire risk, with Africa’s 

WUI being the most affected  (Chen et al., 2024). However, wildfire detection using MODIS sensors underestimates burned 

areas smaller than 100 ha by over 200% due to limited spatial resolution (Ramo et al., 2021). Agricultural fire management, 415 

commonly used by African farmers to clear crop residues and reduce wildfire risk during fallow periods (Laris et al., 2023; 

Ramo et al., 2021), is often absent on abandoned cropland, significantly heightening wildfire risks. This study’s long-term 

mapping of abandoned cropland in Africa offers a critical foundation for future research on fire management and monitoring 

wildfire risks in these areas. 

Finally, cropland extraction in Africa is particularly challenging due to the complex crop planting structures in the region and 420 

the dynamic changes driven by climatic, environmental, and socio-economic factors. The long-term cropland data provided in 

this study is essential for understanding the interannual variation of cropland in Africa and its relationship to environmental, 

climatic, land use, and policy influences. 

5.2 The advantages of the AFCD map 

This study presents an algorithm developed using Landsat time series data (2000-2022) implemented on GEE with Random 425 

Forest and CCDC, producing a 30-meter resolution cropland extent map for Africa (Fig. 5). By integrating existing LUCC 

products with the CCDC algorithm, we developed a consistent cropland map for Africa. This approach minimizes the impact 

of seasonal false changes, ensuring stable and continuous identification of both active and abandoned croplands. Our method 

achieved an overall classification accuracy of 86% based on an independent validation dataset. Over the 22-year period, Africa 

experienced a net cropland expansion of 16.57 million hectares (Mha), representing nearly a 10% increase relative to the 430 

baseline levels at the start of the millennium. By comparing our product with other global and regional Land Use and Land 

Cover (LULC) or Cropland Extent (CE) products, we gain valuable insights into its strengths and limitations. 

Existing LULC products, such as the ESRI 10m Annual Land Cover, GLAD’s global cropland maps, and GlobeLand30, 

provide useful information; however, the AFCD product distinguishes itself through longer temporal coverage (2000–2022) 

and higher temporal frequency with Landsat-based annual observations at 30m resolution. This enables a more extended 435 

temporal observation of agricultural dynamics starting from the early 2000s. For example, compared to GLAD’s quadrennial 

cropland extent product—aligned with FAO’s five-year fallow land definition—the AFCD product offers enhanced temporal 

resolution. This improvement significantly boosts detection capabilities for long-term land abandonment patterns. Additionally, 

the AFCD map reduces misclassifications of roads and buildings near farmcropland, a common issue in products like LGRIP. 

When compared to other 30m-resolution products such as GLAD, GCEP, and LGRIP, the AFCD product shows good 440 

consistency in terms of total cropland area. However, it tends to slightly underestimate cropland areas when compared to 

higher-resolution products like the 10m-resolution DEA or the 300m-resolution ESACCI. As shown in Figure 8, while AFCD 

preserves much of the object-level detail, the 30m resolution results in many mixed pixels, leading to small cropland areas 

being overlooked, especially when surrounded by vegetation.  
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A significant challenge in large-scale classification tasks is acquiring high-quality reference training and testing data. In this 445 

study, we generated a large number of sample data points and performed training and classification based on a grid approach. 

However, our training data relied on sample points derived from the limited overlap of different products. Cropland in sub-

Saharan Africa is often fragmented, forming mosaics with savannas, woodlands, and grasslands. As a result, various products 

may identify the same pixel containing cropland in different ways, leading to inconsistencies. Regions with low classification 

consistency across products are especially vulnerable to misclassification. Consequently, we included these challenging 450 

samples with limited recognition in our training dataset. While this introduces some uncertainty, it is a necessary trade-off to 

minimize the omission of cropland as much as possible.  

The AFCD product facilitates: 1) continuous temporal tracking of non-linear cropland system evolution; 12) precise 

identification of abandonment onset years and associated trigger events; and 3) robust attribution analysis of climate and 

anthropogenic impacts on agricultural landscapes. Serving as both a historical record of 21st-century cropland dynamics in 455 

Africa and a foundational dataset for future abandonment studies, this product contributes significantly to continental food 

security initiatives, hunger mitigation strategies, and sustainable land management efforts. 

Cropland mapping is a complex and dynamic process, marked by gradual or abrupt changes in land cover due to human 

activities. Previous studies have employed soft classification approaches alongside the LandTrendr algorithm to track cropland 

change trajectories (Dara et al., 2018; Xie et al., 2024). However, these methods rely heavily on the accuracy of cropland 460 

probability distribution maps, which can be affected by seasonal variations in image quality and difficulties in determining 

classification thresholds. Additionally, most research has focused on developed regions like Europe, China, and the United 

States, leaving cropland change mapping in Africa, a region with diverse climates and complex land cover, a major challenge. 

The AFCD map provides more reliable information for cross-regional and cross-national comparisons and assessments. Such 

granular data is essential for understanding cropland transitions and guiding agricultural management practices in Africa. 465 

5.3 The limitations and prospects of AFCD map 

Our study acknowledges several limitations in terms of methodology and data. First, while we track cropland dynamics 

annually, we do not account for intra-annual variations in crops, such as differences in crop calendars or planting intensities. 

As a result, our approach may not effectively capture perennial crops or multi-cropping systems. Second, we map the general 

extent of cropland without distinguishing between specific types, which is crucial when assessing crop yields or cropland’s 470 

responses to climate and anthropogenic factors. Future research will likely benefit from incorporating advanced techniques for 

high-resolution crop type mapping. Third, while AFCD performs above the average accuracy level for similar products in 

Africa, several factors contribute to its limitations. In terms of temporal accuracy, AFCD shows relatively lower precision in 

the early 21st century, mainly due to limited data availability for creating consensus label samples in the early 2000s, as well 

as uneven coverage of Landsat 5 data. Spatially, mapping accuracy varies by region, with relatively higher errors in countries 475 

near the Gulf of Guinea and in East Africa. This is due to local climate conditions and fragmented agricultural landscapes, 

which have long presented challenges for accurate cropland identification. Recent studies have highlighted the significant 
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discrepancies in cropland mapping across Africa (Kerner et al., 2024; Tubiello et al., 2023a). Additionally, the quality of 

Landsat data (e.g., unmasked cloud cover) and the sensitivity of the CCDC parameters have further impacted the mapping 

results. To improve cropland classification accuracy in these regions, future work should focus on comprehensive surveys and 480 

tailored strategies. Finally, it is important to note that the datasets used to generate consensus Crop/Non-crop samples define 

cropland differently, which may introduce noise and errors in our results. For instance, GLAD includes perennial herbaceous 

plants, while GFSAD may encompass plantation lands such as those cultivated with fruits, coffee, and tea. By relying on 

consistency across products, our consensus labeling process partially excludes these areas. Lastly, although we assume that 

land cover types should not change between breakpoints identified by CCDC, significant breaks caused by human activities 485 

can alter the classification of cropland’s duration of use. This can lead to overestimation or underestimation of cropland areas 

in certain regions in different years within the AFCD dataset.  

6 Data availability 

The developed AFCD map dataset can be freely accessed via https://doi.org/10.5281/zenodo.14920706 (Lou et al., 2025). To 

help users to navigate this dataset, it is saved as 23 independent files. Each file is named "AFCD_YYYY.tif", where YYYY 490 

is the year of cropland map. AFCD map contains 23 maps for time steps from 2000 to 2022, updated annually. In each TIFF 

file, a value of 1 indicates cropland area.  

7 Conclusions 

Cropland dynamics serve as a fundamental driver of human modification and adaptation to natural environments, while also 

constituting one of the ultimate objectives in Earth Observation research. Conducting large-scale and long-term cropland 495 

monitoring across Africa remains a significant challenge, particularly given the continent's complex agro-ecological conditions 

and persistent data limitations. This study generated an annual map of cropland extent at a 30-meter resolution for Africa 

(namely AFCD), utilizing Landsat-5, Landsat-7, and Landsat-8 data spanning from 2002 to 2022. It highlighted the efficacy 

of mapping croplands over extensive areas by employing high-resolution satellite data processed through pixel-based RF 

algorithms and CCD algorithms on the GEE. The research introduced a novel methodology for sample generation, 500 

incorporating crop and non-crop samples from previous LUCC and cropland extent products, alongside RF and CCD 

algorithms, to produce annual maps of cropland extent in Africa. An independent accuracy assessment revealed an overall map 

accuracy of 0.86. By 2022, Africa's cropland expanded from with a net increase of 8.53%. The high spatial and temporal 

resolution of the maps enabled detailed capture of cropland change across Africa, helping to uncover the impact of cropland 

on the climate, improve food security, and develop sustainable land management practices. 505 
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