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Abstract

International databases of disaster impacts are crucial for advancing disaster risk research, particularly as climate change
intensifies the frequency and intensity of many natural hazards — including temperature extremes. However, many widely-
used disaster impact databases lack information on the physical dimension of the hazards associated with an impact, and on
the exposure to such hazards. This hinders analysing drivers of severe disaster outcomes. To bridge this knowledge gap, we
present SHEDIS-Temperature, a dataset that provides Subnational Hazard and Exposure information for temperature-related
DISaster impact records (https://doi.org/10.7910/DVN/WNOTTC ; Lindersson and Messori, 2025). This open-access dataset
links temperature-related impact records from the Emergency Events Database (EM-DAT) with subnational data on their
locations, associated meteorological time series, and population maps. SHEDIS-Temperature provides hazard and exposure
data for 2,835 subnational locations associated with 382 disaster records from 1979 to 2018 in 71 countries. Detailed hazard
metrics, derived from 0.1° 3-hourly data, encompass absolute indicators, such as the heat stress measure apparent temperature
accounting for humidity and wind speed, as well as percentile-based indicators of when and where temperatures exceeded
local thresholds. Population exposure data include annual population figures for impacted subnational administrative units and
person-days of exposure to threshold-exceeding temperatures. Outputs are available at grid-point level as well as zonally
aggregated to administrative subdivision units, and disaster-record levels. Technical validation against a station-based dataset
indicated minor systematic biases — slightly overestimated minimum and underestimated maximum temperatures — but
confirmed high consistency between datasets, with correlation coefficients > 0.9 and mean absolute errors <2 °C. By providing
comprehensive attributes across the hazard-exposure spectrum, SHEDIS-Temperature supports interdisciplinary research on

past temperature-related disasters, offering valuable insights for future risk mitigation and resilience strategies.
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1 Introduction

International databases documenting impacts from natural hazards play a central role in advancing quantitative research on
disaster risk (Jones et al., 2022; UNDRR, 2022). These collections enable researchers, organisations and agencies to track how
disaster impacts vary across regions and over time, including to monitor progress of disaster risk reduction globally (Aitsi-
Selmi et al., 2015). Combined with additional risk-relevant information — such as estimates of the physical hazard, exposed
population, and socioeconomic indicators — impact records can pinpoint factors contributing to particularly severe outcomes
(Kahn, 2005; Lindersson et al., 2023; Mochizuki et al., 2014; Tselios and Tompkins, 2019; Vestby et al., 2024). Lessons
learned from past events are, furthermore, increasingly important for guiding future risk mitigation and resilience efforts as
climate change drives shifts in the frequency and intensity of many natural hazards (IPCC et al., 1990). Hot and cold extremes
are primary examples of fatal hazards under rapid change (Gallo et al., 2024; Garcia-Leon et al., 2024; Gasparrini et al., 2015;
IPCC, 2023; Liithi et al., 2023; Russo et al., 2019).

The Emergency Events Database (EM-DAT; CRED and UCLouvain, 2023; Delforge et al., 2025), maintained by the Centre
for Research on the Epidemiology of Disasters, is a leading open-access resource for international disaster impact data (Jones
etal., 2022; Panwar and Sen, 2020). Widely used for its extensive set of national-level records of human and economic losses
from major disasters, EM-DAT remains a cornerstone of empirical disaster research despite certain limitations, such as
underreporting and a bias toward advanced economies (Acevedo, 2016; Green et al., 2019; Jones et al., 2022, 2023; Wirtz et
al., 2014). Beyond issues with missing data, EM-DAT lacks spatiotemporal detail for impacts and the associated hazards. The
physical magnitude of temperature extremes, for instance, is often missing or reduced to a single maximum or minimum air
temperature, without specifics on the timing, duration or location. Furthermore, multiple meteorological factors beyond the
(dry bulb) air temperature, including humidity and wind, substantially influence stress levels experienced by the human body
during extreme temperatures (Cvijanovic et al., 2023). These limitations place the responsibility on users to link impact records
to additional data sources when a more comprehensive risk analysis is needed. However, recent advancements in high-
resolution data on disaster locations, meteorological data and population patterns present new opportunities for systematic data

integration across the risk spectrum.

This article introduces SHEDIS-Temperature, an open-access dataset that provides Subnational Hazard and Exposure
information for temperature-related DISaster impact records (Figure 1). To achieve this, we integrated the open-source
Geocoded Disasters extension (GDIS; Rosvold and Buhaug, 2021), which geocodes many EM-DAT records to subnational
locations, with high-resolution global time-series of meteorological variables from Multi-Source Weather (MSWX; Beck et
al., 2022) and population data from the Global Human Settlement Population grids (GHS-POP; European Commission, 2023;
Schiavina et al., 2023). SHEDIS-Temperature (Lindersson and Messori, 2025) provides hazard and exposure data for 2,835
subnational locations (referred to hereafter as subdivisions) associated with 382 disaster records from 1979 to 2018 in 71

countries (Figure 1).
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SHEDIS-Temperature advances a growing field of research that links disaster impact data to in-situ and satellite-derived
information (Brimicombe et al., 2021; Dellmuth et al., 2021; Felbermayr and Grdschl, 2014; Kageyama and Sawada, 2022;
Mester et al., 2023). Our dataset offers three primary contributions. First, it includes detailed information on the physical
hazards, including both absolute and percentile-based indicators. The absolute indicators, like maximum 2-m air temperature
and apparent temperature are provided as daily statistics derived from 3-hourly data. The percentile-based threshold analysis
identifies if, when, where, and by how much daily temperatures exceeded local 90th and 95th percentiles, enabling more
context-sensitive assessments of extreme events. Second, SHEDIS-Temperature provides data on population exposure to these
extreme temperatures, detailing annual population figures for each impacted subdivision and exposure to threshold-exceeding
temperatures, expressed as person-days. Third, to support diverse research needs, we present outputs at three levels: grid point,
subdivision and EM-DAT record (referred to hereafter as disno, short for disaster number). Open-access source scripts enable

users to further adjust the outputs if needed.

The usefulness of SHEDIS-Temperature is multifaceted. It can serve as a corroboration of EM-DAT and GDIS by cross-
verifying reported impact locations against observed extreme weather events. We also anticipate that SHEDIS-Temperature
can support empirical analysis of temperature-related disasters across disciplines. We consider the granularity and flexibility
of the dataset to be crucial, especially since disasters often have uneven impacts — not only across countries but within them
as well (Masselot et al., 2023; Yin et al., 2023). Our work is also aligned with UNDRR’s call for more integrated tracking
systems that capture both the origins of hazards and their impacts (UNDRR, 2022). Ultimately, systematically connecting data

on hazards, exposure and impacts is essential for quantifying the social vulnerability to disasters.
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2 Figure 1 Introduction to SHEDIS-Temperature. (a) The 382 national-level disaster records from 1979 to 2018 in 71 countries that
underpin the dataset. These records comprise EM-DAT records (b) that have been geocoded to administrative subdivisions by GDIS (c).
4 SHEDIS-Temperature expands on this by providing an extensive catalogue of hazard- and exposure-related attributes for each subdivision
and disno (d), as well as data on grid point level.

6 2 Data and methods

SHEDIS-Temperature links temperature-related impact records to subnational data on their physical occurrence and human

8 exposure. The dataset was constructed through three main steps: (1) sampling and geocoding, (2) data processing at the grid

point level, and (3) aggregating of outputs into the final dataset (Figure 2). All analyses were performed in R v.4.3.3 and the

10  WGS84 coordinate system. Area-corrected calculations were applied to derive grid cell areas and polygon areas with the



R packages “terra” (Hijmans, 2025) and “sf” (Pebesma, 2018), respectively. Meteorological data in NetCDF were processed
2 with Climate Data Operators (CDO; Schulzweida, 2023).
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4 Figure 2. Flowchart illustrating the main steps of integrating data from multiple sources to derive SHEDIS-Temperature. (1) A total
of 382 temperature-related impact records from EM-DAT were successfully matched to subnational locations by GDIS, which we used to
6 identify 2,835 subdivision boundaries at level 1 (province/equivalent) and level 2 (county/district/equivalent) from GADM. (2) Within these
identified geographical extents, daily statistics of meteorological variables (absolute values and percentiles) were computed from MSWX.
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Annual population figures were also interpolated from GHS-POP, and percentile-exceeding temperature events were identified. (3) Outputs
were exported at three levels: grid point, subdivision and disno.

2.1 Sampling and geocoding

SHEDIS-Temperature extends the international disaster database EM-DAT (CRED and UCLouvain, 2023), which documents
national-level disaster impacts meeting at least one of the following criteria: >10 fatalities, >100 affected individuals, a declared
state of emergency, and/or a request for international assistance. SHEDIS-Temperature includes records that EM-DAT
classifies as heat waves and cold waves. EM-DAT defines a heat wave as a period of abnormally hot and/or unusually humid
weather, while a cold wave is a period of abnormally cold weather that may be exacerbated by high winds (CRED and
UCLouvain, 2024b). Both types of events are also described as typically lasting two or more days, and specific temperature
thresholds vary by region (CRED and UCLouvain, 2024).

Our dataset incorporates records from 1979 to 2018, aligning with the temporal scope of supporting datasets — Multi-Source
Weather (MSWX; Beck et al., 2022) and the Global Human Settlement Population grid (GHS-POP; European Commission,
2023; Schiavina et al., 2023), which begin in 1979 and 1975 respectively, and the Geocoded Disasters (GDIS) dataset (Rosvold
and Buhaug, 2021), reaching up to 2018. Limiting the dataset to four recent decades also enhances data reliability, since impact
records from earlier periods are generally more uncertain and biased (CRED and UCLouvain, 2024; Gall et al., 2009). The
final sample of SHEDIS-Temperature includes impact records that meet this timespan and have been geocoded to

administrative subdivisions by GDIS.

The creators of GDIS geocoded EM-DAT entries (disnos) to subnational levels by matching their location description in EM-
DAT to administrative subdivision names provided by the Global database of Administrative boundaries (GADM), version
3.6 (www.gadm.org). GADM provides names and corresponding polygons of administrative subdivisions across multiple
hierarchical levels, including level-1 (province/equivalent), level-2 (county/district/equivalent), and level-3
(municipality/equivalent). The creators of GDIS thus linked each disno in EM-DAT to one or more of these subdivisions in

GADM, across one or more hierarchical levels — when the location description in EM-DAT was sufficient to do so.

For each disno, GDIS provides the original location description from EM-DAT along with the name, level and centroid
coordinate pair for one or more matched subdivisions from GADM. However, we identified several mismatches where a disno
has been linked to a subdivision in the wrong country due to shared subdivision names. To address this, we derived country-
specific ISO codes directly from the GDIS-provided coordinates and used them to reconstruct the disno number. If the assigned
location falls outside the expected country, the disno number does not match with the list from EM-DAT and is excluded from

the final sample.

To retrieve the boundary polygons instead of the centroid coordinates, we first converted GADM polygons to centroids and

then applied a nearest-neighbour approach for each administrative level separately. We then controlled for discrepancies

between the original location description in EM-DAT and the matched subdivision name. We identified one mismatch where
6
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the centroid of a subdivision had been misplaced by GDIS, which we corrected manually!. After having run these consistency

checks, we replaced each centroid coordinate pair (from GDIS) with its original boundary polygon (from GADM).

For the purpose of SHEDIS-Temperature, we chose to replace the level-3 impacted subdivisions (r=148, associated with 45
unique disnos) with their parent level-2 divisions — due to the relatively coarse resolution of the global supporting datasets and
the wide spatial extent of temperature extremes. Moreover, GADM provides level-3 subdivisions for only certain countries,
making level-1 and level-2 divisions more suitable for consistent cross-country comparisons. Duplicates, due to multiple level-

3 units having been replaced with the same level-2 unit for the same disno, were removed.

To reduce file size, we simplified the polygon shapes with the R package “rmapshaper” (Teucher et al., 2023), which performs
topologically aware polygon simplifications. To clarify, aside from this minor shape simplification, the subdivision geometries

provided by SHEDIS-Temperature are identical to those provided by the GADM v3.6 dataset.

2.1.1 Sample of disaster records and their subnational locations

The final dataset comprises 2,835 impacted subdivisions, including 2,353 level-1 administrative units (province/equivalent)
and 482 level-2 units (county/district/equivalent), linked to 382 distinct disaster records (disnos) across 71 countries (Figure
1). Of these, 63% of the subdivisions are linked to 243 cold wave records in 60 countries, while the remaining subdivisions
are linked to 139 heat wave disnos in 47 countries. The majority (83%) of impacted subdivisions are level-1 administrative
units. Since several subdivisions experienced multiple events during the study period, the dataset includes 931 unique level-1

and 343 unique level-2 subdivisions (Figure Al).

The dataset spans 1979-2018, with most disnos recorded after 2000 (Figure 3a). A notable spike in cold wave records appears
in 2012, when cold waves in Europe led to recorded disasters in 26 countries, ten of which recorded events both at the beginning
and end of the year. The European heat waves of 2003 and 2007 are also evident (Figure 3a), resulting in 15 and 11 disaster
impact records, respectively. Each disno in the sample includes a reported start month from EM-DAT, collectively illustrating

the seasonal variability of these hot and cold extremes across continents (Figure 3b).

The geographic distribution of the final sample reflects a bias in the parent dataset EM-DAT, with most records originating
from Europe, Asia and the Americas (Figure 1a, Figure 3b). This bias arises from two factors: a reporting tendency towards
advanced economies and the high density of small countries in continental Europe, which leads to multiple national-level

records per meteorological event.

' For disno 1999-0068-RUS, the centroid of the Russian subdivision Chukot had been incorrectly located within the
neighbouring subdivision Sakha by GDIS. This error may arose because Chukot spans the 180th meridian, which can distort
the centroid location depending on the methodology used.

7



The median number of subdivisions impacted by each disno is four for cold waves and three for heat waves, though this also
varies across continents and recording periods (Figure 3c¢), from six in Europe to four in the Americas, three in Asia and Africa
and 1.5 in Oceania. More recent records tend to be linked to a greater number of subdivisions compared to older ones, likely
reflecting increased detail in disaster reporting over time. Figure 3c also displays an outlier in the sample with 78 linked
subdivisions — a heat wave disno from Turkey (disno 2000-0381-TUR) for which EM-DAT offers an unusually long list of

impacted locations.
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Figure 3. Overview of the disaster records underpinning SHEDIS-Temperature. (a) Histogram of the temporal distribution of disaster
impact records from 1979 to 2018, highlighting the higher number of records in the latter part of the recording period. (b) Density plots
illustrating the seasonal variability of reported start months for heat wave and cold wave records across continents. The uneven number of
observations per continent also highlight the geographic bias of the parent dataset, EM-DAT. (¢) Boxplots showing the number of
subdivisions linked to each disno, per continent and reporting period. Note the cut in the y-axis for visualization purposes.
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2.2 Data processing at grid point level
2.2.1 Spatiotemporal boundaries for analysis

The simplified polygons outlining the impacted subdivisions define the spatial boundaries for the subsequent analysis, which
we also refer to as the geometry for analysis. The analysis period for each disno is defined by the first date of the start month
and last date of the end month as reported by EM-DAT, but expanded with one week at both ends for precaution. A majority
(n=175) of the disnos have reported start months that coincide with the reported end month, resulting in a roughly six weeks
analysis period. One impact record (disno 2007-0673-ROU) missed a reported end month, which we then assumed to be the

month following the reported start month.

We chose not to rely on the daily information from EM-DAT because only approximately half of the disnos provide start and
end days. Additionally, about a quarter of the records with daily information have start- and end-days that coincide, which
contradicts the very disaster definition stating that heat waves and cold waves typically last for two days or more (CRED and

UCLouvain, 2024).

2.2.2 Meteorological data processing

Multi-Source Weather (MSWX; Beck et al., 2022) is a high-resolution meteorological dataset derived from hourly ERAS
reanalysis data (Hersbach et al., 2020). MSWX bias-corrects and downscales the ERAS data using nearest-neighbour
interpolation to a spatial resolution of 0.1°. It provides seamless global NetCDF files at 3-hourly intervals beginning January
1, 1979. The 3-hourly MSWX values represent averages of the 1-hourly ERAS data (Beck et al., 2022). ERAS is widely
regarded as the most reliable reanalysis dataset available. For instance, Liu et al. (2024) recently demonstrated its consistent
quality for 2-m air temperature across most regions across the globe. For this study, we used MSWX-Past data on 2-m air

temperature (°C), 2-m relative humidity (%) and 10-m wind speed (m/s).

ERAS5-Land (Mufioz Sabater, 2019) is another widely used 0.1° reanalysis product based on ERAS and could also have been
used in this study. MSWX was selected over ERAS-Land primarily for practical reasons. The 3-hourly temporal resolution of
MSWX, compared to the 1-hourly structure of ERAS5-Land, is less computationally demanding. MSWX also provides ready-
to-use variables such as 10-m wind speed and 2-m relative humidity, whereas ERAS5-Land only provides wind components
and variables from which relative humidity must be derived, requiring additional processing steps. Unlike ERAS5-Land, which
is a physically consistent reanalysis without explicit bias correction (Muifloz Sabater, 2019), MSWX applies a statistical bias
correction using multiple observational datasets (Beck et al., 2022). For a subset of events, we compared maximum and
minimum temperature estimates from MSWX and ERAS5-Land against EM-DAT records (as described for MSWX in Sect.
3.3.3). Both datasets showed broadly similar levels of agreement with EM-DAT, with the main difference being that ERAS-
Land aligned less well with minimum temperatures during cold waves. Considering these factors, MSWX was chosen as the

primary dataset for this study.
10
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Using 3-hourly values of air temperature, wind speed, and relative humidity from MSWX, we calculated apparent temperature
for each grid point within the impacted subdivisions and their respective analysis period. Apparent temperature quantifies the
amplification of perceived temperatures due to wind and humidity, and can thus be used as a metric for thermal stress in
humans (Steadman, 1984). The model assumes that the temperature is experienced outdoors but not in direct sunlight (Buzan
et al., 2015). Although radiation is sometimes included in these calculations, we used the non-radiant version for our analysis,
following the methodology by Steadman (1994). These calculations were performed using the “apparentTemp” function in the
R package “HeatStress” (Casanueva, 2019), which calculates apparent temperature (at, °C) using air temperature (t,, °C),

relative humidity (RH, %) and wind speed (u, m/s), following Eq. (1) and Eq. (2).

at =t; +0.33e—0.7u—4 @)

where e is the water vapour pressure (hPa), derived from air temperature and relative humidity as

axt,
e=RH XcXexp P 2)
a

with t," =10 X t,
The constants a, b, and c differ depending on whether the air temperature is above or below the freezing point:
a= 17.368; b = 2388.3; ¢ = 0.06107 fort, = 0 °C (water phase)

a = 17.856; b = 2455.2; ¢ = 0.06108 for t, < 0 °C (ice phase)

For each disno and subdivision in the sample, we then compiled daily time series for all grid points within the boundary
polygon and the analysis period. The following variables were included: daily mean air temperature (T), daily maximum air
temperature (TX), daily minimum air temperature (TN), daily mean apparent temperature (AT), daily maximum apparent
temperature (ATX), and daily minimum apparent temperature (ATN). The variables TX, TN, ATX, and ATN thus represent

the most extreme 3-hourly values recorded within each 24-hour period.

2.2.3 Population data processing

For estimating human exposure to extreme temperatures, we used global population maps from the Global Human Settlement
Layer R2023 A (GHS-POP; European Commission, 2023; Schiavina et al., 2023), which combines satellite imagery and census
data to generate 5-year time series from 1975 to 2020. The population maps, initially at a spatial resolution of 30 arcseconds,

were resampled to align with the MSWX 0.1° data grid using the R package “exactextractr” (Baston, 2023).

During resampling, we extracted population estimates for each 5-year time step for all grid points within the boundaries of
each subdivision. These population values were simultaneously scaled with the coverage fraction, which represents the

11
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proportion of each grid point being located within the subdivision boundaries. To address minor discrepancies in population
values introduced during resampling, we also scaled the resampled population cell values to ensure that the population sum
across each subdivision polygon matched the original, non-resampled population sum. Finally, we generated annual population

estimates for each grid point by linearly interpolating the 5-year population estimates.

2.2.4 Percentiles of air temperature

We used copies of the TX and TN times series to derive percentiles for each day of the year, with respect to the 30-year
reference period 1981-2010. This reference period was selected because it best corresponds to our analysis period (1979—
2018), ensuring consistency with the temporal coverage of the study. We calculated percentiles centred on a 31-day moving
window (following e.g. Russo et al. (2014, 2015, 2017) and Vogel et al. (2019)), and thus extended the reference period to
also include the last 15 days of 1980 and the first 15 days of 2011 prior to the percentile calculations. February 29 was assigned

the percentile value of February 28 in leap years.

Before calculating percentiles, we linearly detrended these reference period-long copies of the TX and TN time series, to
remove the potential influence of long-term trends. This is in line with the notion that a climatological period should ideally
be uniform (WMO Climatological Normals, 2024). We did this by using the CDO function “detrend” (Schulzweida, 2023),
which removes the long-term linear trend along the specified time dimension. This function fits a least-squares linear regression
model to each grid cell and subtracts the fitted trend component from the original time series, thereby isolating short-term

variability from long-term changes, following Eq. (3).
x'(t) = x(t) — (a + bt) 3)

Where x(t) is the original time series, @ and b are the estimated intercept and slope of the linear trend, respectively, and x'(t)
is the detrended series. To preserve the baseline characteristics of the temperature fields, the temporal mean of the original

series, X, was added back to the detrended values, yielding the final series as written in Eq. (4).
x"® =x"(t) +x 4)

This ensured that the resulting data retained their original climatological mean while excluding long-term linear trends. The
outputs from Eq. (4) were then used to calculate the percentiles. Please note that the detrended time series were used only to
derive percentiles, while the rest of our analysis was conducted on the original non-detrended time series to maintain

consistency with the rest of the analysis (which also relied on the non-detrended meteorological data).

For heat waves, we derived the 90th and 95th percentiles of TX. For cold waves, we calculated the 10th and 5th percentiles of
TN.

12
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2.2.5 Event detection analysis

We identified heat wave and cold wave events using percentile-based threshold analysis at grid point-level (Figure 4). Heat
waves were detected when TX exceeded the 90th or 95th percentile thresholds (referred to hereafter as pct90 and pct95 events),
while cold waves were identified when TN fell below the 10th or 5th percentiles (referred to hereafter as pct10 and pct05
events). The identification of percentile exceedances was performed on the original (non-detrended) time series. Moreover,
the percentiles are relative to the selected reference period. Consequently, the final number of identified percentile exceedances

might deviate from the specified percentile numbers.

We consider the start of an event to be the first day the temperature crossed the threshold, and its end to be the first day it no
longer did. If a non-qualifying day was directly preceded and followed by threshold-surpassing days, it is treated as also being
threshold-surpassing, as exemplified in Figure 4. A minimum duration of three consecutive days was required for a sequence
to be classified as a heat wave or cold wave, consistent with common definitions in the climate literature (e.g. Meehl and

Tebaldi, 2004; Perkins and Alexander, 2013; Perkins-Kirkpatrick and Lewis, 2020).

We define the event duration as the number of days between its start and end. Event magnitude was calculated as the sum of
temperature exceedances relative to the threshold over the event duration, following e.g. Brown (2020). Human exposure,
expressed in person-days, was quantified by multiplying the population count at each grid point by the event duration. For
example, if a grid point with a population count of 1,000 people experienced a seven-day event (as illustrated in Figure 4), the

total event exposure would be 7,000 person-days.

Event-specific metrics were stored in CSV files: with one file per disno and one row per event at the grid point level.

409 — — - Smoothed daily pct-threshold
Reclassified as I:\ Daily maximum air temperature (TX)
35 4 // threshold-surpassing day [l Excecdance over threshold
- ac | 31°C 5 e
< 2iC 1.1°C
[} 0.5°C \ I
2 4= - === = uthon i
©
[0
Q
£
2
E 254
20 T T T T T T T T T T T
July 1 July 5 July 10

One heat wave event
* duration = 7 days
* magnitude = 12.2°C

Figure 4. Percentile-based methodology for detecting heat waves at grid point level. Red numbers indicate the exceedance of the daily
maximum air temperature (TX) above the smoothed percentile-based threshold, which are summed to determine the event magnitude. A
minimum duration of three days is required for classification as a heat wave. If a non-qualifying day falls between threshold-surpassing days,
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it is reclassified as also being threshold-surpassing. The diagram represents a synthetic time series, and the y-axis does not start at zero. For
detecting cold waves, we use daily minimum air temperature (TN) instead.

2.3 Output aggregation

The hazard- and exposure-related attributes of SHEDIS-Temperature were aggregated into output files at two spatial levels:

disno level and subdivision level. At the disno level, the spatial extent is defined by the combined boundaries of all identified

impacted subdivisions within a given disno (Figure 5a). At the subdivision level, the spatial extent corresponds to the individual

polygon of each subdivision (Figure 5b). Both levels provide the same set of attributes, including:

Metadata attributes

Temperature attributes averaged over the analysis period

Extreme daily temperature attributes

Extreme 3-hourly temperature attributes

Hazard and exposure attributes from the percentile-based event detection analysis

Additionally, results from the percentile-based threshold analysis at the grid point level are stored in separate files for each

disno, with one row per percentile-exceeding event (Figure 5¢). Where applicable, the date and location of specific attributes

are also saved (e.g., the coordinate pair and date of the warmest 3-hourly air temperature recorded at the grid point level). The

full set of attributes provided by SHEDIS-Temperature are provided under Sect. 4.

(a

(b)

15 days

Disno-level

15 days

Subdivision-level

(c)

|
5 10 15 days

Event detection at grid point-level

Figure 5 Illustration of the three output levels of SHEDIS-Temperature, using the maximum duration of a 95th percentile-exceeding
event in France as an example. (a) At the disno level, the spatial extent (i.e. geometry for analysis) encompasses the combined boundaries
of all identified impacted subdivisions, with the maximum duration representing the highest value among the three subdivisions. (b) At the
subdivision level, the spatial extent corresponds to an individual impacted subdivision, where the maximum duration reflects the longest
duration at any grid point within that specific polygon. (¢) At the grid-point level, events are detected and recorded at the resolution of
individual pixels.
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3 Results
3.1 Global analysis of human exposure to temperature extremes

In building SHEDIS-Temperature, we have successfully quantified a wide range of hazard- and exposure-related attributes
from 2,835 administrative subdivisions associated with 382 records of temperature-related disasters. Distinct patterns emerge
across continents regarding both extreme temperatures and the populations bearing the brunt of these extremes. For instance,
North America, Europe and northern Asia stand out for having experienced very cold extremes in highly populated areas
(Figure 6a). In terms of human exposure to hot extremes, India, Pakistan and Bangladesh are notably affected by the

combination of very high temperatures and large population numbers (Figure 6c¢).

The data gaps in Africa, the Middle East and Southeast Asia are particularly striking and highlights a broader challenge of
international disaster databases. Despite these gaps, our results reveal a global pattern in which warmer administrative
subdivisions also tend to be more populated (Figure 6). This trend is particularly pronounced in subdivisions that have
experienced heat wave disasters (Figure 6d), emphasizing a critical challenge in the face of climate change. These findings
also underscore the importance of integrating data across multiple risk dimensions to better identify and understand risk

hotspots globally.

Turning now to the results of the event detection analysis using percentile-based thresholds. For a vast majority of the disnos
in SHEDIS-Temperature, we could detect percentile exceeding events within the respective subdivisions and analysis periods.
All 139 heat wave disnos in the dataset record at least one pct90 event at grid point level within the defined spatiotemporal
boundaries, while 133 disnos also experience pct95 events. For over 70% of the heat wave disnos, pct95 events cover more
than half of the analysed area. Similarly, among the 243 cold wave disnos, 233 show pct10 events, and 214 also record pct05
events. For nearly 50% of the cold wave disnos, pct05 events cover more than half of the analysed area. Taken together, these

results support the reliability of EM-DAT reports and their recorded locations.

In terms of human exposure to these percentile-exceeding events, India once again emerges as particularly affected. All eleven
disnos in our dataset with the highest number of person-days exposed to pct95 events are recorded in India. Thereafter follows
two heat wave records from the United States (1998 and 2011) and the 2003 heat wave in Germany. Despite not being prone
to the lowest absolute temperatures, India also ranks prominently for person-days exposed to pct05 cold waves, accounting for
five of the top ten disnos in our sample. Other highly ranked cold wave disnos include events in China (2011), Germany,

Bangladesh, France, and Poland (all in 2012).
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2 Figure 6 Geographical distribution of human exposure to extreme temperatures. (a) The lowest apparent temperatures recorded within
the analysis period for each cold wave disno in the dataset. Each dot represents a subdivision, with color indicating temperature and size

4 representing the total population of the subdivision the year of the record. (b) Scatter plot showing the relationship between population and
temperature. Each dot represents a subdivision, with color indicating the continent. (¢) and (d) are analogous to (a) and (b) but depict the

6  highest apparent temperatures in heat wave-impacted subdivisions instead. The x-axes in (b) and (d) are logarithmic for visualization
purposes.

8 3.2 A case study from the fatal European heat waves in 2003

As previously noted, the year 2003 stands out as one of the years with the highest number of heat wave disnos in the dataset,
10  driven by widespread and severe European heat waves. Four of the five disnos in our sample with the highest reported fatalities

in EM-DAT correspond to this event (all disnos beginning with 2003-0391): Italy (20,089 deaths), France (19,490 deaths),
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Spain (15,090 deaths), and Germany (9,355 deaths)?. Among these, the French disno is the most severe fatal impact record for
which EM-DAT also includes information on its physical magnitude (maximum temperature of 43°C) as well as start and end
dates (August 1-20). We now examine how this information aligns with the attributes provided by SHEDIS-Temperature
(Figure 7).

The highest 3-hourly air temperature recorded at the grid point level within the impacted subdivisions, based on MSWX data,
is 41°C on August 12. This is slightly lower than the magnitude reported by EM-DAT, presumably due to the inherent
limitations of gridded datasets, which may miss localized extreme values within individual grid cells. The highest temperatures
were recorded in inland France, particularly in Haute-Vienne (Figure 7a—b). However, there is considerable spatial variation

within subdivisions, especially in the mountainous areas of the French Alps and the Pyrenees.

Almost all grid points within the analysed subdivisions recorded pct95 events during the analysis period, with a median
duration of 11 days (Figure 7c—d). The longest duration, 31 days, was recorded on the island of Corsica, while the shortest
duration, lasting only a few days, occurred in coastal Brittany. Across the entire geometry, pct95 events occurred from July 25
to August 31. Regarding human exposure, the total population in these subdivisions was 43 million in 2003, according to GHS-
POP data. The total number of person-days exposed to pct95 events amounted to 508 million, with the largest numbers recorded

in the region of fle-de-France, which includes Paris (Figure 7e—f).

2 The only disno with a higher reported fatality count is a Russian heatwave disno from 2010, with over 55,000 fatalities

recorded.
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Figure 7 Selected SHEDIS-Temperature attributes for the 2003 heat wave in France (disno 2003-0391-FRA). Panels depict the
maximum 3-hourly air temperature (a)-(b), duration of pct95 events (¢)-(d) and human exposure expressed in person-days (e)-(f). The left
panels show grid point-level data, while the right panels present outputs at subdivision-level. Note that palette ranges vary across panels,

and logarithmic scales are applied for person-days.
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3.3 Technical validation
3.3.1 Sample coverage and geocoding

The dataset includes approximately 80% (382 out of 468) of the heat wave and cold wave disnos recorded in EM-DAT between
1979 and 2018, covering 243 of 293 cold waves and 139 of 175 heat waves. This coverage is limited to disnos that have been
geocoded in GDIS, which primarily depends on the level of detail in the original location descriptions in EM-DAT (Rosvold
and Buhaug, 2021). Additionally, a small number of subdivisions have been excluded due to geocoding errors in GDIS, and

one misplaced GDIS centroid has been manually corrected (see Sect. 2.1).

Our approach verifies the consistency of GDIS with EM-DAT and eliminates dependence on GDIS-provided ISO codes, which
are not completely consistent — with certain countries having been assigned multiple ISO codes in GDIS. While these steps
result in partial coverage of EM-DAT disnos and may lead to occasional omissions of subdivisions, they enhance the overall

reliability of our dataset by ensuring a high degree of confidence in the included cases.

3.3.2 Evaluation of temperature extremes in MSWX using E-OBS

We use meteorological data from MSWX-Past, a bias-corrected and downscaled version of ERAS. Previous studies show that
ERAS shows reduced performance in areas with sparse in situ observations, as it integrates remotely sensed and ground-based
measurements (Hersbach et al., 2020; Liu et al., 2024), and MSWX likely shares this shortcoming. Accuracy is also often
reduced in regions with complex terrain and high altitudes. For example, ERAS tends to underestimate wind speeds in
mountainous regions (Beck et al., 2022) which may affect the modelled apparent temperature attributes in SHEDIS-
Temperature. Additionally, errors in 2-m air temperature tend to be larger in regions with complex topography and high
elevations, as well as deserts and tropical rainforests (Beck et al., 2022; Liu et al., 2024). This inevitably influences the quality
of MSWX. The validation study by Beck et al. (2022) showed that MSWX performs comparably to ERAS over flat terrain
and outperforms ERAS in high-relief areas. This highlights the advantage of using a high-resolution resampled variant of

ERAS to capture local variations in temperature extremes, as exemplified in Figure 7.

To assess the reliability of the hazard attributes in SHEDIS-Temperature, we systematically evaluated our MSWX-derived
extreme temperatures with those of the Europe-wide dataset E-OBS (Cornes et al., 2018; Copernicus Climate Change Service,
2025). The E-OBS dataset is constructed from quality-controlled station data and interpolated over a regular 0.1° grid (Cornes
et al., 2018). For this assessment, we used the daily ensemble mean of TX and TN from E-OBS (Copernicus Climate Change
Service, 2025).

We evaluated the consistency between MSWX and E-OBS for each subdivision in our dataset fully covered by the E-OBS
grid (Fig. B1; Table 1). We evaluated the agreement for attributes that represent averages across the spatiotemporal domain

(zonally averaged across the subdivision geometry and temporally averaged across the respective analysis period; mean_tn
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and mean_tx) as well as the most 3-hourly extreme value at grid point level (xy min tn and xy max_tx) per record at

subdivision level. For each variable and record, temperature errors were calculated as defined in Eq. (5).
€ = XMswx — XE-0BS (5)
Hence, positive values represent overestimation by MSWX in relation to E-OBS.

We then calculated, for each variable and subdivision, the mean bias error (MBE), the mean absolute error (MAE) and the root

mean square error (RMSE) as defined in Eq. (6), (7) and (8).

n

1
MBE = — :
e (©)
=1
1 n
MAE = ;Zleil )
i=1

(8

Table 1 provides the results of these calculations, along with Pearson correlation coefficients () and Figure 8 illustrates
correlation between the datasets and the distribution of errors. In general, MSWX shows small systematic biases compared to
E-OBS, with a slight overestimation of minimums and an underestimation of maximums. For extreme values (xy_min_tn and
Xy_max_tx), absolute errors increased, reflecting the greater challenge of reproducing local and short-lived temperature
extremes. However, high correlation values seem to reproduce both average and extreme temperature patterns with high

fidelity at the subdivision level, reinforcing our confidence in the attributes of SHEDIS-Temperature.

Table 1 Validation statistics for MSWX against E-OBS for extreme daily temperatures. Statistics include the number of observations
(n), mean bias error (MBE), mean absolute error (MAE), root mean square error (RMSE), and Pearson correlation coefficient (7). The
variables mean_tn and mean_tx represent spatiotemporally averaged values across each record’s domain, while Xy _min_tn and xy_max_tx
correspond to the most extreme TN and TX values at the grid-cell level within the domain.

Statistic mean tn mean tXx Xy min tn Xy max_ tx

n 813 360 813 360
MBE 0.57 -1.41 0.56 -1.48
MAE 0.69 1.42 2.07 1.59
RMSE 0.83 1.57 2.63 1.99
r 0.99 0.97 0.94 0.92
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Figure 8 Validation of MSWX against E-OBS for extreme daily temperatures. Panels (a) and (b) represent minimum temperature
agreement for cold wave records, and panels (¢) and (d) show maximum temperatures for heat wave records (covered by the E-OBS grid).
Scatter plots illustrate agreement between the datasets, and histograms show the distribution of errors. Each dot in the scatter plots represents
a subdivision-level record. The variables mean_tn and mean_tx represent spatiotemporally averaged values across each record’s domain,
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while xy min_tn and Xy _max_tx correspond to the most extreme TN and TX values at the grid-cell level within the domain. Grey lines in
the scatter plots indicate linear trend fits, with the coefficient of determination annotated — and grey lines in the histograms indicate the mean
bias error. Please note that axes intervals vary between panels.

3.3.3 Consistency of temperature extremes in MSWX and EM-DAT

We also evaluated the consistency of our most extreme 3-hourly MSWX temperatures recorded at the grid point level with the
temperatures reported in EM-DAT. The latter correspond to a maximum temperature for heat waves and a minimum
temperature for cold waves. This information is, however, only available for a subset of cases, specifically 94 heat wave disnos

and 120 cold wave disnos in our sample (Figure 9).

Overall, the agreement between MSWX and EM-DAT is stronger for heat waves (MAE=2.6°C) than for cold waves
(MAE=8.3°C). For heat waves, MSWX and EM-DAT show reasonable consistency, though EM-DAT values tend to be
slightly higher, with an average bias of 0.81°C (Figure 9a). This discrepancy may reflect the inability of gridded datasets like

MSWX to fully capture localized temperature extremes, as previously discussed.

A few outliers are evident. For example, a heatwave in the Borno Province, Nigeria, in June 2002 records a maximum
temperature of 60°C in EM-DAT, whereas the corresponding MSWX estimate is 44°C (Figure 9b). To put these values into
context, according to the World Meteorological Organisation the official highest registered air temperature on Earth is 56.7°C,
recorded in Death Valley in the United States (WMO Records of Weather and Climate Extremes, 2024). This casts doubts on
the veridicity of the EM-DAT record, which likely echoes news reporting from the time describing temperatures reaching 55-
60°C in Maiduguri (The New Humanitarian, 2002). While the EM-DAT value may sometimes be an overestimation of the
actual conditions, differences between the two datasets may also reflect challenges of global reanalysis datasets such as MSWX
to capture localized extreme temperatures, as shown by our evaluation using E-OBS. For instance, MSWX will miss hot

temperatures exacerbated by urban heat island effects.

The comparison for cold waves exhibits greater variability (Figure 9a). On average, EM-DAT reports minimum temperatures
1.8°C higher than MSWX estimates, but the spread is substantial in both directions. For instance, a group of cold wave disnos
in India show a stark contrast, with MSWX minimum temperatures near -40°C, while EM-DAT reports values slightly above
0°C (Figure 9a). In December 2002 (disno 2002-0818-IND), for instance, EM-DAT reports a magnitude of 5°C across a
number of regions encompassing the most northern part of India (Bihar, Uttar Pradesh, Himachal Pradesh, Rajasthan,
Jharkhand, Jammu and Kashmir, Punjab, Haryana, Delhi provinces). Within these subdivisions, MSWX estimates a minimum
of -42°C, recorded in the mountainous Jammu and Kashmir region, which is climatically diverse across altitude levels and

regularly experiences sub-zero temperatures in winter.

This discrepancy is likely driven by factors beyond differences in temperature measurement methods. The EM-DAT magnitude
record of 5°C for the 2002 cold wave likely comes from accounts such as “On many occasions the average temperature was

less than 5°C for consecutive days” (Samra et al., 2003, p. “Preface”). EM-DAT magnitude records may thus, in some cases,

22



reflect prolonged conditions in areas that suffered large socioeconomic losses (e.g. agricultural damage). In contrast, SHEDIS-
2 Temperature quantifies extremes across all grid points within the impacted subdivisions. The percentile-based event detection
analysis at the grid-point level can provide users with a more spatially detailed representation of cold waves in regions with
4 high climatic variability. Taken together, these findings highlight the need for systematic approaches to linking hazard

magnitude estimates with disaster impact records.
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Figure 9 Comparison of extreme temperatures between EM-DAT and MSWX. The scatter plots illustrate the relationship between
8  reported temperature extremes in EM-DAT and the corresponding 3-hourly minimum (a) and maximum (b) temperatures from MSWX for
120 cold waves and 94 heat waves, respectively. Each point represents a disno, with colours indicating the continent.
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3.3.4 Sensitivity analysis of the influence of detrending

We also conducted a sensitivity analysis to assess the influence of detrending the TX and TN time series prior to the percentile
calculations, by deriving percentiles directly from the non-detrended data (see Appendix C for details). The analysis compared

differences in the resulting percentiles and their downstream effects on the SHEDIS-Temperature outputs.

Overall, using detrended time series resulted in slightly less extreme percentile thresholds compared to the non-detrended
series — meaning slightly milder warmer thresholds for cold wave detection and slightly cooler thresholds for heat wave
detection. The influence was also slightly larger on percentiles for heat waves than for cold waves: the former showed mean
differences of approximately 0.05°C and the latter of about 0.01°C (averaged across the spatiotemporal domains for each

subdivision in our sample).

The list of disnos associated with threshold-exceeding events at grid point level remained unchanged, although the number of
subdivisions threshold exceeding events changed slightly. The differences appeared in subdivisions for which small parts of
the geometries experienced threshold-exceeding events. Regarding the relevant SHEDIS-Temperature attributes, using non-
detrended instead of detrended data resulted in differences of less than 1% across all related attributes, except for the person-

day attributes for heat wave records, which differed by maximum 2.4%.

4 Data and code availability

SHEDIS-Temperature is publicly available from a Harvard Dataverse repository (https://doi.org/10.7910/DVN/WNOTTC;
Lindersson and Messori, 2025), with replication code published on GitHub (https://github.com/sara-lindersson/shedis-
temperature-replication-code; Lindersson, 2025). The dataset is organized into two main folder structures: one for heat waves
and one for cold waves (Figure 10). Each folder contains four primary files, with content as outlined in Table 2. Two files
(CSV and GeoPackage) contain attributes aggregated at the disno-level, with one row per disno. Two additional files (CSV
and GeoPackage) contain attributes aggregated at the subdivision-level, with one row per subdivision and disno. These files
do, however, also include information derived at the grid point level. The only distinction between the CSV and GeoPackage

files is that the latter also contain the geometries delineating the analysis domain.

SHEDIS-Temperature also includes subfolders containing detailed outputs from the detection of threshold-exceeding events,
with subfolder names specifying the threshold and minimum duration used for analysis (Figure 10). These subfolders contain
one CSV file per disno for which threshold-exceeding events were detected, with one row per subdivision, coordinate pair,

and detected event. The information in these files is detailed in Table 3.
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SHEDIS-Temperature
heatwaves
shedis_heatwaves_disno.csv
shedis_heatwaves_disno.gpkg
shedis_heatwaves_subdivision.csv
shedis_heatwaves_subdivision.gpkg
threshold-exceeding-events

pct90-min3days
disno.csv

pct95-min3days
disno.csv

coldwaves
shedis_coldwaves_disno.csv
shedis_coldwaves_disno.gpkg
shedis_coldwaves_subdivision.csv
shedis_coldwaves_subdivision.gpkg
threshold-exceeding-events
pct10-min3days
disn_o.csv

pct5-min3days

disno.csv

2 Figure 10 Folder structure of SHEDIS-Temperature. The dataset is organized into two main folders, each corresponding to a specific
hazard type. Within the “threshold-exceeding-events” directories, subfolders are labeled based on the threshold and minimum duration used
4 for analysis. Files within these subfolders are named by their disaster identifier number (disno) from EM-DAT (e.g. “2003-0391-FRA™).
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Table 2 Attributes available in files beginning with “shedis”. These files are provided in both CSV and GeoPackage formats at two spatial
levels: the disno level (one row per disno) and the subdivision level (one row per disno and subdivision). This table lists attributes for heat
waves in files beginning with “shedis_heatwaves”, including: TX (daily maximum temperature) and ATX (daily maximum apparent
temperature). For cold waves, these attributes are replaced with TN (daily minimum air temperature) and ATN (daily minimum apparent
temperature). Attributes from the event detection analysis are here denoted as “pctXX”, with pct90 and pct95 applied to heat waves, and
pct10 and pct0S applied to cold waves. Variables prefixed with “xy ” represent values calculated at the grid-point level, while all other
hazard-related variables have been spatially averaged over the corresponding geometry. An asterisk (*) denotes attributes available
exclusively in the GeoPackage format.

Type Attribute Unit Description
Metadata iso3c - ISO-3 character country code.
country - Country name.
disno - Disaster identifier number in EM-DAT.
subtype - Hazard subtype in EM-DAT (heat wave or cold wave)
gadm_gid - Administrative subdivision identifier in GADM.
gadm_level - Administrative level of subdivision in GADM
(province/equivalent=1, county/district/equivalent=2).
gadm name - Administrative subdivision name in GADM.
geometry* - Simplified polygon of administrative subdivision
boundaries.
geometry area_km?2 km? Area of “geometry”.
geometry pop persons Population total of administrative subdivision the year of
“analysis_start”.
analysis_start - Start date period of analysis.
analysis_end - End date period of analysis.
Attributes mean_t °C Average daily-mean air temperature.
representing mean_at °C Average daily-mean apparent temperature.
temporal averages : sC A dail o o
across the entire mean_tx verage daily-max air temperature.
period of analysis mean_atx °C Average daily-max apparent temperature.
The most extreme | max t|max_t date °C | date Maximum daily-mean air temperature, with recording
daily mean values date.
recorded within Xy_max_t|xy max_t date |Xy max t coord °C|date|° | Maximum daily-mean air temperature at grid point-level,
the period of with recording date and coordinates.
analysis. max_at | max_at_date °C | date Maximum daily -mean apparent temperature, with
recording date.
Xy_max_at | Xy _max_at date | Xy max_at coord °C|date|° | Maximum daily -mean apparent temperature at grid
point-level, with recording date and coordinates.
The most extreme | max_tx | max_tx_date °C | date Maximum daily-max air temperature, with recording
3-hourly values date.
recorded within Xy_max_tx | Xy _max_tx date | xy_max_tx_coord °C|date|° | Maximum daily-max air temperature at grid point-level,
the period of with recording date and coordinates.
analysis. max_atx | max_atx_date °C | date Maximum daily-max apparent temperature, with
recording date.
Xy_max_atx | Xy_max_atx date | xy_max_atx_coord °C |date|° | Maximum daily-max apparent temperature at grid point-
level, with recording date and coordinates.
Hazard and pcetXX area_percentage % Percentage of geometry area that experienced at least one
exposure variables event.
from the threshold | pctXX pop persons Population that experienced at least one event.
anql}t/slls a; grid petX_persondays person-days | Population exposure of events.
oint leve
P petXX median_duration days Median duration of all events detected within the
geometry.
petXX max_duration days Duration of the longest event detected within the
geometry.
petXX_ days days Total number of days during which at least one grid point
experienced an event.

26




petXX dates

List of dates for which at least one grid point in the
geometry experienced an event.
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Table 3 Attributes in CSV files in the folders named “threshold-exceeding-events”. The files are named according to their respective
disaster identifier number (disno) from EM-DAT and contain one row per subdivision and event. Each event is identified using percentile-
based thresholds at grid point-level. This table lists attributes for heat waves, including TX (daily maximum air temperature) and ATX (daily
maximum apparent temperature). For cold waves, these attributes are replaced with TN (daily minimum air temperature) and ATN (daily
minimum apparent temperature). Results are provided for thresholds of analysis using the 90th and 95th percentiles for heat waves and the
10th and 5th percentiles for cold waves, as explicitly indicated in the subfolder names and the “mean_pctXX-attribute.

Type Attribute Unit Description
Metadata disno - Disaster identifier number in EM-DAT.
subtype - Hazard subtype in EM-DAT (heat wave or cold wave).
gadm gid - Administrative subdivision identifier in GADM.
gadm_level - Administrative level of subdivision in GADM
(province/equivalent=1, county/district/equivalent=2).
gadm name - Administrative subdivision name in GADM.
analysis_start date Start date period of analysis.
analysis_end date End date period of analysis.
X ° Longitude of grid point.
y ° Latitude of grid point.
cf - Coverage fraction (i.e. share of) of grid cell located within
subdivision boundaries.
area_km?2 km? Area of grid point, scaled with “ct”.
pop persons Population of grid point the year of the event, scaled with
“of”.
Overarching event information event_start date Start date of the event
event_end date End date of the event
mean_pctXX °C Average percentile-based threshold across the event days.
duration days Event duration.
persondays person- Human exposure of event at grid point-level by
days multiplying “pop” with “duration”.
magnitude °C Temperature exceedance over or below threshold summed
across all event days.
Temporal averages across all event days. mean _t °C Average daily-mean air temperature.
mean_at °C Average daily-mean apparent temperature.
mean_tx °C Average daily-max air temperature.
mean_atx °C Average daily-max apparent temperature.
The most extreme daily mean values recorded max_t|max_t date °C | date | Maximum daily-mean air temperature, with recording date.
within the event period. max_at | max_at_date °C|date | Maximum daily-mean apparent temperature, with
recording date.
The most extreme 3-hourly values recorded max_tx | max_tx_date °C | date | Maximum daily-max air temperature, with recording date.
within the event period. max_atx | max_atx_date °C|date | Maximum daily-max apparent temperature, with recording
date.
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4.1 Usage notes

SHEDIS-Temperature provides attributes for records in the international disaster database EM-DAT, which is known to have
reporting biases, with higher coverage in advanced economies such as those in Europe and North America (CRED and
UCLouvain, 2024; Gall et al., 2009; Osuteye et al., 2017). Users should be mindful about this bias when comparing disaster
frequencies across continents. Furthermore, EM-DAT only records major disasters that meet at least one of the following
criteria: >10 fatalities, >100 affected individuals, a declared state of emergency, and/or a request for international assistance.
The database’s coverage is thus affected by exposure and vulnerability, as well as differing national criteria to declare a state

of emergency.

The meteorological and population attributes in SHEDIS-Temperature are derived from global gridded products. As such, the
results should be interpreted with caution at local scales. Consequently, SHEDIS-Temperature includes administrative

subdivisions at the level-1 (province/equivalent) and level-2 (county/district/equivalent) scales, but not finer.

We reiterate that localized extreme temperature events occurring at spatial scales smaller than the grid resolution are not fully
captured. The aggregation from hourly ERAS5 data to the 3-hourly MSWX time steps may also obscure short-lived temperature
peaks. The technical validation against the station-based E-OBS dataset indicated higher agreement for the spatiotemporally
averaged extreme temperature attributes (mean_tn and mean_tx) compared to the 3-hourly grid-point attributes (xy_mean_tn
and xy mean_tx). The analysis also showed that MSWX slightly underestimates temperature extremes for both attribute types.
Nonetheless, correlation coefficients exceeded 0.9 across all variables, supporting the overall reliability of the hazard metrics
derived from MSWX. It should be noted, however, that the validation was performed only for air temperature over Europe,

and not for apparent temperature or regions outside Europe.

Our dataset is provided at two spatial levels: the disno-level and subdivision-level. We anticipate that the disno-level data will
be particularly useful for comparative analyses across countries, while the subdivision-level data will facilitate the examination

of within-country variations.

The spatial boundaries of the SHEDIS-Temperature analysis are limited to the administrative subdivisions recorded as
impacted locations in EM-DAT, where “impacted” refers to areas affected by socioeconomic losses. As a result, these
boundaries are not meant to outline the spatial extent of the meteorological events per se. These boundaries also outline the

domain for the analyses at grid point level.

For the percentile-based detection analysis, we enforce a minimum duration of three consecutive days for heat waves and cold
waves, a widely used criterion in extreme temperature studies (e.g. Meehl and Tebaldi, 2004; Perkins and Alexander, 2013;
Perkins-Kirkpatrick and Lewis, 2020). This is, however, more conservative than the definition by EM-DAT of two days or
longer (CRED and UCLouvain, 2024). While this kind of methodological choices will always be, to some extent, arbitrary we

think that the main benefit of SHEDIS-Temperature is the application of consistent methodological choices across all records
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to ensure comparability. Users who prefer different event detection settings can use our publicly available R-scripts

(Lindersson, 2025) to do so.
We highlight below some key practical usage points to note:

e To link SHEDIS-Temperature with EM-DAT, users can match the disaster identifier code (“disno”) present in both
datasets, but in EM-DAT currently written as “DisNo.”.

e  Users should ensure UTF-8 encoding is used when reading SHEDIS files to correctly display location names.

e For projecting coordinate-specific CSV outputs to raster files, users should adopt the same grid as MSWX.

e The polygons in the GeoPackage files in SHEDIS-Temperature are simplified versions of the original polygons from
GADM v3.6. To access the original polygons, users may retrieve the “gadm_gid” identifiers in SHEDIS-Temperature,
which correspond to “GID_1” for level-1 subdivisions and “GID_2” for level-2 subdivisions in GADM.

e The R scripts used to generate SHEDIS-Temperature outputs are available on GitHub (Lindersson, 2025) as R

Markdown files, along with an accompanying ReadMe file.

5 Conclusions

International databases of socioeconomic disaster impacts are essential for disaster risk research, yet they display important
geographic coverage biases. The data gap is particularly striking in Africa, the Middle East and Southeast Asia, and addressing
it will require continued efforts from the global disaster research community. Nonetheless, it is critical to maximize the
usefulness of the data that we do have available. SHEDIS-Temperature addresses this need by enriching the information about

major temperature-related disasters across five continents.

By providing detailed hazard information — such as temperature thresholds, duration, and geographic distribution — and linking
it to exposure data (e.g., population counts during threshold-exceeding events), SHEDIS-Temperature enables more
comprehensive analyses of past temperature-related disasters. For instance, users may calculate mortality rates by combining
EM-DAT’s fatality numbers with the exposure information in SHEDIS-Temperature. Researchers can further combine
SHEDIS-Temperature with other socioeconomic and political indicators. This type of information is essential for statistical
studies of how risk varies across time and regions. Ultimately, we think that this also can enhance the understanding of social
and societal vulnerabilities, revealing how exposure to extreme temperatures intersects with socioeconomic factors over time

and across regions.

At first glance, the results from SHEDIS-Temperature evidence a concerning trend: more populated subdivisions tend to face
higher temperatures, a pattern that will likely intensify as climate change progresses. The intersection of rising temperatures

and population growth will amplify risk, particularly in regions already facing the most severe temperature-related disasters.
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Identifying such risk hotspots underscores the importance of collecting data across the entire disaster risk spectrum in a

2 systematic manner, and of making the outputs accessible to an interdisciplinary set of disaster researchers.

Appendices

4 Appendix A: Supplementary figure of the sample at subnational level

(a)

™

Number of disaster impact records
(b) 1-2 M35 Me-10 M11-15 M16-25

6  Figure Al. Spatial distribution of administrative subdivisions linked to SHEDIS-Temperature disaster records. A total of 1,274
distinct subdivisions is linked to 382 disaster records in the SHEDIS-Temperature sample. Panel (a) shows the 931 distinct level-1
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administrative units (provinces or equivalents) and panel (b) shows the 343 distinct level-2 administrative units (counties, districts, or
equivalents). Colours indicate the number of times each subdivision is linked to a disaster record in the sample.

Appendix B: Supplementary figure from the MSWX evaluation with E-OBS

(a) Cold waves, mean_tn (b) Heat waves, mean_tx
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Figure B1 Spatial distribution of administrative level 1 subdivisions included in the technical validation against the E-OBS dataset.
Colours indicate the error e as defined in Eq. (5), where positive values represent overestimation by MSWX relative to E-OBS. Some
subdivisions are associated with multiple records per hazard type, for which mean e values are shown. Only level 1-units are visualized to
avoid spatial overlap and because they constitute the majority of the sample, although level 2-units were also included in the validation
analysis.

Appendix C: Sensitivity analysis of the influence of detrending prior to percentile calculation

This appendix presents the results of the sensitivity analysis evaluating the influence of detrending the TX and TN time series
prior to percentile calculation. Percentiles were here derived directly from the non-detrended data, and all subsequent
processing steps were repeated. The sensitivity analysis then assessed the impact of detrending on (a) the resulting percentiles,

which serve as thresholds in the event detection analysis, and (b) the downstream effects on the SHEDIS-Temperature outputs.
Here we define differences between the two methods following Eq. (C1).

Difference = Xpon—getrendea — Xaetrended (c1)

Hence, a positive difference indicates that the value derived from the non-detrended time series is higher than that from the

detrended series, whereas a negative difference indicates that the detrended series yields a higher value.
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Influence on percentiles

Turning first to how detrending of TX and TN time series influences the percentile values subsequently used in the event
detection analysis. Percentiles were calculated for each day of the year and grid cell, while here we present values averaged
across the spatiotemporal domain of each SHEDIS-Temperature subdivision (i.e. zonally averaged across the geometry and

temporally averaged over the analysis period).

Table C1 summarizes the differences between the detrended and non-detrended methods. Using detrended time series resulted
in slightly less extreme percentile thresholds compared to the non-detrended series: marginally warmer thresholds for cold
wave detection and slightly cooler thresholds for heat wave detection. Figure C1 also illustrates these differences across the

full temperature range.

Both Table C1 and Figure C1 show that the differences are somewhat larger for percentiles based on TX (pct90 and pct95)
than for those based on TN (pct10 and pct05). The mean differences and standard deviations were also greater for the Sth and
95th percentiles than for the 10th and 90th percentiles. This indicates that the detrending choice affects results for the heat
wave records at the 95th percentile level the most. However, the (spatiotemporally averaged) percentile differences between
the methods are generally small, with maximum deviations of —0.33 °C for pct05 and 0.42 °C for pct95.

Table C1 Summary statistics of percentile level differences (°C), defined as values from the non-detrended time series minus those

from the detrended time series. Percentiles were first calculated for each day of the year and grid cell, then averaged across the
spatiotemporal domain of each subdivision record before deriving the summary statistics.

Statistic Pctl0 Pct05 Pct90 Pct95

n 1796 1796 1039 1039

Mean -0.007 -0.011 0.041 0.056

Mean absolute values  0.025 0.034 0.047 0.063

SD 0.036 0.047 0.051 0.067
Range [-0.21,0.15] [-0.33,0.21] [-0.08,0.24] [-0.08, 0.42]
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Figure C1 Scatter plots of percentile differences (°C) across temperature levels. Panels (a) and (b) illustrate percentiles used for cold
wave records (pct10 and pct05 from TN), and panels (c) and (d) show for heat-wave records (pct90 and pct95 from TX). Each dot represents
a SHEDIS-Temperature record at the subdivision level, with percentile values averaged across its spatiotemporal domain. Differences are
defined as percentile values from the non-detrended time series minus those from the detrended time series. Black lines denote linear trend
fits.

Influence on SHEDIS-Temperature outputs

Next, we assessed how the relatively small differences in percentile values between the detrended and non-detrended methods
affected the subsequent SHEDIS-Temperature outputs. We first provide an overview by comparing the number of subdivisions
and disnos for which threshold-exceeding events were detected using each method (Table C2). The results here refer to the
event detection analysis at grid point level. The number of disnos associated with threshold-exceeding events remained
unchanged, whereas the total number of subdivisions with detected threshold-exceeding events varied slightly, with a

maximum difference of four subdivisions per percentile-level.

Differences in total counts do not necessarily imply that events were detected in the same subdivisions. At the 10th percentile
level, seven cold-wave subdivisions were flagged as experiencing threshold-exceeding events in either the detrended or non-

detrended method, but not both; this number increased to 16 subdivisions at the 5th percentile level. For heat waves, six
34



subdivisions were flagged at pct90 and six at pct95. In general, these differences occurred in subdivisions where threshold-

exceeding events covered small portions of the geometry area.

Table C2 Changes in the number of subdivisions with at least one threshold-exceeding event at grid point level, depending on whether
detrending was applied prior to percentile calculation. The event detection analysis was conducted in all 1,796 subdivisions associated
with the 243 cold wave disnos, and all 1,030 subdivisions associated with 132 heat wave disnos. The percentage values refer to the share of
subdivisions or disnos in the sample.

Cold waves Subdivisions with pctl0-events Disnos with pctl0-events Subdivisions with pct05-events  Disnos with pct05-events
Detrended TN 1680 (93.5%) 233 (95.9%) 1416 (78.8%) 214 (88.1%)
Non-detrended TN 1681 (93.6%) 233 (95.9%) 1420 (79.1%) 215 (88.5%)
Heat waves Subdivisions with pct90-events  Disnos with pct90-events Subdivisions with pct95-events  Disnos with pct95-events
Detrended TX 1000 (96.2%) 139 (100%) 903 (86.9%) 133 (95.7%)
Non-detrended TX 996 (95.9%) 139 (100%) 899 (86.5%) 133 (95.7%)

Finally, we summarize the influence of detrending on relevant subdivision-level attributes across all SHEDIS-Temperature
records (Table C3). Using non-detrended time series instead of detrended series resulted in relative differences of less than 1%

for all attributes, except for the person-day attributes for pct90 and pct95, which differed by maximum 2.4%.

Table C3 Changes in relevant attributes of the SHEDIS-temperature outputs. The difference is defined as the values coming from using
the non-detrended time series minus the detrended time series.

Attribute Non-detrended Detrended Difference Percentage change
Characteristics for detected pct10-events (cold waves)

Median duration (average across subdivisions)  5.576443 5.583036 -0.00659 -0.12%
Pop (sum across subdivisions) 5.15E+09 5.15E+09 4065942 0.08%
Pop (average across subdivisions) 3066577 3065982 594.8601 0.02%
Person-days (sum across subdivisions) 4.14E+10 4.15E+10 -1.1E+08 -0.26%
Person-days (average across subdivisions) 24640112 24718644 -78531.4 -0.32%
Characteristics for detected pct0S-events (heat waves)

Median duration (average across subdivisions)  4.466197 4.483051 -0.01685 -0.38%
Pop (sum across subdivisions) 3.01E+09 3E+09 17077238 0.57%
Pop (average across subdivisions) 2122835 2116771 6063.489 0.29%
Person-days (sum across subdivisions) 1.85E+10 1.84E+10 1.24E+08 0.67%
Person-days (average across subdivisions) 13057993 13007330 50662.84 0.39%
Characteristics for detected pct90-events (heat waves)

Median duration (average across subdivisions)  5.294679 5.2965 -0.00182 -0.03%
Pop (sum across subdivisions) 7.52E+09 7.54E+09 -2.1E+07 -0.28%
Pop (average across subdivisions) 7545502 7536705 8796.925 0.12%
Person-days (sum across subdivisions) 9.42E+10 9.54E+10 -1.2E+09 -1.24%
Person-days (average across subdivisions) 94594276 95383439 -789163 -0.83%
Characteristics for detected pct95-events (heat waves)

Median duration (average across subdivisions)  4.767519 4.810078 -0.04256 -0.89%
Pop (sum across subdivisions) 5.79E+09 5.83E+09 -3.8E+07 -0.65%
Pop (average across subdivisions) 6440748 6453757 -13009.1 -0.20%
Person-days (sum across subdivisions) 4.85E+10 4.97E+10 -1.2E+09 -2.43%
Person-days (average across subdivisions) 54000604 55070407 -1069803 -1.98%
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