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Abstract  22 

Tropical cyclones (TCs) are among the deadliest disasters affecting human society, and their 23 

response to climate change has widely drawn attention from the public. However, assessing how 24 

historical TC activity changed with climate change has proven challenging due to incomplete TC 25 

records in the early years. Here, we introduce the Reanalysis-Based Global Tropical Cyclone Tracks 26 

Dataset for the Twentieth Century (RGTracks-20C) (Ye et al., 2024), a publicly available century-27 

long global TC track dataset spanning from 1850–2014. The RGTracks-20C is reconstructed from 28 

the National Oceanic and Atmospheric Administration Twentieth Century Reanalysis using two 29 

independent TC tracking algorithms. Validation based on observations confirms that the RGTracks-30 

20C effectively captures the climatology and long-term variability of TC numbers, tracks, duration, 31 

and intensity across various ocean basins. A remarkable key strength of the RGTracks-20C is its 32 

ability to fill the missing intensity and location records of TCs observed in early years. This dataset 33 

serves as a valuable historical data reference for future research on climate change and TC-related 34 

disasters.  35 
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1. Introduction 36 

Tropical cyclones (TCs), also known as hurricanes or typhoons, are intense weather systems that 37 

form over tropical and subtropical oceans and can cause severe disasters over the coastal regions and 38 

even inland areas (Qin et al., 2024; Zhu and Quiring, 2022). Globally, approximately 80 TCs are 39 

generated each year (Emanuel, 2018). As one of the most destructive weather systems (Bloemendaal et 40 

al., 2022; Dinan, 2017; Emanuel, 2017), TCs significantly impact society and the economy (Kunze, 2021; 41 

Lenzen et al., 2019; Noy, 2016). These impacts are expected to be exacerbated by climate change in the 42 

future (Chan, 2023; Hassanzadeh et al., 2020; Knutson et al., 2020; Moon et al., 2023; Murakami and 43 

Wang, 2022; Yamaguchi et al., 2020). Therefore, research on TCs has become increasingly vital in 44 

climate change and prediction (Bhatia et al., 2019; Chan, 2019; Lanzante, 2019; Moon et al., 2019; 45 

Sharmila and Walsh, 2018; Zhang et al., 2019). However, past variability of TC activity and underlying 46 

mechanisms remains challenging due to incomplete early historical TC observation records, which may 47 

lead to controversies (Chan et al., 2022a, b; Knutson et al., 2019; Lee et al., 2020). 48 

Previous research has revealed significant issues related to the completeness of historical TC 49 

observational data (Lee et al., 2020), which are highly dependent on the development of the global TC 50 

observation system, data analysis techniques, and other factors (Klotzbach and Landsea, 2015; Knapp et 51 

al., 2010; Kossin et al., 2020; Landsea et al., 2010; Mann et al., 2007; Ying et al., 2014). Before the 52 

introduction of satellite observation, TC information (e.g., intensity and location) primarily relied on 53 

conventional coastal weather stations and ship observation reports (Landsea et al., 2006, 2008). Aircraft 54 

reconnaissance emerged in the North Atlantic (NATL) and western North Pacific (WNP) after World 55 

War II (Emanuel, 2008). However, these observational techniques could not capture all occurred TCs 56 

due to their limited observation range. It is possible that an existing TC was unrecorded in the early years. 57 

In addition, even if a TC was observed and recorded, its track and intensity information may be 58 

discontinuous due to the absence of meteorological satellite observations. For instance, there were no 59 

observational records of TC wind speeds in the southern hemisphere before 1956 (Emanuel, 2021). Storm 60 

intensity in the Indian Ocean is weaker compared to other basins, partly due to the lack of direct coverage 61 

by geostationary satellites in that region before 1998 (Schreck et al., 2014). The incomplete observed 62 

data of TCs in the early years, mainly before the 1970s, is a commonly-known unsolved issue in the 63 

community. 64 

Given the limitations of historical TC records, a promising approach is to utilize reanalysis for TC 65 

identification (Li et al., 2024; Truchelut and Hart, 2011). Reanalysis combines historical observational 66 

data with modern numerical weather models to produce comprehensive, continuous datasets of global 67 

atmospheric conditions that adhere to physical principles (Compo et al., 2011; Kalnay et al., 1996; Parker, 68 

2016; Slivinski, 2018). The Twentieth Century Reanalysis (20CR) (Compo et al., 2011), provided by the 69 

National Oceanic and Atmospheric Administration (NOAA), is a global reanalysis dataset that covers the 70 

longest period among all other reanalyses. The 20CR was designed for long-term analyses from 71 

individual extreme weather events to climate variability, and has been applied to a wide range of studies, 72 

including those on wave height, storm surge, Madden-Julian Oscillations, and TCs (Chand et al., 2022; 73 

Cid et al., 2017; Gergis et al., 2020; Lee et al., 2023; Leung et al., 2022; Moore and Babij, 2017; Slivinski 74 

et al., 2019; Truchelut et al., 2013; Wang et al., 2012). The fact that the 20CR only assimilates surface 75 
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pressure and sea level pressure fields, instead of other observations such as satellites and aircraft, makes 76 

it less sensitive to the temporal inhomogeneity of observations (Slivinski et al., 2019, 2021). 77 

Several independent studies have documented the feasibility of reproducing the characteristics of 78 

some historical TC events based on the 20CR (Emanuel, 2010; Lee et al., 2023; Slivinski et al., 2019; 79 

Truchelut et al., 2013; Truchelut and Hart, 2011). For example, following Emanuel (Emanuel, 2010), 80 

who first expanded and revised TC climatology based on the 20CR, Truchelut and Hart (2011) employed 81 

the 20CR to identify previously unknown TCs in the Atlantic and demonstrated that the 20CR can 82 

accurately describe large-scale TC thermodynamic structure. Recently, Truchelut et al. (2013) noted that 83 

the 20CR has the ability to investigate TC events that were previously undetected in the pre-satellite era. 84 

Compared to other reanalyses, the 20CR well captures the intensity of the 1915 Galveston hurricane 85 

(Slivinski et al., 2019) and also offers a more accurate representation of landfalling TCs in East Asia (Lee 86 

et al., 2023). These previous studies have demonstrated the effectiveness of the 20CR as a tool for 87 

characterizing historical TCs (Emanuel, 2010; Truchelut et al., 2013; Truchelut and Hart, 2011). Taking 88 

advantage of the 20CR, some researchers have extracted the century-long TC information from the 89 

reanalysis product (Chand et al., 2022; Lee et al., 2023; Yeasmin et al., 2023), suggesting its potential as 90 

a tool for studying historical changes in TCs under anthropogenic climate change. 91 

While the 20CR has been applied to studying the relationship between historical climate change and 92 

TC variability, the primary focus was mostly on the TC occurrence frequency, and little attention was 93 

given to other TC metrics such as intensity, duration, and location. More importantly, to date, there is no 94 

publicly available reanalysis-based global TC dataset covering a century-long period. Therefore, the main 95 

objective of this study is to extract TC information (including location, intensity, and lifetime) from the 96 

20CR and reconstruct a historical global TC track dataset spanning 1850–2014. The produced dataset is 97 

named the Reanalysis-Based Global Tropical Cyclone Tracks Dataset for the Twentieth Century 98 

(RGTracks-20C) and is open to the public for research use. This paper first introduces the production 99 

details of the RGTracks-20C and then discusses the validity, key strengths, and usage notes of the datasets. 100 

We anticipate that the RGTracks-20C will provide valuable insights into the changing patterns of 101 

historical TC activity, improving our understanding of the response of TCs to climate change. 102 

2. Data and methods 103 

2.1 Data 104 

The primary objective of this study was to reconstruct a 20th century global TC dataset from the 105 

20th Century Reanalysis version 3 (20CRv3) (Slivinski et al., 2019, 2021), the latest version of the 20CR 106 

produced by NOAA. Then, the validity of the reconstructed 20th century global TC data was evaluated 107 

based on the observed TC records, i.e., the International Best Track Archive for Climate Stewardship 108 

(IBTrACS) dataset (Knapp et al., 2010). 109 

2.1.1 20th Century Reanalysis  110 

The 20CRv3 is led by NOAA's Physical Sciences Laboratory (PSL) and the Cooperative Institute 111 

for Research in Environmental Sciences (CIRES) at the University of Colorado, supported by the U.S. 112 

Department of Energy (DOE) (Slivinski et al., 2019, 2021). It, by combining advanced data assimilation 113 
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and numerical prediction techniques with historical observation data, provides long-term historical 114 

weather data with diverse variables, complete spatial and temporal coverage. The 20CRv3 employs sea-115 

surface temperature and sea-ice distributions as its boundary conditions and assimilates only surface 116 

pressure reports from the International Surface Pressure Databank (ISPD) version 4.7 (Compo et al., 2019; 117 

Cram et al., 2015), which include observations from stations and ships, as well as TC intensity (the 118 

minimum central pressure (SLPmin) from the IBTrACS (Knapp et al., 2010). As such, it is more consistent 119 

and homogeneous with time than other reanalyses (Slivinski et al., 2019). 120 

One should note that the IBTrACS and 20CRv3 are not two independent datasets because the SLPmin 121 

records in the IBTrACS are partly assimilated in the production of 20CRv3. However, reports show that 122 

20CRv3 shows TCs structure and intensity more accurately and closer to observations than other 20th 123 

century reanalyses as a result of the assimilation of IBTrACS (Laloyaux et al., 2018; Slivinski et al., 124 

2019). And, it provides a four-dimensional global gridded atmospheric dataset that spans the whole 20th 125 

century and part of the 19th century (1836–2015, with an experimental extension spanning 1806–35), 126 

with a 3-hour temporal resolution and 1°×1° horizontal resolution (Slivinski et al., 2021). Thus, the 127 

20CRv3 was applied to the production of the RGTracks-20C in this paper.  128 

2.1.2 IBTrACS 129 

The IBTrACS (Knapp et al., 2010), published by the NOAA, merges recent and historical TC data 130 

from meteorological agencies worldwide. These include the Regional Specialized Meteorological 131 

Centers (RSMC) and Tropical Cyclone Warning Centers (TCWC) of the World Meteorological 132 

Organization (WMO), as well as non-WMO Centers, such as the China Meteorological Administration, 133 

the Hong Kong Observatory and the Joint Typhoon Warning Center. The IBTrACS is the most 134 

comprehensive and publicly available global TC best-track dataset. It has been widely applied in previous 135 

research to investigate the characteristics of TCs (Lai et al., 2020; Li et al., 2023; Tu et al., 2021, 2022; 136 

Wang and Toumi, 2022; Zhang, 2023), and has served as a criterion for assessing TC records derived 137 

from reanalysis (Bell et al., 2018; Bourdin et al., 2022; Chand et al., 2022; Hodges et al., 2017; Lee et al., 138 

2023). In this study, the most updated version of IBTrACS (v04) (Knapp et al., 2018) serves as an 139 

observation reference for evaluating the reliability of the RGTracks-20C. This dataset was cleaned before 140 

being used for analyses. Details about the data pre-processing procedures are referred to in Figure B1 in 141 

Bourdin et al. (2022). In particular, we standardized maximum sustained wind speeds (WINDmax) in 142 

IBTrACS to 10-minute sustained wind speeds to ensure a consistent global standard(Knapp et al., 2010). 143 

We then removed tracks that did not reach the tropical storm stage (WINDmax < 16 𝑚 ∙ 𝑠−1) and those that 144 

lasted shorter than two days. 145 

Although the IBTrACS has time coverage dating back to the early 20th century, we utilize the data 146 

only for the post-satellite period (1979–2014) due to the early data incompleteness issues (Chang and 147 

Guo, 2007; Lee et al., 2020; Truchelut et al., 2013). Given that the IBTrACS is the most reliable record 148 

of TCs after the 1970s, the IBTrACS serves as the best benchmark for validating the data quality of 149 

RGTracks-20C.However, because the starting years of records vary across basins within the IBTrACS, 150 

biases may occur in the assessment results (see Supplementary Sects. S2.2 and S2.4 for more details).  151 
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2.2 Production of the RGTracks-20C 152 

2.2.1 Procedure 153 

The RGTracks-20C was constructed from the latest version of 20CR (20CRv3). The relatively short 154 

and imperfectly sampled observational record of TCs introduces considerable uncertainty in their data 155 

over the past century (Landsea, 2007; Landsea et al., 2010), hindering accurate detection of interannual 156 

variability and long-term trends (Knutson et al., 2019; Lee et al., 2020). Reanalysis is an effective way 157 

to reduce this uncertainty (Chand et al., 2022; Truchelut et al., 2013). Since TC information is not directly 158 

provided in the 20CRv3, objective TC trackers were applied to detect and track TCs in this dataset.  159 

Numerous trackers have been developed by operational centers and research institutions to meet various 160 

application needs (Hodges et al., 2017; Horn et al., 2014; Tory et al., 2013; Zarzycki and Ullrich, 2017). 161 

In this study, as the first version of the RGTracks-20C, we applied two widely used, publicly available, 162 

and effective trackers: (1) the physically-based Ullrich & Zarzycki (UZ) tracker (Zarzycki and Ullrich, 163 

2017) and (2) the dynamics-based Okubo-Weiss-Zeta (OWZ) tracker (Tory et al., 2013). Both trackers 164 

have been reported to effectively capture TC systems from coarse resolution gridded data uncertainty 165 

(Chand et al., 2022; Truchelut et al., 2013), such as the 20CRv3. Figure 1 shows the procedure of 166 

producing the RGTracks-20C, and details of the methodology are provided in the following. 167 

 168 

 169 
Figure 1: Schematic diagram showing the production of the RGTracks-20C from the 20CRv3 based on the 170 

UZ and OWZ tracking algorithms. Variables shown include U10: 10-m wind speed, ∅: latitude, 𝒛:altitude, 171 

GCD: great circle distance.  172 

2.2.2 TC tracker 173 

i. OWZ Tracker 174 

The OWZ tracker, initially proposed by Tory et al. (2013), is designed to detect low-deformation 175 

vorticity regions within large-scale disturbances, typically situated within the so-called "marsupial 176 
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pouch", which have the potential for tropical storm formation. Given that the OWZ approach relies solely 177 

on large-scale variables, it is particularly effective in detecting TC in coarse-resolution models or 178 

reanalysis (Bell et al., 2018; Bourdin et al., 2022).  179 

The OWZ tracker involves a low-deformation vorticity variable parameter, which is the product of 180 

absolute vorticity and the Okubo-Weiss parameter normalized by the vertical components of relative 181 

vorticity squared (Eq. 1): 182 

𝑂𝑊𝑍 = sgn(𝑓) × (𝜁 + 𝑓) × 𝑚𝑎𝑥 [
𝜁2−(𝐸2+𝐹2)

𝜁2 , 0] (1)  183 

where 𝑓 is the Coriolis parameter, 𝜁 =  𝜕𝜐/𝜕𝑥 −  𝜕𝑢/𝜕𝑦 is the vertical component of relative vorticity, 184 

(𝜁 + 𝑓)  is the absolute vorticity, 𝐸  is the stretching deformation (Eq. 2), and 𝐹  is the shearing 185 

deformation (Eq. 3): 186 

𝐸 =
𝜕𝑢

𝜕𝑥
−

𝜕𝜐

𝜕𝑦
(2) 187 

𝐹 =
𝜕𝜐

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
(3) 188 

First step: Candidate detection.  189 

The OWZ tracker begins by identifying local maxima of OWZ at 850 ℎ𝑃𝑎. Any candidate with a 190 

stronger OWZ maximum within 5° of great circle distance (GCD) is excluded. Next, only candidates that 191 

meet the six initial threshold conditions shown in Table 1 within a 2° GCD of the identified maximum 192 

are retained. Based on the information provided in Table 1, besides the required minimum threshold 193 

values for the OWZ parameter at 850 ℎ𝑃𝑎  and 500 ℎ𝑃𝑎 , additional dynamical and thermodynamic 194 

parameters related to TC formation are taken into account. These parameters include the maximum 195 

threshold for the wind vector difference (vertical wind shear) between 850 ℎ𝑃𝑎 and 200 ℎ𝑃𝑎, as well as 196 

the relative humidity at 950 ℎ𝑃𝑎 and 700 ℎ𝑃𝑎, and the minimum threshold for the specific humidity at 197 

950 ℎ𝑃𝑎. This step primarily aims to identify grid points that contain essential components of a storm. 198 

Subsequently, neighboring grid points are grouped together to define potential TCs. 199 

Second step: Stitching TC tracks.  200 

Consecutive TC points are linked together if their distance does not exceed 5° of GCD and there is 201 

a maximum gap of 24 hours between them. To be considered as a valid TC, additional core thresholds 202 

(shown in Table 1) must be met for at least 9 time-steps (48 hours). Finally, tracks that do not maintain 203 

tropical storm intensity (wind speed at 10 m ≥ 12.3 𝑚 · 𝑠−1) for at least 1 time step are excluded. 204 

 205 

Table 1. Parameter threshold values for the OWZ detection criteria. Subscripts stand for isobaric 206 

levels in 𝒉𝑷𝒂 (OWZ: Obuko-Weiss-Zeta 𝒔−𝟏, RH: relative humidity %; VWS: vertical wind 207 

shear 𝒎 · 𝒔−𝟏; Q: specific humidity 𝒈 · 𝒌𝒈−𝟏.) 208 

Critertion OWZ850 OWZ500 RH950 RH700 VWS200_850 Q950 

Initial 50×10-6 40×10-6 70 50 25 10  

Core 60×10-6 50×10-6 85 70 12.5  14 

 209 

 210 
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ii. UZ tracker 211 

The UZ tracker , originally proposed by Zarzycki and Ullrich (2017), utilizes sea level pressure on 212 

the model grid, incorporating criteria for warm-core structures and storm lifetime.  213 

First step: Candidate detection.  214 

Initially, candidates are identified based on the SLP minimum. And, only those candidates that meet 215 

the following two closed-contour criteria are kept: 216 

1. An increase in SLP minimum of at least 2 hPa within a 5.5° GCD from the candidate point to 217 

ensure the presence of a sufficiently strong and coherent low-pressure area. 218 

2. The geopotential thickness between 300 and 500 hPa (denoted as Z300-500) must decrease by 219 

58.8 𝑚2𝑠−2 over a distance of 6.5° GCD from the maximum center of Z300-500 within 1° GCD of the 220 

center of minimum SLP.  221 

Finally, candidates with a stronger SLP minimum within a 6°=GCD are excluded. 222 

Second step: Stitching TC tracks.  223 

The candidates are subsequently linked in time to create paths, ensuring a maximum distance of 8° 224 

GCD between candidates. Each path must last for at least 54 hours without gaps longer than 24 hours. 225 

Additionally, ten 6-hourly time steps (equivalent to 54 hours) must satisfy the following thresholds: wind 226 

speed at 10m ≥ 10 𝑚/𝑠  and 𝑧  ≤ 150m (where z represents the altitude), and the storm must form 227 

between 0° and 50°. 228 

The UZ tracker, developed specifically for high-resolution models and reanalysis data, is designed 229 

to maintain a low false-alarm rate, which may lead to a larger number of misses of weaker storms(Roberts 230 

et al., n.d.). In contrast, the OWZ tracker, based on the large-scale environmental conditions favorable 231 

for TC formation, addresses this limitation. Thus, combining these two TC trackers can effectively 232 

enhance the reliability of RGTracks-20C. 233 

A command-line software, TempestExtremes, developed by Zarzycki and Ullrich (2017), enables 234 

fast and versatile and versatile implementation of TC trackers, was used in this study. For further details, 235 

please refer to Ullrich et al. (2021). 236 

2.2.3 Bias Correction of TC intensity 237 

Given the low horizontal resolution in the 20CRv3, TC intensities derived directly from the 238 

reanalysis generally underestimated compared to observations (Fig. 2a) (Bourdin et al., 2022; Roberts et 239 

al., n.d.). To address this issue, a quantile mapping bias correction, similar to the method used by Zhao 240 

and Held (2010), was applied to adjust for the TC intensity bias within the dataset. The main idea is to 241 

fit the 20CRv-derived TC intensity distributions, either probability distribution functions (PDFs) or 242 

cumulative distribution functions (CDFs), to the observed distributions. This method has demonstrated 243 

significant efficacy in enhancing the accuracy of TC intensity within models or reanalyses (Faranda et 244 

al., 2023; Yoshida et al., 2017). This adjustment resulted in a wind-pressure relationship in RGTracks-245 

20C that aligns more closely with observational data (Fig. 2b). 246 
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 247 
Figure 2: Wind–pressure relationships for IBTrACS and RGTracks-20C. a–b, Scatter plots of SLPmin (unit: 248 

𝒉𝑷𝒂) against maximum sustained wind speeds (WINDmax) (unit: 𝒎 ∙ 𝒔−𝟏), based on the TCs from IBTrACS 249 

(black), OWZ (red), and UZ (blue) trackers, before (a) and after (b) intensity bias correction (see Methods). 250 

The curves represent fourth-order polynomial fit results. Storm categories, as defined in the section 'TC 251 

intensity', are indicated by horizontal gray lines.  252 

 253 

2.3 Verification of RGTracks-20C 254 

2.3.1 Tracks matching 255 

After utilizing the UZ and OWZ trackers to detect TC vortices from the 20CRv3, the resulting tracks 256 

are matched one-to-one with those observed in the International Best Track Archive for Climate 257 

Stewardship (IBTrACS). The specific procedures are detailed in the "2.4 Tracks Matching" section by 258 

Bourdin et al. (2022).  259 

Specifically, a detected track D consists of n points (d1, d2, ..., dn) corresponding to the moments (t1, 260 

t2, ..., tn). Similarly, a track O observed in IBTrACS consists of a collection of points at a given time. For 261 

every point di (ti) on track D, points from O at the same time ti located within a 300 km radius of di are 262 

linked. There may be instances where no such points are found in O. The subset of points in O that are 263 

linked to any point in D is labeled as OD−paired. It consists of |OD-paired|. There are three possible scenarios: 264 

1. |OD−paired| = 0: If none of the points in the RGTracks-20C track D match any points in track O, 265 

then track D is classified as a False Alarm (FA). 266 

2. |OD−paired| > 0: If all points in OD−paired track correspond to points in the same observed track O, 267 

then track O is identified as the closest match for D. 268 

3. |OD−paired| > 0: If the points in OD−paired correspond to several observed tracks in O, the observed 269 

track with the most points paired with D is regarded as the best match for D. 270 

 271 

2.3.2 Track verification 272 

Following the approach suggested by Bourdin et al. (2022), this study compares TC tracks detected 273 

from the 20CRv3 with observed tracks from the IBTrACS. The probability of detection (POD) (Eq. 4) 274 

and false alarm rate (FAR) (Eq. 5) are used to assess the detection skills of the two trackers. 275 

𝑃𝑂𝐷 =
𝐻

𝐻 +  𝑀
(4) 276 
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 277 

𝐹𝐴𝑅 =
𝐹𝐴𝑠

𝐻 +  𝐹𝐴𝑠
(5) 278 

where hits (H) refer to TC tracks detected from the 20CRv3 that are also present in IBTrACS, misses (M) 279 

denote those tracks that are recorded in IBTrACS but were not detected in the 20CRv3, and false alarms 280 

(FAs) refer to non-existing TCs that were detected from the 20CRv3. 281 

2.4 Definitions 282 

2.4.1 TC intensity 283 

In assessing the TC intensity, SLPmin and WINDmax are two commonly used metrics in TC research. 284 

However, because WINDmax in both observations and reanalysis exhibits relatively higher uncertainties 285 

(Bourdin et al., 2022; Chavas et al., 2017; Knapp et al., 2010; Knutson et al., 2015; Schreck et al., 2014), 286 

this study opted to use SLPmin as the only indicator of TC intensity when verifying the validity of 287 

RGTracks-20C. Nevertheless, WINDmax of detected TCs is also provided in the RGTracks-20C (Table 2) 288 

as a reference for researchers who wish to use and improve the dataset, though it is not discussed in the 289 

paper.  290 

 291 

Table 2. Data format of the RGTracks-20C. track_id: storm identifier, lat: latitude degrees_north, 292 

lon: longitude degrees_east, SLPmin: minimum central pressure ( 𝑢𝑛𝑖𝑡: ℎ𝑃𝑎 ), WINDmax: 293 

maximum wind speed (units: 𝑚 ∙ 𝑠−1), WIND*max and SLP*min denotes TC intensities after bias 294 

correction. 295 

track_id, year month day hour lon lat WINDmax SLPmi hemisphere basin season WIND*max SLP*mi 

0 1979 1 1 0 142.00 15.00 13.57 996.09 S SP 1979 13.57 990.00 

0 1979 1 1 6 144.00 15.00 14.95 995.27 S SP 1979 14.95 980.27 

… 
… … … … … … … … … … …   

… … … … … … … … … … … …   

… … … … … … … … … … … …   

2880 2014 12 31 18 120.00 9.00 11.122 1006.20 N WNP 2014 22.12 998.20 

 296 

Storm categories: the Saffir-Simpson Hurricane Scale (SSHS) from 1 to 5 based on their peak 1-297 

minute wind speed at 10 meters above the surface. In this study, given the significant uncertainties in 298 

WINDmax due to differences between institutions and the limitations of model simulation capabilities 299 

(Chavas et al., 2017; Klotzbach et al., 2020; Knutson et al., 2015), we have chosen to classify based on 300 

SLPmin, following the definition of Klotzbach et al. (2020). 301 

2.4.2 Basins 302 

We explore the performance of TCs in RGTracks-20C on global and regional scales. The regional 303 

division is mainly based on the appendix guide of Knutson et al. (2015), which divides the globe into six 304 

basins: the WNP, ENP, South Pacific (SP), NI, South Indian (SI), and NATL. 305 
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2.4.3 TC days 306 

TC days is defined as the number of 6-hour periods during which an active TC occurs within a basin, 307 

divided by 4 (to convert 6-hour blocks into days) and accumulated for the year under consideration such 308 

that: 309 

𝑇𝐶 𝑑𝑎𝑦𝑠 =  
1

4
∑ 𝐿𝑖

𝑛

𝑖=0

(6) 310 

where 𝐿𝑖 is the individual lifetime of a TC within the bounds of a basin. 311 

3. Results and discussion 312 

3.1 Data Records  313 

The constructed RGTracks-20C (Ye et al., 2024) provides a century-long collection of global TCs 314 

identified from the 20CRv3. The RGTracks-20C is publicly available at the 315 

https://github.com/jeremychleung/RGTracks-20C/ and https://zenodo.org/record/8410597. This dataset 316 

provides detailed TC information, including location (longitude, latitude, hemisphere, and basin), time 317 

(year, month, day, hour, and season), and intensity (SLPmin and WINDmax), with a temporal resolution of 318 

6 hours, spanning from 1850 to 2014 and covering the globe. The dataset is provided as a comma 319 

separated values (.csv) file and has a format similar to that of the IBTrACS (Table 2). It is noted that, in 320 

the RGTracks-20C, WINDmax serves, in addition to SLPmin, as a supplementary reference of TC intensity 321 

for researchers, but is not discussed here due to accuracy issues and should be used cautiously. 322 

3.2. Validity of trackers 323 

As documented in prior studies, biases are unavoidable when extracting TCs from reanalyses, given 324 

the limitations of reanalysis in reproducing the high-resolution TC structure and circulation patterns, as 325 

well as the errors caused by the application of different trackers (Bell et al., 2018; Horn et al., 2014; Lee 326 

et al., 2023; Slivinski et al., 2019; Truchelut et al., 2013). Before verifying the reliability of RGTracks-327 

20C, it is necessary to evaluate the performance of the two trackers applied. 328 

The POD and FAR of TCs identified by the UZ and OWZ trackers are calculated to assess the ability 329 

of the trackers to detect TCs from the 20CRv3 globally and across six basins (see Track verification). 330 

Globally, the overall POD and FAR of TCs detected by the UZ tracker are 68% and 7% (Fig. 3a), while 331 

those by the OWZ tracker are 77% and 15%, respectively (Fig. 3b). Detailed comparisons of each 332 

component of POD and FAR, including the number of hits, false alarms, and misses, are provided in 333 

Supplementary Sect. S1 and Fig. S1. 334 
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 335 

Figure 3: Accuracy of TC number detection of the RGTracks-20C. a–b, POD (blue bars and line, unit: %) 336 

and FAR (red bars and line, unit: %) for TC number detected by the UZ (a) and OWZ (b) trackers in each 337 

basin (bars), compared to the global mean (lines). Blue and red horizontal lines denote the POD and FAR over 338 

the globe. c–d, same as a–b, except for the number of hits (blue bars), misses (green bars), and false alarms 339 

(red bars) detected by the UZ (c) and OWZ (d) trackers.  340 

 341 

For each basin, the distributions of the POD of TCs (Figs. 3a–b) and the number of hits (Figs. 3c–342 

d) between the two trackers show high similarities. Specifically, both trackers report higher POD values 343 

in the SI (90% for OWZ tracker, 83% for UZ tracker), WNP (86% for OWZ tracker, 77% for UZ tracker), 344 

and SP (84% for OWZ tracker, 68% for UZ tracker), followed by the NI (78% for OWZ tracker, 68% for 345 

UZ tracker). Lower POD values are observed in the NATL (62% for OWZ tracker, 48% for UZ tracker) 346 

and the ENP (52% for both OWZ and UZ trackers). Similarly, the largest number of TC hits is observed 347 

in the WNP (824 for OWZ tracker, 733 for UZ tracker) and SI (543 for OWZ tracker, 503 for UZ tracker), 348 

followed by the ENP, SP and NATL, each with approximately 200–300 TCs, and the NI with fewer than 349 

200 TCs.  350 

The FAR of TCs (Figs. 3a–b), and the number of false alarms (FAs) and misses (Figs. 3c–d) vary 351 

between the two trackers. The UZ tracker exhibits FARs below 15% across all basins except the NI. 352 

Notably, in the ENP and NATL, the FAR of TCs is below the global average of 7%, with the number of 353 

FAs fewer than 20. The OWZ tracker shows a FAR close to the global average (15%) in the WNP and 354 

SI, while in the ENP, SP, and NATL, the FAR values range between 15% and 20%. In the NI, however, 355 

the two trackers show a relatively higher FAR and more FAs compared to other basins. In terms of missed 356 

TC detections, both trackers show relatively few misses, less than 120, in the SP, NI, and SI basins. On 357 

the other hand, misses are higher in the ENP and NATL. Overall, the UZ tracker consistently shows a 358 

higher number of missed TCs across all basins than the OWZ tracker. This is particularly evident in the 359 

WNP and SI, the two basins that account for nearly two-thirds of global TC activity, where the OWZ 360 

tracker exhibits fewer missed TC detections (Fig. 3d). Supplementary Sect. S2.1 provides further 361 
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explanations of the high FAR of TCs observed in the NI, the higher number of missed TCs in the ENP 362 

and NATL (Supplementary Fig. S2). 363 

Overall, the accuracies of TC detection by the two tracking algorithms, especially that by the OWZ 364 

tracker, have reached the accuracy reported by recent works that extracted TCs from other modern-era 365 

reanalyses, such as the fifth generation ECMWF reanalysis (ERA5) (Supplementary Table S1) (Bourdin 366 

et al., 2022; Murakami, 2014). This confirms the effectiveness of both trackers in detecting and tracking 367 

the majority of TCs from the 20CRv3. 368 

3.3 Climatology of TC activity 369 

Since our target of constructing the RGTracks-20C is to aid the community in studying the response 370 

of TCs to climate change, we will focus on the ability of the RGTracks-20C to capture the climatology 371 

and long-term variability of TC activity in the following sections. 372 

In terms of climatology, the RGTracks-20C is able to capture the major spatial patterns of TC genesis 373 

locations and track density over most ocean basins (Figs. 4a–f), indicating its effectiveness in reproducing 374 

the spatial distribution of historically observed TCs. The annual mean TC numbers in most ocean basins 375 

detected by the UZ and OWZ trackers are consistent with observations (Figs. 4g–i). The OWZ tracker 376 

especially captures the observed annual mean TC number in the NWP, SI, and SP well, with discrepancies 377 

ranging from –0.48 to 0.89. Notably, the UZ tracker also accurately estimates observed annual mean TC 378 

number in the NI, demonstrating a relatively small error (4.83 versus 4.97) between the two. However, 379 

the UZ and OWZ trackers estimate the annual mean number of TCs to be 63.39 and 78.56, respectively 380 

(Figs. 4h–i), which are relatively lower than the observed values (87.03, Fig. 4g). The main reason for 381 

the global underestimation compared to IBTrACS is the discrepancies in the ENP and NATL, of which 382 

the reasons are discussed in Supplementary Sects. S2.1–2.2. Despite the underestimations in individual 383 

basins, the overall TC detection rates resemble previous publications that aimed to extract TCs from 384 

higher-quality reanalyses (Bourdin et al., 2022; Murakami, 2014). This result verifies the RGTracks-385 

20C’s ability to reproduce the climatology of the TC number globally and in most basins. 386 
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 387 

Figure 4: TC genesis locations, tracks, and annual average number from IBTrACS and RGTracks-20C. a–c, 388 

TC genesis locations (yellow dots) and tracks (blue lines) from IBTrACS (a), and RGTracks-20C using the UZ 389 

(b) and OWZ (c) trackers. d–f, TC tracks density (shading, number of TC occurrence per 1° × 1° latitude-390 

longitude grid box, 1979-2014) from IBTrACS (c), and RGTracks-20C using the UZ (e) and OWZ (f) trackers. 391 

g–i, mean number of TCs per year globally and for the six basins from IBTrACS (g), and RGTracks-20C using 392 

the UZ (h) and OWZ (i) trackers.  393 

 394 

We further evaluate the accuracies of detected TC tracks in the RGTracks-20C by comparing the 395 

arc length of TC tracks between RGTracks-20C and IBTrACS. Results indicate that the global TC 396 

location errors range from 10 to 300 km, with the majority between 50–100 km for the UZ tracker and 397 

75–125 km for the OWZ tracker (Fig. 5a). Additionally, the peak errors for both trackers are below 100 398 

km, with the UZ and OWZ trackers showing peak values of approximately 75 km and 95 km, respectively. 399 

These findings are consistent across all basins (Fig. 6a). Given that the lower limit of the average TC 400 

location error expected from the coarse horizontal resolution of the 20CRv3 (1 degree×1 degree) is 401 

approximately 100 km, the above-mentioned small mean values of TC location biases confirm that the 402 

RGTracks-20C is capable of reproducing most observed TC tracks and locations.  403 
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 404 

Figure 5: Distribution of TC characteristics om the IBTrACS and RGTracks-20C. a, Distribution of the mean 405 

TC location error from 1979–2014 (unit: km) between IBTrACS and the RGTracks-20C by the UZ (blue) and 406 

OWZ (red) algorithms. b, TC duration (unit: days) from 1979 to 2014 in IBTrACS (green) and the RGTracks-407 

20C by the UZ (blue) and OWZ (red) algorithms. c, same as (b), but for TC intensity (SLPmin, unit: hPa), 408 

based on the UZ tracker, before (blue) and after (red) bias correction. d, same as (c), but for the OWZ tracker. 409 

(UZ: UZ tracker, OWZ: OWZ tracker. UZ-C and OWZ-C represent bias-corrected results for the UZ and 410 

OWZ trackers, respectively.) 411 

 412 

 413 

Figure 6: As in Fig. 5, but for six individual basins. 414 

 415 

The duration and intensity of TCs are crucial in climate change research, as global warming may 416 

lead to stronger and longer-lasting TCs (Knutson et al., 2010). However, observational limitations make 417 

these findings more controversial compared to those on TC frequency (Knutson et al., 2010). The 418 
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RGTracks-20C provides additional support in resolving this controversy. Based on the IBTrACS, the 419 

majority of observed TCs globally last fewer than 20 days, with a peak around 8 days (Fig. 5b). 420 

Evaluation results (Fig. 5b and Supplementary Fig. S4) show that TCs detected by the OWZ tracker 421 

exhibit durations that are close to the observations, and accurately reproduce the TC duration distribution 422 

with a peak of 8 days. However, bias is found in the durations of those detected by the UZ tracker, which 423 

exhibits a duration peak of approximately 5 days. This is mainly due to the dynamics-based OWZ tracker 424 

having the ability to detect storms early in their development (Bell et al., 2018; Bourdin et al., 2022) 425 

(Supplementary Fig. S4), while the UZ tracker easily misses weak and short storms (Supplementary Figs. 426 

S1a, c) from the 20CRv3 (Bourdin et al., 2022; Tory et al., 2013; Zarzycki and Ullrich, 2017) 427 

( Supplementary Sect. S2.3). Similar results are obtained in different basins (Fig. 6b), thus, it is 428 

recommended to use the OWZ output when analyzing the durations of TCs. 429 

For TC intensity, given the relatively considerable uncertainty in WINDmax compared to SLPmin in 430 

both reanalyses and IBTrACS (see Methods) (Bourdin et al., 2022; Chavas et al., 2017; Knapp et al., 431 

2010; Knutson et al., 2015; Schreck et al., 2014), this study exclusively utilizes SLPmin to evaluate the 432 

capability of RGTracks-20C in representing the intensity of TCs. According to IBTrACS (Figs. 5c–d), 433 

the intensity of TCs is mainly distributed between 900 and 1020 hPa, peaking around 1000 hPa, with a 434 

long tail on the lower SLPmin side. In contrast, the SLPmin in RGTracks-20C is mainly distributed in the 435 

range of 950 – 1020 hPa, with peaks at 1000 ℎ𝑃𝑎 and 1005 ℎ𝑃𝑎 for the UZ (Fig. 5c) and OWZ (Fig. 5d) 436 

trackers, respectively. This suggests that the 20CRv3 generally underestimates the TC intensity 437 

(Supplementary Fig. 2a), which, as expected, is primarily because the relatively low spatial resolution of 438 

the reanalysis may cause smoothing effects on the sea level pressure field. Apart from spatial resolution, 439 

the model's dependence on parameterization processes, along with other factors, may also influence its 440 

ability to reproduce TC intensity in the reanalysis (Aarons et al., 2021; Hodges et al., 2017; Malakar et 441 

al., 2020). 442 

To address this issue, an intensity bias correction was implemented using quantile mapping bias 443 

correction (see Methods) (Zhao and Held, 2010). After intensity correction, the TC intensity distribution 444 

in RGTracks-20C is more consistent with IBTrACS (Figs. 5c–d, and Supplementary Fig. 2b), especially 445 

in terms of peak positions, and accurately reproduces the skewed distribution of TC intensity. In particular, 446 

the RGTracks-20C reproduces TC intensity values with SLPmin below 940 hPa, which were not found 447 

before the intensity bias correction. This consistency is observed not only on a global scale but also across 448 

various basins (Figs. 6c–d).  449 

3.4 Long-term variability of TC activity 450 

This section evaluates the long-term variability of TC activity in the RGTracks-20C by comparing 451 

it with the IBTrACS from 1979 to 2014. 452 

Firstly, the RGTracks-20C is able to capture the observed interannual variability of global TC 453 

number (Fig. 7a), as indicated by the significant correlations between the TC counts derived from the UZ 454 

and OWZ trackers and observations, with correlation coefficients of 0.65 and 0.68 (in the following 455 

context, all correlations are significant at the 99% confidence level unless otherwise specified), 456 

respectively. This is also true for individual basins (Figs. 8a, d), with the correlation coefficients 457 

exceeding 0.70 in most basins. Among the six basins, the highest correlation is observed in the NATL, 458 
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where the correlation coefficient for the OWZ tracker reaches 0.88 (0.79 for the UZ tracker). Subsequent 459 

regions with notable correlations include the WNP (0.75 for OWZ tracker, 0.79 for UZ tracker), SP (0.79 460 

for OWZ tracker, 0.84 for UZ tracker), and SI (0.74 for OWZ tracker, 0.69 for UZ tracker). However, 461 

the correlation coefficients are relatively lower in the ENP and NI (Supplementary Table S2), of which 462 

the reasons are discussed in Supplementary Sect. S2.2. Notably, the long-term trends in the number of 463 

TCs recorded by the two datasets are consistent globally and across most of the ocean basins 464 

(Supplementary Table S4). 465 

 466 

Figure 7: Time series of globally TC activities from IBTrACS and RGTracks-20C during the periods 1979-467 

2014. TC activities are from the IBTrACS and RGTracks-20C using UZ (blue), and OWZ (red) trackers. a, 468 

TC number. b, TC days (unit: days). c, TC intensity in SLPmin (unit: hPa) in IBTrACS (black) and RGTracks-469 

20C using UZ tracker before (blue solid line) and after (blue dotted line) bias correction. d, same as (c), except 470 

for TC intensity in SLPmin (unit: hPa) in IBTrACS (black) and RGTracks-20C using OWZ tracker before 471 

(red solid line) and after (red dotted line) bias correction. Shaded areas are the two-sided interval of the linear 472 

trend at the 95% confidence level. Straight lines are the linear regression. The correlation coefficients (R) 473 

between from IBTrACS and RGTracks-20C are marked in the figure legends. All correlation coefficients are 474 

statistically significant at the 99% confidence level. 475 

 476 
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 477 

Figure 8: As in Fig. 7, but for six basins. a, TC number. b, TC days (unit: days). c, TC intensity in SLPmin 478 

(unit: hPa) in IBTrACS (black) and RGTracks-20C (after bias correction) using UZ (blue) and OWZ (red) 479 

trackers. d, the correlation coefficients (R) between the from IBTrACS and RGTracks-20C. Note*: The R 480 

values for TC number and TC intensity are not statistically significant at the 99% confidence level in the NI 481 

and ENP. For TC days, the R value is not statistically significant only in the NI. The R values need to be 482 

divided by 100. 483 

 484 

TC days, an important metric, encompasses both TC frequency and lifespan (Bell et al., 2018). The 485 

RGTracks-20C is able to reproduce the interannual variability of TC days, which is consistent with that 486 

in IBTrACS (Fig. 7b), with high correlation coefficients of 0.78 and 0.63 for the UZ and OWZ trackers, 487 

respectively. Moreover, these results are further confirmed across basins (Fig. 8b), with correlation 488 

coefficients generally exceeding 0.75. In particular, in the NATL, the correlation coefficient exceeds 0.90 489 

(UZ tracker: 0.93, OWZ tracker: 0.91), followed by the SP (UZ tracker: 0.82, OWZ tracker: 0.79), the SI 490 

(UZ tracker: 0.80, OWZ tracker: 0.78) and the WNP (UZ tracker: 0.84, OWZ tracker: 0.75). However, 491 

being influenced by the observation biases, the correlation coefficients for TC days are also relatively 492 

low in the ENP and NI (see Supplementary Table S2). Nevertheless, the above results indicate that the 493 

RGTracks-20C provides a satisfactory representation of the interannual and long-term variability 494 

(Supplementary Sect. S2.4, Table S4) of the TC days globally and across most of the ocean basins.  495 

In addition, the global TC intensity series based on RGTracks-20C significantly correlates with that 496 

based on IBTrACS, with correlation coefficients of 0.61 and 0.80 for the UZ (Fig. 7c) and OWZ (Fig. 497 

7d) trackers, respectively. This indicates that the TC intensity (SLPmin) in RGTracks-20C effectively 498 

captures the observed interannual variability. Most basins further validate these results (Fig. 8d). The 499 

highest correlation coefficients are observed in the WNP, exceeding 0.80 (UZ tracker: 0.82, OWZ tracker: 500 

0.85). Following closely are NATL (UZ tracker: 0.75, OWZ tracker: 0.75) and SI (UZ tracker: 0.72, 501 

OWZ tracker: 0.78), while SP (UZ tracker: 0.71, OWZ tracker: 0.69) also demonstrates correlation 502 

coefficients of around 0.70. 503 

The 20CRv3 tends to underestimate the TC intensities, due to its coarse resolution, which suggests 504 

the need of a bias correction process during the production of the RGTracks-20C (see Methods). By 505 
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performing intensity bias corrections to the detected TCs, the TC intensity (SLPmin) in RGTracks-20C 506 

exhibits interannual and long-term variations that are more consistent with the observations (Figs. 7c–d, 507 

and Supplementary Fig. 2 and Tables S2, S4), especially in the WNP, NATL, and SI basins (Figs. 8c–d). 508 

These results indicate that the RGTracks-20C can reasonably capture the interannual variability and 509 

trends (Supplementary Sect. S2.4 and Table S4) of TC intensity globally and across most basins. 510 

Discrepancies in the interannual variability of TC intensity between the RGTracks-20C and IBTrACS 511 

are also noted over ENP and NI, similar to the above findings on TC number and days (Supplementary 512 

Sect. S2.2 and Tables S6–S7).  513 

3.5 Key strengths of the RGTracks-20C 514 

The above evaluation analyses confirm that the RGTracks-20C effectively captures both the 515 

climatology and long-term variability of TC activity across global and major oceanic basins. In this 516 

section, we discuss the key strengths of the RGTracks-20C, specifically its capacity to reconstruct track 517 

and intensity information of early-year TCs that may not be included in the observed data records. Such 518 

an advantage of the RGTracks-20C could benefit research about how climate change has affected TCs 519 

over the past century. 520 

Before digging into early-year TCs, we first demonstrate the RGTracks-20C's accuracy in 521 

reproducing specific TCs by making comparisons with observations. Three representative TCs that 522 

caused significant human casualties and economic losses in the NATL, SI, and WNP are analyzed here: 523 

Hurricane ‘Andrew’ in 1992 (Pimm et al., 1994) (Figs. 9a–c), TC ‘Geralda’ in 1994 (Hoarau et al., 2012) 524 

(Figs. 9d–f), and Super Typhoon ‘Rammasun’ in 2014 (Zhang et al., 2017) (Figs. 9h–i). Compared with 525 

IBTrACS, the RGTracks-20C performs exceptionally well in representing the track and duration of these 526 

TCs. However, some discrepancies were observed during landfall (Fig. 9a), possibly due to complex 527 

topography and TC size, which were not captured by the low-resolution 20CRv3. While the 20CRv3 528 

tends to underestimate the intensity of TCs, the corrected intensity in the RGTracks-20C is highly 529 

consistent with observations and accurately captures the temporal evolutions of TC intensities. This 530 

evidence confirms RGTracks-20C’s ability to capture not only the climatology and variability of TC 531 

activity, but also the detailed information on specific TC events. 532 
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 533 

Figure 9: The historical tracks and intensity records of individual tropical cyclones in the IBTrACS and 534 

RGTracks-20C. a–c, Track (a) and intensity (SLPmin, unit: hPa. b: UZ tracker, c: OWZ tracker) of Hurricane 535 

“Andrew”. d–f, same as a–c, but for track (d) and intensity (SLPmin, unit: hPa. e: UZ tracker, f: OWZ tracker) 536 

of tropical cyclone “Geralda”. g–i, same as a–c, track (g) and intensity (SLPmin, unit: hPa. h: UZ tracker, i: 537 

OWZ tracker) of Super typhoon “Rammasun”. Green, blue, and red lines denote results based on the 538 

IBTrACS, UZ tracker, and OWZ tracker, respectively. The UZ-C (blue dotted dashed line) and OWZ-C (red 539 

dotted dashed line) indicate after intensity bias correction. 540 

 541 

Prior to the satellite era, limitations in observation systems often led to incomplete records of early 542 

TCs, particularly for TC intensity. An example is hurricane Okeechobee in 1928, which was one of the 543 

deadliest to hit the United States in the early 20th century. Hurricane Okeechobee was recorded in the 544 

IBTrACS (Blake et al., 2011; Mitchell, 1928) (Supplementary Sect. S3.1). However, during 545 

Okeechobee’s lifetime, there were only 16 time points of the TC intensity that were recorded when it 546 

passed the Lesser Antilles and Puerto Rico, and made landfall in the United States (Figs. 10a–c, 547 

Supplementary Fig. S5 and Table S8). Similar missing data are common in the IBTrACS records of early 548 

TCs, especially when the TCs were located over the ocean (Figs. 10d–f). Moreover, the problem of 549 

missing TC intensity records is especially evident in other basins (Supplementary Table S3). For instance, 550 

Typhoon No. 8, which made landfall and caused serious damage in Japan (see Supplementary Sect. S3.2), 551 

has only track records in the IBTrACS, but with intensity information missing (Figs. 10g–i). In such 552 

cases, taking advantage of the 20CRv3, the RGTracks-20C addresses these deficiencies by filling in these 553 

gaps, substantially enhancing the completeness of early TC intensity records. 554 

https://doi.org/10.5194/essd-2025-126
Preprint. Discussion started: 7 April 2025
c© Author(s) 2025. CC BY 4.0 License.



21 

 

 555 

Figure 10: As in Fig. 9, but for Hurricane “Okeechobee” (a–c), Hurricane ‘1880271N23317’ (d–f), typhoon 556 

‘192023N24150’(g–i). 557 

 558 

In addition, not only is the TC intensity missing, but the track records in the IBTrACS may also be 559 

incomplete, such as the above-mentioned Typhoon No.8 in 1920 (Fig. 10g), despite the existence of 560 

historical observation records (see Supplementary Sect. S3.2). In this case, the RGTracks-20C not only 561 

provides the missing TC intensity but also fills gaps in IBTrACS during the latter stages of the typhoon's 562 

development, especially during the landfall phase (Fig. 10g and Supplementary Figs. S6–8). Moreover, 563 

prior to the satellite era, the RGTracks-20C often reports a higher number of TCs than the IBTrACS, 564 

particularly from the early to mid-20th century (Supplementary Fig. S10), which suggests that the 565 

RGTracks-20C is also able to detect historical TCs not being recorded in the IBTrACS. These findings 566 

demonstrate that the RGTracks-20C can compensate for the incomplete TC track records in the IBTrACS, 567 

especially for those in the pre-satellite era. 568 

To evaluate the accuracy of early TC records provided by RGTracks-20C, we take the 1928 569 

Okeechobee hurricane as a case study. The RGTracks-20C nearly fully reproduces the hurricane's 570 

lifespans as recorded in IBTrACS, with the OWZ tracker performing exceptionally well, differing by 571 

only one day from the IBTrACS record. Okeechobee’s latitude and longitude variations in the RGTracks-572 

20C are highly consistent with those in the IBTrACS, with a positional bias within ±1 degree (Fig. 10a 573 

and Supplementary Fig. S5). By comparing Okeechobee’s intensity in RGTracks-20C with observational 574 

data, we find that the RGTracks-20C reliably reproduces Okeechobee’s intensity and its variations (Figs. 575 

10b–c and Supplementary Table S8). For instance, as the hurricane passed over Guadeloupe, IBTrACS 576 

recorded a SLPmin of 940 hPa, which is closely matched by RGTracks-20C (UZ tracker: 955 ℎ𝑃𝑎; OWZ 577 

tracker: 940 ℎ𝑃𝑎). Moreover, the RGTracks-20C captures the weakening and re-intensification of the 578 

hurricane between Puerto Rico and its landfall in Florida, where the IBTrACS lacks intensity records, 579 

demonstrating the RGTracks-20C's reliability in representing intensity changes (Supplementary Sect. 580 

S3.1).  581 
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4. Usage notes 582 

In this study, we introduce the RGTracks-20C, a century-long reanalysis-based historical global TC 583 

dataset. Statistical evaluations and case studies confirm RGTracks-20C’s reliability in capturing the 584 

climatology and interannual variability of observed TC activity on both global and regional scales in the 585 

modern satellite era. A major key strength of the RGTracks-20C is its ability to fill the missing intensity 586 

or location records of observed TCs in early years.  587 

As documented in prior studies, biases are unavoidable when extracting TCs from reanalyses due 588 

to the data quality of reanalyses and the limitations of TC trackers. Some usage notes and cautionary 589 

remarks are listed in this section to assist readers in understanding or using the RGTracks-20C. 590 

(1) Due to model resolution and parameterization, TC intensity detected directly from the 20CRv3 591 

is underrepresented compared to observations. To address this issue in the RGTracks-20C, we corrected 592 

the biases using a simple quantile mapping method, assuming that systematic biases primarily cause the 593 

TC intensity errors from 20CRv3. While this is generally true, the quantile mapping correction did not 594 

account for other factors that may also affect TC intensity biases. The inherent challenges in modeling 595 

weaker TCs in 20CRv3, which are largely attributed to the limitations of resolution and parameterization 596 

of subgrid-scale processes in numerical models, often result in lower detection rates for tropical 597 

depressions and weaker tropical storms (e.g., Category 1) (Hodges et al., 2017). This can be improved 598 

with more advanced correction approaches of TC intensity in the future. 599 

(2) Discrepancies between the RGTracks-20C and IBTrACS should not be solely attributed to errors 600 

in RGTracks-20C, as limitations in IBTrACS may also influence the evaluation results. For example, the 601 

classification of TC often relies on forecasters' subjective judgment, which affects whether these systems 602 

are included in best track datasets (Torn and Snyder, 2012). Additionally, , differences in observation 603 

start times and data sources across basins (Supplementary Table S3) can introduce uncertainties in the 604 

IBTrACS data (Chan et al., 2022b). For example, the RGTracks-20C shows relatively large discrepancies 605 

with observations in the ENP (Supplementary Sect. S2.2), which may be attributed to the biases of 606 

IBTrACS prior to 1988. Similar issues exist for the NI basin. When limiting the study periods to 1988–607 

2014 for the ENP and 1990–2014 for the NI, the RGTracks-20C exhibits good consistency with IBTrACS 608 

in TC activity trends, and the correlation significantly improves (Supplementary Fig. S3 and Tables S2, 609 

S5). These suggest that the reliability of observational data has been changing over time and may serve 610 

as a factor affecting the comparison results between the RGTracks-20C and observational records. 611 

Detailed analyses on these two basins can be found in Supplementary Sect. S2.2. 612 

(3) Currently, there are no perfect algorithms for tracking TCs from reanalyses. Although the TC 613 

trackers employed in the RGTracks-20C (UZ and OWZ) are two widely recognized algorithms, they were 614 

built with different properties and have different limitations. The above evaluation analyses show that the 615 

OWZ tracker is closer to the observations in terms of TC number and TC days (Bourdin et al., 2022), 616 

while the UZ tracker produces tracks with a shorter duration than the observations, which is mainly 617 

related to its physically based tracker intensity threshold (Horn et al., 2014). However, the UZ has a lower 618 

FAR, suggesting that it has an advantage in recognizing real TCs and is less likely to misclassify other 619 

weather systems as TCs. Generally, since the OWZ tracker demonstrates overall higher stability in 620 

detecting TCs, it is recommended to primarily utilize the OWZ tracker results in most cases, with the UZ 621 
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tracker as a supplementary reference for analyses. In addition, in the production of the RGTracks-20C, 622 

globally identical thresholds were used in the TC tracking procedure. However, given the differences in 623 

structure and behavior of TCs in different basins and the influence of different meteorological systems 624 

and topography, the use of a globally identical tracker may affect the accuracies of TC detection in 625 

specific regions (Fu et al., 2021; Raavi and Walsh, 2020a, b). This suggests the need for further 626 

improvements in the TC tracking approaches.  627 

(4) The assimilation of SLPmin from IBTrACS into the 20CRv3 may lead to into the 20CRv3 may 628 

lead to another limitation. As discussed in Supplementary Sect. S4, the RGTracks-20C exhibits consistent 629 

trends and variations with IBTrACS from 1850 to 2014 (Supplementary Fig. S10). In particular, the 630 

growth trends in TC numbers from both datasets during the mid-20th century are almost identical, 631 

primarily resulting from the artificial increase in TC detection associated with advancements in 632 

observational technologies. considering that RGTracks-20C currently uses the ensemble mean field of 633 

20CRv3 as input data, which inherently attenuates the intensity and features of extreme events and 634 

introduces smoothing effects. In addition, RGTracks-20C currently uses the ensemble mean field of 635 

20CRv3 as input data, which further affects this similarity by inherently weakening the intensity and 636 

character of extreme events and introducing smoothing effects (Emanuel, 2024). On the other hand, the 637 

assimilation of IBTrACS data has, to some extent, also improved 20CRv3's representation of TC intensity 638 

and structure, enabling TC tracker to more effectively detect and identify TCs that actually occurred 639 

(Slivinski et al., 2019, 2021). For example, the typhoon that made landfall in Japan in 1920 (Fig. 10g). 640 

Nevertheless, this limitation implies that the RGTracks-20C fails to capture the realistic number of TCs 641 

in early years, and suggests the need to employ individual members for TC detections (Emanuel, 2024).  642 

The above factors will be thoroughly considered and addressed in the future versions of RGTracks-643 

20C to enhance its accuracy and applicability. In the next version of RGTracks-20C, a few improvements 644 

will be included: (1) We detect TCs separately from all 80 ensemble members of the 20CRv3, in order to 645 

avoid the smoothing effects caused by the ensemble mean of reanalyses (Emanuel, 2024); (2) we will 646 

calibrate algorithm thresholds according to TC characteristics in different ocean basins; (3) more TC 647 

tracking algorithms will be included to address the uncertainty of the TC track data (Flaounas et al., 2023).  648 

5. Data Availability 649 

The RGTracks-20C is publicly available at https://doi.org/10.5281/zenodo.14411917 (Ye et al., 2024). 650 

The Other datasets utilized in this study are available: the IBTrACS at https://www.ncdc.noaa.gov/ibtracs/; 651 

and the 20CRv3 at https://portal.nersc.gov/archive/home/projects/incite11/www/ (Slivinski et al., 2019). 652 

Historical weather chart of the 1920 typhoon that made landfall in Japan from 653 

http://agora.ex.nii.ac.jp/cgi-bin/weather-chart/calendar.pl?year=1920&month=8&lang=en&type=as. 654 

6. Code Availability 655 

Bourdin (2022a) provided the code for the UZ and OWZ algorithms, which are available at 656 

https://doi.org/10.5281/zenodo.6424432. TempestExtremes can be downloaded from 657 

https://climate.ucdavis.edu/tempestextremes.php, and version 1.5.2 is used for this study. 658 
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7. Conclusion 659 

In this study, we introduce the RGTracks-20C, a century-long reanalysis-based historical global TC 660 

dataset. Statistical evaluations and case studies confirm its reliability in capturing the climatology and 661 

interannual variability of observed TC activity on both global and regional scales. A major key strength 662 

of the RGTracks-20C is its ability to fill the missing intensity and location records of observed TCs in 663 

early years. This dataset provides a reliable alternative for researchers to study the long-term variability 664 

of TC characteristics, which will help us to better understand changes and trends in historical TC activity, 665 

as well as their relationship with climate change. 666 

This knowledge is crucial for protecting vulnerable coastal areas and mitigating TC-related risks in 667 

the future climate change. As the first version, the RGTracks-20C has limitations, which may arise from 668 

the reanalysis assimilation process and the threshold settings in the TC tracker. Future versions will 669 

further address these issues, refining the dataset to improve accuracy and broaden applicability. 670 
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