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Abstract

Tropical cyclones (TCs) are among the deadliest disasters affecting human society, and their
response to climate change has widely drawn attention from the public. However, assessing how
historical TC activity changed with climate change has proven challenging due to incomplete
TC records in the early years. Here, we introduce the Reanalysis-Based Global Tropical Cyclone
Tracks Dataset for the Twentieth Century (RGTracks-20C) (Yeetal., 2024), a publicly available
century-long global TC track dataset spanning from 1850-2014. The RGTracks-20C is
reconstructed from the National Oceanic and Atmospheric Administration Twentieth Century
Reanalysis using two independent TC tracking algorithms. Validation based on observations
confirms that the RGTracks-20C effectively captures the climatology and long-term variability
of TC numbers, tracks, duration, and intensity across various ocean basins. A remarkable key
strength of the RGTracks-20C is its ability to fill the missing intensity and location records of
TCs observed in early years. This dataset serves as a valuable historical data reference for future

research on climate change and TC-related disasters.
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1. Introduction

Tropical cyclones (TCs), also known as hurricanes or typhoons, are intense weather systems
that form over tropical and subtropical oceans and can cause severe disasters over the coastal regions
and even inland areas (Qin et al., 2024; Zhu and Quiring, 2022). Globally, approximately 80 TCs
are generated each year (Emanuel, 2018). As one of the most destructive weather systems
(Bloemendaal et al., 2022; Dinan, 2017; Emanuel, 2017), TCs significantly impact society and the
economy (Kunze, 2021; Lenzen et al., 2019; Noy, 2016). These impacts are expected to be
exacerbated by climate change in the future (Chan, 2023; Hassanzadeh et al., 2020; Knutson et al.,
2020; Moon et al., 2023; Murakami and Wang, 2022; Yamaguchi et al., 2020). Therefore, research
on TCs has become increasingly vital in climate change and prediction (Bhatia et al., 2019; Chan,
2019; Lanzante, 2019; Moon et al., 2019; Sharmila and Walsh, 2018; Zhang et al., 2019). However,
past variability of TC activity and underlying mechanisms remains challenging due to incomplete
early historical TC observation records, which may lead to controversies (Chan et al., 2022a, b;
Knutson et al., 2019; Lee et al., 2020).

Previous research has revealed significant issues related to the completeness of historical TC
observational data (Lee et al., 2020), which are highly dependent on the development of the global
TC observation system, data analysis techniques, and other factors (Klotzbach and Landsea, 2015;
Knapp et al., 2010; Kossin et al., 2020; Landsea et al., 2010; Mann et al., 2007; Ying et al., 2014).
Before the introduction of satellite observation, TC information (e.g., intensity and location)
primarily relied on conventional coastal weather stations and ship observation reports (Landsea et
al., 2006, 2008). Aircraft reconnaissance emerged in the North Atlantic (NATL) and western North
Pacific (WNP) after World War Il (Emanuel, 2008). However, these observational techniques could
not capture all occurred TCs due to their limited observation range. It is possible that an existing TC
was unrecorded in the early years. In addition, even if a TC was observed and recorded, its track and
intensity information may be discontinuous due to the absence of meteorological satellite
observations. For instance, there were no observational records of TC wind speeds in the southern
hemisphere before 1956 (Emanuel, 2021). Storm intensity in the Indian Ocean is weaker compared
to other basins, partly due to the lack of direct coverage by geostationary satellites in that region
before 1998 (Schreck et al., 2014). The incomplete observed data of TCs in the early years, mainly
before the 1970s, is a commonly-known unsolved issue in the community.

Given the limitations of historical TC records, a promising approach is to utilize reanalysis for
TC identification (Li et al., 2024; Truchelut and Hart, 2011). Reanalysis combines historical
observational data with modern numerical weather models to produce comprehensive, continuous
datasets of global atmospheric conditions that adhere to physical principles (Compo et al., 2011,
Kalnay et al., 1996; Parker, 2016; Slivinski, 2018). The Twentieth Century Reanalysis (20CR)
(Compo et al., 2011), provided by the National Oceanic and Atmospheric Administration (NOAA),
is a global reanalysis dataset that covers the longest period among all other reanalyses. The 20CR

was designed for long-term analyses from individual extreme weather events to climate variability,
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and has been applied to a wide range of studies, including those on wave height, storm surge,
Madden-Julian Oscillations, and TCs (Chand et al., 2022; Cid et al., 2017; Gergis et al., 2020; Lee
etal., 2023; Leung et al., 2022; Moore and Babij, 2017; Slivinski et al., 2019; Truchelut et al., 2013;
Wang et al., 2012). The fact that the 20CR only assimilates surface pressure and sea level pressure
fields, instead of other observations such as satellites and aircraft, makes it less sensitive to the
temporal inhomogeneity of observations (Slivinski et al., 2019, 2021).

Several independent studies have documented the feasibility of reproducing the characteristics
of some historical TC events based on the 20CR (Emanuel, 2010; Lee et al., 2023; Slivinski et al.,
2019; Truchelut et al., 2013; Truchelut and Hart, 2011). For example, following Emanuel (Emanuel,
2010), who first expanded and revised TC climatology based on the 20CR, (Truchelut and Hart,
2011) employed the 20CR to identify previously unknown TCs in the Atlantic and demonstrated
that the 20CR can accurately describe large-scale TC thermodynamic structure. Recently, Truchelut
et al. (2013) noted that the 20CR has the ability to investigate TC events that were previously
undetected in the pre-satellite era. Compared to other reanalyses, the 20CR well captures the
intensity of the 1915 Galveston hurricane (Slivinski et al., 2019) and also offers a more accurate
representation of landfalling TCs in East Asia (Lee et al., 2023). These previous studies have
demonstrated the effectiveness of the 20CR as a tool for characterizing historical TCs (Emanuel,
2010; Truchelut et al., 2013; Truchelut and Hart, 2011). Taking advantage of the 20CR, some
researchers have extracted the century-long TC information from the reanalysis product (Chand et
al., 2022; Lee et al., 2023; Yeasmin et al., 2023), suggesting its potential as a tool for studying
historical changes in TCs under anthropogenic climate change.

While the 20CR has been applied to studying the relationship between historical climate change
and TC variability, the primary focus was mostly on the TC occurrence frequency, and little attention
was given to other TC metrics such as intensity, duration, and location. More importantly, to date,
there is no publicly available reanalysis-based global TC dataset covering a century-long period.
Therefore, the main objective of this study is to extract TC information (including location, intensity,
and lifetime) from the 20CR and reconstruct a historical global TC track dataset spanning 1850—
2014. The produced dataset is named the Reanalysis-Based Global Tropical Cyclone Tracks Dataset
for the Twentieth Century (RGTracks-20C) and is open to the public for research use. This paper
first introduces the production details of the RGTracks-20C and then discusses the validity, key
strengths, and usage notes of the datasets. We anticipate that the RGTracks-20C will provide
valuable insights into the changing patterns of historical TC activity, improving our understanding

of the response of TCs to climate change.

2. Data and methods
2.1 Data

The primary objective of this study was to reconstruct a 20th century global TC dataset from
the 20th Century Reanalysis version 3 (20CRv3) (Slivinski et al., 2019, 2021), the latest version of

4
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the 20CR produced by NOAA. Then, the validity of the reconstructed 20th century global TC data
was evaluated based on the observed TC records, i.e., the International Best Track Archive for
Climate Stewardship (IBTrACS) dataset (Knapp et al., 2010).

2.1.1 20" Century Reanalysis

The 20CRv3 is led by NOAA's Physical Sciences Laboratory (PSL) and the Cooperative
Institute for Research in Environmental Sciences (CIRES) at the University of Colorado, supported
by the U.S. Department of Energy (DOE) (Slivinski et al., 2019, 2021). It, by combining advanced
data assimilation and numerical prediction techniques with historical observation data, provides
long-term historical weather data with diverse variables, complete spatial and temporal coverage.
The 20CRv3 employs sea-surface temperature and sea-ice distributions as its boundary conditions
and assimilates only surface pressure reports from the International Surface Pressure Databank
(ISPD) version 4.7 (Compo et al., 2019; Cram et al., 2015), which include observations from stations
and ships, as well as TC intensity (the minimum central pressure (SLPmin) from the IBTrACS (Knapp
et al., 2010). As such, it is more consistent and homogeneous with time than other reanalyses
(Slivinski et al., 2019).

One should note that the IBTrACS and 20CRv3 are not two independent datasets because the
SLPmin records in the IBTrACS are partly assimilated in the production of 20CRv3. On the other
hand, an advantage is that TCs structure and intensity more accurately and closer to observations
than other 20th century reanalyses as a result of the assimilation of IBTrACS (Laloyaux et al., 2018;
Slivinski et al., 2019). And, it provides a four-dimensional global gridded atmospheric dataset that
spans the whole 20th century and part of the 19th century (1836-2015, with an experimental
extension spanning 1806-35), with a 3-hour temporal resolution and 1<l <horizontal resolution
(Slivinski et al., 2021). Thus, the 20CRv3 was applied to the production of the RGTracks-20C in
this paper.

2.1.2 IBTrACS

The IBTrACS (Knapp et al., 2010), published by the NOAA, merges recent and historical TC
data from meteorological agencies worldwide. These include the Regional Specialized
Meteorological Centers (RSMC) and Tropical Cyclone Warning Centers (TCWC) of the World
Meteorological Organization (WMO), as well as non-WMO Centers, such as the China
Meteorological Administration, the Hong Kong Observatory and the Joint Typhoon Warning Center.
The IBTrACS is the most comprehensive and publicly available global TC best-track dataset. It has
been widely applied in previous research to investigate the characteristics of TCs (Lai et al., 2020;
Li et al., 2023; Tu et al., 2021, 2022; Wang and Toumi, 2022; Zhang, 2023), and has served as a
criterion for assessing TC records derived from reanalysis (Bell et al., 2018; Bourdin et al., 2022;
Chand et al., 2022; Hodges et al., 2017; Lee et al., 2023). In this study, the most updated version of
IBTrACS (v04) (Knapp et al., 2018) serves as an observation reference for evaluating the reliability

of the RGTracks-20C. This dataset was cleaned before being used for analyses. Details about the

5



148
149
150
151
152
153
154
155
156
157
158
159

160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

177

data pre-processing procedures are referred to in Figure B1 in (Bourdin et al., 2022). In particular,
we standardized maximum sustained wind speeds (WINDmax) in IBTrACS to 10-minute sustained
wind speeds to ensure a consistent global standard(Knapp et al., 2010). We then removed tracks that
did not reach the tropical storm stage (WINDmax < 16 m - s~1) and those that lasted shorter than two
days.

Although the IBTrACS has time coverage dating back to the early 20th century, we utilize the
data only for the post-satellite period (1979-2014) due to the early data incompleteness issues
(Chang and Guo, 2007; Lee et al., 2020; Truchelut et al., 2013). Given that the IBTrACS is the most
reliable record of TCs after the 1970s, the IBTrACS serves as the best benchmark for validating the
data quality of RGTracks-20C. However, because the starting years of records vary across basins
within the IBTrACS, biases may occur in the assessment results (3.4 Long-term variability of TC

activity for more details).

2.2 Production of the RGTracks-20C
2.2.1 Procedure

The RGTracks-20C was constructed from the latest version of 20CR (20CRv3). The relatively
short and imperfectly sampled observational record of TCs introduces considerable uncertainty in
their data over the past century (Landsea, 2007; Landsea et al., 2010), hindering accurate detection
of interannual variability and long-term trends (Knutson et al., 2019; Lee et al., 2020). Reanalysis is
an effective way to reduce this uncertainty (Chand et al., 2022; Truchelut et al., 2013). Since TC
information is not directly provided in the 20CRv3, objective TC trackers were applied to detect and
track TCs in this dataset. Numerous trackers have been developed by operational centers and
research institutions to meet various application needs (Hodges et al., 2017; Horn et al., 2014; Tory
etal., 2013; Zarzycki and Ullrich, 2017). In this study, as the first version of the RGTracks-20C, we
applied two widely used, publicly available, and effective trackers: (1) the physically-based Ullrich
& Zarzycki (UZ) tracker (Zarzycki and Ullrich, 2017) and (2) the dynamics-based Okubo-Weiss-
Zeta (OWZ) tracker (Tory et al., 2013). Both trackers have been reported to effectively capture TC
systems from coarse resolution gridded data uncertainty (Chand et al., 2022; Truchelut et al., 2013),
such as the 20CRv3. Figure 1 shows the procedure of producing the RGTracks-20C, and details of

the methodology are provided in the following.
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Figure 1: Schematic diagram showing the production of the RGTracks-20C from the 20CRv3 based on the

UZ and OWZ tracking algorithms. Variables shown include U10: 10-m wind speed, @: latitude, z:altitude,

GCD: great circle distance.
2.2.2 TC tracker

i. OWZ Tracker

The OWZ tracker, initially proposed by (Tory et al., 2013), is designed to detect low-
deformation vorticity regions within large-scale disturbances, typically situated within the so-called
"marsupial pouch”, which have the potential for tropical storm formation. Given that the OWZ
approach relies solely on large-scale variables, it is particularly effective in detecting TC in coarse-
resolution models or reanalysis (Bell et al., 2018; Bourdin et al., 2022).

The OWZ tracker involves a low-deformation vorticity variable parameter, which is the product
of absolute vorticity and the Okubo-Weiss parameter normalized by the vertical components of

relative vorticity squared (Eq. 1):

OWZ =sgn(f) x (( + ) x max [@,0] (D
where f is the Coriolis parameter, { = dv/dx — du/dy is the vertical component of relative
vorticity, ({ + f) is the absolute vorticity, E is the stretching deformation (Eqg. 2), and F is the

shearing deformation (Eq. 3):

Ju OJv

= @)
dx 0dy
Jv Ju

First step: Candidate detection.
The OWZ tracker begins by identifying local maxima of OWZ at 850 hPa. Any candidate with
a stronger OWZ maximum within 5° of great circle distance (GCD) is excluded. Next, only

7
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candidates that meet the six initial threshold conditions shown in Table 1 within a 2°GCD of the
identified maximum are retained. Based on the information provided in Table 1, besides the required
minimum threshold values for the OWZ parameter at 850 hPa and 500 hPa, additional dynamical
and thermodynamic parameters related to TC formation are taken into account. These parameters
include the maximum threshold for the wind vector difference (vertical wind shear) between 850
hPa and 200 hPa, as well as the relative humidity at 950 hPa and 700 hPa, and the minimum
threshold for the specific humidity at 950 hPa. This step primarily aims to identify grid points that
contain essential components of a storm. Subsequently, neighboring grid points are grouped together
to define potential TCs.

Second step: Stitching TC tracks.

Consecutive TC points are linked together if their distance does not exceed 5<of GCD and
there is a maximum gap of 24 hours between them. To be considered as a valid TC, additional core
thresholds (shown in Table 1) must be met for at least 9 time-steps (48 hours). Finally, tracks that
do not maintain tropical storm intensity (wind speed at 10 m > 12.3 m - s~1) for at least 1 time step

are excluded.

Table 1. Parameter threshold values for the OWZ detection criteria. Subscripts stand for isobaric
levels in hPa (OWZ: Obuko-Weiss-Zeta s~1, RH: relative humidity %; VWS: vertical wind
shear m - s™1; Q: specific humidity g - kg~1.)

Criterion OWZgso OWZsoo RHeso RH7o VWS200 850 Qoso

Initial 50106 40x10® 70 50 25 10

Core 60>10°¢  50x106 85 70 12.5 14

ii. UZ tracker

The UZ tracker , originally proposed by (Zarzycki and Ullrich, 2017), utilizes sea level pressure
on the model grid, incorporating criteria for warm-core structures and storm lifetime.

First step: Candidate detection.

Initially, candidates are identified based on the SLP minimum. And, only those candidates that
meet the following two closed-contour criteria are kept:

1. An increase in SLP minimum of at least 2 hPa within a 5.5°GCD from the candidate point
to ensure the presence of a sufficiently strong and coherent low-pressure area.

2. The geopotential thickness between 300 and 500 hPa (denoted as Zzgo-s00) must decrease by
58.8 m?s~2 over a distance of 6.5°GCD from the maximum center of Zzqo-500 Within 1°GCD of the
center of minimum SLP.

Finally, candidates with a stronger SLP minimum within a 6 =GCD are excluded.

Second step: Stitching TC tracks.
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The candidates are subsequently linked in time to create paths, ensuring a maximum distance
of 8°GCD between candidates. Each path must last for at least 54 hours without gaps longer than
24 hours. Additionally, ten 6-hourly time steps (equivalent to 54 hours) must satisfy the following
thresholds: wind speed at 10m = 10 m/s and z < 150m (where z represents the altitude), and the
storm must form between 0°and 50<

The UZ tracker, developed specifically for high-resolution models and reanalysis data, is
designed to maintain a low false-alarm rate, which may lead to a larger number of misses of weaker
storms(Roberts et al., n.d.). In contrast, the OWZ tracker, based on the large-scale environmental
conditions favorable for TC formation, addresses this limitation. Thus, combining these two TC
trackers can effectively enhance the reliability of RGTracks-20C.

A command-line software, TempestExtremes, developed by (Zarzycki and Ullrich, 2017),
enables fast and versatile and versatile implementation of TC trackers, was used in this study. For
further details, please refer to (Ullrich et al., 2021).

2.2.3 Bias Correction of TC intensity

Given the low horizontal resolution in the 20CRv3, TC intensities derived directly from the
reanalysis generally underestimated compared to observations (Fig. 2a) (Bourdin et al., 2022;
Roberts et al., n.d.). To address this issue, a quantile mapping bias correction, similar to the method
used by (Zhao and Held, 2010), was applied to adjust for the TC intensity bias within the dataset.
The main idea is to fit the 20CRv-derived TC intensity distributions, either probability distribution
functions (PDFs) or cumulative distribution functions (CDFs), to the observed distributions. This
method has demonstrated significant efficacy in enhancing the accuracy of TC intensity within
models or reanalyses (Faranda et al., 2023; Yoshida et al., 2017). This adjustment resulted in a
wind-pressure relationship in RGTracks-20C that aligns more closely with observational data (Fig.
2h).

a
1005 o 10057 0
= 990 £ 20 1
S 975- 2 & 217 2
= 960- 5 g 960- 3
£ 945- - 4
£ 925 5 B 9257 5
]
v 7!
D R Lo
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Windmax [m. s71] Wind*max [m. s}

Figure 2: Wind—pressure relationships for IBTrACS and RGTracks-20C. a—b, Scatter plots of SLPmin (unit:
hPa) against maximum sustained wind speeds (WINDmax) (unit: m - s~1), based on the TCs from IBTrACS
(black), OWZ (red), and UZ (blue) trackers, before (a) and after (b) intensity bias correction (see Methods).

The curves represent fourth-order polynomial fit results. Storm categories, as defined in the section 'TC

intensity', are indicated by horizontal gray lines.
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2.3 Verification of RGTracks-20C
2.3.1 Tracks matching

After utilizing the UZ and OWZ trackers to detect TC vortices from the 20CRv3, the resulting
tracks are matched one-to-one with those observed in the International Best Track Archive for
Climate Stewardship (IBTrACS). The specific procedures are detailed in the ""2.4 Tracks Matching"
section by (Bourdin et al., 2022).

Specifically, a detected track D consists of n points (dy, da, ..., dn) corresponding to the moments
(t1, t2, ..., tn). Similarly, a track O observed in IBTrACS consists of a collection of points at a given
time. For every point d; (t;) on track D, points from O at the same time t; located within a 300 km
radius of d; are linked. There may be instances where no such points are found in O. The subset of
points in O that are linked to any point in D is labeled as Op—pairea. It cONSists of |Op-paired|- There are
three possible scenarios:

1. |Op-paired) = 0: 1f none of the points in the RGTracks-20C track D match any points in track
O, then track D is classified as a False Alarm (FA).

2. |Op-paired) > 0: If all points in Op-paires track correspond to points in the same observed track
O, then track O is identified as the closest match for D.

3. |Op-paired) > 0: If the points in Op-pairea COrrespond to several observed tracks in O, the

observed track with the most points paired with D is regarded as the best match for D.

2.3.2 Track verification

Following the approach suggested by (Bourdin et al., 2022), this study compares TC tracks
detected from the 20CRv3 with observed tracks from the IBTrACS. The probability of detection
(POD) (Eqg. 4) and false alarm rate (FAR) (Eg. 5) are used to assess the detection skills of the two

trackers.
POD = H (4)
TH+ M
FAR = — 148 (5)
" H+ FAs

where hits (H) refer to TC tracks detected from the 20CRv3 that are also present in IBTrACS, misses
(M) denote those tracks that are recorded in IBTrACS but were not detected in the 20CRv3, and

false alarms (FAs) refer to non-existing TCs that were detected from the 20CRv3.
2.4 Definitions

2.4.1 TC intensity

In assessing the TC intensity, SLPmin and WINDmax are two commonly used metrics in TC
research. However, because WINDmax in both observations and reanalysis exhibits relatively higher
uncertainties (Bourdin et al., 2022; Chavas et al., 2017; Knapp et al., 2010; Knutson et al., 2015;

10



301 Schreck et al., 2014), this study opted to use SLPmin as the only indicator of TC intensity when
302 verifying the validity of RGTracks-20C. Nevertheless, WINDmax of detected TCs is also provided in
303  the RGTracks-20C (Table 2) as a reference for researchers who wish to use and improve the dataset,
304  though it is not discussed in the paper.

305

306  Table 2. Data format of the RGTracks-20C. track_id: storm identifier, lat: latitude degrees_north,
307 lon: longitude degrees_east, SLPmin: minimum central pressure (unithPa), WINDmax: maximum

308  wind speed (unit: m - s~1), WIND*max and SLP*min denotes TC intensities after bias correction.

track id, year month day  hour lon lat WIND ax SLP,;i hemisphere ~ basin  season WIND* 0 SLP*,;
0 1979 1 1 0 142.00 15.00 13.57 996.09 S SP 1979 13.57 990.00
0 1979 1 1 6 144.00 15.00 14.95 995.27 S SP 1979 14.95 980.27
2880 2014 12 31 18 120.00 9.00 11.122 1006.20 N WNP 2014 22.12 998.20
309
310 Storm categories: the Saffir-Simpson Hurricane Scale (SSHS) from 1 to 5 based on their peak

311 1-minute wind speed at 10 meters above the surface. In this study, given the significant uncertainties
312 in WINDmax due to differences between institutions and the limitations of model simulation
313 capabilities (Chavas et al., 2017; Klotzbach et al., 2020; Knutson et al., 2015), we have chosen to
314 classify based on SLPmin, following the definition of (Klotzbach et al., 2020).

315 2.4.2 Basins

316 We explore the performance of TCs in RGTracks-20C on global and regional scales. The
317  regional division is mainly based on the appendix guide of (Knutson et al., 2015), which divides the
318  globe into six basins: the WNP, ENP, South Pacific (SP), NI, South Indian (SI), and NATL.

319 243 TC days

320 TC days is defined as the number of 6-hour periods during which an active TC occurs within a
321 basin, divided by 4 (to convert 6-hour blocks into days) and accumulated for the year under

322 consideration such that:
1 n
323 TC days = ZZ L; (6)
i=0

324 where L; is the individual lifetime of a TC within the bounds of a basin.

11
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3. Results and discussion
3.1 Data Records

The constructed RGTracks-20C (Ye et al., 2024) provides a century-long collection of global
TCs identified from the 20CRv3. The RGTracks-20C is publicly available at the
https://github.com/jeremychleung/RGTracks-20C/ and https://zenodo.org/record/8410597. This
dataset provides detailed TC information, including location (longitude, latitude, hemisphere, and

basin), time (year, month, day, hour, and season), and intensity (SLPmin and WINDmax), with a
temporal resolution of 6 hours, spanning from 1850 to 2014 and covering the globe. The dataset is
provided as a comma separated values (.csv) file and has a format similar to that of the IBTrACS
(Table 2). It is noted that, in the RGTracks-20C, WINDmax serves, in addition to SLPmin, as a
supplementary reference of TC intensity for researchers, but is not discussed here due to accuracy
issues and should be used cautiously.

3.2. Validity of trackers

As documented in prior studies, biases are unavoidable when extracting TCs from reanalyses,
given the limitations of reanalysis in reproducing the high-resolution TC structure and circulation
patterns, as well as the errors caused by the application of different trackers (Bell et al., 2018; Horn
et al., 2014; Lee et al., 2023; Slivinski et al., 2019; Truchelut et al., 2013). Before verifying the
reliability of RGTracks-20C, it is necessary to evaluate the performance of the two trackers applied.

The POD and FAR of TCs identified by the UZ and OW?Z trackers are calculated to assess the
ability of the trackers to detect TCs from the 20CRv3 globally and across six basins (see Track
verification). Globally, the overall POD and FAR of TCs detected by the UZ tracker are 68% and
7% (Fig. 3a), while those by the OWZ tracker are 77% and 15%, respectively (Fig. 3b). Detailed
comparisons of each component of POD and FAR, including the number of hits, false alarms, and

misses, are provided in Supplementary Sect. S1 and Fig. S1.
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Figure 3: Accuracy of TC number detection of the RGTracks-20C. a—b, POD (blue bars and line, unit: %)
and FAR (red bars and line, unit: %) for TC number detected by the UZ (a) and OWZ (b) trackers in each
basin (bars), compared to the global mean (lines). Blue and red horizontal lines denote the POD and FAR over
the globe. c—d, same as a—b, except for the number of hits (blue bars), misses (green bars), and false alarms

(red bars) detected by the UZ (c) and OWZ (d) trackers.

For each basin, the distributions of the POD of TCs (Figs. 3a-b) and the number of hits (Figs.
3c—d) between the two trackers show high similarities. Specifically, both trackers report higher POD
values in the SI (90% for OWZ tracker, 83% for UZ tracker), WNP (86% for OWZ tracker, 77% for
UZ tracker), and SP (84% for OWZ tracker, 68% for UZ tracker), followed by the NI (78% for OWZ
tracker, 68% for UZ tracker). Lower POD values are observed in the NATL (62% for OWZ tracker,
48% for UZ tracker) and the ENP (52% for both OWZ and UZ trackers). Similarly, the largest
number of TC hits is observed in the WNP (824 for OWZ tracker, 733 for UZ tracker) and SI (543
for OWZ tracker, 503 for UZ tracker), followed by the ENP, SP and NATL, each with approximately
200-300 TCs, and the NI with fewer than 200 TCs.

The FAR of TCs (Figs. 3a-b), and the number of false alarms (FAs) and misses (Figs. 3c—d)
vary between the two trackers. The UZ tracker exhibits FARs below 15% across all basins except
the NI. Notably, in the ENP and NATL, the FAR of TCs is below the global average of 7%, with
the number of FAs fewer than 20. The OWZ tracker shows a FAR close to the global average (15%)
in the WNP and SI, while in the ENP, SP, and NATL, the FAR values range between 15% and 20%.
In the NI, however, the two trackers show a relatively higher FAR and more FAs compared to other
basins. In terms of missed TC detections, both trackers show relatively few misses, less than 120, in
the SP, NI, and Sl basins. On the other hand, misses are higher in the ENP and NATL. Overall, the
UZ tracker consistently shows a higher number of missed TCs across all basins than the OWZ
tracker. This is particularly evident in the WNP and Sl, the two basins that account for nearly two-
thirds of global TC activity, where the OWZ tracker exhibits fewer missed TC detections (Fig. 3d).
Supplementary Sect. S2.1 provides further explanations of the high FAR of TCs observed in the NI,
the higher number of missed TCs in the ENP and NATL (Supplementary Fig. S2).

Overall, the accuracies of TC detection by the two tracking algorithms, especially that by the
OWZ tracker, have reached the accuracy reported by recent works that extracted TCs from other
modern-era reanalyses, such as the fifth generation ECMWF reanalysis (ERAS5) (Supplementary
Table S1) (Bourdin et al., 2022; Murakami, 2014). This confirms the effectiveness of both trackers
in detecting and tracking the majority of TCs from the 20CRv3.

3.3 Climatology of TC activity

Since our target of constructing the RGTracks-20C is to aid the community in studying the
response of TCs to climate change, we will focus on the ability of the RGTracks-20C to capture the

climatology and long-term variability of TC activity in the following sections.
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In terms of climatology, the RGTracks-20C is able to capture the major spatial patterns of TC
genesis locations and track density over most ocean basins (Figs. 4a—f), indicating its effectiveness
in reproducing the spatial distribution of historically observed TCs. The annual mean TC numbers
in most ocean basins detected by the UZ and OWZ trackers are consistent with observations (Figs.
4g-i). The OWZ tracker especially captures the observed annual mean TC number in the NWP, SI,
and SP well, with discrepancies ranging from —0.48 to 0.89. Notably, the UZ tracker also accurately
estimates observed annual mean TC number in the NI, demonstrating a relatively small error (4.83
versus 4.97) between the two. However, the UZ and OWZ trackers estimate the annual mean number
of TCs to be 63.39 and 78.56, respectively (Figs. 4h—i), which are relatively lower than the observed
values (87.03, Fig. 4g). The main reason for the global underestimation compared to IBTrACS is
the discrepancies in the ENP and NATL, of which the reasons are discussed in Supplementary Sects.
S2.1-2.2. Despite the underestimations in individual basins, the overall TC detection rates resemble
previous publications that aimed to extract TCs from higher-quality reanalyses (Bourdin et al., 2022;
Murakami, 2014). This result verifies the RGTracks-20C’s ability to reproduce the climatology of
the TC number globally and in most basins.

a IBTrACS tracks (1979-2014)

b UZ tracks (1979-2014)

C  OWZ tracks (1979-2014)

ATL - Global=63.39 A% Global=78.56

NI

SH
3o
Figure 4: TC genesis locations, tracks, and annual average number from IBTrACS and RGTracks-20C. a—c,

TC genesis locations (yellow dots) and tracks (blue lines) from IBTrACS (a), and RGTracks-20C using the UZ

(b) and OWZ (c) trackers. d—f, TC tracks density (shading, number of TC occurrence per 1° x 1° latitude-
longitude grid box, 1979-2014) from IBTrACS (c), and RGTracks-20C using the UZ (e) and OWZ (f) trackers.
g—i, mean number of TCs per year globally and for the six basins from IBTrACS (g), and RGTracks-20C using
the UZ (h) and OWZ (i) trackers.
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We further evaluate the accuracies of detected TC tracks in the RGTracks-20C by comparing
the arc length of TC tracks between RGTracks-20C and IBTrACS. Results indicate that the global
TC location errors range from 10 to 300 km, with the majority between 50-100 km for the UZ
tracker and 75-125 km for the OWZ tracker (Fig. 5a). Additionally, the peak errors for both trackers
are below 100 km, with the UZ and OWZ trackers showing peak values of approximately 75 km
and 95 km, respectively. These findings are consistent across all basins (Fig. 6a). Given that the
lower limit of the average TC location error expected from the coarse horizontal resolution of the
20CRv3 (1 degreexl degree) is approximately 100 km, the above-mentioned small mean values of
TC location biases confirm that the RGTracks-20C is capable of reproducing most observed TC

tracks and locations.
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Figure 5: Distribution of TC characteristics om the IBTrACS and RGTracks-20C. a, Distribution of the mean
TC location error from 1979-2014 (unit: km) between IBTrACS and the RGTracks-20C by the UZ (blue) and
OWZ (red) algorithms. b, TC duration (unit: days) from 1979 to 2014 in IBTrACS (green) and the RGTracks-
20C by the UZ (blue) and OWZ (red) algorithms. ¢, same as (b), but for TC intensity (SLPmin, unit: hPa),
based on the UZ tracker, before (blue) and after (red) bias correction. d, same as (c), but for the OWZ tracker.
(UZ: UZ tracker, OWZ: OWZ tracker. UZ-C and OWZ-C represent bias-corrected results for the UZ and

OWZ trackers, respectively.)
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Figure 6: As in Fig. 5, but for six individual basins.

The duration and intensity of TCs are crucial in climate change research, as global warming
may lead to stronger and longer-lasting TCs (Knutson et al., 2010). However, observational
limitations make these findings more controversial compared to those on TC frequency (Knutson et
al., 2010). The RGTracks-20C provides additional support in resolving this controversy. Based on
the IBTrACS, the majority of observed TCs globally last fewer than 20 days, with a peak around 8
days (Fig. 5b). Evaluation results (Fig. 5b and Supplementary Fig. S3) show that TCs detected by
the OWZ tracker exhibit durations that are close to the observations, and accurately reproduce the
TC duration distribution with a peak of 8 days. However, bias is found in the durations of those
detected by the UZ tracker, which exhibits a duration peak of approximately 5 days. This is mainly
due to the dynamics-based OWZ tracker having the ability to detect storms early in their
development (Bell et al., 2018; Bourdin et al., 2022) (Supplementary Fig. S3), while the UZ tracker
easily misses weak and short storms (Supplementary Figs. S1a, c¢) from the 20CRv3 (Bourdin et al.,
2022; Tory etal., 2013; Zarzycki and Ullrich, 2017) (Supplementary Sect. S2.3). Similar results are
obtained in different basins (Fig. 6b), thus, it is recommended to use the OWZ output when analyzing
the durations of TCs and to study the genesis locations of TCs.

For TC intensity, given the relatively considerable uncertainty in WINDmax compared to SLPmin
in both reanalyses and IBTrACS (see Methods) (Bourdin et al., 2022; Chavas et al., 2017; Knapp et
al., 2010; Knutson et al., 2015; Schreck et al.,
evaluate the capability of RGTracks-20C in representing the intensity of TCs. According to
IBTrACS (Figs. 5¢c-d), the intensity of TCs is mainly distributed between 900 and 1020 hPa,
peaking around 1000 hPa, with a long tail on the lower SLPnin side. In contrast, the SLPmin in
RGTracks-20C is mainly distributed in the range of 950 — 1020 hPa, with peaks at 1000 hPa and
1005 hPa for the UZ (Fig. 5¢) and OWZ (Fig. 5d) trackers, respectively. This suggests that the
20CRv3 generally underestimates the TC intensity (Fig. 2a), which, as expected, is primarily
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because the relatively low spatial resolution of the reanalysis may cause smoothing effects on the
sea level pressure field. Apart from spatial resolution, the model's dependence on parameterization
processes, along with other factors, may also influence its ability to reproduce TC intensity in the
reanalysis (Aarons et al., 2021; Hodges et al., 2017; Malakar et al., 2020).

To address this issue, an intensity bias correction was implemented using quantile mapping
bias correction (see Methods) (Zhao and Held, 2010). After intensity correction, the TC intensity
distribution in RGTracks-20C is more consistent with IBTrACS (Fig. 2b and Figs. 5¢—d), especially
in terms of peak positions, and accurately reproduces the skewed distribution of TC intensity. In
particular, the RGTracks-20C reproduces TC intensity values with SLPmin below 940 hPa, which
were not found before the intensity bias correction. Notably, while the fitted curves show consistent
patterns following correction, they do not perfectly overlap, suggesting that certain discrepancies
persist (Figs. 5¢—d subplot). This consistency is observed not only on a global scale but also across

various basins (Figs. 6¢—d).

3.4 Long-term variability of TC activity

This section evaluates the long-term variability of TC activity in the RGTracks-20C by
comparing it with the IBTrACS from 1979 to 2014.

Firstly, the RGTracks-20C is able to capture the observed interannual variability of global TC
number (Fig. 7a), as indicated by the significant correlations between the TC counts derived from
the UZ and OWZ trackers and observations, with correlation coefficients of 0.65 and 0.68 (in the
following context, all correlations are significant at the 99% confidence level unless otherwise
specified), respectively. This is also true for individual basins (Figs. 8a, d), with the correlation
coefficients exceeding 0.70 in most basins. Among the six basins, the highest correlation is observed
in the NATL, where the correlation coefficient for the OWZ tracker reaches 0.88 (0.79 for the UZ
tracker). Subsequent regions with notable correlations include the WNP (0.75 for OWZ tracker,
0.79 for UZ tracker), SP (0.79 for OWZ tracker, 0.84 for UZ tracker), and Sl (0.74 for OWZ tracker,
0.69 for UZ tracker). However, the correlation coefficients are relatively lower in the ENP and NI
(Supplementary Table S2 and Fig. S4a, e), of which the reasons are discussed in Supplementary
Sect. S2.2 and Table S3. Notably, the long-term trends in the number of TCs recorded by the two

datasets are consistent globally and across most of the ocean basins (Supplementary Table S4).
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Figure 7: Time series of globally TC activities from IBTrACS and RGTracks-20C during the periods 1979-
2014. TC activities are from the IBTrACS and RGTracks-20C using UZ (blue), and OWZ (red) trackers. a,
TC number. b, TC days (unit: days). ¢, TC intensity in SLPmin (unit: hPa) in IBTrACS (black) and RGTracks-
20C using UZ tracker before (blue solid line) and after (blue dotted line) bias correction. d, same as (c), except
for TC intensity in SLPmin (unit: hPa) in IBTrACS (black) and RGTracks-20C using OWZ tracker before
(red solid line) and after (red dotted line) bias correction. Shaded areas are the two-sided interval of the linear
trend at the 95% confidence level. Straight lines are the linear regression. The correlation coefficients (R)
between from IBTrACS and RGTracks-20C are marked in the figure legends. All correlation coefficients are

statistically significant at the 99% confidence level.

00°N a Basins: TC Number (1979-2014) o0eNy b Basins: TC Duration (1979-2014)
60°N 60°N— -
n
0 o
30°N - 30°N- « .
1004
0° 0°
30°S+ 30°S+ — A
60°S 60°S
90°S T T T T T 90°S T T T T T
0° 60°E 120°E 180° 120°W 60°W 0° 0° 60°E 120°E 180° 120°W 60°W 0°
00°N c Basins: TC Intensity (1979-2014) 0o d Correlation Coefficient of TC Activity
NATL N wae e T
60°N - Jorod 60°N - 2 £ 8 g % » %%
oo %, " * ol »
0 B w0201 00
s M s
sesd | sl : ; 30054 ‘ n O e
a1 ¥ VP o
YT I — oz
60°S i 60°S
T —T) wn e w0 w0 - -y €
PR W OWZlnenity O/ lntco ¢
90°S T T T T T 90°S T T T T T
0° 60°E 120°E 180° 120°W 60°W 0° 0° 60°E 120°E 180° 120°W 60°W 0°

Figure 8: As in Fig. 7, but for six basins. a, TC number. b, TC days (unit: days). ¢, TC intensity in SLPmin
(unit: hPa) in IBTrACS (black) and RGTracks-20C (after bias correction) using UZ (blue) and OWZ (red)
trackers. d, the correlation coefficients (R) between the from IBTrACS and RGTracks-20C. Note*: The R

values for TC number and TC intensity are not statistically significant at the 99% confidence level in the NI
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and ENP. For TC days, the R value is not statistically significant only in the NI. The R values need to be
divided by 100.

TC days, an important metric, encompasses both TC frequency and lifespan (Bell et al., 2018).
The RGTracks-20C is able to reproduce the interannual variability of TC days, which is consistent
with that in IBTrACS (Fig. 7b), with high correlation coefficients of 0.78 and 0.63 for the UZ and
OWZ trackers, respectively. Moreover, these results are further confirmed across basins (Fig. 8b),
with correlation coefficients generally exceeding 0.75. In particular, in the NATL, the correlation
coefficient exceeds 0.90 (UZ tracker: 0.93, OWZ tracker: 0.91), followed by the SP (UZ tracker:
0.82, OWZ tracker: 0.79), the SI (UZ tracker: 0.80, OWZ tracker: 0.78) and the WNP (UZ tracker:
0.84, OWZ tracker: 0.75). However, being influenced by the observation biases, the correlation
coefficients for TC days are also relatively low in the ENP and NI (Supplementary Table S2 and Fig.
S4b, f). Nevertheless, the above results indicate that the RGTracks-20C provides a satisfactory
representation of the interannual and long-term variability (Supplementary Sect. S2.4, Table S4) of
the TC days globally and across most of the ocean basins.

In addition, the global TC intensity series based on RGTracks-20C significantly correlates with
that based on IBTrACS, with correlation coefficients of 0.61 and 0.80 for the UZ (Fig. 7¢) and OWZ
(Fig. 7d) trackers, respectively. This indicates that the TC intensity (SLPmin) in RGTracks-20C
effectively captures the observed interannual variability. Most basins further validate these results
(Fig. 8d). The highest correlation coefficients are observed in the WNP, exceeding 0.80 (UZ tracker:
0.82, OWZ tracker: 0.85). Following closely are NATL (UZ tracker: 0.75, OWZ tracker: 0.75) and
Sl (UZ tracker: 0.72, OWZ tracker: 0.78), while SP (UZ tracker: 0.71, OWZ tracker: 0.69) also
demonstrates correlation coefficients of around 0.70.

The 20CRv3 tends to underestimate the TC intensities, due to its coarse resolution, which
suggests the need of a bias correction process during the production of the RGTracks-20C (see
Methods). By performing intensity bias corrections to the detected TCs, the TC intensity (SLPmin)
in RGTracks-20C exhibits interannual and long-term variations that are more consistent with the
observations (Figs. 2, 7c—d, and Supplementary Tables S2, S4), especially in the WNP, NATL, and
Sl basins (Figs. 8c—d). These results indicate that the RGTracks-20C can reasonably capture the
interannual variability and trends (Supplementary Sect. S2.4 and Table S4) of TC intensity globally
and across most basins. Discrepancies in the interannual variability of TC intensity between the
RGTracks-20C and IBTrACS are also noted over ENP and NI (Supplementary Table S5 and Fig.
S4c—d, f-h), similar to the above findings on TC number and days (Supplementary Sect. S2.2 and
Tables S6-S7).

3.5 Key strengths of the RGTracks-20C

The above evaluation analyses confirm that the RGTracks-20C effectively captures both the
climatology and long-term variability of TC activity across global and major oceanic basins. In this

section, we discuss the key strengths of the RGTracks-20C, specifically its capacity to reconstruct
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track and intensity information of early-year TCs that may not be included in the observed data
records. Such an advantage of the RGTracks-20C could benefit research about how climate change
has affected TCs over the past century.

Before digging into early-year TCs, we first demonstrate the RGTracks-20C's accuracy in
reproducing specific TCs by making comparisons with observations. Three representative TCs that
caused significant human casualties and economic losses in the NATL, S, and WNP are analyzed
here: Hurricane ‘Andrew’ in 1992 (Pimm et al., 1994) (Figs. 9a—c), TC ‘Geralda’ in 1994 (Hoarau
et al., 2012) (Figs. 9d-f), and Super Typhoon ‘Rammasun’ in 2014 (Zhang et al., 2017) (Figs. 9h—
i). Compared with IBTrACS, the RGTracks-20C performs exceptionally well in representing the
track and duration of these TCs. However, some discrepancies were observed during landfall (Fig.
9a), possibly due to small TC size, which were not captured by the low-resolution 20CRv3
(Supplementary Sect. S3.1 and Fig. S5). While the 20CRv3 tends to underestimate the intensity of
TCs, the corrected intensity in the RGTracks-20C is highly consistent with observations and
accurately captures the temporal evolutions of TC intensities. This evidence confirms RGTracks-
20C’s ability to capture not only the climatology and variability of TC activity, but also the detailed

information on specific TC events.
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Figure 9: The historical tracks and intensity records of individual tropical cyclones in the IBTrACS and

RGTracks-20C. a—c, Track (a) and intensity (SLPmin, unit: hPa. b: UZ tracker, c: OWZ tracker) of Hurricane

“Andrew”. d—f, same as a—c, but for track (d) and intensity (SLPmin, unit: hPa. e: UZ tracker, f: OWZ tracker)
of tropical cyclone “Geralda”. g—i, same as a—c, track (g) and intensity (SLPmin, unit: hPa. h: UZ tracker, i:

OWZ tracker) of Super typhoon “Rammasun”. Green, blue, and red lines denote results based on the

IBTrACS, UZ tracker, and OWZ tracker, respectively. The UZ-C (blue dotted dashed line) and OWZ-C (red

dotted dashed line) indicate after intensity bias correction.
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Prior to the satellite era, limitations in observation systems often led to incomplete records of
early TCs, particularly for TC intensity. An example is hurricane Okeechobee in 1928, which was
one of the deadliest to hit the United States in the early 20th century. Hurricane Okeechobee was
recorded in the IBTrACS (Blake et al., 2011; Mitchell, 1928) (Supplementary Sect. S3.2). However,
during Okeechobee’s lifetime, there were only 16 time points of the TC intensity that were recorded
when it passed the Lesser Antilles and Puerto Rico, and made landfall in the United States (Figs.
10a—c, Supplementary Fig. S6 and Table S8). Similar missing data are common in the IBTrACS
records of early TCs, especially when the TCs were located over the ocean (Figs. 10d—f). Moreover,
the problem of missing TC intensity records is especially evident in other basins (Supplementary
Table S3). For instance, Typhoon No. 8, which made landfall and caused serious damage in Japan
(Supplementary Sect. S3.3), has only track records in the IBTrACS, but with intensity information
missing (Figs. 10g—i). In such cases, taking advantage of the 20CRv3, the RGTracks-20C addresses
these deficiencies by filling in these gaps, substantially enhancing the completeness of early TC

intensity records.
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Figure 10: As in Fig. 9, but for Hurricane “Okeechobee” (a—c), Hurricane ‘1880271N23317° (d—f), typhoon
‘192023N24150°(g—i).

In addition, not only is the TC intensity missing, but the track records in the IBTrACS may also
be incomplete, such as the above-mentioned Typhoon No.8 in 1920 (Fig. 10g), despite the existence
of historical observation records (Supplementary Sect. S3.3). In this case, the RGTracks-20C not
only provides the missing TC intensity but also fills gaps in IBTrACS during the latter stages of the
typhoon's development, especially during the landfall phase (Fig. 10g and Supplementary Figs. S7—
9). Moreover, prior to the satellite era, the RGTracks-20C often reports a higher number of TCs than

the IBTrACS, particularly from the early to mid-20th century (Supplementary Sect. 4), which
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suggests that the RGTracks-20C is also able to detect historical TCs not being recorded in the
IBTrACS. These findings demonstrate that the RGTracks-20C can compensate for the incomplete
TC track records in the IBTrACS, especially for those in the pre-satellite era.

To evaluate the accuracy of early TC records provided by RGTracks-20C, we take the 1928
Okeechobee hurricane as a case study. The RGTracks-20C nearly fully reproduces the hurricane's
lifespans as recorded in IBTrACS, with the OWZ tracker performing exceptionally well, differing
by only one day from the IBTrACS record. Okeechobee’s latitude and longitude variations in the
RGTracks-20C are highly consistent with those in the IBTrACS, with a positional bias within 1
degree (Fig. 10a and Supplementary Fig. S6). By comparing Okeechobee’s intensity in RGTracks-
20C with observational data, we find that the RGTracks-20C reliably reproduces Okeechobee’s
intensity and its variations (Figs. 10b—c and Supplementary Table S8). For instance, as the hurricane
passed over Guadeloupe, IBTrACS recorded a SLPwin 0f 940 hPa, which is closely matched by
RGTracks-20C (UZ tracker: 955 hPa; OWZ tracker: 940 hPa). Moreover, the RGTracks-20C
captures the weakening and re-intensification of the hurricane between Puerto Rico and its landfall
in Florida, where the IBTrACS lacks intensity records, demonstrating the RGTracks-20C's
reliability in representing intensity changes (Supplementary Sect. S3.2).

4. Usage notes

In this study, we introduce the RGTracks-20C, a century-long reanalysis-based historical global
TC dataset. Statistical evaluations and case studies confirm RGTracks-20C’s reliability in capturing
the climatology and interannual variability of observed TC activity on both global and regional
scales in the modern satellite era. A major key strength of the RGTracks-20C is its ability to fill the
missing intensity or location records of observed TCs in early years.

As documented in prior studies, biases are unavoidable when extracting TCs from reanalyses
due to the data quality of reanalyses and the limitations of TC trackers. Some usage notes and
cautionary remarks are listed in this section to assist readers in understanding or using the RGTracks-
20C.

(1) Due to model resolution and parameterization, TC intensity detected directly from the
20CRv3 is underrepresented compared to observations. To address this issue in the RGTracks-20C,
we corrected the biases using a simple quantile mapping method, assuming that systematic biases
primarily cause the TC intensity errors from 20CRv3. While this is generally true, the quantile
mapping correction did not account for other factors that may also affect TC intensity biases. The
inherent challenges in modeling weaker TCs in 20CRv3, which are largely attributed to the
limitations of resolution and parameterization of subgrid-scale processes in numerical models, often
result in lower detection rates for tropical depressions and weaker tropical storms (e.g., Category 1)
(Hodges et al., 2017). Given the uncertainties in the wind fields of reanalysis data, the current version
of the RGTracks-20C does not provide information of TC stages. This will be improved with more

advanced correction approaches of TC intensity in future versions of RGTracks-20C (Han and
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Ullrich, 2025).

(2) Discrepancies between the RGTracks-20C and IBTrACS should not be solely attributed to
errors in RGTracks-20C, as limitations in IBTrACS may also influence the evaluation results. For
example, the classification of TC often relies on forecasters' subjective judgment, which affects
whether these systems are included in best track datasets (Torn and Snyder, 2012). Additionally,
differences in observation start times and data sources across basins (Supplementary Table S3) can
introduce uncertainties in the IBTrACS (Chan et al., 2022b). For example, the RGTracks-20C shows
relatively large discrepancies with observations in the ENP (Supplementary Sect. S2.2), which may
be attributed to the biases of IBTrACS prior to 1988. Similar issues exist for the NI basin. When
limiting the study periods to 19882014 for the ENP and 1990-2014 for the NI, the RGTracks-20C
exhibits good consistency with IBTrACS in TC activity trends, and the correlation significantly
improves (Supplementary Fig. S3 and Tables S2, S5). These suggest that the reliability of
observational data has been changing over time and may serve as a factor affecting the comparison
results between the RGTracks-20C and observational records. Detailed analyses on these two basins
can be found in Supplementary Sect. S2.2.

(3) Currently, there are no perfect algorithms for tracking TCs from reanalyses. Although the
TC trackers employed in the RGTracks-20C (UZ and OWZ) are two widely recognized algorithms,
they were built with different properties and have different limitations. The above evaluation
analyses show that the OWZ tracker is closer to the observations in terms of TC number and TC
days (Bourdin et al., 2022), while the UZ tracker produces tracks with a shorter duration than the
observations, which is mainly related to its physically based tracker intensity threshold (Horn et al.,
2014). However, the UZ has a lower FAR, suggesting that it has an advantage in recognizing real
TCs and is less likely to misclassify other weather systems as TCs. Generally, since the OWZ tracker
demonstrates overall higher stability in detecting TCs, it is recommended to primarily utilize the
OWZ tracker results in most cases, with the UZ tracker as a supplementary reference for analyses.
In addition, in the production of the RGTracks-20C, globally identical thresholds were used in the
TC tracking procedure. However, given the differences in structure and behavior of TCs in different
basins and the influence of different meteorological systems and topography, the use of a globally
identical tracker may affect the accuracies of TC detection in specific regions (Fu et al., 2021; Raavi
and Walsh, 2020a, b). This suggests the need for further improvements in the TC tracking
approaches.

(4) The assimilation of SLPpin from IBTrACS into the 20CRv3 may lead to another limitation.
As discussed in Supplementary Sect. S4, the annual number of available observations and
assimilated observations (including some IBTrACS) increases over time, with both showing
accelerated growth, especially after 1950 (Supplementary Fig. S10). This increasing number of
available observation data could improve the quality of the reanalysis. Consequently, the RGTracks-
20C exhibits consistent trends and variations with IBTrACS from 1850 to 2014 (Supplementary Fig.
S11). In particular, the growth trends in TC numbers from both datasets during the mid-20th century

are highly correlated, primarily resulting from the artificial increase in TC detection associated with
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advancements in observational technologies. In addition, RGTracks-20C currently uses the
ensemble mean field of 20CRv3 as input data, which further affects this similarity by inherently
weakening the intensity and character of extreme events and introducing smoothing effects
(Emanuel, 2024). On the other hand, the assimilation of IBTrACS data has, to some extent, also
improved 20CRv3's representation of TC intensity and structure, enabling TC tracker to more
effectively detect and identify TCs that actually occurred (Slivinski et al., 2019, 2021), such as the
typhoon that made landfall in Japan in 1920 (Fig. 10g) and hurricane Andrew (1992) (Fig. 9a). Due
to the changing number of assimilated observation data, RGTracks-20C may not capture the realistic
number of TCs in early years. Therefore, caution should be exercised when analyzing the long-term
trend of TC activities. Future versions should improve the reliability of RGTracks-20C by tracking
TCs using individual ensemble members (Emanuel, 2024).

The above factors will be thoroughly considered and addressed in the future versions of
RGTracks-20C to enhance its accuracy and applicability. In the next version of RGTracks-20C, a
few improvements will be included: (1) We detect TCs separately from all 80 ensemble members of
the 20CRv3, in order to avoid the smoothing effects caused by the ensemble mean of reanalyses and
to provide reliable estimates of uncertainty and confidence (Emanuel, 2024); (2) we will calibrate
algorithm thresholds according to TC characteristics in different ocean basins; (3) more TC tracking
algorithms will be included to address the uncertainty of the TC track data (Flaounas et al., 2023;
Han and Ullrich, 2025).

5. Data Availability

The RGTracks-20C is publicly available at https://doi.org/10.5281/zenodo.14411917 (Ye et al.,
2024). The Other datasets utilized in this study are available: the IBTrACS at
https://www.ncdc.noaa.gov/ibtracs/; and the 20CRv3 at

https://portal.nersc.gov/archive/home/projects/incite1 I/www/ (Slivinski et al., 2019). Historical

weather chart of the 1920 typhoon that made landfall in Japan from http://agora.ex.nii.ac.jp/cgi-

bin/weather-chart/calendar.pl?year=1920&month=8&lang=en&type=as.

6. Code Availability

Bourdin (2022a) provided the code for the UZ and OWZ algorithms, which are available at
https://doi.org/10.5281/zenodo.6424432.  TempestExtremes can be downloaded from

https://climate.ucdavis.edu/tempestextremes.php, and version 1.5.2 is used for this study.

7. Conclusion

In this study, we introduce the RGTracks-20C, a century-long reanalysis-based historical global
TC dataset. Statistical evaluations and case studies confirm its reliability in capturing the

climatology and interannual variability of observed TC activity on both global and regional scales.
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A major key strength of the RGTracks-20C is its ability to fill the missing intensity and location
records of observed TCs in early years. This dataset provides a reliable alternative for researchers to
study the long-term variability of TC characteristics, which will help us to better understand changes
and trends in historical TC activity, as well as their relationship with climate change.

This knowledge is crucial for protecting vulnerable coastal areas and mitigating TC-related
risks in the future climate change. As the first version, the RGTracks-20C has limitations, which
may arise from the reanalysis assimilation process and the threshold settings in the TC tracker.
Future versions will further address these issues, refining the dataset to improve accuracy and

broaden applicability.
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