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Abstract  22 

Tropical cyclones (TCs) are among the deadliest disasters affecting human society, and their 23 

response to climate change has widely drawn attention from the public. However, assessing how 24 

historical TC activity changed with climate change has proven challenging due to incomplete 25 

TC records in the early years. Here, we introduce the Reanalysis-Based Global Tropical Cyclone 26 

Tracks Dataset for the Twentieth Century (RGTracks-20C) (Ye et al., 2024), a publicly available 27 

century-long global TC track dataset spanning from 1850–2014. The RGTracks-20C is 28 

reconstructed from the National Oceanic and Atmospheric Administration Twentieth Century 29 

Reanalysis using two independent TC tracking algorithms. Validation based on observations 30 

confirms that the RGTracks-20C effectively captures the climatology and long-term variability 31 

of TC numbers, tracks, duration, and intensity across various ocean basins. A remarkable key 32 

strength of the RGTracks-20C is its ability to fill the missing intensity and location records of 33 

TCs observed in early years. This dataset serves as a valuable historical data reference for future 34 

research on climate change and TC-related disasters.  35 
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1. Introduction 36 

Tropical cyclones (TCs), also known as hurricanes or typhoons, are intense weather systems 37 

that form over tropical and subtropical oceans and can cause severe disasters over the coastal regions 38 

and even inland areas (Qin et al., 2024; Zhu and Quiring, 2022). Globally, approximately 80 TCs 39 

are generated each year (Emanuel, 2018). As one of the most destructive weather systems 40 

(Bloemendaal et al., 2022; Dinan, 2017; Emanuel, 2017), TCs significantly impact society and the 41 

economy (Kunze, 2021; Lenzen et al., 2019; Noy, 2016). These impacts are expected to be 42 

exacerbated by climate change in the future (Chan, 2023; Hassanzadeh et al., 2020; Knutson et al., 43 

2020; Moon et al., 2023; Murakami and Wang, 2022; Yamaguchi et al., 2020). Therefore, research 44 

on TCs has become increasingly vital in climate change and prediction (Bhatia et al., 2019; Chan, 45 

2019; Lanzante, 2019; Moon et al., 2019; Sharmila and Walsh, 2018; Zhang et al., 2019). However, 46 

past variability of TC activity and underlying mechanisms remains challenging due to incomplete 47 

early historical TC observation records, which may lead to controversies (Chan et al., 2022a, b; 48 

Knutson et al., 2019; Lee et al., 2020). 49 

Previous research has revealed significant issues related to the completeness of historical TC 50 

observational data (Lee et al., 2020), which are highly dependent on the development of the global 51 

TC observation system, data analysis techniques, and other factors (Klotzbach and Landsea, 2015; 52 

Knapp et al., 2010; Kossin et al., 2020; Landsea et al., 2010; Mann et al., 2007; Ying et al., 2014). 53 

Before the introduction of satellite observation, TC information (e.g., intensity and location) 54 

primarily relied on conventional coastal weather stations and ship observation reports (Landsea et 55 

al., 2006, 2008). Aircraft reconnaissance emerged in the North Atlantic (NATL) and western North 56 

Pacific (WNP) after World War II (Emanuel, 2008). However, these observational techniques could 57 

not capture all occurred TCs due to their limited observation range. It is possible that an existing TC 58 

was unrecorded in the early years. In addition, even if a TC was observed and recorded, its track and 59 

intensity information may be discontinuous due to the absence of meteorological satellite 60 

observations. For instance, there were no observational records of TC wind speeds in the southern 61 

hemisphere before 1956 (Emanuel, 2021). Storm intensity in the Indian Ocean is weaker compared 62 

to other basins, partly due to the lack of direct coverage by geostationary satellites in that region 63 

before 1998 (Schreck et al., 2014). The incomplete observed data of TCs in the early years, mainly 64 

before the 1970s, is a commonly-known unsolved issue in the community. 65 

Given the limitations of historical TC records, a promising approach is to utilize reanalysis for 66 

TC identification (Li et al., 2024; Truchelut and Hart, 2011). Reanalysis combines historical 67 

observational data with modern numerical weather models to produce comprehensive, continuous 68 

datasets of global atmospheric conditions that adhere to physical principles (Compo et al., 2011; 69 

Kalnay et al., 1996; Parker, 2016; Slivinski, 2018). The Twentieth Century Reanalysis (20CR) 70 

(Compo et al., 2011), provided by the National Oceanic and Atmospheric Administration (NOAA), 71 

is a global reanalysis dataset that covers the longest period among all other reanalyses. The 20CR 72 

was designed for long-term analyses from individual extreme weather events to climate variability, 73 
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and has been applied to a wide range of studies, including those on wave height, storm surge, 74 

Madden-Julian Oscillations, and TCs (Chand et al., 2022; Cid et al., 2017; Gergis et al., 2020; Lee 75 

et al., 2023; Leung et al., 2022; Moore and Babij, 2017; Slivinski et al., 2019; Truchelut et al., 2013; 76 

Wang et al., 2012). The fact that the 20CR only assimilates surface pressure and sea level pressure 77 

fields, instead of other observations such as satellites and aircraft, makes it less sensitive to the 78 

temporal inhomogeneity of observations (Slivinski et al., 2019, 2021). 79 

Several independent studies have documented the feasibility of reproducing the characteristics 80 

of some historical TC events based on the 20CR (Emanuel, 2010; Lee et al., 2023; Slivinski et al., 81 

2019; Truchelut et al., 2013; Truchelut and Hart, 2011). For example, following Emanuel (Emanuel, 82 

2010), who first expanded and revised TC climatology based on the 20CR, (Truchelut and Hart, 83 

2011) employed the 20CR to identify previously unknown TCs in the Atlantic and demonstrated 84 

that the 20CR can accurately describe large-scale TC thermodynamic structure. Recently, Truchelut 85 

et al. (2013) noted that the 20CR has the ability to investigate TC events that were previously 86 

undetected in the pre-satellite era. Compared to other reanalyses, the 20CR well captures the 87 

intensity of the 1915 Galveston hurricane (Slivinski et al., 2019) and also offers a more accurate 88 

representation of landfalling TCs in East Asia (Lee et al., 2023). These previous studies have 89 

demonstrated the effectiveness of the 20CR as a tool for characterizing historical TCs (Emanuel, 90 

2010; Truchelut et al., 2013; Truchelut and Hart, 2011). Taking advantage of the 20CR, some 91 

researchers have extracted the century-long TC information from the reanalysis product (Chand et 92 

al., 2022; Lee et al., 2023; Yeasmin et al., 2023), suggesting its potential as a tool for studying 93 

historical changes in TCs under anthropogenic climate change. 94 

While the 20CR has been applied to studying the relationship between historical climate change 95 

and TC variability, the primary focus was mostly on the TC occurrence frequency, and little attention 96 

was given to other TC metrics such as intensity, duration, and location. More importantly, to date, 97 

there is no publicly available reanalysis-based global TC dataset covering a century-long period. 98 

Therefore, the main objective of this study is to extract TC information (including location, intensity, 99 

and lifetime) from the 20CR and reconstruct a historical global TC track dataset spanning 1850–100 

2014. The produced dataset is named the Reanalysis-Based Global Tropical Cyclone Tracks Dataset 101 

for the Twentieth Century (RGTracks-20C) and is open to the public for research use. This paper 102 

first introduces the production details of the RGTracks-20C and then discusses the validity, key 103 

strengths, and usage notes of the datasets. We anticipate that the RGTracks-20C will provide 104 

valuable insights into the changing patterns of historical TC activity, improving our understanding 105 

of the response of TCs to climate change. 106 

2. Data and methods 107 

2.1 Data 108 

The primary objective of this study was to reconstruct a 20th century global TC dataset from 109 

the 20th Century Reanalysis version 3 (20CRv3) (Slivinski et al., 2019, 2021), the latest version of 110 
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the 20CR produced by NOAA. Then, the validity of the reconstructed 20th century global TC data 111 

was evaluated based on the observed TC records, i.e., the International Best Track Archive for 112 

Climate Stewardship (IBTrACS) dataset (Knapp et al., 2010). 113 

2.1.1 20th Century Reanalysis  114 

The 20CRv3 is led by NOAA's Physical Sciences Laboratory (PSL) and the Cooperative 115 

Institute for Research in Environmental Sciences (CIRES) at the University of Colorado, supported 116 

by the U.S. Department of Energy (DOE) (Slivinski et al., 2019, 2021). It, by combining advanced 117 

data assimilation and numerical prediction techniques with historical observation data, provides 118 

long-term historical weather data with diverse variables, complete spatial and temporal coverage. 119 

The 20CRv3 employs sea-surface temperature and sea-ice distributions as its boundary conditions 120 

and assimilates only surface pressure reports from the International Surface Pressure Databank 121 

(ISPD) version 4.7 (Compo et al., 2019; Cram et al., 2015), which include observations from stations 122 

and ships, as well as TC intensity (the minimum central pressure (SLPmin) from the IBTrACS (Knapp 123 

et al., 2010). As such, it is more consistent and homogeneous with time than other reanalyses 124 

(Slivinski et al., 2019). 125 

One should note that the IBTrACS and 20CRv3 are not two independent datasets because the 126 

SLPmin records in the IBTrACS are partly assimilated in the production of 20CRv3. On the other 127 

hand, an advantage is that TCs structure and intensity more accurately and closer to observations 128 

than other 20th century reanalyses as a result of the assimilation of IBTrACS (Laloyaux et al., 2018; 129 

Slivinski et al., 2019). And, it provides a four-dimensional global gridded atmospheric dataset that 130 

spans the whole 20th century and part of the 19th century (1836–2015, with an experimental 131 

extension spanning 1806–35), with a 3-hour temporal resolution and 1°×1° horizontal resolution 132 

(Slivinski et al., 2021). Thus, the 20CRv3 was applied to the production of the RGTracks-20C in 133 

this paper.  134 

2.1.2 IBTrACS 135 

The IBTrACS (Knapp et al., 2010), published by the NOAA, merges recent and historical TC 136 

data from meteorological agencies worldwide. These include the Regional Specialized 137 

Meteorological Centers (RSMC) and Tropical Cyclone Warning Centers (TCWC) of the World 138 

Meteorological Organization (WMO), as well as non-WMO Centers, such as the China 139 

Meteorological Administration, the Hong Kong Observatory and the Joint Typhoon Warning Center. 140 

The IBTrACS is the most comprehensive and publicly available global TC best-track dataset. It has 141 

been widely applied in previous research to investigate the characteristics of TCs (Lai et al., 2020; 142 

Li et al., 2023; Tu et al., 2021, 2022; Wang and Toumi, 2022; Zhang, 2023), and has served as a 143 

criterion for assessing TC records derived from reanalysis (Bell et al., 2018; Bourdin et al., 2022; 144 

Chand et al., 2022; Hodges et al., 2017; Lee et al., 2023). In this study, the most updated version of 145 

IBTrACS (v04) (Knapp et al., 2018) serves as an observation reference for evaluating the reliability 146 

of the RGTracks-20C. This dataset was cleaned before being used for analyses. Details about the 147 
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data pre-processing procedures are referred to in Figure B1 in (Bourdin et al., 2022). In particular, 148 

we standardized maximum sustained wind speeds (WINDmax) in IBTrACS to 10-minute sustained 149 

wind speeds to ensure a consistent global standard(Knapp et al., 2010). We then removed tracks that 150 

did not reach the tropical storm stage (WINDmax < 16 𝑚 ∙ 𝑠−1) and those that lasted shorter than two 151 

days. 152 

Although the IBTrACS has time coverage dating back to the early 20th century, we utilize the 153 

data only for the post-satellite period (1979–2014) due to the early data incompleteness issues 154 

(Chang and Guo, 2007; Lee et al., 2020; Truchelut et al., 2013). Given that the IBTrACS is the most 155 

reliable record of TCs after the 1970s, the IBTrACS serves as the best benchmark for validating the 156 

data quality of RGTracks-20C. However, because the starting years of records vary across basins 157 

within the IBTrACS, biases may occur in the assessment results (3.4 Long-term variability of TC 158 

activity for more details).  159 

2.2 Production of the RGTracks-20C 160 

2.2.1 Procedure 161 

The RGTracks-20C was constructed from the latest version of 20CR (20CRv3). The relatively 162 

short and imperfectly sampled observational record of TCs introduces considerable uncertainty in 163 

their data over the past century (Landsea, 2007; Landsea et al., 2010), hindering accurate detection 164 

of interannual variability and long-term trends (Knutson et al., 2019; Lee et al., 2020). Reanalysis is 165 

an effective way to reduce this uncertainty (Chand et al., 2022; Truchelut et al., 2013). Since TC 166 

information is not directly provided in the 20CRv3, objective TC trackers were applied to detect and 167 

track TCs in this dataset. Numerous trackers have been developed by operational centers and 168 

research institutions to meet various application needs (Hodges et al., 2017; Horn et al., 2014; Tory 169 

et al., 2013; Zarzycki and Ullrich, 2017). In this study, as the first version of the RGTracks-20C, we 170 

applied two widely used, publicly available, and effective trackers: (1) the physically-based Ullrich 171 

& Zarzycki (UZ) tracker (Zarzycki and Ullrich, 2017) and (2) the dynamics-based Okubo-Weiss-172 

Zeta (OWZ) tracker (Tory et al., 2013). Both trackers have been reported to effectively capture TC 173 

systems from coarse resolution gridded data uncertainty (Chand et al., 2022; Truchelut et al., 2013), 174 

such as the 20CRv3. Figure 1 shows the procedure of producing the RGTracks-20C, and details of 175 

the methodology are provided in the following. 176 

 177 
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 178 
Figure 1: Schematic diagram showing the production of the RGTracks-20C from the 20CRv3 based on the 179 

UZ and OWZ tracking algorithms. Variables shown include U10: 10-m wind speed, ∅: latitude, 𝒛:altitude, 180 

GCD: great circle distance.  181 

2.2.2 TC tracker 182 

i. OWZ Tracker 183 

The OWZ tracker, initially proposed by (Tory et al., 2013), is designed to detect low-184 

deformation vorticity regions within large-scale disturbances, typically situated within the so-called 185 

"marsupial pouch", which have the potential for tropical storm formation. Given that the OWZ 186 

approach relies solely on large-scale variables, it is particularly effective in detecting TC in coarse-187 

resolution models or reanalysis (Bell et al., 2018; Bourdin et al., 2022).  188 

The OWZ tracker involves a low-deformation vorticity variable parameter, which is the product 189 

of absolute vorticity and the Okubo-Weiss parameter normalized by the vertical components of 190 

relative vorticity squared (Eq. 1): 191 

𝑂𝑊𝑍 = sgn(𝑓) × (𝜁 + 𝑓) × 𝑚𝑎𝑥 [
𝜁2−(𝐸2+𝐹2)

𝜁2 , 0] (1)  192 

where  𝑓  is the Coriolis parameter, 𝜁 =  𝜕𝜐/𝜕𝑥 −  𝜕𝑢/𝜕𝑦  is the vertical component of relative 193 

vorticity, (𝜁 + 𝑓) is the absolute vorticity, 𝐸  is the stretching deformation (Eq. 2), and 𝐹  is the 194 

shearing deformation (Eq. 3): 195 

𝐸 =
𝜕𝑢

𝜕𝑥
−

𝜕𝜐

𝜕𝑦
(2) 196 

𝐹 =
𝜕𝜐

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
(3) 197 

First step: Candidate detection.  198 

The OWZ tracker begins by identifying local maxima of OWZ at 850 ℎ𝑃𝑎. Any candidate with 199 

a stronger OWZ maximum within 5° of great circle distance (GCD) is excluded. Next, only 200 
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candidates that meet the six initial threshold conditions shown in Table 1 within a 2° GCD of the 201 

identified maximum are retained. Based on the information provided in Table 1, besides the required 202 

minimum threshold values for the OWZ parameter at 850 ℎ𝑃𝑎 and 500 ℎ𝑃𝑎, additional dynamical 203 

and thermodynamic parameters related to TC formation are taken into account. These parameters 204 

include the maximum threshold for the wind vector difference (vertical wind shear) between 850 205 

ℎ𝑃𝑎 and 200 ℎ𝑃𝑎, as well as the relative humidity at 950 ℎ𝑃𝑎 and 700 ℎ𝑃𝑎, and the minimum 206 

threshold for the specific humidity at 950 ℎ𝑃𝑎. This step primarily aims to identify grid points that 207 

contain essential components of a storm. Subsequently, neighboring grid points are grouped together 208 

to define potential TCs. 209 

Second step: Stitching TC tracks.  210 

Consecutive TC points are linked together if their distance does not exceed 5° of GCD and 211 

there is a maximum gap of 24 hours between them. To be considered as a valid TC, additional core 212 

thresholds (shown in Table 1) must be met for at least 9 time-steps (48 hours). Finally, tracks that 213 

do not maintain tropical storm intensity (wind speed at 10 m ≥ 12.3 𝑚 · 𝑠−1) for at least 1 time step 214 

are excluded. 215 

 216 

Table 1. Parameter threshold values for the OWZ detection criteria. Subscripts stand for isobaric 217 

levels in 𝒉𝑷𝒂 (OWZ: Obuko-Weiss-Zeta 𝒔−𝟏, RH: relative humidity %; VWS: vertical wind 218 

shear 𝒎 · 𝒔−𝟏; Q: specific humidity 𝒈 · 𝒌𝒈−𝟏.) 219 

Criterion OWZ850 OWZ500 RH950 RH700 VWS200_850 Q950 

Initial 50×10-6 40×10-6 70 50 25 10  

Core 60×10-6 50×10-6 85 70 12.5  14 

 220 

 221 

ii.  UZ tracker 222 

The UZ tracker , originally proposed by (Zarzycki and Ullrich, 2017), utilizes sea level pressure 223 

on the model grid, incorporating criteria for warm-core structures and storm lifetime.  224 

First step: Candidate detection.  225 

Initially, candidates are identified based on the SLP minimum. And, only those candidates that 226 

meet the following two closed-contour criteria are kept: 227 

1. An increase in SLP minimum of at least 2 hPa within a 5.5° GCD from the candidate point 228 

to ensure the presence of a sufficiently strong and coherent low-pressure area. 229 

2. The geopotential thickness between 300 and 500 hPa (denoted as Z300-500) must decrease by 230 

58.8 𝑚2𝑠−2 over a distance of 6.5° GCD from the maximum center of Z300-500 within 1° GCD of the 231 

center of minimum SLP.  232 

Finally, candidates with a stronger SLP minimum within a 6°=GCD are excluded. 233 

Second step: Stitching TC tracks.  234 
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The candidates are subsequently linked in time to create paths, ensuring a maximum distance 235 

of 8° GCD between candidates. Each path must last for at least 54 hours without gaps longer than 236 

24 hours. Additionally, ten 6-hourly time steps (equivalent to 54 hours) must satisfy the following 237 

thresholds: wind speed at 10m ≥ 10 𝑚/𝑠 and 𝑧 ≤ 150m (where z represents the altitude), and the 238 

storm must form between 0° and 50°. 239 

The UZ tracker, developed specifically for high-resolution models and reanalysis data, is 240 

designed to maintain a low false-alarm rate, which may lead to a larger number of misses of weaker 241 

storms(Roberts et al., n.d.). In contrast, the OWZ tracker, based on the large-scale environmental 242 

conditions favorable for TC formation, addresses this limitation. Thus, combining these two TC 243 

trackers can effectively enhance the reliability of RGTracks-20C. 244 

A command-line software, TempestExtremes, developed by (Zarzycki and Ullrich, 2017), 245 

enables fast and versatile and versatile implementation of TC trackers, was used in this study. For 246 

further details, please refer to (Ullrich et al., 2021). 247 

2.2.3 Bias Correction of TC intensity 248 

Given the low horizontal resolution in the 20CRv3, TC intensities derived directly from the 249 

reanalysis generally underestimated compared to observations (Fig. 2a) (Bourdin et al., 2022; 250 

Roberts et al., n.d.). To address this issue, a quantile mapping bias correction, similar to the method 251 

used by (Zhao and Held, 2010), was applied to adjust for the TC intensity bias within the dataset. 252 

The main idea is to fit the 20CRv-derived TC intensity distributions, either probability distribution 253 

functions (PDFs) or cumulative distribution functions (CDFs), to the observed distributions. This 254 

method has demonstrated significant efficacy in enhancing the accuracy of TC intensity within 255 

models or reanalyses (Faranda et al., 2023; Yoshida et al., 2017). This adjustment resulted in a 256 

wind-pressure relationship in RGTracks-20C that aligns more closely with observational data (Fig. 257 

2b). 258 

 259 
Figure 2: Wind–pressure relationships for IBTrACS and RGTracks-20C. a–b, Scatter plots of SLPmin (unit: 260 

𝒉𝑷𝒂) against maximum sustained wind speeds (WINDmax) (unit: 𝒎 ∙ 𝒔−𝟏), based on the TCs from IBTrACS 261 

(black), OWZ (red), and UZ (blue) trackers, before (a) and after (b) intensity bias correction (see Methods). 262 

The curves represent fourth-order polynomial fit results. Storm categories, as defined in the section 'TC 263 

intensity', are indicated by horizontal gray lines.  264 

 265 
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2.3 Verification of RGTracks-20C 266 

2.3.1 Tracks matching 267 

After utilizing the UZ and OWZ trackers to detect TC vortices from the 20CRv3, the resulting 268 

tracks are matched one-to-one with those observed in the International Best Track Archive for 269 

Climate Stewardship (IBTrACS). The specific procedures are detailed in the "2.4 Tracks Matching" 270 

section by (Bourdin et al., 2022).  271 

Specifically, a detected track D consists of n points (d1, d2, ..., dn) corresponding to the moments 272 

(t1, t2, ..., tn). Similarly, a track O observed in IBTrACS consists of a collection of points at a given 273 

time. For every point di (ti) on track D, points from O at the same time ti located within a 300 km 274 

radius of di are linked. There may be instances where no such points are found in O. The subset of 275 

points in O that are linked to any point in D is labeled as OD−paired. It consists of |OD-paired|. There are 276 

three possible scenarios: 277 

1. |OD−paired| = 0: If none of the points in the RGTracks-20C track D match any points in track 278 

O, then track D is classified as a False Alarm (FA). 279 

2. |OD−paired| > 0: If all points in OD−paired track correspond to points in the same observed track 280 

O, then track O is identified as the closest match for D. 281 

3. |OD−paired| > 0: If the points in OD−paired correspond to several observed tracks in O, the 282 

observed track with the most points paired with D is regarded as the best match for D. 283 

 284 

2.3.2 Track verification 285 

Following the approach suggested by (Bourdin et al., 2022), this study compares TC tracks 286 

detected from the 20CRv3 with observed tracks from the IBTrACS. The probability of detection 287 

(POD) (Eq. 4) and false alarm rate (FAR) (Eq. 5) are used to assess the detection skills of the two 288 

trackers. 289 

𝑃𝑂𝐷 =
𝐻

𝐻 +  𝑀
(4) 290 

 291 

𝐹𝐴𝑅 =
𝐹𝐴𝑠

𝐻 +  𝐹𝐴𝑠
(5) 292 

where hits (H) refer to TC tracks detected from the 20CRv3 that are also present in IBTrACS, misses 293 

(M) denote those tracks that are recorded in IBTrACS but were not detected in the 20CRv3, and 294 

false alarms (FAs) refer to non-existing TCs that were detected from the 20CRv3. 295 

2.4 Definitions 296 

2.4.1 TC intensity 297 

In assessing the TC intensity, SLPmin and WINDmax are two commonly used metrics in TC 298 

research. However, because WINDmax in both observations and reanalysis exhibits relatively higher 299 

uncertainties (Bourdin et al., 2022; Chavas et al., 2017; Knapp et al., 2010; Knutson et al., 2015; 300 
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Schreck et al., 2014), this study opted to use SLPmin as the only indicator of TC intensity when 301 

verifying the validity of RGTracks-20C. Nevertheless, WINDmax of detected TCs is also provided in 302 

the RGTracks-20C (Table 2) as a reference for researchers who wish to use and improve the dataset, 303 

though it is not discussed in the paper.  304 

 305 

Table 2. Data format of the RGTracks-20C. track_id: storm identifier, lat: latitude degrees_north, 306 

lon: longitude degrees_east, SLPmin: minimum central pressure (unitℎ𝑃𝑎), WINDmax: maximum 307 

wind speed (unit: 𝑚 ∙ 𝑠−1), WIND*max and SLP*min denotes TC intensities after bias correction. 308 

track_id, year month day hour lon lat WINDmax SLPmi hemisphere basin season WIND*max SLP*mi 

0 1979 1 1 0 142.00 15.00 13.57 996.09 S SP 1979 13.57 990.00 

0 1979 1 1 6 144.00 15.00 14.95 995.27 S SP 1979 14.95 980.27 

… 
… … … … … … … … … … …   

… … … … … … … … … … … …   

… … … … … … … … … … … …   

2880 2014 12 31 18 120.00 9.00 11.122 1006.20 N WNP 2014 22.12 998.20 

 309 

Storm categories: the Saffir-Simpson Hurricane Scale (SSHS) from 1 to 5 based on their peak 310 

1-minute wind speed at 10 meters above the surface. In this study, given the significant uncertainties 311 

in WINDmax due to differences between institutions and the limitations of model simulation 312 

capabilities (Chavas et al., 2017; Klotzbach et al., 2020; Knutson et al., 2015), we have chosen to 313 

classify based on SLPmin, following the definition of (Klotzbach et al., 2020). 314 

2.4.2 Basins 315 

We explore the performance of TCs in RGTracks-20C on global and regional scales. The 316 

regional division is mainly based on the appendix guide of (Knutson et al., 2015), which divides the 317 

globe into six basins: the WNP, ENP, South Pacific (SP), NI, South Indian (SI), and NATL. 318 

2.4.3 TC days 319 

TC days is defined as the number of 6-hour periods during which an active TC occurs within a 320 

basin, divided by 4 (to convert 6-hour blocks into days) and accumulated for the year under 321 

consideration such that: 322 

𝑇𝐶 𝑑𝑎𝑦𝑠 =  
1

4
∑ 𝐿𝑖

𝑛

𝑖=0

(6) 323 

where 𝐿𝑖 is the individual lifetime of a TC within the bounds of a basin. 324 
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3. Results and discussion 325 

3.1 Data Records  326 

The constructed RGTracks-20C (Ye et al., 2024) provides a century-long collection of global 327 

TCs identified from the 20CRv3. The RGTracks-20C is publicly available at the 328 

https://github.com/jeremychleung/RGTracks-20C/ and https://zenodo.org/record/8410597. This 329 

dataset provides detailed TC information, including location (longitude, latitude, hemisphere, and 330 

basin), time (year, month, day, hour, and season), and intensity (SLPmin and WINDmax), with a 331 

temporal resolution of 6 hours, spanning from 1850 to 2014 and covering the globe. The dataset is 332 

provided as a comma separated values (.csv) file and has a format similar to that of the IBTrACS 333 

(Table 2). It is noted that, in the RGTracks-20C, WINDmax serves, in addition to SLPmin, as a 334 

supplementary reference of TC intensity for researchers, but is not discussed here due to accuracy 335 

issues and should be used cautiously. 336 

3.2. Validity of trackers 337 

As documented in prior studies, biases are unavoidable when extracting TCs from reanalyses, 338 

given the limitations of reanalysis in reproducing the high-resolution TC structure and circulation 339 

patterns, as well as the errors caused by the application of different trackers (Bell et al., 2018; Horn 340 

et al., 2014; Lee et al., 2023; Slivinski et al., 2019; Truchelut et al., 2013). Before verifying the 341 

reliability of RGTracks-20C, it is necessary to evaluate the performance of the two trackers applied. 342 

The POD and FAR of TCs identified by the UZ and OWZ trackers are calculated to assess the 343 

ability of the trackers to detect TCs from the 20CRv3 globally and across six basins (see Track 344 

verification). Globally, the overall POD and FAR of TCs detected by the UZ tracker are 68% and 345 

7% (Fig. 3a), while those by the OWZ tracker are 77% and 15%, respectively (Fig. 3b). Detailed 346 

comparisons of each component of POD and FAR, including the number of hits, false alarms, and 347 

misses, are provided in Supplementary Sect. S1 and Fig. S1. 348 

 349 

https://github.com/jeremychleung/RGTracks-20C/https:/github.com/jeremychleung/RGTracks-20C/
https://zenodo.org/record/8410597
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Figure 3: Accuracy of TC number detection of the RGTracks-20C. a–b, POD (blue bars and line, unit: %) 350 

and FAR (red bars and line, unit: %) for TC number detected by the UZ (a) and OWZ (b) trackers in each 351 

basin (bars), compared to the global mean (lines). Blue and red horizontal lines denote the POD and FAR over 352 

the globe. c–d, same as a–b, except for the number of hits (blue bars), misses (green bars), and false alarms 353 

(red bars) detected by the UZ (c) and OWZ (d) trackers.  354 

 355 

For each basin, the distributions of the POD of TCs (Figs. 3a–b) and the number of hits (Figs. 356 

3c–d) between the two trackers show high similarities. Specifically, both trackers report higher POD 357 

values in the SI (90% for OWZ tracker, 83% for UZ tracker), WNP (86% for OWZ tracker, 77% for 358 

UZ tracker), and SP (84% for OWZ tracker, 68% for UZ tracker), followed by the NI (78% for OWZ 359 

tracker, 68% for UZ tracker). Lower POD values are observed in the NATL (62% for OWZ tracker, 360 

48% for UZ tracker) and the ENP (52% for both OWZ and UZ trackers). Similarly, the largest 361 

number of TC hits is observed in the WNP (824 for OWZ tracker, 733 for UZ tracker) and SI (543 362 

for OWZ tracker, 503 for UZ tracker), followed by the ENP, SP and NATL, each with approximately 363 

200–300 TCs, and the NI with fewer than 200 TCs.  364 

The FAR of TCs (Figs. 3a–b), and the number of false alarms (FAs) and misses (Figs. 3c–d) 365 

vary between the two trackers. The UZ tracker exhibits FARs below 15% across all basins except 366 

the NI. Notably, in the ENP and NATL, the FAR of TCs is below the global average of 7%, with 367 

the number of FAs fewer than 20. The OWZ tracker shows a FAR close to the global average (15%) 368 

in the WNP and SI, while in the ENP, SP, and NATL, the FAR values range between 15% and 20%. 369 

In the NI, however, the two trackers show a relatively higher FAR and more FAs compared to other 370 

basins. In terms of missed TC detections, both trackers show relatively few misses, less than 120, in 371 

the SP, NI, and SI basins. On the other hand, misses are higher in the ENP and NATL. Overall, the 372 

UZ tracker consistently shows a higher number of missed TCs across all basins than the OWZ 373 

tracker. This is particularly evident in the WNP and SI, the two basins that account for nearly two-374 

thirds of global TC activity, where the OWZ tracker exhibits fewer missed TC detections (Fig. 3d). 375 

Supplementary Sect. S2.1 provides further explanations of the high FAR of TCs observed in the NI, 376 

the higher number of missed TCs in the ENP and NATL (Supplementary Fig. S2). 377 

Overall, the accuracies of TC detection by the two tracking algorithms, especially that by the 378 

OWZ tracker, have reached the accuracy reported by recent works that extracted TCs from other 379 

modern-era reanalyses, such as the fifth generation ECMWF reanalysis (ERA5) (Supplementary 380 

Table S1) (Bourdin et al., 2022; Murakami, 2014). This confirms the effectiveness of both trackers 381 

in detecting and tracking the majority of TCs from the 20CRv3. 382 

3.3 Climatology of TC activity 383 

Since our target of constructing the RGTracks-20C is to aid the community in studying the 384 

response of TCs to climate change, we will focus on the ability of the RGTracks-20C to capture the 385 

climatology and long-term variability of TC activity in the following sections. 386 
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In terms of climatology, the RGTracks-20C is able to capture the major spatial patterns of TC 387 

genesis locations and track density over most ocean basins (Figs. 4a–f), indicating its effectiveness 388 

in reproducing the spatial distribution of historically observed TCs. The annual mean TC numbers 389 

in most ocean basins detected by the UZ and OWZ trackers are consistent with observations (Figs. 390 

4g–i). The OWZ tracker especially captures the observed annual mean TC number in the NWP, SI, 391 

and SP well, with discrepancies ranging from –0.48 to 0.89. Notably, the UZ tracker also accurately 392 

estimates observed annual mean TC number in the NI, demonstrating a relatively small error (4.83 393 

versus 4.97) between the two. However, the UZ and OWZ trackers estimate the annual mean number 394 

of TCs to be 63.39 and 78.56, respectively (Figs. 4h–i), which are relatively lower than the observed 395 

values (87.03, Fig. 4g). The main reason for the global underestimation compared to IBTrACS is 396 

the discrepancies in the ENP and NATL, of which the reasons are discussed in Supplementary Sects. 397 

S2.1–2.2. Despite the underestimations in individual basins, the overall TC detection rates resemble 398 

previous publications that aimed to extract TCs from higher-quality reanalyses (Bourdin et al., 2022; 399 

Murakami, 2014). This result verifies the RGTracks-20C’s ability to reproduce the climatology of 400 

the TC number globally and in most basins. 401 

 402 

Figure 4: TC genesis locations, tracks, and annual average number from IBTrACS and RGTracks-20C. a–c, 403 

TC genesis locations (yellow dots) and tracks (blue lines) from IBTrACS (a), and RGTracks-20C using the UZ 404 

(b) and OWZ (c) trackers. d–f, TC tracks density (shading, number of TC occurrence per 1° × 1° latitude-405 

longitude grid box, 1979-2014) from IBTrACS (c), and RGTracks-20C using the UZ (e) and OWZ (f) trackers. 406 

g–i, mean number of TCs per year globally and for the six basins from IBTrACS (g), and RGTracks-20C using 407 

the UZ (h) and OWZ (i) trackers.  408 
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 409 

We further evaluate the accuracies of detected TC tracks in the RGTracks-20C by comparing 410 

the arc length of TC tracks between RGTracks-20C and IBTrACS. Results indicate that the global 411 

TC location errors range from 10 to 300 km, with the majority between 50–100 km for the UZ 412 

tracker and 75–125 km for the OWZ tracker (Fig. 5a). Additionally, the peak errors for both trackers 413 

are below 100 km, with the UZ and OWZ trackers showing peak values of approximately 75 km 414 

and 95 km, respectively. These findings are consistent across all basins (Fig. 6a). Given that the 415 

lower limit of the average TC location error expected from the coarse horizontal resolution of the 416 

20CRv3 (1 degree×1 degree) is approximately 100 km, the above-mentioned small mean values of 417 

TC location biases confirm that the RGTracks-20C is capable of reproducing most observed TC 418 

tracks and locations.  419 

 420 

 421 

Figure 5: Distribution of TC characteristics om the IBTrACS and RGTracks-20C. a, Distribution of the mean 422 

TC location error from 1979–2014 (unit: km) between IBTrACS and the RGTracks-20C by the UZ (blue) and 423 

OWZ (red) algorithms. b, TC duration (unit: days) from 1979 to 2014 in IBTrACS (green) and the RGTracks-424 

20C by the UZ (blue) and OWZ (red) algorithms. c, same as (b), but for TC intensity (SLPmin, unit: hPa), 425 

based on the UZ tracker, before (blue) and after (red) bias correction. d, same as (c), but for the OWZ tracker. 426 

(UZ: UZ tracker, OWZ: OWZ tracker. UZ-C and OWZ-C represent bias-corrected results for the UZ and 427 

OWZ trackers, respectively.) 428 

 429 
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 430 

Figure 6: As in Fig. 5, but for six individual basins. 431 

 432 

The duration and intensity of TCs are crucial in climate change research, as global warming 433 

may lead to stronger and longer-lasting TCs (Knutson et al., 2010). However, observational 434 

limitations make these findings more controversial compared to those on TC frequency (Knutson et 435 

al., 2010). The RGTracks-20C provides additional support in resolving this controversy. Based on 436 

the IBTrACS, the majority of observed TCs globally last fewer than 20 days, with a peak around 8 437 

days (Fig. 5b). Evaluation results (Fig. 5b and Supplementary Fig. S3) show that TCs detected by 438 

the OWZ tracker exhibit durations that are close to the observations, and accurately reproduce the 439 

TC duration distribution with a peak of 8 days. However, bias is found in the durations of those 440 

detected by the UZ tracker, which exhibits a duration peak of approximately 5 days. This is mainly 441 

due to the dynamics-based OWZ tracker having the ability to detect storms early in their 442 

development (Bell et al., 2018; Bourdin et al., 2022) (Supplementary Fig. S3), while the UZ tracker 443 

easily misses weak and short storms (Supplementary Figs. S1a, c) from the 20CRv3 (Bourdin et al., 444 

2022; Tory et al., 2013; Zarzycki and Ullrich, 2017) (Supplementary Sect. S2.3). Similar results are 445 

obtained in different basins (Fig. 6b), thus, it is recommended to use the OWZ output when analyzing 446 

the durations of TCs and to study the genesis locations of TCs. 447 

For TC intensity, given the relatively considerable uncertainty in WINDmax compared to SLPmin 448 

in both reanalyses and IBTrACS (see Methods) (Bourdin et al., 2022; Chavas et al., 2017; Knapp et 449 

al., 2010; Knutson et al., 2015; Schreck et al., 2014), this study exclusively utilizes SLPmin to 450 

evaluate the capability of RGTracks-20C in representing the intensity of TCs. According to 451 

IBTrACS (Figs. 5c–d), the intensity of TCs is mainly distributed between 900 and 1020 hPa, 452 

peaking around 1000 hPa, with a long tail on the lower SLPmin side. In contrast, the SLPmin in 453 

RGTracks-20C is mainly distributed in the range of 950 – 1020 hPa, with peaks at 1000 ℎ𝑃𝑎 and 454 

1005 ℎ𝑃𝑎 for the UZ (Fig. 5c) and OWZ (Fig. 5d) trackers, respectively. This suggests that the 455 

20CRv3 generally underestimates the TC intensity (Fig. 2a), which, as expected, is primarily 456 
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because the relatively low spatial resolution of the reanalysis may cause smoothing effects on the 457 

sea level pressure field. Apart from spatial resolution, the model's dependence on parameterization 458 

processes, along with other factors, may also influence its ability to reproduce TC intensity in the 459 

reanalysis (Aarons et al., 2021; Hodges et al., 2017; Malakar et al., 2020). 460 

To address this issue, an intensity bias correction was implemented using quantile mapping 461 

bias correction (see Methods) (Zhao and Held, 2010). After intensity correction, the TC intensity 462 

distribution in RGTracks-20C is more consistent with IBTrACS (Fig. 2b and Figs. 5c–d), especially 463 

in terms of peak positions, and accurately reproduces the skewed distribution of TC intensity. In 464 

particular, the RGTracks-20C reproduces TC intensity values with SLPmin below 940 hPa, which 465 

were not found before the intensity bias correction. Notably, while the fitted curves show consistent 466 

patterns following correction, they do not perfectly overlap, suggesting that certain discrepancies 467 

persist (Figs. 5c–d subplot). This consistency is observed not only on a global scale but also across 468 

various basins (Figs. 6c–d).  469 

3.4 Long-term variability of TC activity 470 

This section evaluates the long-term variability of TC activity in the RGTracks-20C by 471 

comparing it with the IBTrACS from 1979 to 2014. 472 

Firstly, the RGTracks-20C is able to capture the observed interannual variability of global TC 473 

number (Fig. 7a), as indicated by the significant correlations between the TC counts derived from 474 

the UZ and OWZ trackers and observations, with correlation coefficients of 0.65 and 0.68 (in the 475 

following context, all correlations are significant at the 99% confidence level unless otherwise 476 

specified), respectively. This is also true for individual basins (Figs. 8a, d), with the correlation 477 

coefficients exceeding 0.70 in most basins. Among the six basins, the highest correlation is observed 478 

in the NATL, where the correlation coefficient for the OWZ tracker reaches 0.88 (0.79 for the UZ 479 

tracker). Subsequent regions with notable correlations include the WNP (0.75 for OWZ tracker, 480 

0.79 for UZ tracker), SP (0.79 for OWZ tracker, 0.84 for UZ tracker), and SI (0.74 for OWZ tracker, 481 

0.69 for UZ tracker). However, the correlation coefficients are relatively lower in the ENP and NI 482 

(Supplementary Table S2 and Fig. S4a, e), of which the reasons are discussed in Supplementary 483 

Sect. S2.2 and Table S3. Notably, the long-term trends in the number of TCs recorded by the two 484 

datasets are consistent globally and across most of the ocean basins (Supplementary Table S4). 485 
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 486 

Figure 7: Time series of globally TC activities from IBTrACS and RGTracks-20C during the periods 1979-487 

2014. TC activities are from the IBTrACS and RGTracks-20C using UZ (blue), and OWZ (red) trackers. a, 488 

TC number. b, TC days (unit: days). c, TC intensity in SLPmin (unit: hPa) in IBTrACS (black) and RGTracks-489 

20C using UZ tracker before (blue solid line) and after (blue dotted line) bias correction. d, same as (c), except 490 

for TC intensity in SLPmin (unit: hPa) in IBTrACS (black) and RGTracks-20C using OWZ tracker before 491 

(red solid line) and after (red dotted line) bias correction. Shaded areas are the two-sided interval of the linear 492 

trend at the 95% confidence level. Straight lines are the linear regression. The correlation coefficients (R) 493 

between from IBTrACS and RGTracks-20C are marked in the figure legends. All correlation coefficients are 494 

statistically significant at the 99% confidence level. 495 

 496 

 497 

Figure 8: As in Fig. 7, but for six basins. a, TC number. b, TC days (unit: days). c, TC intensity in SLPmin 498 

(unit: hPa) in IBTrACS (black) and RGTracks-20C (after bias correction) using UZ (blue) and OWZ (red) 499 

trackers. d, the correlation coefficients (R) between the from IBTrACS and RGTracks-20C. Note*: The R 500 

values for TC number and TC intensity are not statistically significant at the 99% confidence level in the NI 501 
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and ENP. For TC days, the R value is not statistically significant only in the NI. The R values need to be 502 

divided by 100. 503 

 504 

TC days, an important metric, encompasses both TC frequency and lifespan (Bell et al., 2018). 505 

The RGTracks-20C is able to reproduce the interannual variability of TC days, which is consistent 506 

with that in IBTrACS (Fig. 7b), with high correlation coefficients of 0.78 and 0.63 for the UZ and 507 

OWZ trackers, respectively. Moreover, these results are further confirmed across basins (Fig. 8b), 508 

with correlation coefficients generally exceeding 0.75. In particular, in the NATL, the correlation 509 

coefficient exceeds 0.90 (UZ tracker: 0.93, OWZ tracker: 0.91), followed by the SP (UZ tracker: 510 

0.82, OWZ tracker: 0.79), the SI (UZ tracker: 0.80, OWZ tracker: 0.78) and the WNP (UZ tracker: 511 

0.84, OWZ tracker: 0.75). However, being influenced by the observation biases, the correlation 512 

coefficients for TC days are also relatively low in the ENP and NI (Supplementary Table S2 and Fig. 513 

S4b, f). Nevertheless, the above results indicate that the RGTracks-20C provides a satisfactory 514 

representation of the interannual and long-term variability (Supplementary Sect. S2.4, Table S4) of 515 

the TC days globally and across most of the ocean basins.  516 

In addition, the global TC intensity series based on RGTracks-20C significantly correlates with 517 

that based on IBTrACS, with correlation coefficients of 0.61 and 0.80 for the UZ (Fig. 7c) and OWZ 518 

(Fig. 7d) trackers, respectively. This indicates that the TC intensity (SLPmin) in RGTracks-20C 519 

effectively captures the observed interannual variability. Most basins further validate these results 520 

(Fig. 8d). The highest correlation coefficients are observed in the WNP, exceeding 0.80 (UZ tracker: 521 

0.82, OWZ tracker: 0.85). Following closely are NATL (UZ tracker: 0.75, OWZ tracker: 0.75) and 522 

SI (UZ tracker: 0.72, OWZ tracker: 0.78), while SP (UZ tracker: 0.71, OWZ tracker: 0.69) also 523 

demonstrates correlation coefficients of around 0.70. 524 

The 20CRv3 tends to underestimate the TC intensities, due to its coarse resolution, which 525 

suggests the need of a bias correction process during the production of the RGTracks-20C (see 526 

Methods). By performing intensity bias corrections to the detected TCs, the TC intensity (SLPmin) 527 

in RGTracks-20C exhibits interannual and long-term variations that are more consistent with the 528 

observations (Figs. 2, 7c–d, and Supplementary Tables S2, S4), especially in the WNP, NATL, and 529 

SI basins (Figs. 8c–d). These results indicate that the RGTracks-20C can reasonably capture the 530 

interannual variability and trends (Supplementary Sect. S2.4 and Table S4) of TC intensity globally 531 

and across most basins. Discrepancies in the interannual variability of TC intensity between the 532 

RGTracks-20C and IBTrACS are also noted over ENP and NI (Supplementary Table S5 and Fig. 533 

S4c–d, f–h), similar to the above findings on TC number and days (Supplementary Sect. S2.2 and 534 

Tables S6–S7).  535 

3.5 Key strengths of the RGTracks-20C 536 

The above evaluation analyses confirm that the RGTracks-20C effectively captures both the 537 

climatology and long-term variability of TC activity across global and major oceanic basins. In this 538 

section, we discuss the key strengths of the RGTracks-20C, specifically its capacity to reconstruct 539 
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track and intensity information of early-year TCs that may not be included in the observed data 540 

records. Such an advantage of the RGTracks-20C could benefit research about how climate change 541 

has affected TCs over the past century. 542 

Before digging into early-year TCs, we first demonstrate the RGTracks-20C's accuracy in 543 

reproducing specific TCs by making comparisons with observations. Three representative TCs that 544 

caused significant human casualties and economic losses in the NATL, SI, and WNP are analyzed 545 

here: Hurricane ‘Andrew’ in 1992 (Pimm et al., 1994) (Figs. 9a–c), TC ‘Geralda’ in 1994 (Hoarau 546 

et al., 2012) (Figs. 9d–f), and Super Typhoon ‘Rammasun’ in 2014 (Zhang et al., 2017) (Figs. 9h–547 

i). Compared with IBTrACS, the RGTracks-20C performs exceptionally well in representing the 548 

track and duration of these TCs. However, some discrepancies were observed during landfall (Fig. 549 

9a), possibly due to small TC size, which were not captured by the low-resolution 20CRv3 550 

(Supplementary Sect. S3.1 and Fig. S5). While the 20CRv3 tends to underestimate the intensity of 551 

TCs, the corrected intensity in the RGTracks-20C is highly consistent with observations and 552 

accurately captures the temporal evolutions of TC intensities. This evidence confirms RGTracks-553 

20C’s ability to capture not only the climatology and variability of TC activity, but also the detailed 554 

information on specific TC events. 555 

 556 

Figure 9: The historical tracks and intensity records of individual tropical cyclones in the IBTrACS and 557 

RGTracks-20C. a–c, Track (a) and intensity (SLPmin, unit: hPa. b: UZ tracker, c: OWZ tracker) of Hurricane 558 

“Andrew”. d–f, same as a–c, but for track (d) and intensity (SLPmin, unit: hPa. e: UZ tracker, f: OWZ tracker) 559 

of tropical cyclone “Geralda”. g–i, same as a–c, track (g) and intensity (SLPmin, unit: hPa. h: UZ tracker, i: 560 

OWZ tracker) of Super typhoon “Rammasun”. Green, blue, and red lines denote results based on the 561 

IBTrACS, UZ tracker, and OWZ tracker, respectively. The UZ-C (blue dotted dashed line) and OWZ-C (red 562 

dotted dashed line) indicate after intensity bias correction. 563 

 564 
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Prior to the satellite era, limitations in observation systems often led to incomplete records of 565 

early TCs, particularly for TC intensity. An example is hurricane Okeechobee in 1928, which was 566 

one of the deadliest to hit the United States in the early 20th century. Hurricane Okeechobee was 567 

recorded in the IBTrACS (Blake et al., 2011; Mitchell, 1928) (Supplementary Sect. S3.2). However, 568 

during Okeechobee’s lifetime, there were only 16 time points of the TC intensity that were recorded 569 

when it passed the Lesser Antilles and Puerto Rico, and made landfall in the United States (Figs. 570 

10a–c, Supplementary Fig. S6 and Table S8). Similar missing data are common in the IBTrACS 571 

records of early TCs, especially when the TCs were located over the ocean (Figs. 10d–f). Moreover, 572 

the problem of missing TC intensity records is especially evident in other basins (Supplementary 573 

Table S3). For instance, Typhoon No. 8, which made landfall and caused serious damage in Japan 574 

(Supplementary Sect. S3.3), has only track records in the IBTrACS, but with intensity information 575 

missing (Figs. 10g–i). In such cases, taking advantage of the 20CRv3, the RGTracks-20C addresses 576 

these deficiencies by filling in these gaps, substantially enhancing the completeness of early TC 577 

intensity records. 578 

 579 

Figure 10: As in Fig. 9, but for Hurricane “Okeechobee” (a–c), Hurricane ‘1880271N23317’ (d–f), typhoon 580 

‘192023N24150’(g–i). 581 

 582 

In addition, not only is the TC intensity missing, but the track records in the IBTrACS may also 583 

be incomplete, such as the above-mentioned Typhoon No.8 in 1920 (Fig. 10g), despite the existence 584 

of historical observation records (Supplementary Sect. S3.3). In this case, the RGTracks-20C not 585 

only provides the missing TC intensity but also fills gaps in IBTrACS during the latter stages of the 586 

typhoon's development, especially during the landfall phase (Fig. 10g and Supplementary Figs. S7–587 

9). Moreover, prior to the satellite era, the RGTracks-20C often reports a higher number of TCs than 588 

the IBTrACS, particularly from the early to mid-20th century (Supplementary Sect. 4), which 589 
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suggests that the RGTracks-20C is also able to detect historical TCs not being recorded in the 590 

IBTrACS. These findings demonstrate that the RGTracks-20C can compensate for the incomplete 591 

TC track records in the IBTrACS, especially for those in the pre-satellite era. 592 

To evaluate the accuracy of early TC records provided by RGTracks-20C, we take the 1928 593 

Okeechobee hurricane as a case study. The RGTracks-20C nearly fully reproduces the hurricane's 594 

lifespans as recorded in IBTrACS, with the OWZ tracker performing exceptionally well, differing 595 

by only one day from the IBTrACS record. Okeechobee’s latitude and longitude variations in the 596 

RGTracks-20C are highly consistent with those in the IBTrACS, with a positional bias within ±1 597 

degree (Fig. 10a and Supplementary Fig. S6). By comparing Okeechobee’s intensity in RGTracks-598 

20C with observational data, we find that the RGTracks-20C reliably reproduces Okeechobee’s 599 

intensity and its variations (Figs. 10b–c and Supplementary Table S8). For instance, as the hurricane 600 

passed over Guadeloupe, IBTrACS recorded a SLPmin of 940 hPa, which is closely matched by 601 

RGTracks-20C (UZ tracker: 955 ℎ𝑃𝑎; OWZ tracker: 940 ℎ𝑃𝑎). Moreover, the RGTracks-20C 602 

captures the weakening and re-intensification of the hurricane between Puerto Rico and its landfall 603 

in Florida, where the IBTrACS lacks intensity records, demonstrating the RGTracks-20C's 604 

reliability in representing intensity changes (Supplementary Sect. S3.2).  605 

4. Usage notes 606 

In this study, we introduce the RGTracks-20C, a century-long reanalysis-based historical global 607 

TC dataset. Statistical evaluations and case studies confirm RGTracks-20C’s reliability in capturing 608 

the climatology and interannual variability of observed TC activity on both global and regional 609 

scales in the modern satellite era. A major key strength of the RGTracks-20C is its ability to fill the 610 

missing intensity or location records of observed TCs in early years.  611 

As documented in prior studies, biases are unavoidable when extracting TCs from reanalyses 612 

due to the data quality of reanalyses and the limitations of TC trackers. Some usage notes and 613 

cautionary remarks are listed in this section to assist readers in understanding or using the RGTracks-614 

20C. 615 

(1) Due to model resolution and parameterization, TC intensity detected directly from the 616 

20CRv3 is underrepresented compared to observations. To address this issue in the RGTracks-20C, 617 

we corrected the biases using a simple quantile mapping method, assuming that systematic biases 618 

primarily cause the TC intensity errors from 20CRv3. While this is generally true, the quantile 619 

mapping correction did not account for other factors that may also affect TC intensity biases. The 620 

inherent challenges in modeling weaker TCs in 20CRv3, which are largely attributed to the 621 

limitations of resolution and parameterization of subgrid-scale processes in numerical models, often 622 

result in lower detection rates for tropical depressions and weaker tropical storms (e.g., Category 1) 623 

(Hodges et al., 2017). Given the uncertainties in the wind fields of reanalysis data, the current version 624 

of the RGTracks-20C does not provide information of TC stages. This will be improved with more 625 

advanced correction approaches of TC intensity in future versions of RGTracks-20C (Han and 626 
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Ullrich, 2025). 627 

(2) Discrepancies between the RGTracks-20C and IBTrACS should not be solely attributed to 628 

errors in RGTracks-20C, as limitations in IBTrACS may also influence the evaluation results. For 629 

example, the classification of TC often relies on forecasters' subjective judgment, which affects 630 

whether these systems are included in best track datasets (Torn and Snyder, 2012). Additionally, 631 

differences in observation start times and data sources across basins (Supplementary Table S3) can 632 

introduce uncertainties in the IBTrACS (Chan et al., 2022b). For example, the RGTracks-20C shows 633 

relatively large discrepancies with observations in the ENP (Supplementary Sect. S2.2), which may 634 

be attributed to the biases of IBTrACS prior to 1988. Similar issues exist for the NI basin. When 635 

limiting the study periods to 1988–2014 for the ENP and 1990–2014 for the NI, the RGTracks-20C 636 

exhibits good consistency with IBTrACS in TC activity trends, and the correlation significantly 637 

improves (Supplementary Fig. S3 and Tables S2, S5). These suggest that the reliability of 638 

observational data has been changing over time and may serve as a factor affecting the comparison 639 

results between the RGTracks-20C and observational records. Detailed analyses on these two basins 640 

can be found in Supplementary Sect. S2.2. 641 

(3) Currently, there are no perfect algorithms for tracking TCs from reanalyses. Although the 642 

TC trackers employed in the RGTracks-20C (UZ and OWZ) are two widely recognized algorithms, 643 

they were built with different properties and have different limitations. The above evaluation 644 

analyses show that the OWZ tracker is closer to the observations in terms of TC number and TC 645 

days (Bourdin et al., 2022), while the UZ tracker produces tracks with a shorter duration than the 646 

observations, which is mainly related to its physically based tracker intensity threshold (Horn et al., 647 

2014). However, the UZ has a lower FAR, suggesting that it has an advantage in recognizing real 648 

TCs and is less likely to misclassify other weather systems as TCs. Generally, since the OWZ tracker 649 

demonstrates overall higher stability in detecting TCs, it is recommended to primarily utilize the 650 

OWZ tracker results in most cases, with the UZ tracker as a supplementary reference for analyses. 651 

In addition, in the production of the RGTracks-20C, globally identical thresholds were used in the 652 

TC tracking procedure. However, given the differences in structure and behavior of TCs in different 653 

basins and the influence of different meteorological systems and topography, the use of a globally 654 

identical tracker may affect the accuracies of TC detection in specific regions (Fu et al., 2021; Raavi 655 

and Walsh, 2020a, b). This suggests the need for further improvements in the TC tracking 656 

approaches.  657 

(4) The assimilation of SLPmin from IBTrACS into the 20CRv3 may lead to another limitation. 658 

As discussed in Supplementary Sect. S4, the annual number of available observations and 659 

assimilated observations (including some IBTrACS) increases over time, with both showing 660 

accelerated growth, especially after 1950 (Supplementary Fig. S10). This increasing number of 661 

available observation data could improve the quality of the reanalysis. Consequently, the RGTracks-662 

20C exhibits consistent trends and variations with IBTrACS from 1850 to 2014 (Supplementary Fig. 663 

S11). In particular, the growth trends in TC numbers from both datasets during the mid-20th century 664 

are highly correlated, primarily resulting from the artificial increase in TC detection associated with 665 
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advancements in observational technologies.  In addition, RGTracks-20C currently uses the 666 

ensemble mean field of 20CRv3 as input data, which further affects this similarity by inherently 667 

weakening the intensity and character of extreme events and introducing smoothing effects 668 

(Emanuel, 2024). On the other hand, the assimilation of IBTrACS data has, to some extent, also 669 

improved 20CRv3's representation of TC intensity and structure, enabling TC tracker to more 670 

effectively detect and identify TCs that actually occurred (Slivinski et al., 2019, 2021), such as the 671 

typhoon that made landfall in Japan in 1920 (Fig. 10g) and  hurricane Andrew (1992) (Fig. 9a). Due 672 

to the changing number of assimilated observation data, RGTracks-20C may not capture the realistic 673 

number of TCs in early years. Therefore, caution should be exercised when analyzing the long-term 674 

trend of TC activities. Future versions should improve the reliability of RGTracks-20C by tracking 675 

TCs using individual ensemble members (Emanuel, 2024).  676 

The above factors will be thoroughly considered and addressed in the future versions of 677 

RGTracks-20C to enhance its accuracy and applicability. In the next version of RGTracks-20C, a 678 

few improvements will be included: (1) We detect TCs separately from all 80 ensemble members of 679 

the 20CRv3, in order to avoid the smoothing effects caused by the ensemble mean of reanalyses  and 680 

to provide reliable estimates of uncertainty and confidence (Emanuel, 2024); (2) we will calibrate 681 

algorithm thresholds according to TC characteristics in different ocean basins; (3) more TC tracking 682 

algorithms will be included to address the uncertainty of the TC track data (Flaounas et al., 2023; 683 

Han and Ullrich, 2025).  684 

5. Data Availability 685 

The RGTracks-20C is publicly available at https://doi.org/10.5281/zenodo.14411917 (Ye et al., 686 

2024). The Other datasets utilized in this study are available: the IBTrACS at 687 

https://www.ncdc.noaa.gov/ibtracs/; and the 20CRv3 at 688 

https://portal.nersc.gov/archive/home/projects/incite11/www/ (Slivinski et al., 2019). Historical 689 

weather chart of the 1920 typhoon that made landfall in Japan from http://agora.ex.nii.ac.jp/cgi-690 

bin/weather-chart/calendar.pl?year=1920&month=8&lang=en&type=as. 691 

6. Code Availability 692 

Bourdin (2022a) provided the code for the UZ and OWZ algorithms, which are available at 693 

https://doi.org/10.5281/zenodo.6424432. TempestExtremes can be downloaded from 694 

https://climate.ucdavis.edu/tempestextremes.php, and version 1.5.2 is used for this study. 695 

7. Conclusion 696 

In this study, we introduce the RGTracks-20C, a century-long reanalysis-based historical global 697 

TC dataset. Statistical evaluations and case studies confirm its reliability in capturing the 698 

climatology and interannual variability of observed TC activity on both global and regional scales. 699 

https://doi.org/10.5281/zenodo.14411917
https://portal.nersc.gov/archive/home/projects/incite11/www/
http://agora.ex.nii.ac.jp/cgi-bin/weather-chart/calendar.pl?year=1920&month=8&lang=en&type=as
http://agora.ex.nii.ac.jp/cgi-bin/weather-chart/calendar.pl?year=1920&month=8&lang=en&type=as
https://doi.org/10.5281/zenodo.6424432
https://climate.ucdavis.edu/tempestextremes.php
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A major key strength of the RGTracks-20C is its ability to fill the missing intensity and location 700 

records of observed TCs in early years. This dataset provides a reliable alternative for researchers to 701 

study the long-term variability of TC characteristics, which will help us to better understand changes 702 

and trends in historical TC activity, as well as their relationship with climate change. 703 

This knowledge is crucial for protecting vulnerable coastal areas and mitigating TC-related 704 

risks in the future climate change. As the first version, the RGTracks-20C has limitations, which 705 

may arise from the reanalysis assimilation process and the threshold settings in the TC tracker. 706 

Future versions will further address these issues, refining the dataset to improve accuracy and 707 

broaden applicability. 708 
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