

1 **A full year of continuous net soil and ditch CO₂, CH₄, N₂O
2 fluxes, soil hydrology and meteorology for a drained fen in
3 Denmark**

4 Annelie S. Nielsen¹, Klaus S. Larsen¹, Poul Erik Lærke², Andres F. Rodriguez², Johannes
5 W.M. Pullens², Rasmus J. Petersen³, Jesper R. Christiansen¹

6 ¹Department of Geoscience and Natural Resource Management, University of Copenhagen, Frederiksberg, DK-
7 2000, Denmark

8 ²Department of Agroecology, Aarhus University, Tjele, DK-8830, Denmark

9 ³Department of Ecosystems and Natural Resource Management, Aarhus University, Aarhus, DK-8000, Denmark

10 *Correspondence to:* Jesper R. Christiansen (jrc@ign.ku.dk)

11 **Abstract.** We here present a detailed dataset of automated greenhouse gas (GHG) net soil and ditch fluxes of
12 carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O) from a drained fen in Denmark covering a full
13 year. The dataset resolves small scale spatial and hourly-daily-seasonal dynamics of GHG soil fluxes. The GHG
14 flux dataset is accompanied by simultaneous time series of soil temperature and moisture, as well as
15 groundwater table depth and covers spatiotemporal gradients in soil hydrological and climatic variability. The
16 GHG fluxes of CO₂, CH₄ and N₂O were measured simultaneously by a high-precision cavity ring down laser
17 spectrometer connected with a novel automated GHG system platform called SkyLine2D (Earthbound Scientific
18 Ltd., UK) that allowed up to 27 individual chamber measurement points along a 24 meter transect. In total
19 47.483 chamber measurements were completed and after quality control 44.631 CO₂ fluxes, 44.099 N₂O and
20 42.515 CH₄ fluxes remained.

21 The average (\pm SE) net soil CO₂ efflux observed at the site ($2.6 \pm 0.02 \text{ } \mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$ or $35 \pm 0.3 \text{ tCO}_2 \text{ ha}^{-1} \text{ y}^{-1}$)
22 aligns with findings from similar drained fens in northern Europe. However, this transect average masks
23 substantial spatial variability and highlights the role of episodic emission bursts related to hydrological
24 variability. The organic soil at the site was a larger net source of N₂O ($8.9 \pm 0.1 \text{ nmol N}_2\text{O m}^{-2} \text{ s}^{-1}$ or $123 \pm 1.4 \text{ kg N}_2\text{O m}^{-2} \text{ ha}^{-1} \text{ y}^{-1}$) to the atmosphere compared to other temperate drained organic grassland soils in northern
25 Europe. The soil N₂O emissions were similarly variable in space as soil CO₂ effluxes, but were more dynamic in
26 time, where increasing groundwater table depth in response to precipitation during warmer seasons led to
27 emission bursts of soil N₂O emissions that dominated the annual net budget of soil N₂O and decreased to near-
28 zero fluxes in drier warmer periods. Net soil CH₄ fluxes were near-zero and the site overall acted as a smaller
29 net source ($0.18 \pm 0.06 \text{ nmol CH}_4 \text{ m}^{-2} \text{ s}^{-1}$ or $0.91 \pm 0.3 \text{ kg CH}_4 \text{ ha}^{-1} \text{ y}^{-1}$) compared to other drained organic
30 grassland soils, although net uptake of atmospheric CH₄ was observed as well especially in drier conditions.

32 Diurnal and seasonal patterns of net soil CO₂ and N₂O emissions align with variations of soil temperature, but
33 no clear patterns were observed for net soil CH₄ uptake or emission. Compared to soil GHG fluxes, the ditch
34 was a smaller net source of CO₂ ($0.94 \pm 0.05 \text{ } \mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$ or $1.3 \pm 0.7 \text{ tCO}_2 \text{ ha}^{-1} \text{ y}^{-1}$) and N₂O ($0.35 \pm 0.03 \text{ nmol N}_2\text{O m}^{-2} \text{ s}^{-1}$ or $4.9 \pm 0.4 \text{ kg N}_2\text{O ha}^{-1} \text{ y}^{-1}$) to the atmosphere. The ditch was also a net source of CH₄ ($161 \pm 13 \text{ nmol CH}_4 \text{ m}^{-2} \text{ s}^{-1}$ or $812 \pm 66 \text{ kg CH}_4 \text{ ha}^{-1} \text{ y}^{-1}$) average of diffusive and ebullition fluxes) to the atmosphere and
35 annual cumulative emissions were more than two orders of magnitude larger than net the soil CH₄ emissions,
36
37

38 confirming earlier findings that ditches can be CH₄ emission hotspots, where the ditch CH₄ is emitted in bursts
39 with little seasonal variability, including emissions as ebullitions.

40 The data set (<https://doi.org/10.60612/DATADK/BZQ8JE>) is well suited for testing and developing
41 biogeochemical models, with emphasis on the soil thermal-hydrology interactions with the peat C and N cycles.

42 **1 Introduction**

43 Understanding the climate feedbacks of temperate drained and rewetted wetlands require robust observational
44 datasets of net fluxes, e.g. whether the rewetted peatlands act as net sources or sinks of greenhouse gases
45 (GHG). This necessitates being able to capture spatial and temporal variability from these systems. Flux data
46 covering all three major GHGs are rare for temperate peatlands, and despite growing efforts to quantify GHG
47 fluxes from drained peatlands, existing datasets often suffer from limited temporal resolution, short monitoring
48 periods, or a lack of concurrent hydrological and meteorological data. Many studies rely on chamber-based
49 measurements or short-term campaigns that fail to capture seasonal dynamics and extreme events. Moreover,
50 current datasets typically offer either high temporal resolution (e.g., eddy covariance or automatic chambers)
51 with poor spatial coverage, or manual measurements with good spatial resolution but very low temporal
52 frequency. In turn this hampers the ability to model and forecast GHG fluxes, and hence climatic feedbacks, in
53 these systems under land use and climatic changes.

54 However, automated GHG closed chamber flux measurements from ecosystems are becoming increasingly
55 common, also in peatland research (Anthony and Silver 2023; Boonman et al. 2024) as equipment costs
56 decrease and awareness grows about the importance of resolving temporal variability of GHG fluxes to better
57 understand soil biogeochemical processes and soil-climate feedback. But high-frequency data of GHG fluxes
58 are still scarce for peatlands and spatial variability of fluxes is rarely represented as well due to limited number
59 of spatial replicates. Thus, most automated chamber systems are setup around a multiplexer control unit linking
60 multiple chambers with one or more GHG analysers. State-of-the-art automatic chamber systems, like the LI-
61 8250 Automated Gas Flux System (LiCOR, USA) or the eosAC-LT/LO (Eosense Inc. Canada), i.e. allow for a
62 standard number of 8 or 16 chambers, respectively, that can be upgraded to 36 chambers with additional
63 manifolds. Such large replicate chambers allow for improved characterization of spatial variation or treatment
64 effects coupled with temporal variations, but are costly to establish.

65 Additionally, the introduction of automated chamber systems raises the need for improved data handling and
66 flux calculation tailored to handle a wide range of flux magnitudes and chamber behaviour or design (Kroon et
67 al. 2008; Pihlatie et al. 2013). Recent examples of novel flux calculation software are based on publicly
68 available R codes and include goFlux (Rheault et al. 2024), HMR (Pedersen et al. 2010; Pullens et al. 2023) and
69 fluxfinder (Wilson et al. 2024). Furthermore, unsupervised automated chamber flux measurements increases the
70 likelihood of misinterpretation of fluxes, such as overestimated night-time fluxes due to atmospheric
71 stratification that disturbs the steady-state diffusion gradient between soil and the atmosphere (Brændholt et al.
72 2017) or leaky chambers that disturb chamber headspace concentrations. This is a significant challenge of
73 automated chamber systems producing thousands of data points, where manual control of each data point may
74 not be practical or feasible calling for automated and objective quality control such as used with the eddy
75 covariance methodology.

76 We here present a dataset that addresses the abovementioned limitations by uniquely combining high-frequency,
77 continuous measurements of net soil fluxes of carbon dioxide (CO₂), methane (CH₄) and nitrous oxide (N₂O)
78 with detailed hydrological and meteorological variables. The GHG fluxes were measured with an automated
79 GHG chamber system over 12 months resolving spatiotemporal patterns of GHG fluxes including 27 individual
80 collars (26 on organic soil and 1 in a ditch) over a 24 m transect on a temperate drained fen peatland. Integrated

81 quality control, flagging of erroneous or uncertain flux measurements enabled objective filtering of poor quality
82 data on the entire dataset. This comprehensive spatiotemporal coverage enables robust calibration and validation
83 of biogeochemical and hydrological models, particularly those aiming to simulate the complex interactions
84 between water table dynamics, soil processes, and GHG emissions in managed peatland systems.

85 Considering the critical need for obtaining high-quality data on soil GHG fluxes from natural and restored
86 peatlands in Europe and globally, our dataset marks an important contribution to this endeavour as it addresses
87 current data shortcomings for Danish and European peatlands by providing detailed data on temporal and spatial
88 patterns of GHG fluxes from organic soils and drainage ditches together with environmental drivers of soil
89 hydrology and temperature, organic soil properties and groundwater geochemistry. We publish this data with the
90 aim of it being used by the scientific community for both experimentalists to test hypothesis of how GHG
91 dynamics are related to hydrology, soil, geochemistry and climate, as well as for the modelers to test and
92 develop biogeochemical models for peat lands.

93 **2 Materials and Methods**

94 **2.1 Site description and the SkyLine2D system**

95 The field site, Vejrumbro (N 56.43819 E 9.54527 (WGS 84)), is located in Central Jutland, in Denmark near the
96 city of Viborg (Fig. 1) with a mean annual temperature of 8.3°C and annual precipitation of 675 mm for the
97 period 1991–2020 (measured 6 km away at Aarhus University Viborg Meteorological Station in Foulum
98 (Jørgensen et al. 2023)). It is situated in the Nørre Å valley and is characterized as a riparian fen peat soil (Reza
99 Mashhadi et al. 2024). The riparian fen developed in a former glacial river valley with flat topography gently
100 sloping (<2.5 meters over 300 meters) towards the Nørre Å that forms the central river in this area (Fig. S1).
101 The site was drained in 1950 with ditches and tile drains for cultivation but has primarily served as grassland in
102 recent decades due to the wet conditions (Nielsen et al. 2024). Since 2018, Vejrumbro has been a living lab for
103 agroecological research managed by the Department of Agroecology at Aarhus University. From 2018, the site
104 had a passive rewetting strategy by terminating maintenance of the open ditches. During 2022, the main ditches
105 were gradually blocked.

106 2.1.1 Site preparation and disturbance

107 Initially, we chose to perform the flux measurements without aboveground plants as the small chamber
108 dimensions (height of 20 cm) prohibited inclusion of these in the chamber as the plants typically reach over 100
109 cm in height at this site. The strategy was therefore to focus on measuring net soil GHG fluxes, where we
110 assume the contribution of gases are derived from heterotrophic respiration of older peat C/N, root exudated
111 C/N from adjacent plants, dissolved N in groundwater and belowground autotrophic respiration (CO₂) from
112 roots inhabiting the peat below the collars. We are aware that omitting plants prohibit a full evaluation of the net
113 ecosystem exchange of GHG and hence its net climate impact, as the aboveground plants represent a net sink of
114 atmospheric CO₂ and also can increase the emission of CH₄ and N₂O (Jørgensen et al. 2012; Vroom et al. 2022).
115 However, by avoiding plants we also isolate the soil processes leading to net soil emission/uptake of the GHG
116 and resolve spatiotemporal patterns to a higher degree than previous studies at this site have achieved and what
117 other commercial platforms are capable of. Collectively, this can provide a mechanistic insight into the

118 regulation of fluxes by hydrology and temperature. We acknowledge that future studies of GHG fluxes in
119 peatlands should seek to include the aboveground plant component to the net GHG flux from the ecosystem.

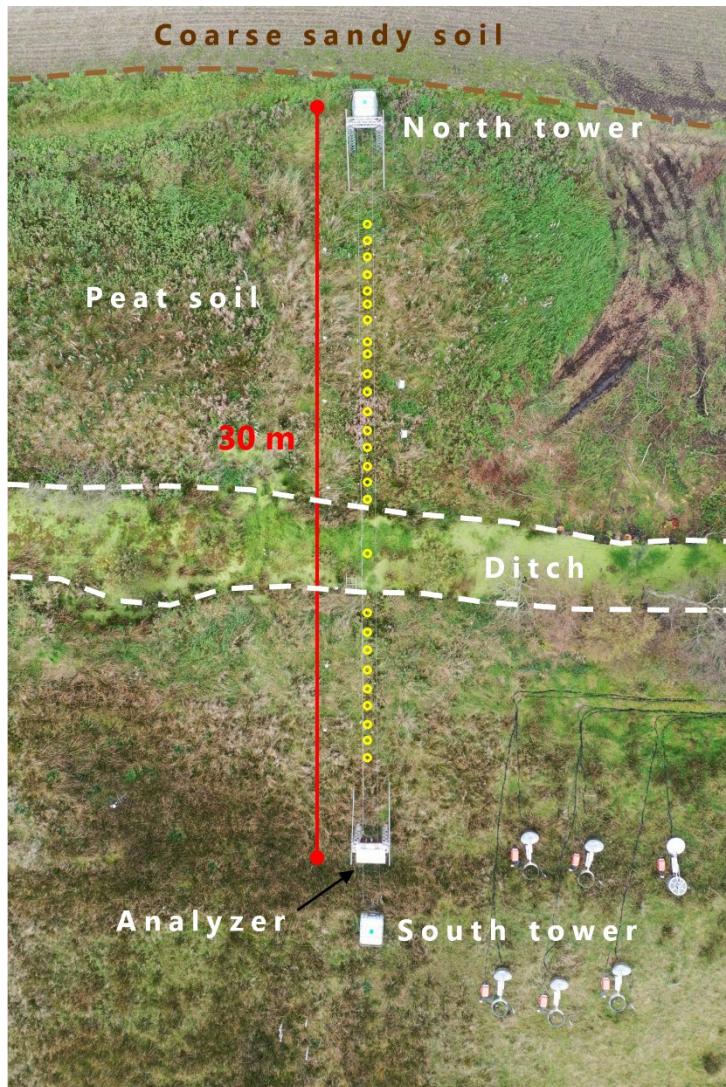
120 The disturbance to the transect related to initial harvesting and removal of aboveground plants and continuous
121 removal of aboveground live plant inside the collars and in a small perimeter outside the collar. In this way we
122 kept an approximate area of 40 x 40 cm clear of vegetation at each collar. Two months prior to installation of
123 collars in summer of 2021, the transect (Fig. 2) was harvested and remaining living aboveground vegetation was
124 killed by applying one recommended dose of glyphosate (~100 mg m⁻²) to the plants only across the transect and
125 avoiding spraying on the soil surface. The half-life of labile glyphosate in mineral soils range between 6-87 days
126 (average 21 days) (Padilla and Selim 2020) with clay contents increasing half-life. The absence of clay and low
127 dosage indicate that there were no, or only little traces of glyphosate left once the flux measurements began and
128 hence the glyphosate treatment likely did not have a direct impact on the measured fluxes. Continued glyphosate
129 application would potentially have reduced microbial activity in the soil and thus lower microbial respiration
130 (Nguyen et al. 2016). Considering that we sprayed the vegetation only one time with glyphosate months prior to
131 flux measurements, we assume the direct impact on soil microbial processes to be small. However, we cannot
132 fully rule out that glyphosate may have led to a transient response. Because we did not have an undisturbed
133 control we cannot quantify the effects of glyphosate. Subsequently, regrowth inside the collars was restricted by
134 manual harvesting of emerging plants at a minimum of once every 7 days and throughout the period. Plant
135 removal from collars is considered a common practice to isolate net soil GHG fluxes as the aboveground
136 autotrophic respiration is removed. Since the individual collars were not trenched it is unavoidable to include
137 belowground autotrophic respiration from plants growing adjacent to the collars. To avoid excessive disturbance
138 of the site we did not remove these roots. Since we did not have a control, untreated/unharvested plot it is not
139 possible to assess the direct impact of the disturbance on the GHG fluxes.

140

141 **Figure 1: The Vejrumbro location in Jutland (N 56.43819 E 9.54527 (WGS 84)) in the Nørre Å valley near the village**
 142 **of Vejrumbro. The grey circle marks the placement of the SkyLine2D system. Satellite images: © Google Earth.**

143 2.1.2 Peat and organic soil characteristics

144 In November 2023 the peat across the SkyLine2D transect was sampled to 1 meter depth using a Russian auger
 145 and cores split into five layers of 20 cm thickness. Collars 1, 2, 5, 6, 8, 13 – 27 were sampled. For the remaining
 146 collars it was not possible to retrieve a sample due to excessive wetness of the peat. The decomposition of the
 147 peat samples were assessed by a 10-point Von Post scale of humification (1 = completely undecomposed and 10
 148 = completely decomposed) together with quantification of the pH_{H₂O} (1:5 peat:water mix), dry bulk density (g
 149 cm⁻³) and total C and N by dry combustion (g C/N 100 g peat⁻¹ or %) (Table 1).


150 **Table 1 Mean (±standard error of the mean (SE)) peat/organic soil characteristics of humification degree (Von Post),**
 151 **pH (H₂O), dry bulk density (ρ_{dry}), total C (TC) concentration, total N concentration (TN) and the C/N ratio for collars**
 152 **1, 2, 5, 6, 8 and 13 - 27 at the Vejrumbro transect.**

Depth (cm)	N	Von post		pH (H ₂ O)		ρ _{dry} (g cm ⁻³)		TC (%)		TN (%)		C/N	
		Min	Max	Mean	±SE	Mean	±SE	Mean	±SE	Mean	±SE	Mean	±SE
0-20	20	7	10	4.2	0.08	0.31	0.02	26	1.1	1.6	0.06	16	0.4
20-40	20	5	10	4.6	0.06	0.20	0.01	43	1.3	1.8	0.04	24	0.7
40-60	11	3	8	4.9	0.10	0.15	0.01	48	1.8	1.9	0.05	25	1.1
60-80	11	3	6	5.3	0.09	0.11	0.01	47	1.8	1.9	0.05	24	0.6
80-100	10	1	8	5.4	0.09	0.10	0.02	44	2.1	1.9	0.05	24	0.6

153 Generally, there was peat/organic soil to one meter depth except for one collar (25) where gyttja was found in a
154 depth of 80 cm (Table 1). The organic soil was more decomposed in the top 40 cm indicated by higher Von Post
155 values between 5 and 10. Below 40 cm peat still displayed high levels of decomposition along the transect, but
156 was more often found to be less decomposed, values ranging from 1-8 (Table 1). This corresponds well to the
157 previous land use with drainage of the topsoil leading to higher degree of humification. Also, the organic soil
158 was most dense in the top 20 cm (on average $0.31\pm0.02\text{ g cm}^{-3}$) and bulk density decreased to $0.10 - 0.12\text{ g cm}^{-3}$
159 from 40 – 100 cm depth. Total C and N was lowest in the 0-20 cm layer, but still classified as organic soil.
160 Below 20 cm total C and N concentrations, respectively were similar. C/N ratio was lowest in the top 20 cm
161 (16 ± 0.4) and increased to 22-25 in 20 – 100 cm depth (Table 1).

162 2.1.3 Groundwater water sampling and chemical analysis

163 Groundwater was sampled monthly in the piezometers placed at collars 1, 5, 13, 18, 22 and 27 (Fig. 3) by
164 retrieving a 200 mL sample 20-30 cm below the groundwater level at the sampling time. The water sample was
165 retrieved using a syringe and transferred to a plastic bottle that was capped to avoid air bubbles. Water samples
166 were frozen immediately after sampling and subsequently after thawing analyzed for pH, EC and alkalinity on a
167 855 Robotic Titrosampler (Metrohm, Germany). Total N and DOC were measured on a TOC-V CPH Analyzer
168 with Total Nitrogen Unit TNM-1 & ASI-V Autosampler (Shimadzu, Japan). Ion chromatograph (IC) analyses
169 of Cl^- , NO_3^- , and SO_4^{2-} were performed on a 930Compact IC Flex (Metrohm, Germany) and NH_4^+
170 concentrations were measured with continuous flow analysis using a Seal AA500 Autoanalyzer (SEAL
171 Analytic, USA). Total dissolved Fe and P were analyzed with coupled plasma–mass spectrometry (ICP-MS) on
172 an iCAP-Q ICP-MS (Thermo Fisher Scientific, USA) in KED mode using He as the collision gas. Prior to
173 analysis the 10 mL subsamples were acidified with 200 μL concentrated nitric acid to a 10 mL sample.
174 Elemental ICP-MS analyses also included dissolved base cations of Ca^{2+} , Mg^{2+} , K^+ , Na^+ as well as total
175 dissolved Al and Mn cations (not shown, but included in the data set).

176


177 **Figure 2: Drone image of the measurement transect (September 27th, 2023) after flux measurements had stopped.**
 178 **Dashed brown line marks the approximate boundary between the agricultural field, coarse sandy soil (north) and the**
 179 **peat/organic soil (south). The red line marks the end points of the SkyLine2D system (30 meters). The open yellow**
 180 **circles (n=27) mark the approximate position of individual collars across the transect of the field (24 meters in length)**
 181 **where greenhouse gas fluxes were measured. The ditch is placed between the dashed white lines. The analyser was**
 182 **placed at the south tower. Elevation above sea level along the 24 meter collar transect varied little from 3.77 m in the**
 183 **south to 4.06 m in the north.**

184 2.1.4 SkyLine2D system configuration at Vejrumbro

185 The SkyLine2D system is an automated chamber based system for measuring GHG fluxes. The system is
 186 designed and built by Earthbound Scientific Ltd. (United Kingdom). We used the SkyLine2D system to measure
 187 the net soil fluxes of carbon dioxide (CO₂), methane (CH₄) and nitrous oxide (N₂O) measured with an automated
 188 GHG chamber system over 12 months resolving spatiotemporal patterns of GHG fluxes including 27 individual
 189 collars (26 on organic soil and 1 in a ditch) over a 24 m transect on a temperate drained fen peatland.

190 The SkyLine2D system transect was oriented in an north-south direction (Fig. 2). Two 2.5 meter-tall scaffold
 191 towers marked the end of the 30 m SkyLine2D system (Fig. 2 and Fig. S2D). The towers were fixed by ropes

192 attached to 1000L pallet tanks filled with water (Fig. S2D) that maintained a stable position of the towers and
 193 ropes and hence placement of the chamber over the collars. The measurement transect was in total 24 m with 27
 194 individual measurement collars for GHG fluxes on the ground, 26 on organic soil and 1 in a drainage ditch (Fig.
 195 2 and 3). The GHG analyser (model G2508, Picarro Inc., USA) was installed in a waterproof and temperature-
 196 controlled shelter at the south end of the transect (Fig. 2 and Fig. S2C). The transect was situated on the edge of
 197 the riparian fen in close proximity to the mineral upland soils, where active agriculture was practiced (Fig. 2).
 198 Along the transect volumetric soil water content (SWC) and soil temperature (ST) as well as water table depth
 199 (WTD) were measured at seven locations (Fig. 4). The agricultural field north of the SkyLine2D was sown with
 200 annual crops in rotation according to normal practice.

201 **Figure 3: Schematic representation of the measurement transect at Vejrumbro and associated measurement**
 202 **variables. The annual cumulative fluxes of CO₂ (red) (kg CO₂ m⁻² y⁻¹), N₂O (green) (g N₂O m⁻² y⁻¹) and CH₄ (blue) (g**
 203 **CH₄ m⁻² y⁻¹) are shown for each collar across the measurement transect at Vejrumbro. Closed and open symbols for**
 204 **CH₄ represent net cumulative emission and uptake, respectively. Mean WTD is the mean water table depth measured**
 205 **in piezometers (blue dashed line). GHG collars (green symbols) mark the positions of greenhouse gas flux**
 206 **measurements of CO₂, CH₄ and N₂O. SWC/ST + GHG mark the positions where volumetric soil water content**
 207 **(SWC) and soil temperature (ST) at 5 cm depth were measured alongside greenhouse gas fluxes. Numbers on top of**
 208 **plot show the collar numbers (from 1 – 27). N and S mark the north and south ends of the transect (see Fig. 3). The**
 209 **peat depth was at least one meter in all points.**

211 2.2 Overview of time series of GHG fluxes, soil temperature/moisture, air temperature, wind direction and
 212 groundwater level

213 The dataset is comprised of a 12-month time series of net soil fluxes of CO₂, CH₄ and N₂O, accompanied by a
 214 longer timeseries of soil temperature and moisture at 5 cm depth, meteorological variables (air temperature,
 215 wind speed and direction measured at 2 meter height) and a shorter time series groundwater table level, depth
 216 and temperature (Fig. 3, Table 2). Due to equipment failure of the SkyLine2D the GHG flux measurements
 217 started on February 2nd, 2022 (Table 2). Groundwater level measurements started between March 9th to 31st,
 218 2022 (Table 1). All other variables were measured continuously from July 1st, 2021, until January 31st, 2023

219 (Table 1). In the period between December 7th and 19th, 2022 intermittent periods of snow cover (depth was not
220 measured) on the ground occurred. This snow cover did not impede flux measurements.

Table 2: Available time series data from the Vejrumbro SkyLine2D system. Coloured time periods in 2021 to 2023 for each variable indicate data availability.

Variable	Unit	Model/sensor type	Data availability																		
			2021			2022			2023												
			Frequency (minutes)	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan
CO ₂ flux*	µmol CO ₂ m ⁻² s ⁻¹	G2508 (Picarro Inc., USA)	~10**																		
CH ₄ flux*	nmol CH ₄ m ⁻² s ⁻¹	G2508 (Picarro Inc., USA)	~10**																		
N ₂ O flux*	nmol N ₂ O m ⁻² s ⁻¹	G2508 (Picarro Inc., USA)	~10**																		
Soil temperature at 5 cm depth***	°C	RXW-TMB-868 (Onset, USA)	5																		
Soil water content at 5 cm depth***	(cm ³ cm ⁻³)	RXW-SMD-868 (5HS) (Onset, USA)	5																		
Air temperature at 2 m height	°C	S-THC-M002 (Onset, USA)	5																		
Wind speed	m s ⁻¹	S-WSB-M003 (Onset, USA)	5																		
Wind direction	°	S-WDA-M003 (Onset, USA)	5																		
Groundwater level****	m.a.s.l.	DCL532 (BD sensors, Germany)	15																		
Groundwater table ****	cm	DCL532 (BD sensors, Germany)	15																		
Groundwater temperature***	°C	Dallas DS 18B20	15																		

*Net soil/ditch fluxes for all collars 1 - 27.

**Time in between two consecutive flux measurements. The 10 minutes comprise actual flux measurement of 5 minutes and 5 minutes headspace flushing between flux measurements.

***Measured for a subset of collars: 4, 7, 9, 23, 27.

****Measured for a subset of collars: 1, 5, 10 (ditch), 13, 18, 22, 27.

226 **2.3 Soil moisture and temperature measurements**

227 Soil moisture was measured at collars 1, 7, 9, 18, 23, 27 (Figure 4) and probes (6 cm length) were inserted at an
228 approximate 30° angle 5 cm outside the collar, while the soil temperature probes were inserted vertically
229 adjacent to the soil moisture probe.

230 **2.4 Groundwater table level and depth**

231 Piezometers (inner diameter 5 cm) were installed at collars 1, 5, 10 (ditch), 13, 18, 22, 27 (Figure 4) to 1 meter
232 depth below the surface, which is deeper than the lowest groundwater level in summer (~60 cm below the
233 surface) with openings from 0.1 – 1.2 meter below terrain. In the ditch the piezometer bottom was deeper than
234 one meter to secure anchoring in the peat. The piezometers were installed approximately 50-60 cm beside the
235 collars to avoid interference with the SkyLine2D system. After installation, piezometers were cleaned and
236 sealed at the surface with bentonite pellets to avoid surface infiltration along the piezometers which can distort
237 water level measurements.

238 Pressure transducers (Table 2) connected to Arduino-loggers were installed in each piezometer (at collars 1, 5,
239 10, 13, 18, 22 and 27 – Fig. 3) approximately 1 m below terrain measuring water levels every 15 minutes. The
240 pressure transducers were vented and thus do not need correction for atmospheric pressure.

241 The groundwater levels were described using two metrics: hydraulic head and groundwater depth (GWD).
242 Hydraulic head represents the water level relative to mean sea level, based on the Danish Vertical Reference
243 (DVR90), while GWD indicates the depth of the groundwater below the surface terrain. The elevation of top of
244 the piezometers were measured using a GPS (model GS07 High Precision GNSS Antenna with a CS20
245 Controller, Leica, Germany) and used as a local reference for hydraulic head. Manual measurements of
246 groundwater levels were conducted every 2 months and used to calibrate the logger water levels to hydraulic
247 head and GWD.

248 **2.5 Wireless data transfer**

249 Wireless sensors for air temperature, wind speed, wind direction, soil temperature and volumetric soil water
250 content were set up with Wi-Fi data transfer to HOBO RX3000 Weather Station (Onset, USA) equipped with
251 HOBOnet Manager (RXMOD-RXW-868) module for wireless communication with sensors and logged data
252 every 5 minutes. Data access was through the HOBOlink cloud software.

253 Groundwater loggers were interfaced with the I²C (Inter-integrated Circuit) protocol and data was collected on
254 Arduino custom-built logger (<https://vandstande.dk/logger.php>) with wireless connection via LoRaWAN or
255 SigFox.

256 **2.6 Greenhouse gas flux measurements with the SkyLine2D system at Vejrumbro**

257 Along the SkyLine2D transect the 26 individual collars (Ø19 cm) along the 24 meter transect on organic soil
258 (Fig. 3) were inserted 5 cm into the peat leaving 5 cm above the surface. The collars were distanced app. 70 cm
259 apart. One collar was installed in the ditch by inserting a tube (Ø19 cm, length 100 cm) to the bottom of the
260 ditch with holes deeper than the minimum water level in the ditch to allow water flow. Thus, it was avoided that

261 air entered in the collar in the ditch due to low water levels in the ditch. On top of this longer tube a collar (Ø19
262 cm, length 10 cm) was glued allowing for flux measurements. The chamber was programmed to stop when the
263 bottom of the chamber sat the water surface if the water level in the ditch extended above the top of the collar.
264 For most of the time the collar was not submerged and the chamber therefore hit the collar.

265 There was one round transparent chamber (height: 39.5 cm and inner Ø: 19 cm, volume: 11.2 L) on the
266 SkyLine2D, hanging below a moving trolley, which was suspended on two ropes stretched between the north
267 and south towers (Fig. S2A and B). At defined positions along the rope, neodymium magnets had been inserted,
268 and a magnet sensor (Fig. S2B) on the trolley informed the internal computer to stop and lower the chamber
269 over positions with a collar on the surface. The chamber was lowered and guided down to the collar by
270 supporting rods shaping a funnel (Fig. S2A). The chamber stopped when it hit the collar, achieved through a
271 pressure sensor on top of the chamber connected to a hollow rubber gasket (Ø 3 cm) at the bottom, which also
272 sealed the chamber with the collar. There was no fan installed in the chamber as the mixing was ensured by the
273 main pump (Fig. S2C). A vent was installed in the top of the chamber to allow for pressure equilibration under
274 windy conditions and chamber deployment.

275 One entire flux + flushing sequence lasted 10 minutes (Table 1). The chamber closure period was set to 5
276 minutes with a purging time of 5 minutes in between measurements when chamber was open and hanging
277 underneath the trolley at approximately 1 meter above the ground (Fig. S2D). This provided on average 10 min
278 between flux measurements on consecutive collars (Table 1). Due to small variations in mechanical operations,
279 flux measurements were occasionally farther apart than 10 minutes, but overall, the timing of the SkyLine2D
280 system was consistent. After each cycle of 27 flux measurements there was a 30-minute delay until the start of
281 the next cycle. On average this resulted in 4-5 flux measurements per collar per day throughout the period.

282 To determine the concentrations of CO₂, CH₄ and N₂O in the chamber air, a laser spectroscopy GHG analyser
283 (model G2508, Picarro Inc., USA) was used. The sample output frequency was set to 1 Hz with a manufactured
284 specified raw precision on 1 Hz data for CO₂: 240 ppb, CH₄: 0.3 ppb and N₂O: 5 ppb at ambient conditions
285 (Picarro Inc., USA). A main pump (model: N86 KN.18, KNF, Germany) circulated the air to and from the
286 chamber at 6 L min⁻¹. The GHG analyser was installed in parallel to the inflow from the chamber due to the
287 much lower flow of 250 mL min⁻¹ of the vacuum pump. There was a 30-meter tube between the chamber and
288 main pump to allow for the GHG analyser to remain stationary in the hut while the trolley moved.

289 2.7 Calculation of diffusive fluxes

290 Fluxes were calculated and quality checked using the goFlux R package (Rheault et al. 2024) and presented as
291 $\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$, $\text{nmol N}_2\text{O m}^{-2} \text{ s}^{-1}$ and $\text{nmol CH}_4 \text{ m}^{-2} \text{ s}^{-1}$. Prior to flux calculations, the gas concentration data
292 from the G2508 was matched to the chamber closure time and chamber id in order to determine the start time of
293 the chamber measurement, so it was possible to separate individual flux measurements from each collar over the
294 measurement time (see examples of flux detection and calculation in Fig. S3A-D). An automatic deadband
295 detection method was applied based on maximal R² of a linear regression over the first 180 s (in 10 s steps) after
296 chamber closure. The deadband was allowed to attain values between 0 to 150 seconds thereby also allowing for
297 compensation for the ~60 s delay between chamber headspace gas concentration change and GHG analyser
298 detection due to transport time through the 30 m tube connecting the chamber and GHG analyser.

299 Flux calculations were done with both linear (LM) and non-linear (Hutchinson-Mosier – HM) regression models
300 (Pihlatie et al. 2013) to determine the slope at time zero. The best flux estimates with either the LM or HM
301 regression model was determined using the *best.flux* function in the goFlux package (Rheault et al. 2024).
302 Shortly, if the RMSE of the HM model was lower than minimum detectable flux (MDF), HM was chosen.
303 However, if the ratio (g-factor) between HM and LM was larger than 2, LM was chosen, as this indicates over-
304 fitting of the HM, which may result in unrealistic large HM flux estimates. If the relative SE of the slope
305 (SE/slope) at time zero for the HM model was larger than 100% it indicated overfitting of the HM model and
306 the LM was chosen. This approach is conservative as it will discard non-linear flux behaviour and instead
307 provide a conservative linear flux estimate. Out of 47.438 detected flux measurements for CO₂, CH₄ and N₂O,
308 respectively, a total of 2807 CO₂ fluxes (5.9%), 3339 N₂O fluxes (7%) and 4923 CH₄ fluxes (10.3%) were
309 discarded either due to chamber mechanical malfunction (imperfect sealing on collar due to erroneous lowering
310 of chamber on collar indicated by background atmospheric or fluctuating gas concentrations in the headspace).
311 At low flux levels non-significant fluxes were discarded as it was not possible to visibly detect whether there
312 was a flux due to high noise-signal ratio of the analyser and/or it was because the chamber had malfunctioned. It
313 is acknowledged that discarding low fluxes can bias annual means and cumulative values, but the data quality
314 did not allow us to determine whether the flux measurement was performed correctly and hence a conservative
315 approach was chosen as including false low fluxes would also bias the data set.

316 For flux measurements the air temperature in 2 meters was used as an estimate of the chamber headspace
317 temperature along with a 1 atm air pressure.

318 The annual cumulated fluxes from the soil or the ditch were estimated simply by multiplying the daily average
319 CO₂, CH₄ or N₂O flux for the measurement period with 365 days. We believe for the purpose of data
320 presentation that this simplistic methodology is adequate here, also given the very few data gaps in the
321 timeseries. However, there are other more sophisticated methods using interpolation and response variable
322 functions that may refine the annual budget. However, it is not the goal of this manuscript to present these
323 methodologies but to provide the data so other users can test different temporal upscaling methodologies.

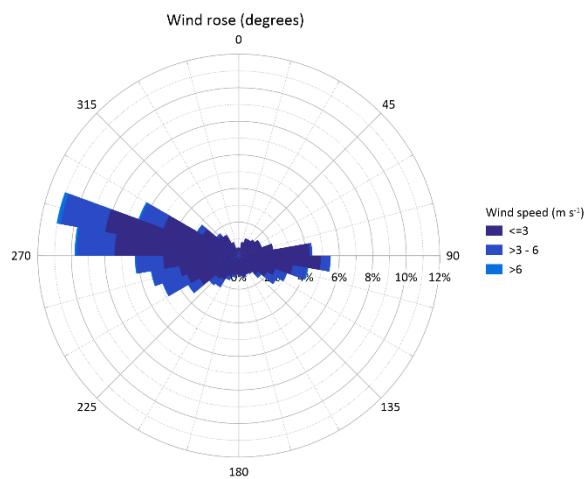
324 **2.8 Calculation of ebullition fluxes in the ditch**

325 Methane ebullition fluxes were occasionally observed only in the ditch. The resultant CH₄ time series for the
326 chamber would have a characteristic appearance (Fig. S4) where the measurement would essentially start out as
327 diffusive flux measurement, then CH₄ bubbles entered the chamber headspace, and the concentration would
328 quickly increase to a maximum value and reach a threshold concentration corresponding to the mixed headspace
329 concentration. In these cases, the LM/HM flux calculation assumptions are violated and instead the ebullition
330 flux would be calculated as the total increase in CH₄ mass m⁻² per 5 min enclosure. The mass flux of CH₄ per
331 enclosure (nmol m⁻² per 5 min enclosure) was calculated according to Eq. (1):

$$332 F_{CH_4-ebu} = dCH_4 * \frac{V_{system}*P}{A*R*T} \quad (1)$$

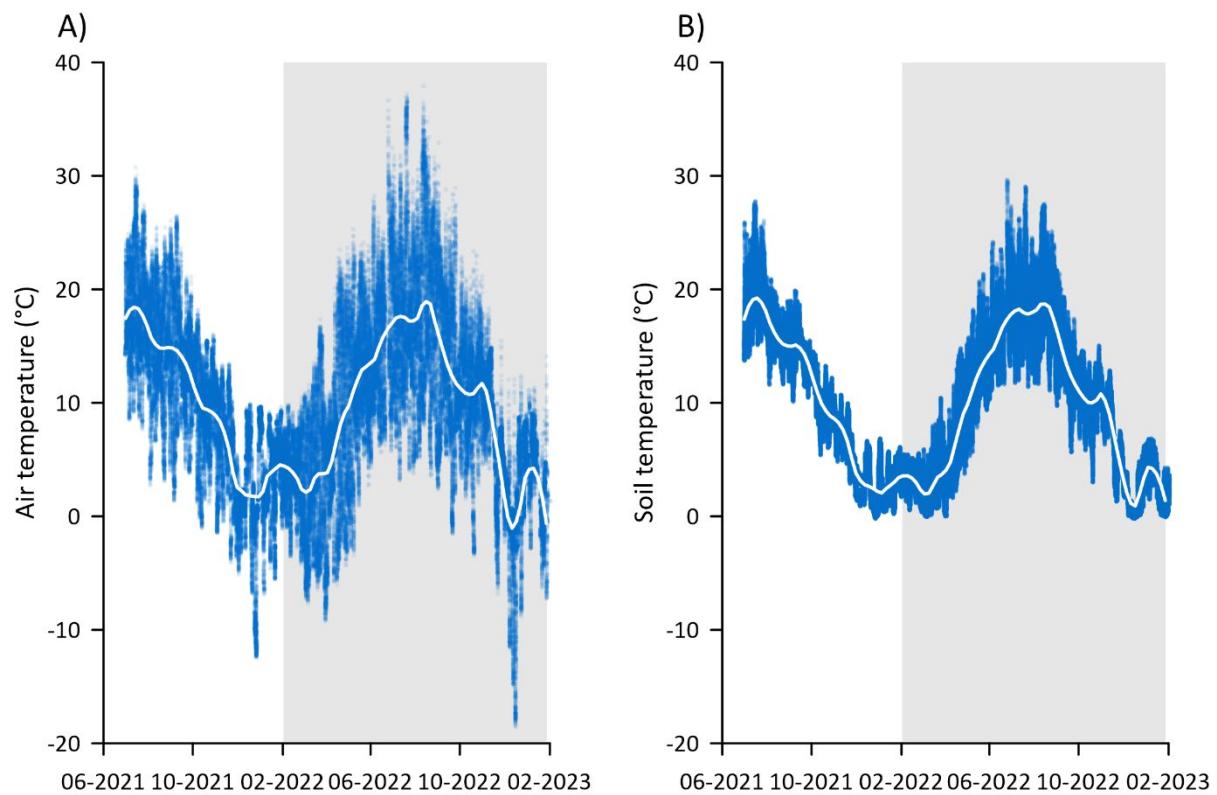
333 Where dCH₄ is the concentration difference in nmol between start of chamber enclosure (CH_{4,start}) and end CH₄
334 concentration (CH_{4,end}) after it reached a plateau (Fig. S4), V_{system} is the total volume (11.7 L) of the system
335 (collar, chamber, tubes and GHG analyser) in L, P is the pressure (1 atm), A is the area of the collar (0.028 m²),

336 R is the gas constant (0.082057 L atm K⁻¹ mol⁻¹) and T is the chamber headspace temperature (K). The time step
337 of dCH₄ was assumed to be 1 second meaning that the flux unit is nmol CH₄ m⁻² s⁻¹.


338 Out of a total of 1728 flux measurements from the ditch (collar 10), 334 were classified as ebullitions indicating
339 that ebullition was erratic which is in line with studies of ebullition of fluxes from ponds (Wik et al. 2016; Sø et
340 al. 2023). Hence, it can be assumed that ebullition occurred around 19.3% of the time during the measurement
341 period (360 days). Furthermore, the ebullition flux is calculated as the accumulated CH₄ in the chamber
342 headspace during the entire flux measurement, e.g. 5 minutes here (Sø et al. 2023), and the calculated ebullition
343 flux in the data set is therefore representative of 5 minute enclosure and not per second. To extrapolate to an
344 annual estimate the number of 5 minute enclosures in 19% of 360 days is therefore estimated (N=20049 5-min
345 360 days⁻¹), multiplied with the average ebullition flux (nmol CH₄ m⁻² 5 min⁻¹).

346 Ebullitions could also be caused by mechanical disturbance of the chamber landing on the collar. Ebullition
347 fluxes were discarded if the sudden increase in CH₄ headspace concentration (Fig. S4) occurred 30 seconds after
348 recorded chamber closure as this indicated bubbles released by chamber deployment on top of the collar.

349 **3 Data presentation**

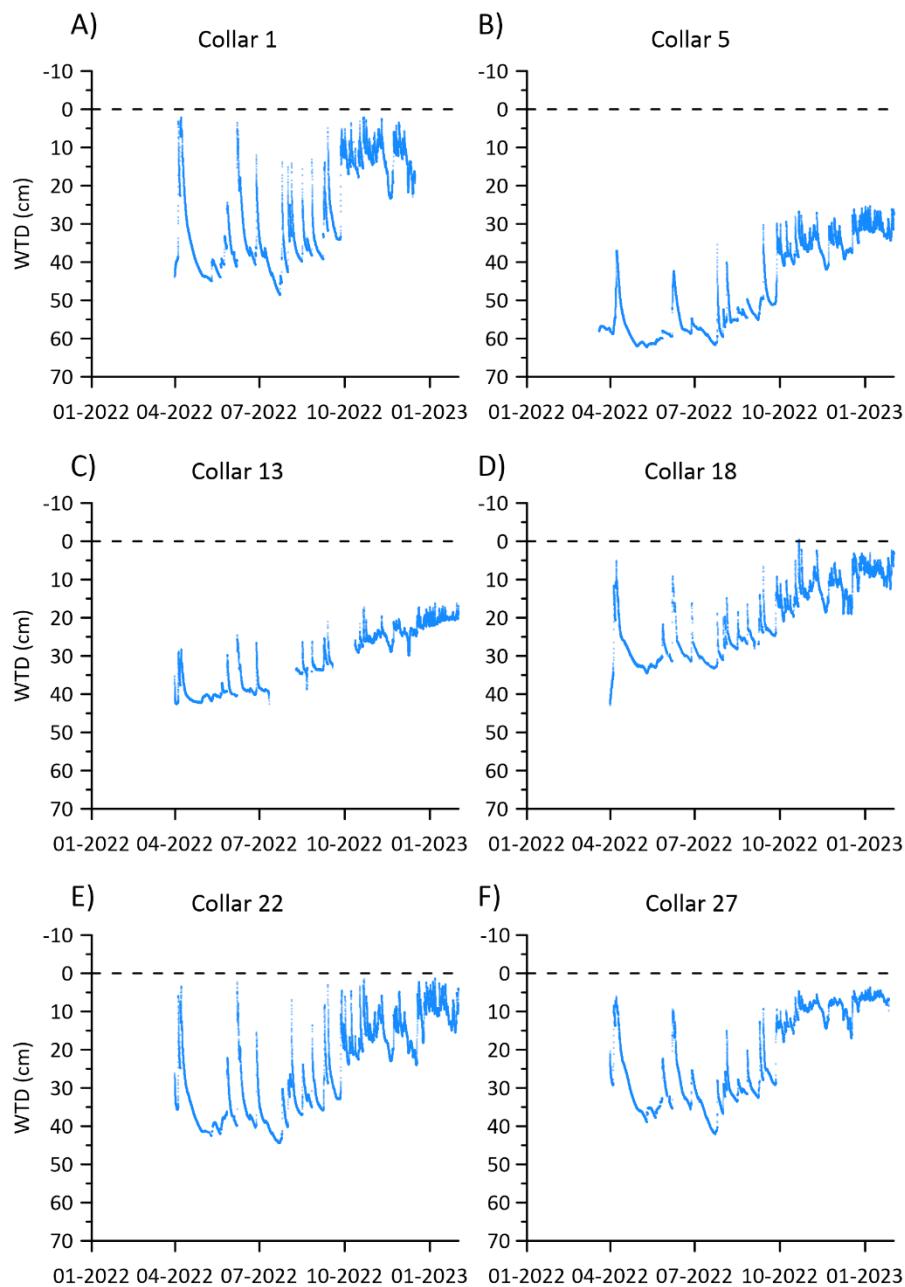

350 **3.1 Wind speed and direction**

351 Generally, the wind regime during the measurement period was rather mild with monthly average wind speeds
352 ranging between 1.2 to 2.9 m s^{-1} and maximum gust up to 20 m s^{-1} . The wind direction was uniformly from the
353 west for 52% of the time, with easterly winds constituting 27% and northern and southern winds 8 and 13% of
354 the time (Fig. 4). Winds from western directions were highest for the longest period, while easterly winds were
355 of similar magnitude, but less frequent (Fig. 4). Northern and southerly winds were generally below 3 m s^{-1} and
356 represented periods with still conditions. The very uniform western-eastern wind field at Vejrumbro may also
357 partly be explained by the W-E direction of the valley in which the site is situated, that effectively blocks or
358 dampens winds from S and N.

359

360 **Figure 4: Wind regime at Vejrumbro for the period July 1st, 2021 to January 31st, 2023 presented as a wind rose**
361 **diagram with wind speed and direction for the period.**

363
 364 **Figure 5:** Time series of A) air temperature in °C measured at 2 meter height above the surface and B) soil
 365 temperature (°C) at 5 cm depth for collars 4, 7, 9, 23 and 27 along the measurement. The blue dots are the raw 5 min
 366 measurements of air temperature and the white lines represent are LOESS fit to show overall seasonal trend. The
 367 periods of GHG measurements with the SkyLine2D system are shown with the shaded area.

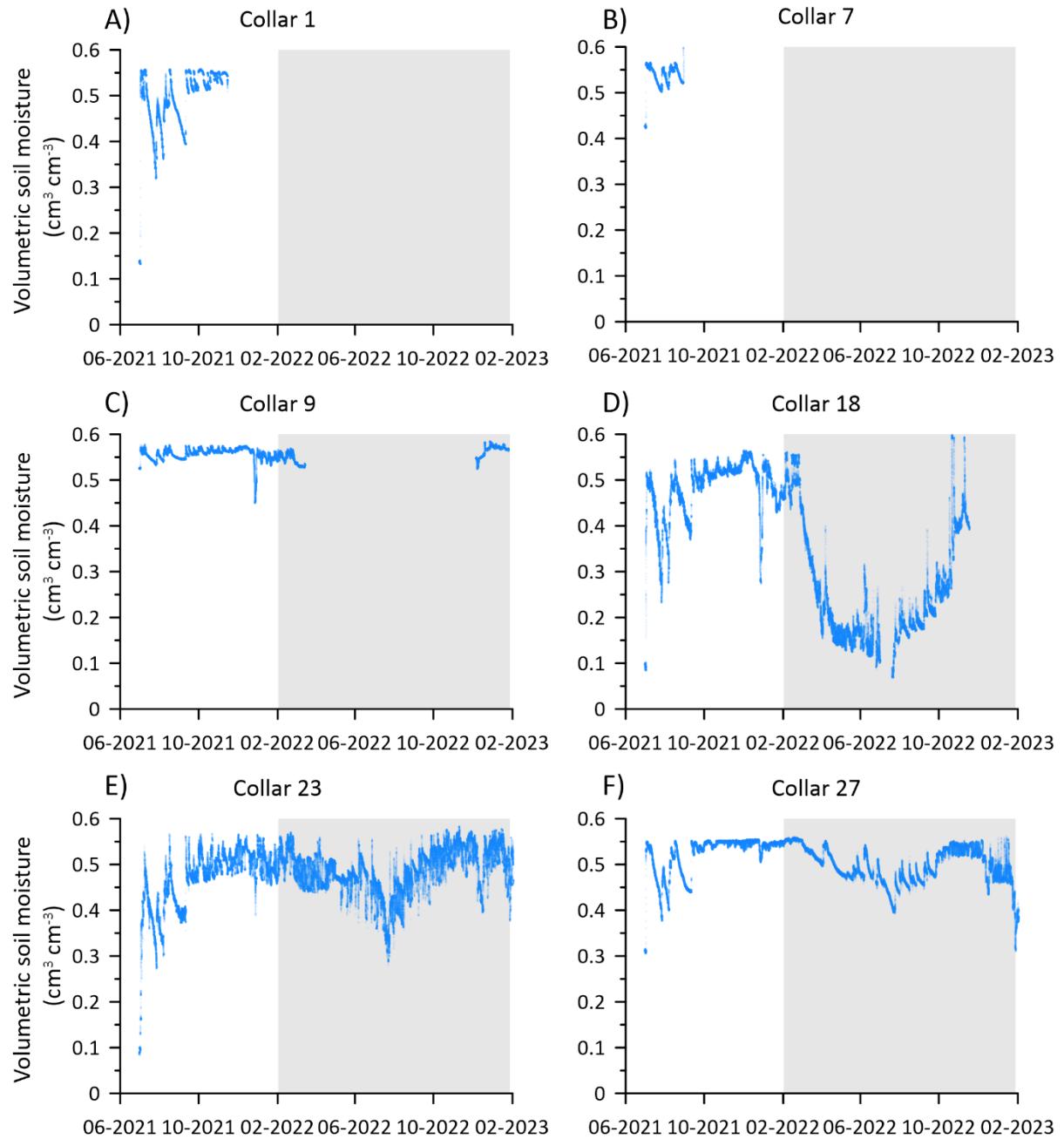

368 Over the study period the average air temperature was 9.6°C ranging between maximum 37.9°C and minimum
 369 of -18.6°C (Fig. 5A). Monthly ranges of air temperatures (Tab. 2) show >20°C variation between minimum and
 370 maximum, except for February, pointing towards large diurnal variations. Soil temperature magnitude and
 371 temporal variation were similar across the transect, varying between 0 to 28°C (Fig. 5B) and followed that of air
 372 temperature (Fig. 5A) with less variability (Fig. 5B and Table 3). The annual site average soil temperature was
 373 similar to the air temperature (Table 3).

374 **Table 3: Monthly mean, maximum and minimum air temperature and soil temperature (°C), groundwater table**
 375 **depth (cm) and volumetric soil water content (cm³ cm⁻³) at Vejrumbro in the measurement period from February 1st,**
 376 **2022 to January 31st, 2023.**

Variable	Month	Year												
		2022						2023						
Air temperature (°C)	Mean	3.8	3.0	6.6	12.0	15.4	17.7	16.6	13.4	10.7	6.9	1.2	3.7	9.6
	Max	10.6	17.4	23.7	25.3	36.7	37.2	37.9	32.9	23.3	18.4	12.4	14.1	-
	Min	-4.3	-9.3	-8.3	-3.4	4.3	3.2	2.7	-1.5	-3.5	-6.9	-18.6	-7.3	-
Soil temperature (°C)	Mean	3.0	3.2	2.9	6.4	12.3	16.1	18.4	17.0	13.8	10.3	7.2	2.1	9.6
	Max	6.5	5.3	9.1	12.5	18.8	25.1	27.0	24.7	19.3	14.3	12.6	6.3	-
	Min	0.3	1.1	0.4	0.8	6.6	10.7	12.4	11.8	7.0	4.0	2.1	0.0	-
Groundwater table depth (cm)	Mean	-	39	35	41	36	41	35	31	20	18	17	13	29
	Max	-	58	39	58	43	52	46	36	30	31	28	28	-
	Min	-	23	5	24	9	28	22	9	5	6	3	2	-
Volumetric soil water content (cm ³ cm ⁻³)	Mean	0.53	0.45	0.40	0.37	0.38	0.43	0.43	0.45	0.50	0.53	0.52	0.51	0.46
	Max	0.56	0.51	0.50	0.41	0.47	0.55	0.56	0.56	0.57	0.58	0.56	0.57	-
	Min	0.43	0.39	0.37	0.33	0.32	0.26	0.32	0.35	0.40	0.47	0.42	0.34	-

377 3.3 Groundwater table depth

378 Average groundwater table depth (WTD) below terrain during the period was between 47 to 21 cm across the
 379 transect (Fig. 3, Table 3). During summer, the peat drained between 18 – 31 cm below the annual average and in
 380 winter the WTD increased to 0 – 22 cm above the annual average across the transect (Fig. 3, Table 3).
 381 Generally, the WTD was lower in the ditch across the entire study period (Fig. 3). It was only on the northern
 382 end of the transect that the surface occasionally was flooded during winter periods (Fig. 3).

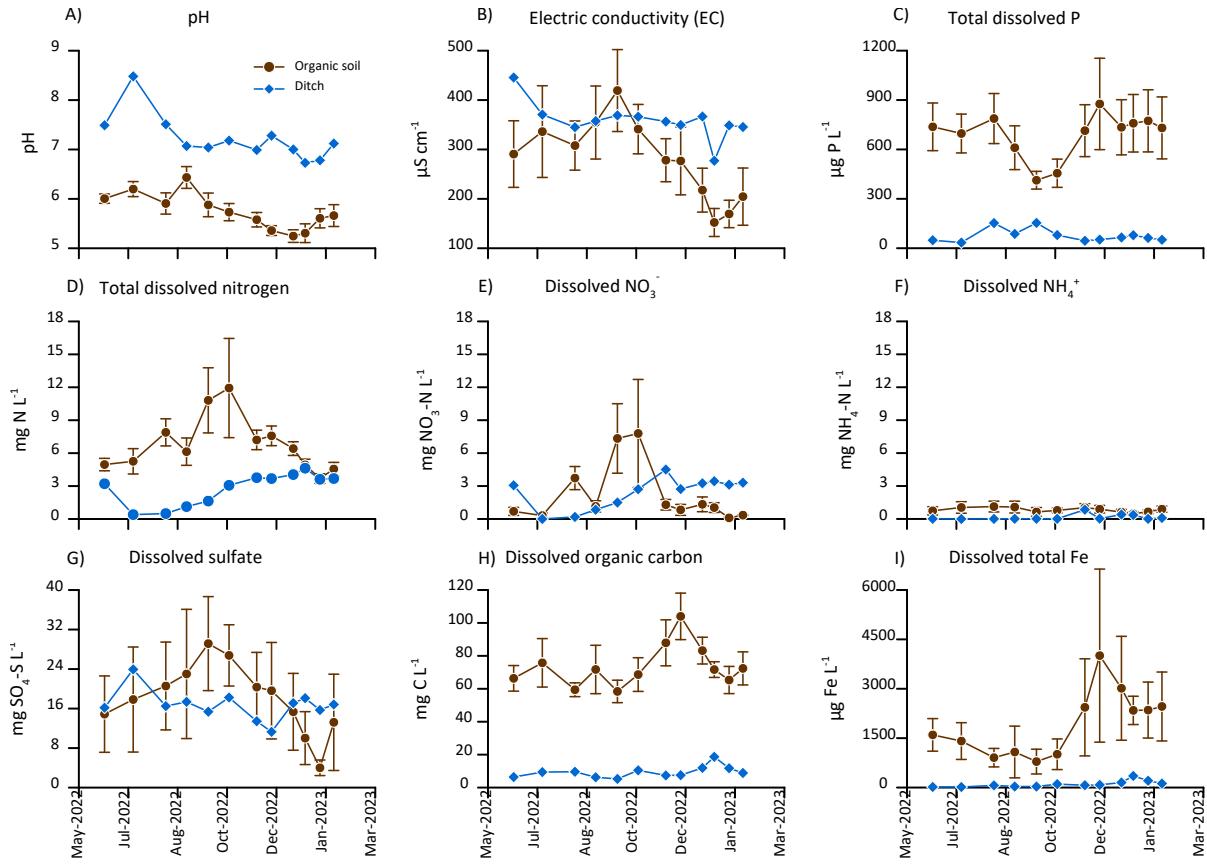

383

384 **Figure 6: Time series of groundwater table depth (WTD) below terrain for the six piezometer locations along the**
 385 **SkyLine2D transect in the period March 31st, 2022 and January 31st, 2023 when the flux measurements stopped.**
 386 **Dashed line show surface.**

387 The temporal variability of WTD was similar across the transect despite different absolute water table depths
 388 (Fig. 6A-F). In the summer periods, the WTD was most variable decreasing to below -40 for collars 1, 13, 18,
 389 22 and 27, whereas the WTD for collar 5 showed the deepest groundwater measured at the site. WTD responded
 390 quickly (within hours) to precipitation events that could increase the WTD by almost 40 cm at some plots,
 391 indicating that the entire aerated soil volume above the groundwater table was flooded. There was a slight
 392 tendency to lower response to precipitation events for piezometers at collar 5 and collar 13 that were placed
 393 closer to the ditch (Fig. 3 and 6B and C). As the ditch water level was lower than in the peat this could be
 394 explained by more efficient lateral drainage into the ditch from the areas closer to the ditch. In the winter

395 periods, the WTD was less responsive to precipitation and was closer to the surface (Fig. 6A-F) across the
396 transect.

397 **3.5 Soil water content**

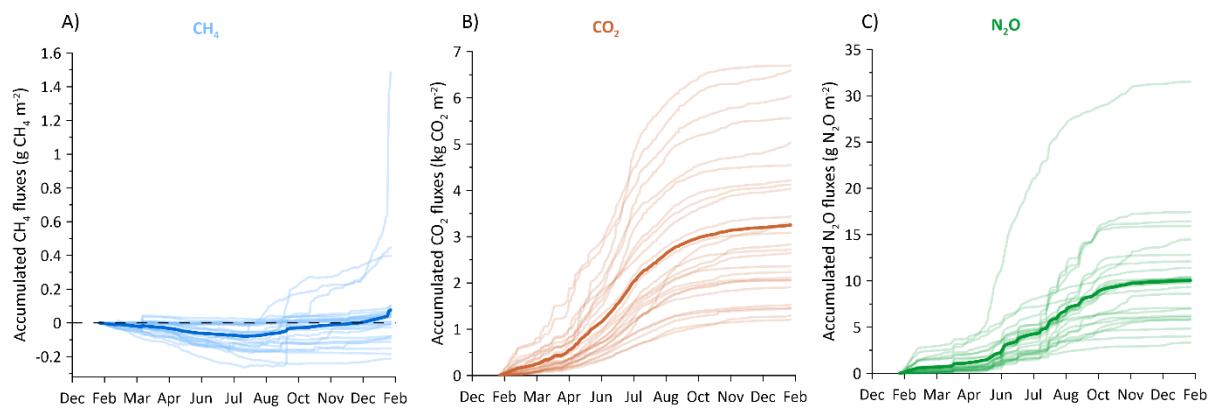

398
399 **Figure 7: Time series of volumetric soil water content ($\text{cm}^3 \text{cm}^{-3}$) in 0-5 cm for the six collars 1, 7, 9, 18, 23 and 27**
400 along the SkyLine2D transect in the period July 1st, 2021 – January 31st, 2023 when the measurements terminated.
401 The periods of GHG measurements with the SkyLine2D system are shown (green lines) on the x-axis.

402 Due to instrument failure the temporal coverage of soil moisture in the topsoil (5 cm) was not similar across the
403 transect (Fig. 7A-F). For collars 18, 23 and 27 the entire period of greenhouse gas measurements was covered
404 by soil moisture measurements (Fig. 7D-F). While SWC for collars 1, 9, 18, 23 and 27 was similar in the winter
405 periods (around $0.55 \text{ cm}^3 \text{cm}^{-3}$) the SWC for collar 18 decreased to lower minima between $0.1 – 0.2 \text{ cm}^3 \text{cm}^{-3}$,

406 than the minima observed between $0.3 - 0.4 \text{ cm}^3 \text{ cm}^{-3}$ for collars 23 and 27 in the summer periods (Fig. 7, Table 407 3). Similar for all collars it was observed that SWC was more variable in summer, responding similarly as WTD 408 to precipitation events (Fig. 7, Table 3). Since plants were removed regularly from the collars the decrease of 409 SWC for collar 18 cannot be explained by plant transpiration, and the dynamic behaviour could indicate the 410 impact of soil evaporation, but the different levels of SWC also show that there is spatial variation across the 411 transect in the drying properties of the soil. However, it cannot be ruled out that the SWC sensor at collar 18 412 experienced malfunction or that soil contact was lost in the dry periods of 2022 (Fig. 7D) which could lead to 413 erroneous and too low SWC. Therefore, these data should be considered with care.

414 **3.6 Groundwater and ditch water chemical composition**

415 Site mean pH of the groundwater in the organic soil was 5.8 ± 0.1 and was lower than the pH of the ditch 416 (7.3 ± 0.6). There was a tendency towards lower pH in groundwater and ditch towards the end of the 417 measurement period (Fig. 8A). Electric conductivity was generally higher in the ditch water ($359 \pm 36 \mu\text{S cm}^{-1}$) 418 compared to the groundwater in the organic soil ($276 \pm 18 \mu\text{S cm}^{-1}$) but varied less over the season. The 419 groundwater shows a clear peak in EC around September 2022 (Fig. 8B). Total dissolved P was markedly 420 higher in the groundwater ($687 \pm 45 \mu\text{g P L}^{-1}$) compared to the ditch water ($76 \pm 10 \mu\text{g P L}^{-1}$). Whereas there was 421 little seasonal trend in ditch P concentrations, dissolved P in groundwater dipped to below average 422 concentrations between August to October, likely indicating plant uptake during the growing season (Fig. 8C). 423 Similarly, total dissolved N was higher in groundwater ($6.7 \pm 0.5 \text{ mg N L}^{-1}$) than in ditch ($2.6 \pm 1.6 \text{ mg N L}^{-1}$) with 424 increasing concentrations during the growing season (Fig. 8D). Similar, temporal trend was observed for NO_3^- 425 (Fig. 8E), but average groundwater ($2 \pm 0.5 \text{ mg NO}_3\text{-N L}^{-1}$) and ditch ($2.2 \pm 1.5 \text{ mg NO}_3\text{-N L}^{-1}$) concentrations 426 were similar. As expected, dissolved $\text{NH}_4\text{-N}$ was lowest among investigated N-species and there was more 427 dissolved $\text{NH}_4\text{-N}$ present in groundwater ($0.8 \pm 0.1 \text{ mg NH}_4\text{-N L}^{-1}$) than in the ditch ($0.14 \pm 0.25 \text{ mg NH}_4\text{-N L}^{-1}$). 428 However, there was no discernable temporal trend for NH_4^+ (Fig. 8F). Collectively, the temporal trend of TN 429 and NO_3^- could point to temperature driven mineralization of the peat. Also, the organic N (TN – inorganic N- 430 species) was on average 10 times higher in the groundwater than in the ditch. Average SO_4^{2-} concentrations 431 were similar between the groundwater ($17.5 \pm 2.4 \text{ mg SO}_4\text{-S L}^{-1}$) and ditch ($17 \pm 1.5 \text{ mg SO}_4\text{-S L}^{-1}$), but SO_4^{2-} 432 concentration peaked during September and October in the groundwater whereas it remained more constant in 433 the ditch over the season (Fig. 8G). Similar to dissolved organic N, DOC concentrations were consistently 434 higher in the groundwater ($73 \pm 3.1 \text{ mg DOC L}^{-1}$) than in the ditch ($9.4 \pm 3.5 \text{ mg DOC L}^{-1}$), but peaked later in the 435 season, around December 2022, whereas there was little temporal variability of DOC in the ditch (Fig. 8H). 436 Dissolved total Fe displayed the same temporal trend as DOC (Fig. 8I) but was higher groundwater (1916 ± 163 437 $\mu\text{g Fe L}^{-1}$) compared to the ditch ($98 \pm 95 \mu\text{g Fe L}^{-1}$). The geochemical parameters of groundwater and ditch 438 water point to different mechanisms regulating especially elements related to peat decomposition and possibly 439 plant uptake, where groundwater was more dynamic over time than ditch water. Generally, there were no 440 systematic spatial pattern of groundwater chemistry across the transect.



441

442 **Figure 8** Groundwater (brown closed circles) and ditch water (closed blue diamonds) chemistry at Vejrumbro for the
443 period June 2022 to February 2023 for A) pH, B) Electric conductivity and dissolved C) total phosphor (P), D) total
444 nitrogen (N), E) nitrate (NO_3^-), F) ammonium (NH_4^+), G) sulfate (SO_4^{2-}), H) organic carbon and I) total iron (Fe).
445 Values for organic soils are site means with error bars showing the standard error of the mean (N=6 per sampling
446 date).

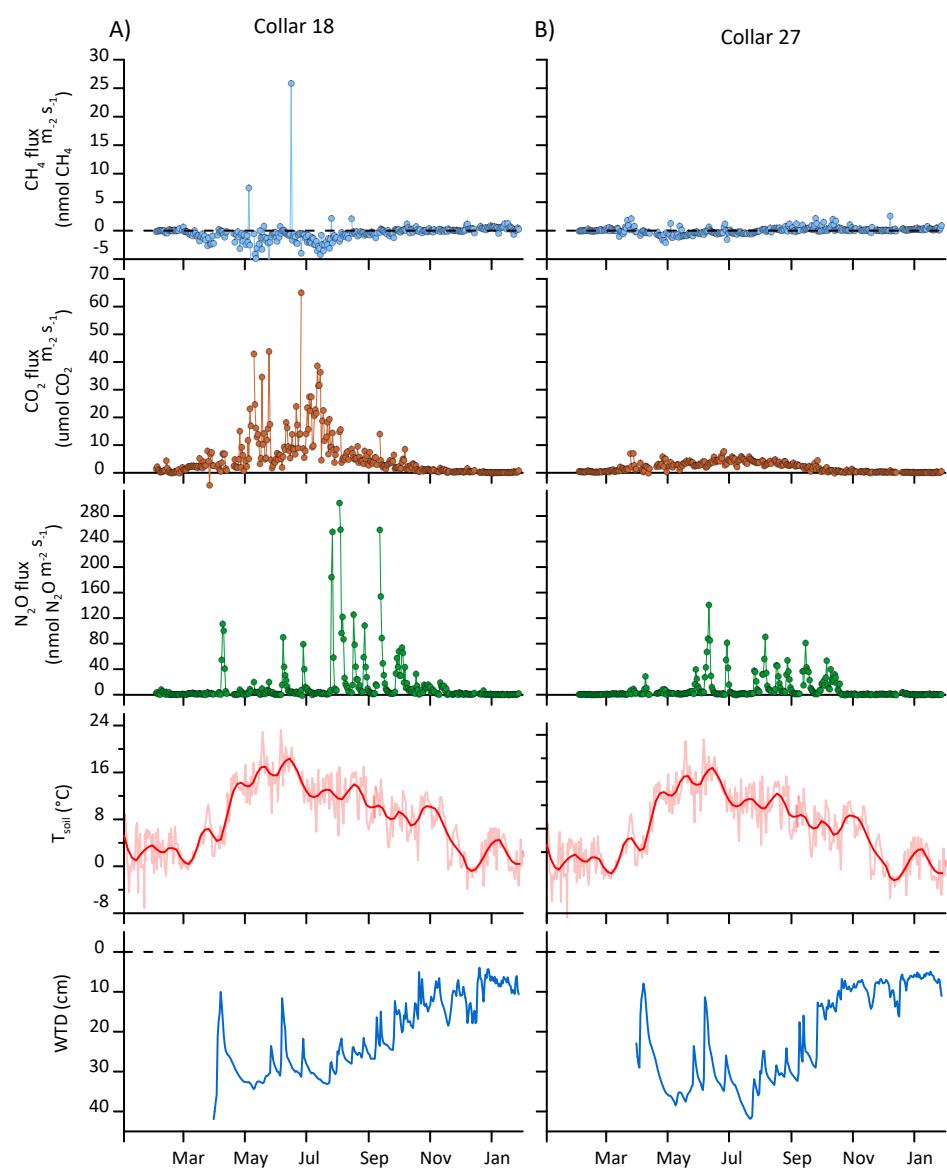
447 **3.7 Net soil and ditch CO_2 , CH_4 and N_2O fluxes**

448 **3.7.1 Spatial variation of net soil CO_2 , CH_4 and N_2O fluxes**

449

450 **Figure 9:** Cumulative fluxes of A) CH_4 , B) CO_2 , and C) N_2O for 26 individual collars along the SkyLine2D transect.
451 Units for CH_4 and N_2O are in $\text{g CH}_4/\text{N}_2\text{O} \text{ m}^{-2}$ and for CO_2 in $\text{kg CO}_2 \text{ m}^{-2}$. The cumulative fluxes represent the raw
452 dataset. The ditch data was excluded. Site average is shown as thick lines.

453 Within the transect, cumulative CH₄ fluxes over the study period (360 days) varied between -0.21 to 1.48 g CH₄
454 m⁻² over the study period, with a site average (\pm SE) cumulative flux of 0.07 \pm 0.06 g CH₄ m⁻² (Fig. 3 and 9A).
455 Out of the 26 collars, excluding the ditch collar, 11 displayed a net uptake over the measurement period and the
456 remaining were small net emitters (Fig. 3 and 9A). There was generally little spatial variation in the absolute
457 CH₄ fluxes among the soil collars, but three collars (11, 12 and 15) showed increasing net positive cumulative
458 fluxes towards the ditch (Fig. 3). The low spatial and similar temporal variation between collars indicate both
459 hydrological indicators of SWC and WTD are poor predictors of CH₄ fluxes at this site. However, as we
460 excluded plants from the collars we might have decreased the net emission of CH₄ directly by restricting gas
461 transport in aerenchyma (Askaer et al. 2011; Vroom et al. 2022) and indirectly by potentially reducing plant
462 carbon supply to methanogens. However, visible inspection at the site confirmed lateral root growth from
463 vegetation adjacent to the collar. This could indicate that plant derived C and N was still available for microbes
464 underneath the collars, but the impact on gas transport is uncertain. However, we did not excavate roots during
465 the study to avoid excessive disturbance. Furthermore, considering that the WTD in the growing season was
466 mostly 20-40 cm below terrain the potential for CH₄ production in the topsoil would limited (Koch et al. 2023).
467 Also, the lack of consistent hot moments of CH₄ emissions and low cumulative emissions from the soil despite
468 hydrological conditions in the subsoil being conducive for CH₄ production could indicate that redox potential is
469 elevated due to presence of other electron acceptors. The presence of both free NO₃⁻, SO₄²⁻, Fe (Fig. 8E, G, I) in
470 the groundwater could indicate that there are alternative electron acceptors that prevent lowering of the redox
471 status of the soil and hence suppresses CH₄ production.

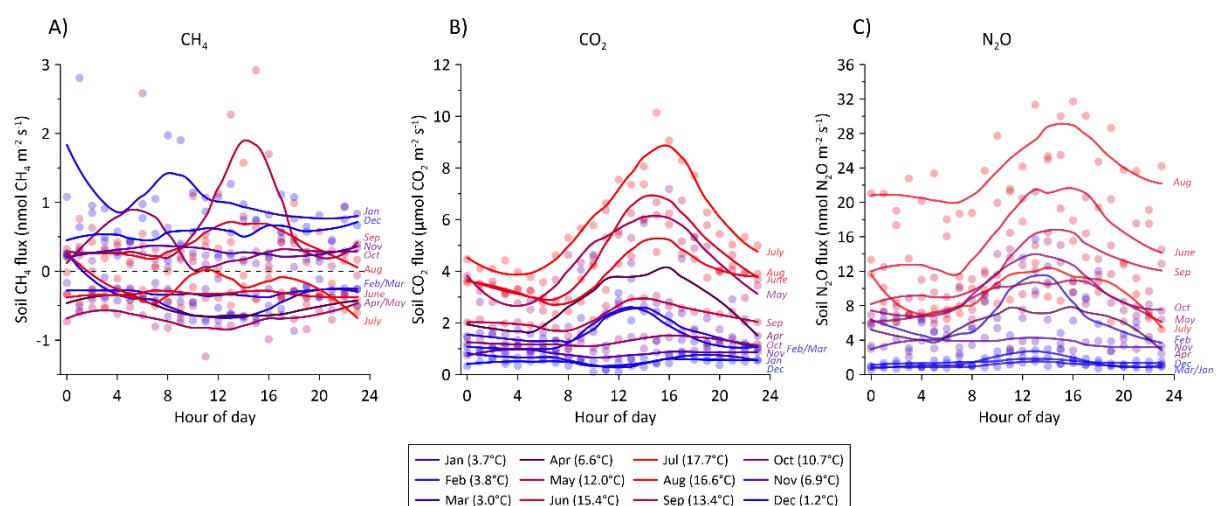

472 The CO₂ effluxes displayed tremendous spatial variation across the 24-meter transect (Fig. 3 and 9B) and
473 measurements indicated that the drained organic soil was a net source of CO₂, with cumulative fluxes over the
474 study period ranging between 1214 – 6740 g CO₂ m⁻², and a site average (\pm SE) of 3269 \pm 328 g CO₂ m⁻², over
475 the study period of 360 days (Fig. 3 and 9B). There was no apparent relation between the magnitude of
476 cumulative CO₂ efflux to the position along the transect and average WTD (Fig. 3). The cumulative net soil CO₂
477 emission is equal to 8.9 tCO₂-C ha⁻¹ y⁻¹ (range of 3.3 to 18 tCO₂-C ha⁻¹ y⁻¹ across the transect) and compares
478 well to estimates of annual soil C loss (8.8 tCO₂-C ha⁻¹ y⁻¹) from a drained unfertilized grassland on organic soil
479 in Denmark (Kandel et al. 2018) as well as annual carbon budgets of similar Danish, British and German
480 wetlands (Tiemeyer et al. 2020; Evans et al. 2021; Koch et al. 2023).

481 Similarly, the site was overall a net source of N₂O, with cumulative fluxes ranging between 3.3 – 32 g N₂O m⁻²,
482 with a site average (\pm SE) of 10.1 \pm 1.1 g N₂O m⁻² (Fig. 3 and 9C) over the study period (360 days). Thus, there is
483 a 10-fold difference between minimum and maximum cumulative N₂O fluxes within the transect, without any
484 apparent relation to the position along the transect and WTD. The highest cumulative N₂O fluxes occurred at
485 collar 8 situated close to the ditch (Fig. 3). The site average cumulative N₂O emission is equivalent to a net N
486 loss from N₂O emission alone of 64 kg N ha⁻¹ y⁻¹, was very high and exceeding previously reported fluxes from
487 this site (1.5 – 2.1 g N₂O m⁻² y⁻¹) (Nielsen et al., 2024) and German organic soils (0.04 – 6.3 g N₂O m⁻² y⁻¹ for
488 grassland and cropland land uses) (Tiemeyer et al. 2020). The high N₂O emission from this site during the
489 measurement period indicate that N₂O may in fact dominate the GWP budget at this site had gross primary
490 production been included in the measurements. It is important to reiterate here that the flux measurements of
491 this study were done on bare soil whereas the studies referenced above included vegetation.

492 The high N₂O fluxes may be a result of high rates of denitrification in the subsoil from either *in situ* produced
 493 NO₃⁻ from peat decomposition or as NO₃⁻-enriched agricultural runoff from the surrounding intensively
 494 cultivated areas, which was not affecting groundwater NO₃⁻ concentration in the center of the wetland with
 495 lower N₂O (Nielsen et al. 2024). The groundwater enters the northern peripheral zone of the wetland at
 496 Vejrumbro coinciding with the position of the measurement transect. The highest NO₃⁻ concentrations in
 497 groundwater at the SkyLine2D transect corresponded roughly with highest N₂O emission during summer and
 498 early autumn (Fig. 8D-F and Fig. 12D), but the frequency of water sampling was too low to fully link
 499 groundwater NO₃⁻ temporal dynamics to N₂O emissions.

500 **3.7.2 Temporal variability of net soil CO₂, CH₄ and N₂O fluxes**

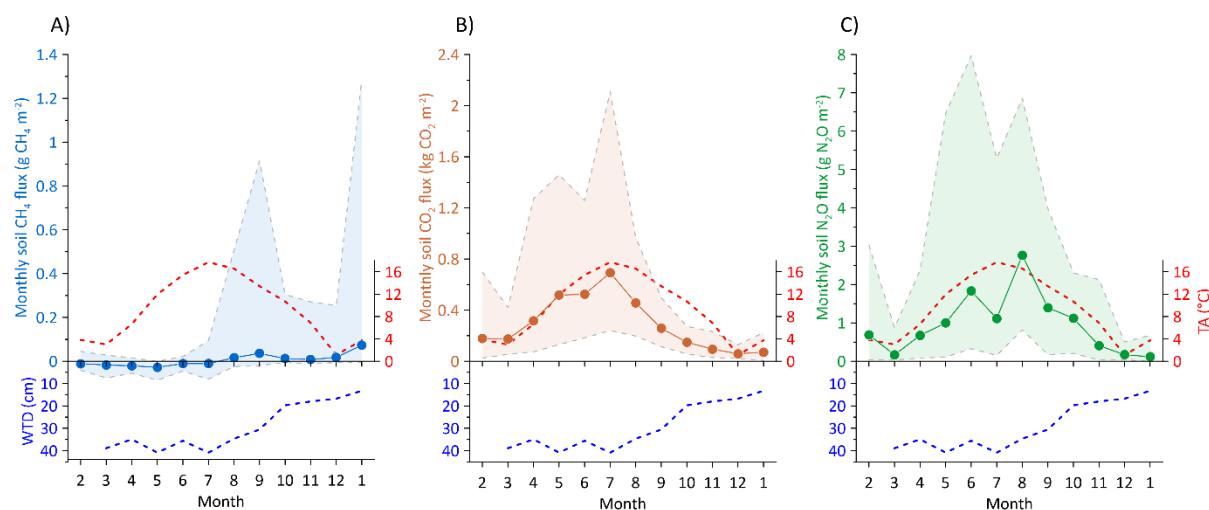
501 **3.7.2.1 Time series of raw data of net soil CO₂, CH₄ and N₂O fluxes**


502
 503 **Figure 10:** Examples of daily average time series of CH₄, CO₂ and N₂O fluxes for collars 18 and 27 at the SkyLine2D
 504 transect in Vejrumbro, soil temperature (ST) in celsius (°C) and groundwater table depth (WTD) in cm below terrain
 505 is shown in two lower panels.

506 With the high frequency of GHG flux measurements (on average 5 measurements per day per collar) it was
 507 possible to observe short term flux phenomena that in most studies deploying manual chambers are missed or if
 508 captured can lead to biased conclusions on flux magnitudes. For example, in most of the measurement points,
 509 CH₄ fluxes were generally near zero, but occasionally displayed elevated net emission for short periods even in
 510 periods with deeper WTD (Fig. 10A) for most chambers (see supplementary Fig. S5). This flux dynamic might
 511 be related to episodic release of accumulated CH₄ from deeper soil layers that are not fully oxidized in the
 512 aerated root zone and that were not released through plants (Askaer et al. 2011). As plants were not included in
 513 the collars these bursts cannot be attributed to plant emission pathways.

514 Generally, it was observed that soil CO₂ fluxes increased over the season with increasing temperature. However,
 515 for some collars displayed rapid bursts of CO₂ emissions (example in Fig. 10A), while other collars at the same
 516 period did not display this behaviour (Fig. 10B). This dynamic points to different emission pathways from the
 517 soil not related to plant mediated transport. Thus, while we purposely omitted aboveground autotrophic
 518 respiration by clipping the vegetation, it cannot be ruled out that living roots inhabited the soil below the
 519 chambers and hence contributed to the observed CO₂ emission rates.

520 For N₂O, the spatiotemporal pattern was even more pronounced than for CO₂, with N₂O primarily emitted in
 521 bursts related to rapidly increasing or decreasing WTD that coincided with precipitation events. In drier periods
 522 with deeper WTD and little fluctuations, N₂O fluxes quickly dropped to near zero (Fig. 10A and B). Despite
 523 N₂O being emitted in similar temporal patterns across the site, the magnitude of the N₂O peaks were not similar
 524 across the transect (Fig. 10 and supplementary Fig. S5). Hence, the majority of N₂O is emitted in hot moments
 525 driven by fluctuations in WTD mainly (Fig. 10) as it has also been shown in other drained temperate peatland
 526 soils (Anthony and Silver 2023).

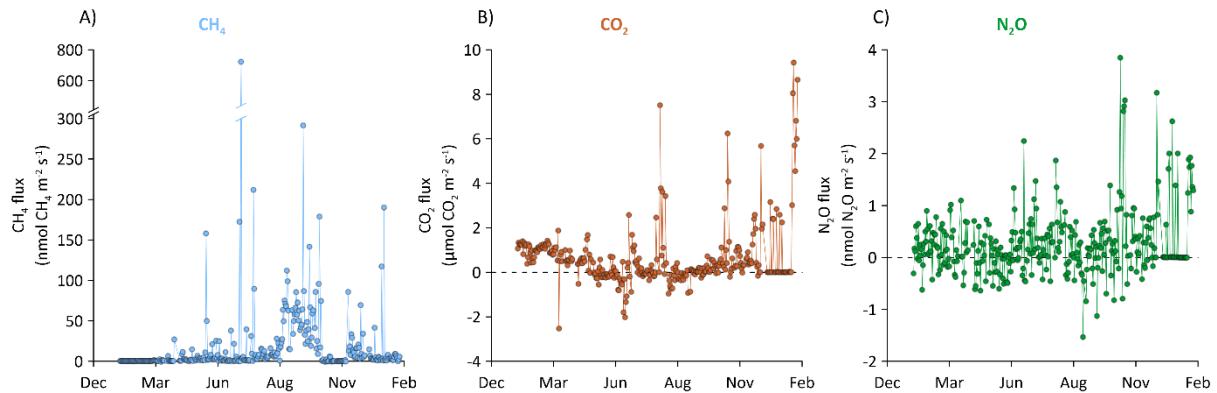

527 3.7.2.2 Diurnal variation of net soil CO₂, CH₄ and N₂O fluxes

528
 529 **Figure 11: Average hourly flux for all soil collars of A) CH₄, B) CO₂, and C) N₂O during a 24 hour period. The**
 530 **diurnal variation is split between each month during the 2022-2023 measurement period. The fluxes were assigned**
 531 **the hour of measurement during the day and averaged per month. Color shade between blue and red corresponds to**
 532 **average air temperature for the specific month shown in parenthesis in the figure legend. Solid lines are loess fits for**
 533 **visualization of the diurnal variation in each month.**

534 With the SkyLine2D system we observed a clear diurnal cycle for CO₂ and N₂O fluxes, but not for CH₄ (Fig. 535 11A-C). The lack of diurnal variability of CH₄ fluxes could also be due the removal of plants from the collars 536 that would have facilitated light-driven fluxes (Askaer et al. 2011). The amplitude of diurnal variability 537 increased with higher air temperature for CO₂ (Fig. 11B) and partly for N₂O (Fig. 11C). The month of July was 538 an exception as it resembled the pattern observed in May although the July soil temperature was about 5°C 539 higher (Table 2). The lower N₂O fluxes observed in July can be attributed to lower and more constant WTD in 540 July compared to May, June and September across the transect (Fig. 6). Diurnal variability of soil CO₂ fluxes 541 are well known and can be related to both increased heterotrophic respiration during the warmer day and 542 autotrophic respiration in response to photosynthesis. Previously, similar diurnal patterns of N₂O emissions were 543 observed in a Danish fen (Jørgensen et al. 2012).

544 **3.7.2.3 Monthly variability of net soil GHG fluxes**

545 **Figure 12: Monthly summed soil fluxes of A) CH₄ in g CH₄ m⁻², B) CO₂ in kg CO₂ m⁻², and C) N₂O in g N₂O m⁻² for 546 all organic soil collars. Shaded areas for CH₄, CO₂ and N₂O graphs represent the maximum and minimum monthly 547 average fluxes. Blue dashed line below CH₄, CO₂ and N₂O represent the measured monthly average transect 548 groundwater table depth (WTD) in cm below terrain. Red dashed line shows the monthly average air temperature 549 (TA). 550**

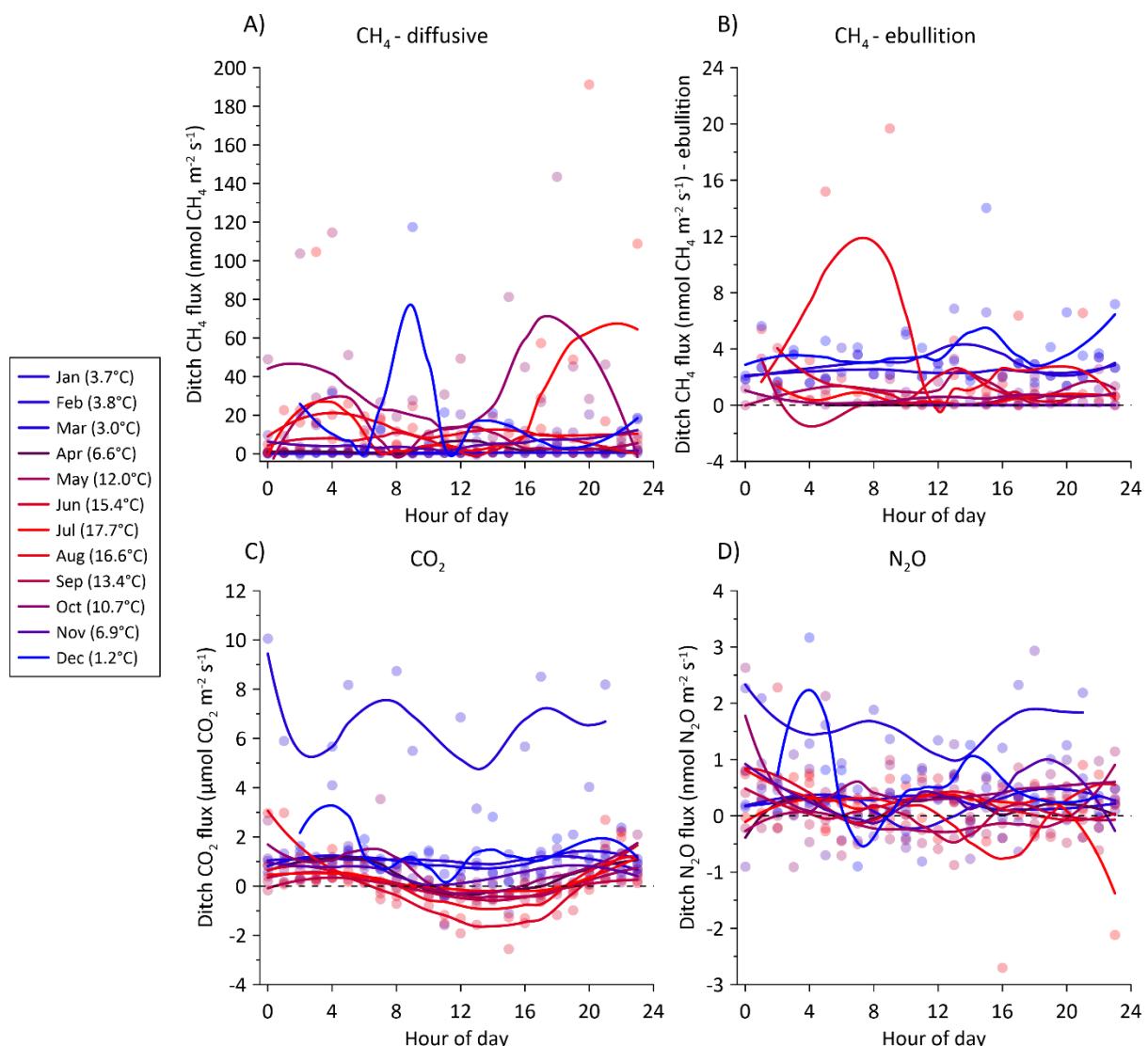

551 The average soil GHG fluxes for all collars were summed to monthly site sums to illustrate long term drivers on 552 the flux magnitude. Overall, monthly sums of CO₂ and N₂O emissions increase with temperature and fluxes are 553 highest under deeper WTD, but CH₄ net fluxes were less responsive to long term changes in both temperature 554 and hydrology (Fig. 12A-C). Net uptake increased slightly with increasing temperature and lower WTD during 555 the spring and summer. With increasing water table and high temperatures in August the site turned into a small 556 net CH₄ source continuing in fall and winter (Fig. 12A).

557 For CO₂ the seasonal variation was pronounced and closely followed soil temperature until peak values in July 558 for both site average, minimum and maximum fluxes, respectively (Fig. 12B). From July to August, it was 559 observed that WTD at the site began to increase again and CO₂ fluxes departed from the close relation to soil 560 temperature, indicating an inhibitory role of the WTD in this period, but reaching minimum fluxes in December, 561 corresponding to the wettest and coldest month (Fig. 12B).

562 Similarly, N_2O fluxes increased with soil temperature reaching peak monthly values in August, corresponding to
 563 the period of the year with highest soil temperature and increasing WTD (Fig. 12C). This supports the
 564 promoting role of soil water saturation on the production of N_2O when temperature is favourable for
 565 denitrification. N_2O fluxes reached minimum values in December when WTD and ST were lowest (Fig. 12C).

566 3.7.3 Ditch CO_2 , CH_4 and N_2O fluxes

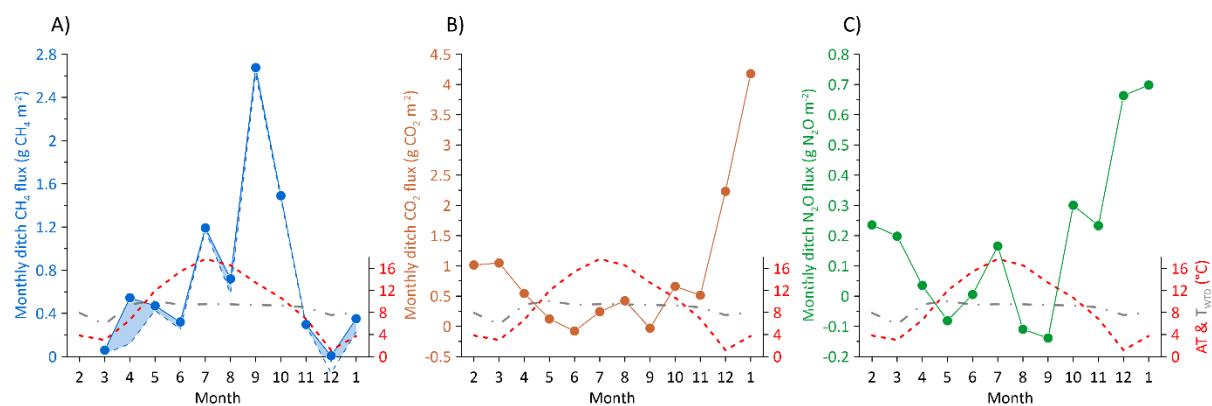
567 3.7.3.1 Time series of raw data of ditch CO_2 , CH_4 and N_2O fluxes


568
 569 **Figure 13: Daily average time series of net ditch total A) CH_4 (diffusion and ebullition), B) CO_2 , and C) N_2O fluxes at**
 570 **the Vejrumbro site.**

571 Common for all three gases is that ditch emissions are dynamic and net fluxes change from zero to large net
 572 positive or negative fluxes within hours or days (Fig. 13A-C). Compared to net soil CH_4 fluxes the ditch can be
 573 considered an emission hotspot at the site (sum of diffusive and ebullition: $8.3 \text{ g CH}_4 \text{ m}^{-2} \text{ y}^{-1}$), but fluxes are
 574 lower than earlier reports for ditches in other drained wetlands (between $0.1 - 44.3 \text{ g CH}_4 \text{ m}^{-2} \text{ y}^{-1}$) (Peacock et
 575 al., 2021). Methane is most dynamic with maximum diffusive flux close to $700 \text{ nmol CH}_4 \text{ m}^{-2} \text{ s}^{-1}$ and there was
 576 a tendency toward consistently higher net CH_4 emission from August to September, becoming close to zero in
 577 colder seasons (Fig. 13A). Ebullition of CH_4 did occur occasionally in the ditch, e.g. about 19.3% of flux
 578 measurements for the ditch was comprised of ebullitions but constituted on average only 2.9% of the total CH_4
 579 emission ($0.24 \text{ g CH}_4 \text{ m}^{-2} \text{ y}^{-1}$) from the ditch which is lower, but in the same range as a recent estimate from a
 580 ditch in a similar drained German peatland (Köhn et al. 2021). According to the flux calculation methodology,
 581 flux separation and extrapolation to daily sums, diffusive fluxes dominated ($6.56 \text{ g CH}_4 \text{ m}^{-2} \text{ y}^{-1}$). However, it
 582 cannot be ruled out that the classification as diffusive flux may in fact be ebullition by nature. It has been
 583 suggested that microbubbles resulting from mass transport can resemble diffusive fluxes in a chamber making it
 584 difficult, if not impossible, to fully separate the two emission mechanisms in a continuous time series if
 585 headspace CH_4 concentrations do not abruptly increase (Prairie and del Giorgio 2013), such as in the example
 586 shown in Fig. S4.

587 For CO_2 , there was a general tendency towards lower fluxes during the summer months and fluxes increased in
 588 magnitude and variability towards the end of the study period (Fig. 13B). For N_2O , the fluxes fluctuated around
 589 zero for most of the study period, except towards the end (December and January) where net fluxes became
 590 positive (Fig. 13C).

591 Compared to the net soil N_2O and CO_2 fluxes the ditch fluxes of these gases are low showing that the ditch is
 592 not contributing significantly to the CO_2 and N_2O budget at this site.
 593 Per square meter, the ditch emitted less N_2O ($0.41 \text{ g N}_2\text{O m}^{-2}$ or $2.6 \text{ kg N}_2\text{O-N ha}^{-1} \text{ y}^{-1}$) and CO_2 ($961 \text{ g CO}_2 \text{ m}^{-2}$
 594 y^{-1} or $2.6 \text{ tCO}_2\text{-C ha}^{-1} \text{ y}^{-1}$) than the organic soil, but was a hotspot of CH_4 emission ($8.4 \text{ g CH}_4 \text{ m}^{-2} \text{ y}^{-1}$ or 63 kg
 595 $\text{CH}_4\text{-C ha}^{-1} \text{ y}^{-1}$) during the measurement period. Although these emissions estimates are lower than previously
 596 reported for ditches in organic soil (up to $44 \text{ g CH}_4 \text{ m}^{-2} \text{ y}^{-1}$) (Peacock et al. 2021). For the ditch CH_4 budget,
 597 ebullition only constitutes 2.9% of net CH_4 emissions during the study period. This proportion may be
 598 underestimated as the count of ebullition events may have been underestimated (Prairie and del Giorgio 2013).


599 **3.7.3.2 Diurnal variability in ditch fluxes**

600
 601 **Figure 14: Average hourly fluxes for the ditch collar of A) diffusive CH_4 fluxes, B) CH_4 ebullition fluxes, C) CO_2 , and**
 602 **C) N_2O during a 24 hour period. The fluxes were assigned the hour of measurement during the day and averaged per**
 603 **month. The diurnal variation is split between each month during the 2022-2023 measurement period. Color shade**
 604 **between blue and red corresponds to average air temperature for the specific month shown in parenthesis in the**
 605 **figure legend. Solid lines are loess fits for visualization of the diurnal variation in each month. Note different axes.**

606 For CH₄ fluxes, both diffusive and ebullition, there was no clear diurnal variability in any month (Fig. 14A and
 607 B). This is expected for ebullition emissions which is known to be erratic without any clear diurnality (Wik et al.
 608 2016; Sø et al. 2023). For net CO₂ fluxes from the ditch there was no diurnal variability in colder seasons (Jan,
 609 Feb, Mar, Nov and Dec), but consistent positive net CO₂ efflux (Fig. 14C). Diurnal patterns became clearer with
 610 higher temperatures from May to October (Fig. 14C) and in this period CO₂ fluxes decreased during the day to
 611 sometimes reach net negative fluxes (net uptake of CO₂) during and after midday (Fig. 14C), although the net
 612 emissions were also observed in the daytime period (Fig. 14C). The net negative fluxes can likely be explained
 613 by photosynthetic activity of aquatic plants on the surface of the ditch or by algae in the water column which
 614 was measured due to the transparency of the chamber. Using an opaque chamber instead would likely have
 615 resulted in different net CO₂ efflux in daytime. For N₂O, the same pattern as for CH₄ was observed, where flux
 616 magnitude across the day fluctuated around zero, except for January where N₂O fluxes were consistently above
 617 zero (Fig. 14D).

618 3.7.3.3 Monthly variability in ditch fluxes

619
 620 **Figure 15: Monthly summed ditch fluxes of A) CH₄ in g CH₄ m⁻², B) CO₂ in g CO₂ m⁻² and C) N₂O in g N₂O m⁻². In A)**

621 the blue dashed line is the contribution of diffusive fluxes and the shaded blue area between the full and dashed blue

622 lines represent the monthly contribution of ebullition to the total flux. Red and grey dashed lines show the monthly

623 average air (AT) and groundwater temperature (T_{WTD}) in °C, respectively.

624 The monthly sums of CH₄ tend to increase with air temperature, although peak CH₄ emissions (September)
 625 occurred after air temperature peak (July) (Fig. 15A). Diffusive fluxes comprised the major emission pathway of
 626 CH₄ in the ditch (between 21% - 99%), with the contribution from ebullition being highest in March (55%) and
 627 April (78%) (Fig. 15A). Water temperature in the ditch was relatively stable throughout the year, varying
 628 between 5.8 – 10.1°C being highest from April to November and lowest from December to March. However,
 629 there is little indication of a direct relation between ditch water temperature and net GHG fluxes (Fig. 15A-C).
 630 For CO₂ and N₂O, the seasonal pattern is reversed with lowest fluxes during the warmest periods, approaching
 631 net zero or even net negative fluxes (Fig. 15B and C).

632 3.7.4 Estimate of the annual soil and ditch GHG budgets at the Vejrumbro location

633 The annual GHG budgets for N₂O, CO₂ and CH₄ were adjusted from the cumulated values by multiplying with a
634 factor of 365/360. It showed that for the drained organic soil its gaseous carbon loss was mostly as CO₂, while
635 CH₄ played a negligible role in the C cycle and consequently also for global warming potential (GWP) budget.

636 **4 Data availability**

637 Data for this publication is available for download via
638 <https://dataVERSE.deic.dk/previewurl.xhtml?token=abda26d4-a430-4830-ad30-fbf5ff1d352e> (Skov Nielsen et al.
639 2025).

640 **5 Conclusion**

641 The dataset presented here is unique for temperate fens and demonstrate the advantage of using automated GHG
642 measurements systems to resolve temporal and spatial patterns of GHG dynamics in high detail. The dataset also
643 demonstrate how especially temporal variation of soil hydrology and temperature is linked to the dynamics of
644 fluxes and highlight that spatial variability in hydrology and temperatures not necessarily is the best predictor of
645 flux magnitudes within the site. The cause for the spatial variability of GHG fluxes remains unresolved and do
646 not clearly link directly to either WTD, soil temperature and soil/groundwater chemical parameters.

647 Interestingly it appears that the temporal variability of GHG fluxes across the transect is lower than the spatial
648 variation.

649 The data only represents one full year in 2022-2023 and hence must be considered specific for this period. It
650 must therefore be expected that the annual budget of all GHG's in other years will be different due to other
651 climatic and hydrological conditions.

652 The initial harvest and herbicide application represent ecosystem disturbances that potentially can alter soil
653 biogeochemistry, but they were done months prior to the start of the flux measurements and hence the direct
654 effect of herbicide would be minimal. The continued plant removal from inside collars was necessary for the
655 flux measurements with the consequence that our fluxes may only be regarded as net soil GHG fluxes, and not
656 as being representative of the net ecosystem exchange. Excluding the influence of vegetation have influenced
657 the measured fluxes of soil respiration (e.g. excluding root exudates etc.) and reduced plant mediated CH₄ and
658 N₂O emissions and lowered most likely also reduced interannual variability. However, the data set represents a
659 unique ability to continue to develop models that predict the soil GHG fluxes in response to soil temperature and
660 hydrology (WTD) that can aid in prediction of reliable budgets for sites.

661 The measurements of the soil GHG fluxes show that the magnitude of annual cumulative CO₂ fluxes are in the
662 same range as in other studies of temperate fens, and that temporal variability are largely governed by the
663 seasonality of WTD and ST. However, spatial variation of cumulative fluxes for all GHG were not directly
664 related to WTD levels, contradicting the general assumption that WTD is the primary driver of GHG emissions.
665 Cumulative soil N₂O fluxes exceed what has been previously reported for temperate fens, but show similar
666 seasonal regulation by ST. However, in contrast to soil CO₂ fluxes, soil N₂O is emitted largely in pulses related
667 to rapid fluctuations of WTD that increase in size with temperature. These measurements therefore point to an
668 important, but difficult to capture dynamic of N₂O in peatlands where hot moments during the warm periods
669 determine most of the annual emissions. A likely cause for the high soil N₂O emissions could be a combination
670 of leaching of inorganic nitrogen from surrounding agricultural fields and release of organic N from the

671 decomposing peat. The site was during the measurement period an insignificant source of soil CH₄, which is
672 likely due to the well-drained summer period, a cold wet winter and presence of the major electron acceptors
673 (NO₃⁻, SO₄²⁻ and Fe³⁺), providing suboptimal conditions for CH₄ production. However, it cannot be ruled out
674 that the vegetation removal impeded CH₄ emissions, as we effectively restricted plant mediated CH₄ emissions.
675 Therefore, caution should be taken when comparing the CH₄ flux data to other drained peatlands. Soil CO₂ and
676 N₂O fluxes both showed diurnal variability with higher fluxes during midday where the amplitude between
677 night and day was augmented with ST. This was not observed for soil CH₄ fluxes. The ditch at the site was a net
678 source of both N₂O and CO₂, but at rates 27 and 4 times lower than the soil GHG fluxes respectively. However,
679 the ditch acted as a CH₄ source mostly comprised of diffusive emissions from the water surface, but with
680 observations of ebullition.

681 We wish to publish this dataset to the research community with the intention that experimentalists and modellers
682 can use the data to test hypothesis on basic hydrological and thermal regulation of GHG fluxes and develop
683 models to predict spatiotemporal variability of the GHG fluxes.

684 Competing interests

685 The authors declare that they have no conflict of interest.

686 Author contributions

687 JRC, PEL and KSL designed the experiment and carried them out. ASN performed flux calculation and quality
688 checking. RJP and PEL installed the equipment for groundwater measurements. All authors contributed to
689 writing of this manuscript.

690 Acknowledgements

691 The measurements are the results of the RePeat (grant nr. 33010-NIFA-19-724), INSURE and ReWet (grant nr.
692 5229-0002b) projects hosted by University of Copenhagen and Aarhus University. ReWet is part of the Danish
693 roadmap for research infrastructure funded by The Danish Agency for Science and Higher Education. INSURE
694 was part of EJP Soil and received funding from the European Union's Horizon 2020 research and innovation
695 programme under the grant agreement no. 862695.

696 References

697 Anthony TL, Silver WL (2023) Hot spots and hot moments of greenhouse gas emissions in agricultural
698 peatlands. *Biogeochemistry* 167:461–477. <https://doi.org/10.1007/s10533-023-01095-y>

699 Askaer L, Elberling B, Friberg T, et al (2011) Plant-mediated CH₄ transport and C gas dynamics
700 quantified in-situ in a *Phalaris arundinacea*-dominant wetland. *Plant Soil* 343:287–301.
701 <https://doi.org/10.1007/s11104-011-0718-x>

702 Boonman J, Buzacott AJ V, van den Berg M, et al (2024) Transparent automated CO₂ flux chambers
703 reveal spatial and temporal patterns of net carbon fluxes from managed peatlands. *Ecol Indic*
704 164:112121. <https://doi.org/https://doi.org/10.1016/j.ecolind.2024.112121>

705 Brændholt A, Steenberg Larsen K, Ibrom A, Pilegaard K (2017) Overestimation of closed-chamber soil
706 CO₂ effluxes at low atmospheric turbulence. *Biogeosciences* 14:1603–1616.
707 <https://doi.org/10.5194/bg-14-1603-2017>

708 Evans CD, Peacock M, Baird AJ, et al (2021) Overriding water table control on managed peatland
709 greenhouse gas emissions. *Nature* 593:548–552. <https://doi.org/10.1038/s41586-021-03523-1>

710 Hutchinson GL, Mosier AR (1981) Improved Soil Cover Method for Field Measurement of Nitrous
711 Oxide Fluxes. *Soil Science Society of America Journal* 45:311.
712 <https://doi.org/10.2136/sssaj1981.03615995004500020017x>

713 Jørgensen CJ, Struwe S, Elberling B (2012) Temporal trends in N₂O flux dynamics in a Danish wetland
714 - effects of plant-mediated gas transport of N₂O and O₂ following changes in water level and
715 soil mineral-N availability. *Glob Chang Biol* 18:210–222. <https://doi.org/10.1111/j.1365-2486.2011.02485.x>

717 Jørgensen MS, Plauborg F, Kørup K (2023) Climate normal for Foulum 1991–2020. Aarhus University
718 Kandel TP, Lærke PE, Elsgaard L (2018) Annual emissions of CO₂, CH₄ and N₂O from a temperate
719 peat bog: Comparison of an undrained and four drained sites under permanent grass and
720 arable crop rotations with cereals and potato. *Agric For Meteorol* 256–257:470–481.
721 <https://doi.org/10.1016/j.agrformet.2018.03.021>

722 Koch J, Elsgaard L, Greve MH, et al (2023) Water-table-driven greenhouse gas emission estimates
723 guide peatland restoration at national scale. *Biogeosciences* 20:2387–2403.
724 <https://doi.org/10.5194/bg-20-2387-2023>

725 Köhn D, Welpe C, Günther A, Jurasinski G (2021) Drainage Ditches Contribute Considerably to the
726 CH₄ Budget of a Drained and a Rewetted Temperate Fen. *Wetlands* 41:71.
727 <https://doi.org/10.1007/s13157-021-01465-y>

728 Kroon PS, Hensen a., Bulk WCM, et al (2008) The importance of reducing the systematic error due to
729 non-linearity in N₂O flux measurements by static chambers. *Nutr Cycl Agroecosyst* 82:175–186.
730 <https://doi.org/10.1007/s10705-008-9179-x>

731 Nguyen DB, Rose MT, Rose TJ, et al (2016) Impact of glyphosate on soil microbial biomass and
732 respiration: A meta-analysis. *Soil Biol Biochem* 92:50–57.
733 <https://doi.org/https://doi.org/10.1016/j.soilbio.2015.09.014>

734 Nielsen CK, Liu W, Koppelgaard M, Lærke PE (2024) To Harvest or not to Harvest: Management
735 Intensity did not Affect Greenhouse Gas Balances of Phalaris Arundinacea Paludiculture.
736 *Wetlands* 44:79. <https://doi.org/10.1007/s13157-024-01830-7>

737 Padilla JT, Selim HM (2020) Environmental behavior of glyphosate in soils. *Advances in Agronomy*
738 159:1–34. <https://doi.org/10.1016/BS.AGRON.2019.07.005>

739 Peacock M, Audet J, Bastviken D, et al (2021) Small artificial waterbodies are widespread and
740 persistent emitters of methane and carbon dioxide. *Glob Chang Biol* 27:5109–5123.
741 <https://doi.org/10.1111/gcb.15762>

742 Pedersen AR, Petersen SO, Schelde K (2010) A comprehensive approach to soil-atmosphere trace-
743 gas flux estimation with static chambers. *Eur J Soil Sci* 61:888–902.
744 <https://doi.org/10.1111/j.1365-2389.2010.01291.x>

745 Pihlatie MK, Christiansen JR, Aaltonen H, et al (2013) Comparison of static chambers to measure CH₄
746 emissions from soils. *Agric For Meteorol* 171–172:124–136.
747 <https://doi.org/10.1016/j.agrformet.2012.11.008>

748 Prairie YT, del Giorgio PA (2013) A new pathway of freshwater methane emissions and the putative
749 importance of microbubbles. *Inland Waters* 3:311–320. <https://doi.org/10.5268/IW-3.3.542>

750 Pullens JWM, Abalos D, Petersen SO, Pedersen AR (2023) Identifying criteria for greenhouse gas flux
751 estimation with automatic and manual chambers: A case study for N_2O. *Eur J Soil
752 Sci* 74:.. <https://doi.org/10.1111/ejss.13340>

753 Reza Mashhadi S, Grombacher D, Zak D, et al (2024) Borehole nuclear magnetic resonance as a
754 promising 3D mapping tool in peatland studies. *Geoderma* 443:116814.
755 <https://doi.org/10.1016/j.geoderma.2024.116814>

756 Rheault K, Christiansen JR, Larsen KS (2024) goFlux: A user-friendly way to calculate GHG fluxes
757 yourself, regardless of user experience. *J Open Source Softw* 9:6393.
758 <https://doi.org/10.21105/joss.06393>

759 Sø JS, Sand-Jensen K, Martinsen KT, et al (2023) Methane and carbon dioxide fluxes at high
760 spatiotemporal resolution from a small temperate lake. *Science of The Total Environment*
761 878:162895. <https://doi.org/10.1016/j.scitotenv.2023.162895>

762 Tiemeyer B, Freibauer A, Borraz EA, et al (2020) A new methodology for organic soils in national
763 greenhouse gas inventories: Data synthesis, derivation and application. *Ecol Indic* 109:105838.
764 <https://doi.org/10.1016/j.ecolind.2019.105838>

765 Vroom RJE, van den Berg M, Pangala SR, et al (2022) Physiological processes affecting methane
766 transport by wetland vegetation – A review. *Aquat Bot* 182:103547.
767 <https://doi.org/https://doi.org/10.1016/j.aquabot.2022.103547>

768 Wik M, Varner RK, Anthony KW, et al (2016) Climate-sensitive northern lakes and ponds are critical
769 components of methane release. *Nat Geosci* 9:99–105. <https://doi.org/10.1038/ngeo2578>

770 Wilson SJ, Bond-Lamberty B, Noyce G, et al (2024) fluxfinder: An R Package for Reproducible
771 Calculation and Initial Processing of Greenhouse Gas Fluxes From Static Chamber
772 Measurements. *J Geophys Res Biogeosci* 129:.. <https://doi.org/10.1029/2024JG008208>