
 1 

Tracking vegetation phenology across diverse biomes using Version 
3.0 of the PhenoCam Dataset 

Adam M. Young1,2, Thomas Milliman2,3, Koen Hufkens4, Keith L. Ballou5, Christopher Coffey5, Kai 
Begay2, Michael Fell5,6, Mostafa Javadian2,6, Alison K. Post7, Christina Schädel8, Zakary Vladich2,6, 
Oscar Zimmerman2, Dawn M. Browning9, Christopher R. Florian1, Minkyu Moon10, Michael D. 5 
SanClements1, Bijan Seyednasrollah2,6, Mark A. Friedl11, and Andrew D. Richardson2,6  

1National Ecological Observatory Network, Battelle, Boulder, CO, USA 
2Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA 
3Earth Systems Research Center, University of New Hampshire, Durham, NH, USA 
4BlueGreen Labs (BV), Melsele, Belgium 10 
5Information Technology Services, Northern Arizona University, Flagstaff, AZ, USA 
6School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA 
7Earth Lab, CIRES, University of Colorado Boulder, Boulder, CO, USA 
8Woodwell Climate Research Center, Falmouth, MA, USA  
9USDA ARS, Jornada Experimental Range, Las Cruces, NM, USA 15 
10Department of Environmental Science, Kangwon National University, Chuncheon, South Korea 
11Department of Earth and Environment, Boston University, Boston, MA, USA 
 
Correspondance to:  

Adam M. Young    younga1@battelleecology.org   https://orcid.org/0000-0003-2668-2794  20 

Contact information for co-authors: 

Thomas Milliman   thomas.milliman@gmail.com    https://orcid.org/0000-0001-6234-8967 
Koen Hufkens    koen.hufkens@gmail.com     https://orcid.org/0000-0002-5070-8109 
Keith L. Ballou    keith.ballou@nau.edu     https://orcid.org/0009-0000-4235-7436 
Christopher Coffey   chris.coffey@nau.edu     https://orcid.org/0009-0000-4235-7436 25 
Kai Begay     klb792@nau.edu 
Michael Fell     michael.fell@nau.edu     https://orcid.org/0000-0001-9713-749X 
Mostafa Javadian   Mostafa.Javadian@nau.edu   https://orcid.org/0000-0001-7428-8869 
Alison K. Post    alison.post@colorado.edu    https://orcid.org/0000-0003-2931-6490 
Christina Schädel   cschaedel@woodwellclimate.org  https://orcid.org/0000-0003-2145-6210 30 
Zakary Vladich    zgv4@nau.edu 
Oscar Zimmerman   orz6@nau.edu      https://orcid.org/0000-0003-4113-2133 
Dawn M. Browning   dawn.browning@usda.gov    https://orcid.org/0000-0002-1252-6013   
Christopher R. Florian  cflorian@battelleecology.org   https://orcid.org/0000-0003-4217-0684 
Minkyu Moon    moon.minkyu@kangwon.ac.kr   https://orcid.org/0000-0003-0268-1834   35 
Michael D. SanClements  msanclements@battelleecology.org  https://orcid.org/0000-0002-1962-3561 
Bijan Seyednasrollah   bijan.s.nasr@gmail.com    https://orcid.org/0000-0002-5195-2074   
Mark A. Friedl    friedl@bu.edu      https://orcid.org/0000-0001-6899-2948   
Andrew D. Richardson  Andrew.Richardson@nau.edu   https://orcid.org/0000-0002-0148-6714    



 2 

Abstract. Vegetation phenology plays a significant role in driving seasonal patterns in land-atmosphere interactions and 40 

ecosystem productivity, and is a key factor to consider when modeling or investigating ecological and land-surface 

dynamics. To integrate phenology in ecological research ultimately requires the application of carefully curated and quality 

controlled phenological datasets that span multiple years and include a wide range of different ecosystems and plant 

functional types. By using digital cameras to record images of plant canopies every 30 minutes, pixel-level information from 

the visible red-green-blue color channels can be quantified to evaluate canopy greenness (defined as the green chromatic 45 

coordinate, GCC), and how it varies in space and time. These phenological cameras (i.e., “PhenoCams”) offer a pragmatic 

and effective way to measure and provide phenology data for both research and education. Here, in this dataset descriptor, 

we present the PhenoCam dataset version 3 (V3.0), providing significant updates relative to prior releases. PhenoCam V3.0 

includes 738 unique sites and a total of 4805.5 site years, a 170% increase relative to PhenoCam V2.0 (1783 site years), with 

notable expansion of network coverage for evergreen broadleaf forests, understory vegetation, grasslands, wetlands, and 50 

agricultural systems. Furthermore, in this updated release, we now include a PhenoCam-based estimate of the normalized 

difference vegetation index (cameraNDVI), calculated from back-to-back visible and visible+near-infrared images acquired 

from approximately 75% of cameras in the network, which utilize a sliding infrared cut filter. Both GCC and cameraNDVI 

showed similar, but somewhat unique, patterns in canopy greenness and VIS vs. NIR reflectance, across various ecosystems, 

indicating their consistent ability to record phenological variability. However, we did find that at most sites, GCC time series 55 

had less variability and fewer outliers, representing a smoother signal of canopy greenness and phenology. Overall, 

PhenoCam greenness as measured by both GCC and cameraNDVI provides expanded opportunities for studying phenology 

and tracking ecological changes, with potential applications to the evaluation of satellite data products, earth system and 

ecosystem modeling, and understanding phenologically mediated ecosystem processes. The PhenoCam V3.0 data release is 

publicly available for download from the Oak Ridge National Lab Distributed Active Archive Center: the source imagery 60 

used to derive phenology information is available at https://doi.org/10.3334/ORNLDAAC/2364 (Ballou et al., 2025), and the 

summarized phenology data are available at https://doi.org/10.3334/ORNLDAAC/2389 (Zimmerman et al., 2025). 

https://doi.org/10.3334/ORNLDAAC/2364
https://doi.org/10.3334/ORNLDAAC/2389
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1 Introduction 

The study of vegetation phenology aims to describe and understand the drivers and impacts of reoccurring, seasonal changes 65 

in plant growth in terrestrial ecosystems, including periods such as budburst and leaf emergence, fall senescence, and 

dormancy (Lieth and Radford, 1971; Richardson et al., 2013). Vegetation phenology (hereafter referred to as phenology) is 

sensitive to variability in temperature and precipitation (Jolly et al., 2005; Rosenzweig et al., 2007; Hufkens et al., 2016; 

Post et al., 2022), and serves as an indicator of environmental trends (Schwartz, 1998; Peñuelas et al., 2002). Phenology also 

exerts direct influence over dynamics linking the biosphere and atmosphere. For example, inter-annual variation in net 70 

ecosystem production is tied to shifts in the timing of green-up and leaf emergence across a range of spatial scales; in North 

America, warmer temperatures in 2012 resulted in relatively early spring green-up of deciduous forests, and notable 

increases in annual net ecosystem production for the Eastern US (Wolf et al., 2016). Surface-to-atmosphere latent and 

sensible heat fluxes are also influenced by phenology, for example, by altering aerodynamic resistance to sensible heat 

fluxes through changes in land-surface roughness or by influencing evapotranspiration due to timing of seasonal changes in 75 

stomatal conductance (Blanken and Black, 2004; Young et al., 2021). Recent Earth-system modeling experiments have also 

demonstrated how phenology influences land-atmosphere coupling (Li et al., 2024) and boundary layer height (Li et al., 

2023). Understanding the role and drivers of phenology in different ecosystems is important for anticipating future terrestrial 

ecosystem dynamics that require validated, generalizable phenology modules to be integrated with land-surface and Earth-

system models. While current phenology routines have continued to be improved upon (e.g., Hufkens et al., 2018; Post et al., 80 

2022; Schädel et al., 2023), most models are still unable to capture the full range of variability in phenology patterns 

observed across a wide range of ecoclimatic conditions (Li et al., 2022). Continued diagnosis and improvement of phenology 

models will depend on multi-year records and data products covering broad regional-to-continental spatial scales of 

phenology. 

Multiple approaches and published data products are currently available for studying phenology. At the global scale, 85 

satellite-based remote sensing provides a multi-decadal record of vegetation seasonality, but at coarse spatial resolution. The 

most widely used metric derived from remote sensing reflectance measurements is the Normalized Difference Vegetation 

Index (NDVI). NDVI is defined as the normalized differences between reflectance values from both visible red (R) and near-

infrared wavelengths (NIR), 

𝑁𝐷𝑉𝐼 = (𝑁𝐼𝑅 − 𝑅)/(𝑁𝐼𝑅 + 𝑅),                (1) 90 

NDVI can be broadly related to vegetation health; during photosynthesis, leaf chlorophyll pigments absorb radiation in the 

spectrum of visible light, while reflecting radiation in the NIR (Waring and Running, 2007). Time series of NDVI can be 

used to clearly depict seasonal changes in vegetation activity, and these time series can be further used to identify and extract 
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phenological transition dates based on the seasonal amplitude of greenness. For example, in deciduous broadleaf forests, the 

timing of leaf development and senescence can be estimated when NDVI reaches 50% of the total seasonal amplitude. 95 

Products derived from such remote sensing data have been invaluable in advancing our understanding of the role of 

phenology in many ecosystems (e.g., Stöckli and Vidale, 2004; Zhang et al., 2013; Jeong et al., 2011). While satellite data 

enable global monitoring of phenology, the relatively coarse spatial resolution of most platforms (e.g., 500 m for MODIS) 

means individual pixels may contain multiple species, plant functional types, or land-cover types. Furthermore, the temporal 

resolution of image acquisition and the multi-day compositing period of many platforms (e.g., 8- and 16-day for MODIS) 100 

result in additional uncertainties, because many phenological transitions can occur within the span of a week (Klosterman et 

al., 2014). Additionally, extensive cloud cover – particularly for multiple days or weeks – obscures and reduces the ability of 

satellites to detect changes in vegetation, indicating the ability of  near-surface remote sensing methods to provide time 

series with fewer gaps (Tran et al., 2022). More recently, satellite products at a higher spatial and temporal resolution have 

become available (e.g., Moon et al., 2021), but there remains a tradeoff with the shorter duration of these new data records. 105 

The development and implementation of near-surface remote sensing using digital cameras offers a method for 

complementing satellite studies of vegetation phenology. This approach – commonly referred to as PhenoCam (i.e., 

“Phenological Camera”) – uses repeat digital imagery from cameras positioned to overlook ecosystem canopies. Individual 

cameras are usually programmed to take multiple images per day (e.g., every 15-30 minutes) (Richardson et al., 2018b). 

From digital imagery, digital numbers (DN) from the visible red (R), green (G), and blue (B) color channels (i.e., RGB) can 110 

be extracted for each pixel. By delineating a region of interest (ROI) in the camera field-of-view that directly focuses on the 

canopy (or other vegetation of interest), information on vegetation greenness is obtained using a metric of relative greenness 

called the green-chromatic coordinate (GCC), 

 𝐺!! =
"!"

"!"#$!"#%!"
,                   (2) 

Time series summaries of GCC – such as 1- or 3-day time steps – provide information on how vegetation greenness changes 115 

at a relatively fine temporal scale relative to most satellite-based remote sensing. The PhenoCam approach therefore directly 

enhances phenology data derived from satellites: PhenoCams provide phenology data at finer spatial (leaf-to-branch) and 

temporal (daily) resolution than is usually possible with satellite-based measures, although satellite sensors can provide 

much broader spatial coverage (continental-to-global). Previous studies have made extensive use of PhenoCam data to 

evaluate satellite phenological data products from MODIS (Klosterman et al., 2014; Richardson et al., 2018a; Liu et al., 120 

2017), Landsat (Yan et al., 2019; Melaas et al., 2016), Harmonized Landsat Sentinel-2 (HLS, Bolton et al., 2020), 

PlanetScope (Moon et al., 2021), SPOT-VGT and PROBA-V (Bórnez et al., 2020), VIIRS (Zhang et al., 2018), MERIS 

(Brown et al., 2017), and GOES (Wheeler and Dietze, 2021). 
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The PhenoCam Network (<https://phenocam.nau.edu>) is one of the largest public repositories of phenological digital 

camera imagery and derived data products (Richardson, 2023). The majority of sites within the PhenoCam network are 125 

located in North America, follow a standardized protocol, and use common hardware (StarDot NetCam SC) that has been 

vetted (Sonnentag et al., 2012; Brown et al., 2016; Richardson, 2023). To ensure network continuity following the 

discontinuation of the original camera, the StarDot NetCam Live 2 was selected as its successor, with studies confirming its 

comparable performance for phenological monitoring (Javadian et al., 2025). The complementary metal-oxide-

semiconductor (CMOS) imaging sensor within these cameras is sensitive to NIR wavelengths, and the cut filter used to block 130 

wavelengths ≥ 700 nm for standard visible-wavelength (RGB) imagery is software controlled: with the filter removed, the 

camera records an RGB+NIR image (Petach et al., 2014). The original intent of this design was to enhance photon capture 

under low-light conditions and to permit nighttime security monitoring with an infrared illuminator. However, it has also 

been shown to offer the potential for the camera to serve as a four-channel imager (red, green, blue, and NIR), enabling 

calculation of a “camera NDVI” from digital numbers and exposure values (Petach et al., 2014) that is similar to the standard 135 

NDVI metric calculated using reflectance values from satellite imagery (Eq. 1). To date, the implementation and use of 

camera NDVI from PhenoCams (hereafter referred to as cameraNDVI) has received only minor attention (e.g., Filippa et al., 

2018). 

In this data descriptor, we introduce the PhenoCam V3.0 public data release, which provides a substantial update to the 

V2.0 release (Seyednasrollah et al., 2019), with a 170% increase in total site-years and a better representation of understory 140 

ecosystems, evergreen broadleaf forests, grasslands, wetlands, and agriculture systems, in particular. In this descriptor for 

the V3.0 dataset, we detail how the PhenoCam Network has grown in terms of spatial and temporal coverage, while also 

evaluating the representation of the Network across ecoregions and biomes, at both continental and global levels. 

Furthermore, two new operational data records are introduced to enhance the usefulness of this dataset. First, the dataset now 

includes cameraNDVI (Data Record 6) for all sites with the requisite hardware and camera configuration. We evaluate this 145 

cameraNDVI product in a detailed comparison using PhenoCam imagery and NDVI estimates derived from broadband 

measurements of incident and upwelling solar radiation (i.e., broadbandNDVI) (Huemmrich et al., 1999; Jenkins et al., 

2007). We conduct this evaluation using broadband data from National Ecological Observatory Network (NEON; 

http://www.neonscience.org/sites; Metzger et al., 2019), spanning a broad range of ecosystems, from Arctic tundra to 

tropical forests. Second, we now also include a reduced set of simplified data products containing just three columns: date, 150 

mean measured GCC at a daily time step, and a smoothed GCC product that can be used for interpolation or gap filling (Data 

Record 7). For many users, the simplified data will be much easier to work with than the 1- and 3-day summary products 

contained in Data Record 4, which are almost 50 columns wide. For users who wish to access additional information, such 

as metadata or uncertainty estimates, these can be found in Data Records 3, 4 and 5. While it is well established that 

PhenoCams are a powerful tool to monitor trends in phenology, other potential applications of PhenoCam data include: (1) 155 

evaluation of satellite data products; (2) calibration and validation of phenological models for different vegetation types; and 
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(3) ecological interpretation of other data streams, including eddy covariance data for surface-atmosphere CO2, H2O, and 

sensible-heat fluxes.  

The data described here have been archived with the ORNL DAAC (Zimmerman et al., 2025) and are also accessible 

through the PhenoCam Explorer web page (<https://phenocam.nau.edu/phenocam_explorer>). The data records have been 160 

truncated at the end of 2023, but data records from active cameras continue to be updated nightly, and are publicly available 

as provisional (i.e., uncurated) data through the PhenoCam project web page (<https://phenocam.nau.edu>). A companion 

data set (Ballou et al., 2025), which contains the imagery from which these data are derived, is also being released at the 

same time, and it may be useful for computer vision, machine learning, or deep learning analyses (e.g., Taylor and 

Browning, 2022; Cao et al., 2021). See Sect. 2.5 for additional details on data access and Sect. 5 for our Data Availability 165 

statement.  
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2 Methods and materials 

The details of camera installation and configuration protocols, site classification, and image and data processing routines 

have been previously documented in detail by Richardson et al. (2018b) and Seyednasrollah (2019). We provide only a brief 

summary here, as the underlying methods and data processing code remain unchanged.  170 

2.1 Overview of PhenoCam 

Each PhenoCam camera is classified into one of three classes: Type I, Type II or Type III. Type I cameras follow a 

standardized protocol, and site personnel are actively engaged as PhenoCam collaborators (e.g., providing camera 

maintenance and troubleshooting as required). For Type II cameras, there is some deviation from the standard protocol, but 

site personnel are still actively engaged. For Type III cameras, there is some deviation from the standard protocol, and no 175 

active collaboration of personnel on-site. Because the standard protocol has been widely embraced by PhenoCam network 

collaborators (as of 12 December 2024, 836 of 977 cameras with data in the archive, or almost 86%, are classified as Type 

I), and because of the generally lower data quality from Type III cameras (e.g., issues with white balance, field of view 

shifts, and interrupted continuity), recent data curation efforts have focused on Type I cameras, and have been discontinued 

for Type III cameras. 180 

All cameras in the PhenoCam network record three-layer JPEG images, from which we extract information about the 

mean intensity of each of the red, green, and blue (RGB) color channels, calculated across a user-defined region of interest 

(ROI), as described in the Introduction (Section 1; e.g., Eq. 2). The ROI is delineated to correspond to the vegetation under 

study (Sonnentag et al., 2012; Richardson et al., 2018b). While a single image per day would be generally sufficient to 

document phenological changes in most ecosystems, it is typical for cameras in the PhenoCam network to upload an image 185 

every 15 or 30 minutes. This ensures high quality data by minimizing data discontinuity in cases of unfavorable weather 

(rain or snow), adverse illumination conditions (clouds or aerosols), or short-term power outages. Following previously 

developed methods (Sonnentag et al., 2012), we use statistics calculated from the sub-daily GCC time-series to generate 1-

day and 3-day “summary product” GCC time-series, which have been found to be effective at filtering out noisy color output 

due to adverse conditions that may occur (Sonnentag et al., 2012). From these summary time series products, we estimate 190 

phenological transition dates corresponding to the start of each “greenness rising” (e.g., budburst) and “greenness falling” 

phenological phase (e.g., senescence). Uncertainties are quantified and provided for all GCC time series and transition date 

estimates. 

2.2 NDVI derived from infrared PhenoCam imagery 
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Motivation and proof-of-concept for cameraNDVI, as well as details on the calculations, can be found in Petach et al. 195 

(2014). In brief, cameraNDVI is calculated using data extracted from the same ROI in back-to-back (30 seconds apart) RGB 

and RGB+NIR images. Accounting for exposure differences between the two images, it is then possible to estimate the NIR 

contribution to the RGB+NIR image by subtracting off the estimated RGB component  

𝑁𝐼𝑅&'# = (𝑅𝐺𝐵 + 𝑁𝐼𝑅)&'# − 𝑅𝐺𝐵&'#,              (3) 

Where primes (′) denote exposure-adjusted DN values, with 𝑁𝐼𝑅&'# and 𝑅&'# then used in Eq. 1 in place of reflectances to 200 

obtain cameraNDVI. We describe some important distinctions between cameraNDVI and NDVI estimated from other 

platforms (e.g., satellite remote sensing, or tower-mounted radiometric instruments) in the Discussion (Sect. 4). 

Additionally, there is no outlier detection mechanism implemented for cameraNDVI, given challenges with the higher 

variance of this data product (see Sect 3.2). This remains an ongoing area of research and development that will be 

implemented when available. 205 

2.3 Comparisons among cameraNDVI, GCC, and tower broadband NDVI  

To investigate how well time series of cameraNDVI agree with other estimates of plant phenology, we compared 

cameraNDVI to both GCC (Eq. 2) and tower-measured broadbandNDVI (Jenkins et al., 2007). First, to compare cameraNDVI 

and GCC, we began with visual comparisons between a sample set of time series to evaluate overall coherence, subsequently 

calculating and comparing the signal-to-noise ratio (SNR) for cameraNDVI and GCC at all sites. Specifically, the signal of a 210 

given time series (i.e., either GCC or cameraNDVI) is characterized using the same smoothing spline approach used to derive 

seasonal transition dates (Richardson et al., 2018b; Seyednasrollah et al., 2019), where the optimal span of the function is 

determined by minimizing the Bayesian Information Criterion (Richardson et al., 2018b). The noise is characterized from 

the residuals around the smoothing spline, and the unitless Signal-to-Noise ratio (SNR) is then calculated as the ratio of the 

variance of the smoothing spline to the variance of the residuals. The SNR thus provides a normalized metric of the day-to-215 

day variation in a time series relative to the seasonal variability in that time series. Next, we calculated the ratio of the SNR 

for GCC to the SNR for cameraNDVI by site when both metrics were available. For interpretation, if 

SNR(GCC)/SNR(cameraNDVI) > 1, then GCC is inferred as a “less noisy” index relative to cameraNDVI, and these results are 

summarized for the entire network. Finally, we further explored the relationship between GCC and cameraNDVI by each 

individual plant function type (PFT, see Table 1) and Level I Ecoregion (see Fig. 2, Table 2) through boxplots that compare 220 

the distributions of both (1) linear correlations between GCC and cameraNDVI 1-day time series, and (2) 

SNR(GCC)/SNR(cameraNDVI). 

In addition to comparing cameraNDVI to GCC, we further compared cameraNDVI to a vegetation index commonly 

referred to as “broadband NDVI” (e.g., Jenkins et al., 2007). Broadband NDVI (hereafter broadbandNDVI) is calculated from 
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radiometric sensors that measure downwelling (↓) and upwelling (↑) photosynthetically active radiation (Q, 400-700 nm) – 225 

measured using photosynthetic photon flux density (µmol m-2 s-1) – and global radiation (Rg, 400-2500 nm, W m-2), where 

an estimate of reflectances (r) are obtained following Jenkins et al. (2007): 

𝑟()* =
$+↑
$+↓

,                     (4) 

𝑟,-. =
/↑
/↓

,                     (5) 

𝑟'-$ = 2	 × 𝑟()* − 𝑟,-.,                  (6) 230 

𝑏𝑟𝑜𝑎𝑑𝑏𝑎𝑛𝑑𝑁𝐷𝑉𝐼 = 0"&'	1	0)&*
0"&'	#	0)&*

,                 (7) 

It should also be noted that there are multiple approaches to calculating broadbandNDVI, and the calculated index value will 

vary slightly depending on the approach (e.g., Huemmrich et al., 1999; Wang et al., 2004; Jenkins et al., 2007; Rocha et al., 

2021).  

We chose to compare cameraNDVI to broadbandNDVI, rather than to satellite-based NDVI, for several reasons. First, 235 

similar to cameraNDVI, broadbandNDVI estimates are inherently less sensitive to days with clouds, rain, or other adverse 

weather conditions; they thus have a temporal resolution and continuity that is more closely aligned with cameraNDVI. 

Second, the coarse spatial resolution of many satellite data products risks mixing vegetation types in heterogenous terrain 

(Richardson et al., 2018a), while the limited temporal resolution presents further challenges for characterizing the 

congruency between cameraNDVI and satellite NDVI, and these issues are minimized for broadbandNDVI measurements 240 

obtained from the same tower where PhenoCams are mounted. It should be noted that the comparison between cameraNDVI 

and broadbandNDVI is not perfectly aligned due to field-of-view (FOV) differences: PhenoCams have an oblique FOV of 

the canopy, while both photosynthetically active radiation (PAR) quantum sensors and shortwave pyranometers have a 

hemispherical FOV and a cosine response.  

Similar to our comparisons between GCC and cameraNDVI, we compared cameraNDVI to broadbandNDVI through a 245 

simple visual evaluation of the two time series, as well as the same SNR analysis. For these comparisons, we used data 

aggregated to a 3-day time step. Given the large number of sites for which broadbandNDVI can be calculated (183 

AmeriFlux sites as of March 11, 2024; <https://ameriflux.lbl.gov/sites/site-

search/#vars=PPFD_IN%2CPPFD_OUT%2CSW_IN%2CSW_OUT>) we chose to focus our attention on sites within the 
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National Ecological Observatory Network (NEON, <https://www.neonscience.org>). NEON instruments are rigorously 250 

calibrated, and consistent deployment protocols ensure data are comparable across a wide range of site conditions. Across all 

NEON sites, a Hukseflux NR01 four-channel net radiometer is deployed to calculate upwelling and downwelling shortwave 

and longwave radiation (National Ecological Observatory Network, 2023b) and a Kipp & Zonen PAR Quantum Sensor 

(PQS) 1 was used to measure incoming and outgoing photosynthetically active radiation (National Ecological Observatory 

Network, 2023a). Both these NEON data products (PAR and radiation data) were downloaded from the AmeriFlux data 255 

portal for all 47 terrestrial sites in NEON’s 20 ecoclimatic domains under the AmeriFlux CC-BY-4.0 License 

(<https://ameriflux.lbl.gov/data/data-policy/#cc-by-4>). DOI citations for these downloads are available in Table S1. 

Furthermore, the calculated broadbandNDVI data in comparison to cameraNDVI are available either in Fig. 8 or in the 

Supplementary Information (Figs. S1-S5). Finally, all PhenoCam derived variables (e.g., GCC, cameraNDVI) at the 47 

NEON sites were derived from cameras and imagery maintained and operated by NEON (National Ecological Observatory 260 

Network, 2023c), all of which are included in the PhenoCam Network. 

2.4 Structure of PhenoCam V3.0 data product 

The PhenoCam Dataset V3.0 contains seven separate Data Records for each site (Box 1). The structure for Data Records 1-5 

is unchanged and described in detail in the data descriptors for V1.0 (Richardson et al., 2018b) and V2.0 (Seyednasrollah et 

al., 2019). Furthermore, details on image and time-series processing, data quality flags and filtering, and availability of 265 

interoperable software packages, such as phenocamr (Hufkens et al., 2018) and vegindex 

(<https://github.com/PhenoCamNetwork/python-vegindex>), can be found in these past data descriptors. No new software 

packages have been developed for this data release, and existing packages (e.g., phenocamr) do not yet support interfacing 

with cameraNDVI or the simplified data files. Data Records 6 and 7 are new to this release: 

1. New Data Record 6 includes derived data and metadata used to calculate cameraNDVI. There are two key file types 270 

here: 

a) the “PhenoCam Camera NDVI ROI (RGB/IR Image Pair) Statistics File” (filename: 

<sitename>_<veg_type>_<ROI_ID_number>_ndvi_roistats.csv) (see Box 2a for details) 

b) the “PhenoCam 1-day and 3-day NDVI Summary Files” (filename: 

<site_name>_<vegetation_type>_<ROI>_ndvi_1day.csv or _3day.csv) (Box 2b). Note that transition dates are 275 

not calculated from the cameraNDVI time series. 

New Data Record 7 provides a set of “simplified” data products, which do not include all the color statistics, color 

indices, cross-correlations, and uncertainties for different temporal resolutions and filtering approaches that are 

provided in Data Records 3-5. Rather, Data Record 7 only includes a summary file of daily mean GCC and 

smoothed daily mean GCC (filename: <site_name>_<vegetation_type>_<ROI>_simplified_1day.csv) (Box 3a), as 280 
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well as “rising” and “falling” transition dates derived from the daily mean GCC data (filename: 

<site_name>_<vegetation_type>_<ROI>_simplified_transition_dates.csv) (Box 3b). While these data records were 

developed with secondary and post-secondary educational applications in mind, we anticipate that most users of the 

data set will find the simplified data products are sufficient for most scientific applications, with the added benefit 

of being more compact and easier to work with.   285 
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<sitename>_<veg_type>_<ROI_ID_number> 
﹂ data_record_1 (contains general metadata for each site) 
 • <sitename>_meta.json 

• <sitename>_meta.txt 
﹂ data_record_2 (contains the ROI list files and image mask files used for image processing) 
 • <sitename>_<veg_type>_<ROI_ID_number>_roi.csv 

• <sitename>_<veg_type>_<ROI_ID_number>_<mask_index>.tif 
﹂ data_record_3 (contains all-image time series of ROI color statistics based on RGB channels, 
calculated for every image in the archive, using data_record_2) 

•  • <sitename>_<veg_type>_<ROI_ID_number>_roistats.csv 
﹂ data_record_4 (contains summary time series of ROI color statistics, calculated for 1 and 3 day 
aggregation periods from data_record_3) 
 • <sitename>_<veg_type>_<ROI_ID_number>_1day.csv 

• <sitename>_<veg_type>_<ROI_ID_number>_3day.csv 
﹂ data_record_5 (contains phenological transition dates, calculated from GCC in data_record_4) 
 • <sitename>_<veg_type>_<ROI_ID_number>_1day_transition_dates.csv 

• <sitename>_<veg_type>_<ROI_ID_number>_3day_transition_dates.csv 
﹂ data_record_6 (contains ROI statistics for paired RGB-IR images, as used to calculate camera NDVI, as 
well as 1 and 3 day summary time series for camera NDVI. Note that phenological transition dates are not 
calculated for NDVI) 
 • <sitename>_<veg_type>_<ROI_ID_number>_ndvi_roistats.csv 

• <sitename>_<veg_type>_<ROI_ID_number>_ndvi_1day.csv 
• <sitename>_<veg_type>_<ROI_ID_number>_ndvi_3day.csv 

﹂ data_record_7 (simplified data files) 
§  • <sitename>_<veg_type>_<ROI_ID_number>_simplified_1day.csv 

• <sitename>_<veg_type>_<ROI_ID_number>_simplified_transition_dates.csv 

 
Box 1. Dataset hierarchy of PhenoCam V3.0. Each ROI for each site has seven data structures, with each structure representing a different 
level of processing. For data downloaded from the PhenoCam Explorer or Gallery web pages, data for each 
<sitename>_<veg_type>_<ROI_ID_number> will be contained in a single .zip file, with each data record in a separate folder.  
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An example of a “Camera NDVI ROI Statistics File” from Data Record 6 (for display purposes the 
lines have been broken with a '\' character):  
 

# 
# 
# NDVI statistics timeseries for alligatorriver 
# 
# Site: alligatorriver 
# Veg Type: DB 
# ROI ID Number: 1000 
# Lat: 35.7879 
# Lon: -75.9038 
# Elev: 1 
# UTC Offset: -5 
# Resize Flag: False 
# Version: 1 
# Creation Date: 2021-12-03 
# Creation Time: 10:00:17 
# Update Date: 2021-12-03 
# Update Time: 10:00:17 
# 
date,local_std_time,doy,filename_rgb,filename_ir,solar_elev,exposure_rgb,exposure_ir,mask_index,\ 
r_mean,g_mean,b_mean,ir_mean,ir_std,ir_5_qtl,ir_10_qtl,ir_25_qtl,ir_50_qtl,ir_75_qtl,ir_90_qtl,ir_95_qtl,gcc,\ 
Y,Z_prime,R_prime,Y_prime,X_prime,NDVI_c 
2012-05-06,07:31:09,127,alligatorriver_2012_05_06_073109.jpg,alligatorriver_IR_2012_05_06_073032.jpg,27.9754,355,67,1,\ 
91,107,54,96,20.5030,61.0000,70.0000,84.0000,99.0000,111.0000,122.0000,128.0000,0.4226,\ 
96.7480,11.8496,4.8755,5.1348,6.7147,0.1587 
2012-05-06,08:01:09,127,alligatorriver_2012_05_06_080109.jpg,alligatorriver_IR_2012_05_06_080031.jpg,34.0538,224,40,1,\ 
96,107,48,99,21.2579,62.0000,72.0000,87.0000,101.0000,114.0000,126.0000,132.0000,0.4255,\ 
97.7713,15.7978,6.4400,6.5326,9.2652,0.1799 
2012-05-06,08:31:09,127,alligatorriver_2012_05_06_083109.jpg,alligatorriver_IR_2012_05_06_083031.jpg,40.1044,148,18,1,\ 
92,104,49,96,25.1568,57.0000,67.0000,81.0000,96.0000,112.0000,130.0000,141.0000,0.4246,\ 
94.6368,22.8614,7.5662,7.7791,15.0823,0.3319 
... 

 
Comment lines at the beginning of the file are preceeded with '# ' and include some basic site metadata 
along with creation and update dates and times. (The long lines have been broken up here with a '\' 
character for display purposes). The columns in the file are: 
 

• date: local date for image 
• local_std_time: local standard time 
• doy: day of year 
• filename_rgb: RGB filename 
• filename_ir: IR filename 
• solar_elev: solar elevation angle 
• exposure_rgb: exposure of RGB image 
• exposure_ir: exposure of IR image 
• mask_index: index into mask list 
• r_mean: mean red digital number (DN) over the ROI 
• g_mean: mean green digital number (DN) over the ROI 
• b_mean: mean blue digital number (DN) over the ROI 
• ir_mean: mean digital number (DN) over the ROI from the IR image 
• ir_std: standard deviation of digital number (DN) over the ROI from the IR image 
• ir_5_qtl,ir_10_qtl,ir_25_qtl,ir_50_qtl,ir_75_qtl,ir_90_qtl,ir_95_qtl: the 5,10,...,90,95 quantile 

values of the DN values over the ROI 
• gcc: gcc calculated across the ROI, from the RGB image 
• Y,Z_prime,R_prime,Y_prime,X_prime: intermediate values for camera NDVI calculation 
• NDVI_c: camera NDVI as calculated in Petach et al. (2014) 

https://www.sciencedirect.com/science/article/abs/pii/S0168192314001257
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Box 2a. Format of “Camera NDVI ROI (RGB/IR Image Pair) Statistics File” in Data Record 6: The Camera NDVI ROI statistics 
file (filename: <sitename>_<veg_type>_<ROI_ID_number>_ndvi_roistats.csv) is created by combining the RGB and IR ROI statistics 
files for RGB/IR image pairs. 
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An example of a “1-day Camera NDVI Summary File" from Data Record 6 (for display purposes the lines have 
been broken with a '\' character). The format of the 3-day file is identical; only the aggregation period changes. 
 
# 
# 1-day NDVI summary timeseries for coweeta 
# 
# Site: coweeta 
# Veg Type: DB 
# ROI ID Number: 2000 
# Lat: 35.0592 
# Lon: -83.4275 
# Elev: 680 
# UTC Offset: -5 
# Image Count Threshold: 1 
# Aggregation Period: 1 
# Solar Elevation Min: 10.0 
# Time of Day Min: 00:00:00 
# Time of Day Max: 23:59:59 
# ROI Brightness Min: 100 
# ROI Brightness Max: 665 
# Creation Date: 2021-12-03 
# Creation Time: 11:52:22 
# Update Date: 2021-12-03 
# Update Time: 11:52:24 
# 
date,year,doy,image_count,midday_rgb_filename,midday_ir_filename,midday_ndvi,gcc_90,ndvi_mean,ndvi_std,\ 
ndvi_50,ndvi_75,ndvi_90,max_solar_elev,snow_flag,outlierflag_ndvi_mean,outlierflag_ndvi_50,\ 
outlierflag_ndvi_75,outlierflag_ndvi_90 
2016-06-22,2016,174,25,coweeta_2016_06_22_115306.jpg,coweeta_IR_2016_06_22_115306.jpg,0.04350,0.43888,\ 
0.38738,0.10207,0.37990,0.40910,0.53376,78.04090,NA,NA,NA,NA,NA 
2016-06-23,2016,175,26,coweeta_2016_06_23_115306.jpg,coweeta_IR_2016_06_23_115306.jpg,0.66230,0.42720,\ 
0.35763,0.09380,0.34935,0.39308,0.43970,78.01470,NA,NA,NA,NA,NA 
2016-06-24,2016,176,26,coweeta_2016_06_24_115305.jpg,coweeta_IR_2016_06_24_115305.jpg,0.38210,0.42780,\ 
0.32801,0.11414,0.35570,0.39028,0.40970,77.98180,NA,NA,NA,NA,NA 
... 

 
Comment lines at the beginning of the file are preceeded with '# ' and include some basic site metadata 
along with creation and update dates and times. Dates for which there are no images (or none passing the 
selection criteria) have empty fields as show in the second data line above. When a particular value 
cannot be calculated it is given a "no data" value of NA. The columns in the file are: 
 

• date: local date of middle of time period (1-day or 3-day) 
• doy: doy for this date. The date/doy values chosen are for fixed days-of-year.  

(For the 3-day summary file these will be doy=2, 5, 8, etc.) 
• image_count: number of images passing the selection criteria 
• midday_rgb_filename: filename for the RGB image which is closest to noon (midday image) on 

the middle day of summary period 
• midday_ir_filename: filename for the IR image which is closest to noon (midday image) on the 

middle day of summary period 
• midday_ndvi: mean NDVI DN over ROI for the midday image 
• gcc_90: 90th percentile gcc value for all the image pairs passing the selection criteria 
• ndvi_mean: mean NDVI value for all the image pairs passing the selection criteria 
• ndvi_std: standard deviation of NDVI values for all the image pairs passing the selection criteria 
• ndvi_50, ndvi_75, ndvi_90: 50th, 75th, and 90th percentiles of NDVI values 
• max_solar_elev: maximum solar elevation for the images from this day 
• snow_flag: snow flag (1=snow present, 0=snow NOT present)) 
• outlierflag_ndvi_mean: outlier flag for NDVI mean value (1=outlier) [note: at present, outlier 

flags are not being calculated for NDVI] 
• outlierflag_ndvi_50: outlier flag for NDVI 50th percentile value (1=outlier) 
• outlierflag_ndvi_75: outlier flag for NDVI 75th percentile value (1=outlier) 
• outlierflag_ndvi_90: outlier flag for NDVI 90th percentile value (1=outlier) 
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 345 
 
Box 2b. Format of the “1-day and 3-day NDVI Summary Files” in Data Record 6. Derived from the “Camera NDVI ROI (RGB/IR 
Image Pair) Statistics File”, this file (filename: <sitename>_<veg_type>_<ROI_ID_number>_ndvi_1day.csv or _3day.csv) reports 
aggregated statistics for Gcc and camera NDVI calculated over 1- and 3-day aggregation periods.  
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 350 
 
Box 3a. Format of the “Simplified Daily Summary Files” in Data Record 7. This file (filename: 
<sitename>_<veg_type>_<ROI_ID_number>_simplified_1day.csv) reports aggregated statistics for Gcc_mean at a 1-day 
aggregation period. 
 355 

 
 
Box 3b. Format of the “Simplified Transition Date Files” in Data Record 7. This file (filename: 
<sitename>_<veg_type>_<ROI_ID_number>_simplified_transition_dates.csv) reports transition dates for GCC_mean, extracted from the 
1-day transition dates reported in Data Record 5. 360 
  

The “Simplified Daily Summary Files” from Data Record 7 are intended to be easier for data end-users to work 
with, in that they do not have the multitide of columns found in Data Records 3 and 4. Additionally, unlike the 
other standard data records, the simplified data records do not include any metadata. Here is an an example of 
one of these flat-text, comma-delimited files:  
 
date,gcc_mean,smooth_gcc_mean 
... [filled lines omitted],, 
2008-04-06,0.3526,0.353 
2008-04-07,0.3606,0.3544 
2008-04-08,0.3627,0.356 
2008-04-09,0.3632,0.3574 
2008-04-10,0.3615,0.3586 
... 

 
The columns in the file are: 

• date: local date  
• gcc_mean: mean daily Gcc value, from data record 4 
• smooth_gcc_mean: smoothed value of GCC from the optimized spline, from data record 4 

The  “Simplified Transition Date Files” from Data Record 7 include only transition dates derived from 
Gcc_mean. This file is intended to be easier for data end-users to work with, compared to the standard 
transition date files in Data Record 5 which also include information about uncertainties and the seasonal 
amplitude of Gcc. Additionally, the simplified data records do not include any metadata. Here is an an example 
of one of these flat-text, comma-delimited files:  
 
year,direction,date_10,date_25,date_50,DOY_10,DOY_25,DOY_50 
2008,rising,05-01,05-07,05-14,122,128,135 
2008,falling,10-22,10-18,10-12,296,292,286 
2009,rising,04-24,05-01,05-10,114,121,130 
2009,falling,10-21,10-17,10-09,294,290,282 
2010,rising,04-17,04-25,05-03,107,115,123 
... 

 
The columns in the file are: 

•  year: year in which the transition occurred. 
• direction: indicates whether the reported transition dates correspond to a “greenness rising” or 

“greenness falling” stage. Note that there may be more than one rising/falling cycle per calendar 
year, and a single rising or falling stage may cut across years. 

•  transition_10, transition_25, transition_50: the extracted transition dates (format MM-DD) for 
each “greenness rising” or “greenness falling” stage, corresponding to 10%, 25% and 50% of the 
GCC amplitude of that stage.  

• date_10, date_25, date_50: day-of-year values corresponding to the calendar date transitions 
reported in the previous three columns 
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2.5 Accessing PhenoCam V3.0 

The PhenoCam V3.0 data release can be accessed three different ways:  

1. The Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC), which is free to use and 

access (registration for an EarthData login is required). This archive also includes a helpful User Guide to better 365 

understand the dataset structure and organization. Please see the Data Availability Statement in Sect 5. 

2. The PhenoCam Explorer webpage (Fig. 1a,b). This webpage (<https://phenocam.nau.edu/phenocam_explorer/>) is 

free to use, and offers several tools to query, search, and visualize the PhenoCam V3.0 data products for each site. 

Users can access and evaluate previous versions of PhenoCam data releases (V1.0 and V2.0) through this portal as 

well. This page includes a button allowing users to download the entire V3.0 dataset as a single zip file (Fig. 1a). 370 

This zip file contains the data for every ROI in V3.0 packaged in their own individual zip files, each containing 

directories for each of the seven data records described in this paper, Richardson et al. (2018b), and Seyednasrollah 

et al. (2019) (Sect 2.4). The PhenoCam Explorer webpage also offers options to download versioned zip files for 

individual ROIs (Fig. 1b). 

3. The PhenoCam Gallery (<https://phenocam.nau.edu/webcam/>, e.g., Fig. 1c,d,e). At the top of the PhenoCam 375 

webpage, there are several persistent dropdown menus that offer links to download the data or visit the Explorer 

webpage. On each individual site page (e.g., Fig. 1c,d), users also have access to links indicating if a site is part of a 

data release, and each link points the user to the ORNL data archive. The “Download PhenoCam V3 Dataset” link 

noted at the top of Fig. 1d takes the users to Fig. 1e, where they also have the option to download the entire V3.0 

dataset as a single zip file (~6.5 GB), or to download zip files for individual V3.0 ROIs. This page (Fig. 1e) also 380 

offers the option to download a list of all ROIs and associated zip file URLs to aid in programmatic access (e.g., via 

R or Python) to the versioned data. To download data via this page users must first register with PhenoCam (which 

is also free). Finally, under the URL for each ROI (Fig. 1d), users can access additional information (e.g., 

visualization of ROI mask or time series of GCC) and download the provisional data. 

We encourage users to explore some or all these pathways for accessing V3.0 to find the option that will best suit their 385 

own research or education requirements. Finally, it is critical to note the difference between versioned and provisional data 

sets: versioned data (i.e., V1.0, V2.0, and V3.0) are prepared for long-term archive at ORNL, have undergone extensive 

QA/QC, and are static (i.e., they will not be changed in the future), ultimately making them ideal for conducting 

reproducible science. By comparison, provisional datasets accessed through the PhenoCam gallery and API contain results 

from the most recent data acquisition and are updated daily but have not undergone the same quality checks and review after 390 

the end date of V3.0 (i.e., 2023-12-31).  
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Figure 1. Various ways to access PhenoCam V3.0 data. (a) Using PhenoCam Explorer 
(<https://phenocam.nau.edu/phenocam_explorer/>), users can explore the spatial distribution of available PhenoCams in V3.0. There is 
also the option to download the entire V3.0 dataset as a zip file (red box #1). Red box #2 indicates the “Plot and Download Data” tab, 395 
which takes users to (b) and allows for broader query options for specific sites or vegetation types, as well as exploring visualizations of 
time series, transition dates, and relationships with other variables (NDVI, EVI). This page also offers a download button on the bottom 
for each specific ROI (red box #3), which will provide a zip file of the V3.0 data for that specific ROI. Red box #4 takes users to (c) the 
landing page for a given site in the PhenoCam gallery. The PhenoCam gallery webpage (<https://phenocam.nau.edu/webcam/>) has a 
persistent header of drop-down menus, providing links to visit the explorer page (Fig. 1c, red box #5), the Application Programming 400 
Interface (API, Fig. 1c, red box #6), or to download V3.0 data (Fig. 1d, red box #7). For each individual site page in the PhenoCam 
gallery, we provide metadata at the top indicating which versioned data releases the site is included in, pointing users to the ORNL archive 
(red box #8). The ROI link(s) for each site (red box #9) take users to (d), which provides additional information and a link to download 
provisional data (red box #10). The “Download PhenoCam V3 Data” link under the drop down menu (red box #7) will take users to the 
PhenoCam V3 Release ROIs page (e) where there are additional options to download the entire V3.0 archive as a single zip file (red box 405 
#11) or download zip files for individual ROIs (e.g., red box #12). Finally, in Fig. 1e (red box #13), users have the option to download a 
CSV table that contains V3.0 versioned zip file URLs for each ROI to aid in programmatic downloads of the V3.0 dataset.   
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3 Results 

3.1 Updated Data Coverage of V3.0 

The PhenoCam V3.0 dataset release has significantly expanded in both spatial and temporal coverage relative to PhenoCam 410 

V2.0 (Fig. 2, Tables 1 and 2). Sites included in this data release have at minimum six months of continuous data available, 

and all time series have been carefully curated via repeated visual evaluations and quality checks by an expert team. 

Adjustment of ROI masks have been made as needed to accommodate camera field of view shifts, and Type II or III sites 

where automatic white balancing has negatively affected data quality have been removed. There are now 738 unique sites 

and 4805.5 site-years within this data release, compared to 393 sites and 1783 site-years in PhenoCam V2.0 (Seyednasrollah 415 

et al. 2019) (Table 1). The vegetation types with the largest increase in site-years (as a percentage) were: 

1. 1118% increase for understory (UN), from 18 sites-years in V2.0 to 219.2 site-years in V3.0. 

2. 264% increase for evergreen broadleaf forests (EB), from 28 sites-years in V2.0 to 101.8 site-years in V3.0 

3. 227% increase in grasslands (GR), from 279 to site-years in V2.0 to 912.4 site-years in V3.0. 

4. 217% increase in wetlands (WL), from 142 site-years in V2.0 to 436.8 site-years in V3.0.  420 
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Figure 2. Spatial distribution of PhenoCam data across ecological regions of North America. Background map illustrates USA 
Environmental Protection Agency Level I Ecoregions (Omernik and Griffith, 2014). Data counts have been aggregated to a spatial 
resolution of 4°, and the size of each circle corresponds to the number of site-years of data in the 4x4° grid cell. A total of 4286.6 out of 
4805.5 total site years in the V3.0 dataset are depicted in Fig. 2. However, sites in Hawaii, Puerto Rico, Central and South America, 425 
Europe, Asia and Africa (total of 518.9 site years) are not shown.  
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Table 1. Vegetation type abbreviations for ROIs (region of interests), and the corresponding number of sites and site-years of data 
in the PhenoCam dataset described here (V3.0). For comparative purposes, the number of sites and site-years of data in the previous 
dataset releases is also presented. The number of sites that contain an ROI for a given vegetation type are in parentheses, and a given site 
can contain ROIs for multiple vegetation types. MX and NV ROIs were excluded in V2.0 but are currently available again in V3.0. There 430 
are 2.7 site years of Reference Panel (RF) ROIs in V3.0 as well, for a total of 4805.5 site years in the V3.0 data release.  
 

Abbreviation Description Site-years 
(nsites) in V1.0 

Site-years 
(nsites) in V2.0 

Site-years 
(nsites) in V3.0 

AG Agriculture 50 (11) 226 (84) 703.5 (161) 
DB Deciduous Broadleaf 392 (67) 653 (112) 1185.2 (171) 
DN Deciduous Needleleaf 4 (1) 45 (11) 115.3 (13) 
EB Evergreen Broadleaf 2 (1) 28 (12) 101.8 (22) 
EN Evergreen Needleleaf 80 (18) 264 (66) 778.0 (122) 
GR Grassland 121 (26) 280 (70) 912.4 (188) 
MX Mixed vegetation 

(generally EN/DN, 
DB/EN, or DB/EB) 

5 (1) - 13.7 (2) 

NV Non-vegetated 14 (1) - 17.2 (3) 
SH Shrubs 46 (13) 141 (48) 436.8 (86) 
TN Tundra (includes 

sedges, lichens, 
mosses, etc.) 

22 (7) 68 (15) 117.0 (20) 

UN Understory - 18 (10) 219.2 (41) 
WL Wetland 11 (4) 58 (20) 202.7 (39) 

 
  



 24 

Table 2. Number of sites and site years for each Level I Ecoregion in North America. These Level I ecoregions correspond to the 435 
same ecoregions in Fig. 2 (Omernik and Griffith, 2014). Please note, not all site years/sites are included if they are located outside North 
America.  

  
Abbreviation Description Site-years 

(nsites) in V1.0 
Site-years 
(nsites) in V2.0 

Site-years 
(nsites) in V3.0 

EF Eastern Temperate 
Forests 

313.5 (40) 617.3 (61) 1382.7 (182) 

GP Great Plains 36.0 (10) 165.4 (27) 492.4 (79) 
MC Mediterranean 

California 
63.2 (15) 98.4 (15) 199.5 (38) 

ND North American Deserts 29.4 (11) 66.2 (17) 412.4 (107) 
NF Northern Forests 153.0 (28) 468.2 (44) 1006.4 (86) 
NW Northwestern Forested 

Mountains 
87.1 (15) 165.3 (30) 375.4 (55) 

SA Southern Semiarid 
Highlands 

6.1 (4) 14.0 (4) 62.1 (6) 

TG Taiga - 3.6 (1) 25.2 (6) 
TN Tundra 26.1 (7) 50.3 (10) 75.7 (14) 
TS Temperate Sierras - 3.2 (3) 126.7 (26) 
WC Marine West Coast 

Forest 
7.4 (2) 18.2 (6) 41.3 (10) 
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Using the Level II Ecoregion classification of North America (<https://www.epa.gov/eco-research/ecoregions-north-

america>), we identified ecoregions and biomes where coverage is lowest. From about 30°N to 55°N, virtually every Level 440 

II ecoregion has at least three (and in many cases substantially more) PhenoCams (Figure 3a). Ecoregions in the high Arctic 

of northern Canada and most of Mexico emerge as poorly represented, suggesting they should be targeted for future camera 

deployment efforts. The everglades ecoregion of Southern Florida does not have any PhenoCams currently, but there are six 

active PhenoCams in Puerto Rico to characterize coverage of North American tropical wet forests. Using the Whittaker 

Biome Classification (Whittaker, 1975), we also examined the distribution of PhenoCam sites across global climate-space 445 

(Figure 3b). Using the most recent version of WorldClim 30-yr average temperature and precipitation data (Fick and 

Hijmans, 2017), we found that mean annual temperature at PhenoCam sites in North America spans almost 40°C, ranging 

from -12.0°C to 26.1°C, while mean annual precipitation varies 30-fold, from 109 mm to over 3800 mm. Among the biomes 

corresponding to this ecoclimatic gradient, boreal forest, temperate forest, temperate grassland desert, temperate rain forest, 

tropical forest savanna, and woodland/shrubland biomes are generally well-represented by the current distribution of 450 

PhenoCam network sites. However, the ecoclimatic representation of the network would benefit from the installation of 

more cameras in subtropical desert, tundra, and tropical rain forest biomes. Although expansion of PhenoCam coverage in 

Mexico is expected in the coming years, increased global coverage of warm, wet, and warm and wet ecosystems will require 

collaboration and engagement of site PIs across the tropics and sub-tropics more generally.  
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 455 

Figure 3. Representation of PhenoCam cameras in ecoclimatic space. (a) The number of PhenoCams for each Level II Ecoregion in 
North America. colored by the number of PhenoCams per region. (b) The distribution of PhenoCams across climate space in relation to 
major terrestrial biomes as well defined by the Whittaker classification. Ecoregion boundaries are obtained from the USA Environmental 
Protection Agency Ecoregion Level II map of North America from Omernik and Griffith (2014).  
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The longest time series for a single plant functional type (PFT) and Type I camera at a single site is for an evergreen 460 

conifer forest site, howland1, started in January 2007 (16.8 yr split into three separate ROIs that adjust for camera field-of-

view shifts; <https://phenocam.nau.edu/webcam/sites/howland1/>). Other Type I cameras of considerable temporal coverage 

include four deciduous broadleaf forest sites where cameras were first installed in 2008: harvard (15.7 yr), caryinstitute 

(15.7 yr), queens (15.5 yr), bartlettir (15.4 yr), and morganmonroe (15.3 yr). In total, there are 51 time series from Type I 

cameras that are at least a decade in length, and 355 time series between 5-10 years in length. Of cameras with the capacity 465 

to produce cameraNDVI, the longest ROIs are more than 10 years long (e.g., canadaOBS, kendall, missouriozarks), with 341 

ROIs at least 5 years in length. Finally, to ensure our data processing algorithm is consistent between versioned datasets, we 

compared transition dates in V3.0 to those in V2.0, similar to methods described in (Seyednasrollah et al., 2019). We found 

strong consistency between datasets, with r2 values > 98% and mean absolute errors (MAE) < 2.0 days. There were a small 

number of individual transition dates (~1%) between versions that we were unable to align for comparison; this primarily 470 

affected sites where ROIs have changed (e.g., FOV mask or time period differs), or in systems where the seasonal amplitude 

in GCC or the timing or number of seasonal transitions is more variable, such as in arid grasslands or in agricultural sites. 

3.2 Comparisons among GCC, cameraNDVI, and broadbandNDVI 

We generally found that GCC and cameraNDVI exhibited very similar patterns in canopy greenness (Fig. 4), indicating the 

capacity of both GCC and cameraNDVI to consistently record variability in phenology. This similarity was apparent across a 475 

wide range of ecosystems, from Arctic tundra to deciduous forest ecosystems, as well as shrublands and grasslands. While 

there was general agreement in seasonal patterns, there were some distinct and important differences as well. As an example, 

there were several key discrepancies between GCC and cameraNDVI at deciduous broadleaf sites (Figs. 4-5). First, there is no 

distinct “spike” in spring greenness in early spring in cameraNDVI, a common and notable artefact in GCC caused by bright 

“greenness” of early season leaves (Keenan et al., 2014) (Fig. 5). Additionally, there is a delay in fall senescence in 480 

cameraNDVI relative to GCC, with cameraNDVI exhibiting a more gradual decline in greenness after October; this is 

presumed to be driven by differences in foliage color (affecting GCC) vs. foliage amount (affecting cameraNDVI) (Wingate 

et al., 2015). For both reasons, cameraNDVI likely better represents the seasonal dynamics of deciduous forest LAI (leaf 

area index); but, because GCC and cameraNDVI are indicative of different aspects of phenology (leaf color vs. leaf presence), 

we believe that the “best” metric will depend on the specific application. In this sense, the two metrics are complementary 485 

rather than redundant.   
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Figure 4. Time series comparing cameraNDVI to GCC across a wide range of sites and ecosystems from North America, including 
(a) a deciduous broadleaf forest at queens, (b) an evergreen broadleaf forest at laupahoehoe, (c) an evergreen needleleaf forest at 490 
austincary, (d) a grassland cperuvb, (e) an agricultural site mead1, and (f) a shrubland site luckyhills. 
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Figure 5. Comparison of cameraNDVI and smoothed GCC time series at deciduous broadleaf sites. Note the early growing season 
greenness “spike” in GCC that is absent from cameraNDVI. Scales on y-axis are equal for both sites. 495 
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While there was general agreement in the overall seasonality between cameraNDVI and GCC, we found that in most 

cases, GCC provided clearer seasonal patterns and time series. For example, GCC provided much more distinct greenness 

signals in evergreen needleleaf forests relative to cameraNDVI (Fig. 4c). By comparison, an evergreen broadleaf site 

displayed similar levels of noise for both GCC and cameraNDVI (Fig. 4b). To summarize across all sites, we used a signal-to-500 

noise ratio (SNR) analysis (Fig. 6), where we uncovered consistent evidence that GCC provides clearer seasonal patterns 

relative to cameraNDVI. Approximately 17% of all sites had cameraNDVI SNR estimates that were greater than SNR of 

GCC; in other words, in more than 80% of cases, GCC provides a less noisy greenness metric for tracking phenology relative 

to cameraNDVI. When separating this analysis by individual PFTs and Level I Ecoregions, we found similar patterns where 

cameraNDVI was in general noisier than GCC (Fig. 7). There were a few notable exceptions; in 63% of all evergreen 505 

broadleaf (EB) sites, cameraNDVI had a less noisy signal relative to GCC (Fig. 7c). Shrublands (SH), grasslands (GR), and 

evergreen needleleaf (EN) forests displayed an opposing pattern compared to EB sites, with only 8%, 9%, and 11% of sites 

where cameraNDVI was less noisy than GCC, respectively.   
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 510 
Figure 6. Ratio of signal-to-noise ratio (SNR) of GCC to SNR of cameraNDVI. Top most panel shows the cumulative distribution 
function of the ratio, where values < 1 indicate SNR for cameraNDVI is greater than SNR for GCC, meaning less high-frequency variability 
in the cameraNDVI data and hence a less noisy cameraNDVI time series compared to GCC. By comparison, values > 1 occur when GCC has 
less high frequency variability than cameraNDVI. From this analysis, SNR of cameraNDVI was higher than that of GCC for approximately 
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17% of site-years, whereas SNR of GCC was higher than cameraNDVI for the remaining ~83% of site-years. The bottom two panels show 515 
example time series for a site where SNRDIFF < 1 (tsubiology, deciduous broadleaf, DB) and SNRDIFF > 1 (NEON.D10.CPER.DP1.00033, 
grassland, GR). For tsubiology, SNRGCC / SNRcameraNDVI = 0.23, and for NEON.D10.CPER.DP1.00033, SNRGCC / SNRcameraNDVI = 9.14. 
Both these points are plotted and labeled in the top panel. Note that in both cases, the time series are highly coherent between 
cameraNDVI and GCC.  
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 520 

Figure 7. Summarizing relationships between GCC and cameraNDVI by vegetation type (i.e., PFT) and Level I Ecoregions. In (a) 
and (b), the distributions represent the linear correlation between 1-day time series for GCC and cameraNDVI. In (c) and (d), distributions 
represent the signal-to-noise ratio (i.e., SNR Difference = SNRGCC / SNRcameraNDVI), where values > 1.0 indicate that GCC has a less noisy or 
smoother signal.   



 34 

To bolster our evaluation of cameraNDVI, we further compared it to other reflectance-based measurements of canopy 525 

greenness. Specifically, we compared cameraNDVI to broadbandNDVI derived from flux-tower data at NEON sites, which 

revealed that there is generally a strong seasonal correspondence between the two datasets (Figs. 8, S1-S5). Overall, 

cameraNDVI appeared to be less noisy than broadbandNDVI, and the clear correlation between these two datasets indicates 

that cameraNDVI can provide a reliable—and perhaps better—greenness metric that is comparable to other estimates of 

NDVI. In particular, broadbandNDVI exhibited some large outliers due to snowfall events. At times, broadbandNDVI was 530 

highly variable from one day to the next, which is unlikely to be related to changes in canopy structure (Fig. 8). For example, 

at some sites there appears to be a two-stage increase in early season broadbandNDVI (Fig. 8a,h); in Fig 8a at Harvard 

Forest – a deciduous broadleaf site – there is an early shift in broadbandNDVI likely due to initial snowmelt prior to leaf out 

in the spring. Another example of noisier winter-time periods for broadbandNDVI can be found at Bartlett (a deciduous 

forest site in New Hampshire, Fig. S1) and in tundra ecosystems of Alaska, such as Toolik (Fig. 8h) and Barrow (Fig. S5). 535 

By comparison, cameraNDVI appears to be less sensitive to snow-covered time periods. We further compared cameraNDVI 

to broadbandNDVI through a Signal-to-Noise Ratio (SNR) analysis at all terrestrial NEON sites, which was practically 

identical to our SNR analysis between GCC and cameraNDVI (see Section 2.3). Through this SNR analysis, we found that 

cameraNDVI was consistently less noisy at most of the NEON sites investigated (Fig. S6), further supporting our visual 

evaluation that cameraNDVI is less prone to exhibiting extreme outliers and sensitivity to snow cover in colder regions than 540 

broadbandNDVI.  
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Figure 8. Comparing cameraNDVI to broadbandNDVI. NDVI estimates are calculated at co-located NEON towers. Note that for all 545 
sites, the seasonality tends to be better defined in the cameraNDVI data compared to the broadbandNDVI data.  
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4 Discussion 

In this descriptor for the public data release of PhenoCam V3.0, we present significant updates to PhenoCam V1.0 and V2.0, 

published in 2018 and 2019, respectively (Seyednasrollah et al., 2019; Richardson et al., 2018b). In addition to more than 

doubling the total number of site years (Table 1, Fig. 2), we also significantly increased data availability in previously under-550 

represented plant functional types, such as in forest understory, evergreen broadleaf forests, grasslands, and wetlands (Sect. 

3.1). Furthermore, we provide a new PhenoCam data variable: cameraNDVI, a measure of vegetation greenness that is 

conceptually similar to satellite and flux-tower based estimates of NDVI (Eqs. 1 and 3). To help guide users in applying 

cameraNDVI for scientific or educational purposes, we present the following discussion points on both the strengths and 

weaknesses of this new data variable compared to GCC. 555 

Prior to discussing comparisons between GCC and cameraNDVI, we note that cameraNDVI are often negative (i.e., < 0), 

even during periods with green vegetation in the field-of-view (e.g., Fig. 4f). This is an important distinction when compared 

to the more common physical interpretations of NDVI derived from satellite remote sensing (Eq. 1). Negative values most 

likely emerge from the fact that cameraNDVI is calculated from exposure-adjusted pixel intensities, rather than true 

measures of reflectance. Although intensity has been shown to scale with reflectance for both the R and NIR channels 560 

(Petach et al., 2014), the relative magnitude of R vs NIR pixel intensity does not necessarily correspond to the relative 

magnitude of R vs NIR reflectance. Consequently, while seasonality of cameraNDVI may correctly depict seasonal 

vegetation dynamics, the absolute magnitude of cameraNDVI may be quite different from standard NDVI products from 

satellite platforms. To facilitate comparisons across sites, one potential solution is to re-scale cameraNDVI to match the 

range of satellite NDVI (e.g., MODIS), as suggested by Filippa et al. (2018). 565 

Through extensive tests directly comparing PhenoCam GCC and cameraNDVI, we ultimately found evidence that GCC 

provides a clearer and less noisy phenological signal of greenness compared to cameraNDVI at most sites (Figs. 6, 7). In 

general, this more-variable signal in cameraNDVI can be attributed to an increased variance and a higher likelihood of 

outliers occurring, a consequence of the following factors. First, large outliers can occur in cameraNDVI estimates; in 

particular, cameraNDVI < -0.5 seem to be associated with a stuck or cut infrared (IR) filter within the camera. Second, 570 

changes in lighting conditions during the calculation of cameraNDVI can cause a noisier signal. Specifically, since 

cameraNDVI is calculated from two images that are taken approximately one minute apart (one with IR filter and one 

without), cameraNDVI is subject to changes in lighting conditions during this 1-minute period (e.g., shifting cloud cover 

affecting incoming solar radiation), ultimately generating a noisier phenology signal relative to GCC. Since GCC is calculated 

from a single image, it is not sensitive to such changes. Finally, large outliers in cameraNDVI are also due to a higher 575 

sensitivity to snow than GCC, leading to noisier data during the winter season, particularly in high-latitude ecosystems (e.g., 

DEJU and TOOL in Alaska, Fig. 8d,h). However, while GCC provides a less-noisy signal in general, this result is not 

ubiquitous across all conditions or vegetation types. For example, performance between cameraNDVI and GCC metrics 
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appeared comparable at evergreen broadleaf (EB) sites (Figs. 4b, 7, S7), and using our SNR analysis, we found that at ~55% 

of all EB sites cameraNDVI provided a cleaner signal than GCC (Fig. 7). To investigate specific outliers that may be due to 580 

snowcover in cameraNDVI, we suggest users visually inspect the image archive for the site in question, which can be 

browsed by year, month, or day. Imagery for each site is updated daily, and “site pages” can be accessed from the “gallery 

page” (<https://phenocam.nau.edu/webcam/gallery/>; for more information, see the tutorial on how to access PhenoCam 

data and imagery, available at <https://phenocam.nau.edu/education/PhenoCam_Access_Guide.pdf>). Furthermore, users 

can also access the archived imagery, from the ORNL DAAC in Ballou et al. (2025). 585 

While cameraNDVI exhibits several apparent weaknesses as a measure of phenology relative to GCC (i.e., noisier signal, 

higher sensitivity to snowcover), there are some key advantages that cameraNDVI may offer. First, cameraNDVI is more 

representative of seasonal LAI in deciduous broadleaf forest sites than GCC. In particular, there is no distinct spring “peak” in 

cameraNDVI (Fig. 5) (Keenan et al., 2014). Second, senescence derived from cameraNDVI is also delayed relative to GCC at 

the end of the growing season, such as in deciduous forests, likely representing changes in LAI rather than leaf color (Filippa 590 

et al., 2018). Similarly, at grassland sites, we found that the seasonal patterns of cameraNDVI are quite similar to GCC, 

except cameraNDVI appears to decline more slowly in senescing grasslands because LAI remains high even if foliage is no 

longer green (e.g., Figs. 4d, 6). Finally, while cameraNDVI is not calculated directly from reflectance values – and therefore 

the absolute magnitude is not directly comparable to other NDVI measurements – cameraNDVI appears to give a cleaner 

phenology signal relative to flux-tower derived broadbandNDVI (Figs. 8, S1-S5). We encourage data users to view 595 

cameraNDVI as complementary to, but not a substitute for, GCC; each index – with their own inherent strengths and 

weaknesses – can provide unique information about different aspects of canopy development and changes in structure.  

Through standardized data collection and processing protocols, as well as the continually growing size of the network, 

PhenoCam data products offer a powerful tool to study vegetation phenology in almost any terrestrial biome (Richardson et 

al., 2013; Richardson, 2023). As with any environmental data product, there are key strengths and caveats that users must 600 

consider. First and foremost, PhenoCam GCC captures changes in leaf pigmentation and canopy color, which frequently 

aligns very closely with photosynthetic phenology (Bowling et al., 2018; Keenan et al., 2014), and can also provide clear and 

consistent estimates of phenological transitions (Richardson et al., 2019; Dunn et al., 2022). However, as discussed in the 

previous paragraph, GCC is less capable of capturing changes in canopy structure and LAI; by comparison, the new 

cameraNDVI product appears to offer a better measure of canopy structure. Furthermore, GCC is relative at each site; 605 

individual sites are influenced by both the color of foliage and the amount of background visible through the canopy, leading 

to variability when comparing the magnitude of GCC values between sites. Finally, one of the most important strengths of 

PhenoCam is the standardized collection and data processing of repeat imagery from across the observatory. This 

standardization is critical for multiple reasons: (1) it produces a consistent visual record of site and environmental 

conditions, (2) it allows the monitoring of fine-scale or short-term changes in vegetation (e.g., Knox et al., 2017; Hufkens et 610 
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al., 2012), (3) provides a framework for conducting regional-continental scale syntheses and evaluation of satellite remote 

sensing products (e.g., Young et al., 2022; Moon et al., 2019; Bolton et al., 2020), and (4) the scale and footprint of 

PhenoCam data are well aligned with other near-surface ecological datasets, such as eddy covariance towers (e.g., Oishi et 

al., 2018; Desai et al., 2022; Liu et al., 2025), thermal cameras (e.g., Javadian et al., 2024), SIF (e.g., Zhang et al., 2023; 

Magney et al., 2019), and LiDAR (e.g., Musinsky et al., 2022). To date, by leveraging the strengths of standardized 615 

processing routines and community engagement, PhenoCam data products have been cited and used in approximately 500 

publications over the last 17 years (Richardson and Javadian, 2025).  
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5 Data availability 

Data are free and publicly available for download from the Oak Ridge National Lab Distributed Active Archive Center 

(ORNL DAAC; <https://daac.ornl.gov>): 620 

1. Digital Camera Imagery from the PhenoCam Network, 2000-2023:  
 https://doi.org/10.3334/ORNLDAAC/2364 (Ballou et al., 2025)  

2. Vegetation Phenology from Digital Camera Imagery, 2000-2023: 
https://doi.org/10.3334/ORNLDAAC/2389 (Zimmerman et al., 2025)  

   625 

https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.3334%2FORNLDAAC%2F2364&data=05%7C02%7Cyounga1%40battelleecology.org%7C228d746b8d4543c979c008dd08c96c23%7Cf44d2ab390994d85998610165a8619f5%7C0%7C0%7C638676383413077248%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=LJRuIbewcTnQf4ieUvqvmnxTXgHjBytvSvvxdKztoLM%3D&reserved=0
https://doi.org/10.3334/ORNLDAAC/2389


 40 

6 Conclusions 

Here, we present an updated version of the PhenoCam public data release (Version 3.0). PhenoCam V3.0 significantly 

expands the total number of site-years from 1783 in V2.0 to 4805.5 in V3.0. As with past releases, the imagery and time 

series data have been quality-checked and controlled by a team of PhenoCam experts and data managers, and all data and 

underlying imagery are freely and openly available. This version includes substantial updates to previously under-630 

represented plant functional types, including evergreen broadleaf forests, grassland and agricultural sites, and understory 

vegetation (Table 1). In addition to this expansion in available phenology data, we also include updates to the published Data 

Records. Specifically, we now include cameraNDVI, a metric of phenology that is based on infrared camera imagery and 

provides a more direct comparison to other reflectance-based measures of NDVI, such as from satellites and or flux towers, 

relative to GCC. Additionally, the new simplified time series and transition date data products included in the published 635 

PhenoCam Data Records should aid many users in both educational and basic research applications.  
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7 Information about the Supplement  

Supplemental figures and tables that accompany this data descriptor are provided in the supplement section S1.  
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