Dear Reviewer,

We are very grateful for your detailed comments and constructive suggestions on our manuscript
(essd-2025-107). We revised the manuscript according to your comments and provided a
point-by-point reply (in blue color) as follows. Our revisions in the manuscript and supplementary

materials are marked in blue.

Comment 1: Please clarify the temporal coverage of the dataset. The title and abstract suggest a
continuous 2000-2020 dataset, but results focus on 2000, 2010, and 2020 only. This is misleading
if only three years are included. Specify in the title/abstract that data covers decadal intervals. If
possible, discuss feasibility of annual data generation or provide suggestions or methods for users
to further generate the annual dataset. I recommend making it clear about the spatial resolution of
the ES dataset in the title.

Response: Thanks for your detailed consideration. We agree that the previous presentation was
misleading, and we have now revised the manuscript. As you suggested, we have revised the title
to explicitly state the specific years of data coverage and the spatial resolution. The new title is “A
30-meter spatial resolution dataset of ecosystem services in China for 2000, 2010, and 2020”. We
have also amended the abstract and the conclusion sections to clearly state that the dataset
provides snapshots for these three decadal intervals (2000, 2010, 2020) and is not a continuous

annual time series.

We also added the feasibility of generating an annual dataset in the Limitations and Uncertainties
section (Lines 740-755), The detailed content is as follows:

In stable climatic conditions, many ecosystem services exhibit slow inter-annual variation. Thus,
for numerous policy and management applications - such as evaluating long-term ecological
restoration programs - a decadal assessment is often sufficient (Ouyang et al., 2016). However,
with the increasing frequency of extreme climate events, which may significantly alter ecosystem
services dynamics year-to-year, there is a growing scientific need for annual assessments (Dee et
al., 2025). Moreover, improving data availability, particularly the emergence of more detailed
annual land cover products, along with advancements in downscaling techniques, will further
support the generation of annual ecosystem service datasets (Yang et al., 2021). For users who
may wish to interpolate or model annual data, such as using our decadal data as benchmarks and
integrating it with annually available coarser-resolution remote sensing indices (e.g., MODIS
NDVI) for trend analysis and interpolation. Future research can also focus on other ecosystem
services, including biodiversity and habitat quality, pollination, flood regulation, and water quality
purification, thereby supporting a more comprehensive assessment. In addition, the biophysical
layer can be combined with socio-economic data (such as population density, accessibility and
infrastructure, water intake, economic activities, and PES programs) to achieve scenario analysis,
trade-off assessment, and fair-oriented decision-making.

Ouyang, Z., Zheng, H., Xiao, Y., Polasky, S., Liu, J., Xu, W., Wang, Q., Zhang, L., Xiao, Y., Rao,
E., Jiang, N., Lu, F., Wang, X., Yang, G., Gong, S., Wu, B., Zeng, Y., Yang, W., Daily, G.C.:
Improvements in ecosystem services from investments in natural capital, Sci. Adv., 2(2),
e1500961, https://doi.org/10.1126/science.aaf2295, 2016.

Dee, L., Miller, S., Helmstedt, K., Boersma, K., Polasky, S., Reich, P.: Quantifying disturbance


https://doi.org/10.1126/science.aaf2295,

effects on ecosystem services in a changing climate. Nat Ecol Evol., 9, 436-447,
https://doi.org/10.1038/541559-024-02626-y, 2025.

Yang, J., Huang, X.: The 30 m annual land cover dataset and its dynamics in China from 1990 to
2019. ESSD., 13(8), 3907-3925, https://doi.org/10.5194/essd-13-3907-2021, 2021.

Comment 2: Please enrich the detailed processing in terms of the methodologies and model
parameters. While the models used (e.g., CASA, RUSLE, RWEQ, InVEST) are well-known, key
assumptions, parameterization details, and calibration procedures are insufficiently described. For
example, the RUSLE model—designed for plot to watershed scales—may overestimate erosion at
30 m due to neglected deposition processes and micro-topographic effects. It is essential to
include a table summarizing input data sources, sample sizes, spatial coverage, and parameter
values. Sensitivity or uncertainty analyses for critical parameters (e.g., ¢ max in CASA) would
greatly strengthen the methodology. Furthermore, please address the suitability of each model for
high-resolution applications and provide relevant citations to support their use at 30 m.

Response: Thanks for your detailed consideration. We agree with you that a summary table
should be provided to improve clarity for the reader. We have now added the summary table in the
ecosystem services assessment parameters to clearly match each model with its corresponding
input and factors (Table 1).

We explained the suitability of each model for high-resolution applications and provided relevant

citations to support their use at 30 m (Lines 132-148). The detailed content is as follows:

The models and input data were based on the following principles: (1) Wide recognition of the
models: The selected models (e.g., CASA, RUSLE) are well-established and classic within the
field of ecosystem service assessment. Their principles are mature and have been extensively
validated in applications at global and regional scales, which facilitates the comparison of our
results with existing studies. (2) Data availability and model compatibility: The selected models
are compatible with the multi-source remote sensing, meteorological, soil, and topographic data
collected for this study, ensuring the feasibility of the assessment. (3) Suitability for spatially
explicit assessment: All models are capable of spatially explicit calculation, which allows them to
fully utilize the 30-meter high-resolution spatial data to generate detailed distribution maps,
meeting the accuracy requirements for refined management and policy formulation. The
application of these models at this fine resolution is well-supported by previous studies. The
CASA model has been successfully applied to estimate China's land net primary productivity
(NPP) data with high accuracy (Sun et al., 2021; Zhang et al., 2023). Similarly, both the RUSLE
and RWEQ models have been successfully applied at high resolution for soil erosion and
sandstorm prevention mapping, respectively, demonstrating their suitability for high-resolution
assessment (Zong et al., 2025; Yang et al., 2025). The InVEST has proved to be suitable for
large-scale water yield assessment in China (Yin et al., 2020). This capability meets the accuracy

requirements for refined management and policy formulation.


https://doi.org/10.1038/s41559-024-02626-y,
https://doi.org/10.5194/essd-13-3907-2021,

Table 1. Assessment model and input data used in this study.

Ecosystem .
) Model Parameter Dataset Resolution Source
service
Landsat 5 (2000 and 2010) and
NDVI Landsat 8 (2020) Level 2, 30 m https://earthexplorer.usgs.gov/
Collection 2, Tier 1 data
A monthly average
temperature dataset with a
Temperature ) . ) 1 km http://www.geodata.cn/data/
resolution of 1km in China
from 1901 to 2024
A monthly precipitation
o dataset with a resolution of
Precipitation . . 1 km http://www.geodata.cn/data/
NPP CASA 1km in China from 1901 to
2024
Landcover GlobeLand 30 30m http://globeland30.org/
Evapotranspi .
. MOD16A2 500 m https://modis.gsfc.nasa.gov/
ration
Potential
evapotranspi MOD16A2 500 m https://modis.gsfc.nasa.gov/
ration
Landsat 5 (2000 and 2010) and
NDVI Landsat 8 (2020) Level 2, 30 m https://earthexplorer.usgs.gov/
Collection 2, Tier 1 data
A monthly precipitation
Monthly dataset with a resolution of
) o ) ) 1 km http://www.geodata.cn/data/
Soil precipitation 1km in China from 1901 to
conservation RUSLE 2024
Soil . .
. SoilGrids V2.0 250 m https://soilgrids.org/
properties
ASTER Global Digital https://www.earthdata.nasa.go
DEM ) 30 m
Elevation Model V003 v/
. https://developers.google.com/
. ERAS Hourly Data on Single .
Wind speed 0.01° earthengine/
Levels
datasets/
Soil o o
. SoilGrids V2.0 250 m https://soilgrids.org/
properties
Long-term series of daily
Snow depth snow depth dataset in China 25 km https://data.tpdc.ac.cn/
Sandstorm
. (1979-2024)
prevention  RWEQ .
Potential
evapotranspi MOD16A2 500 m https://modis.gsfc.nasa.gov/
ration
o A monthly average
Precipitation 1 km http://www.geodata.cn/data/

temperature dataset with a




resolution of 1km in China
from 1901 to 2024
A monthly precipitation
dataset with a resolution of

Temperature . . 1 km http://www.geodata.cn/data/
1km in China from 1901 to
2024
ASTER Global Digital https://www.earthdata.nasa.go
DEM ) 30 m
Elevation Model V003 v/

A monthly average
o temperature dataset with a
Precipitation . . ) 1 km http://www.geodata.cn/data/
resolution of 1km in China

from 1901 to 2024

Potential
evapotranspi MOD16A2 500 m https://modis.gsfc.nasa.gov/
Water yield  Invest ration
Soil o o
. SoilGrids V2.0 250 m https://soilgrids.org/
properties
Landcover GlobeLand 30 30m http://globeland30.org/
Watersheds / / http://www.mwr.gov.cn/

We have also added the uncertainty impact of the models and input data on the assessment results
of ecosystem services in the Limitations and Uncertainties section (Lines 721-739). The

detailed content is as follows:

Despite of the high resolution and accuracy of the dataset, our data set still have some limitations.
First, some of the ecosystem service modules (e.g., IN'VEST water yield) simplify hydrological
and geomorphic processes and typically do not explicitly simulate groundwater recharge, surface
- groundwater interactions, or threshold/nonlinear responses during extreme events (Redhead et
al., 2016). Such simplifications can reduce accuracy in arid basins, karst areas, or
groundwater-dependent systems. Data scarcity further increases uncertainty in remote regions. In
high-elevation and desert areas (e.g., the Tibetan Plateau and arid Northwest), meteorological and
hydrological stations are sparse, quality-controlled long time series are limited, and
cloud/ice/snow contamination of optical imagery is more frequent (Walther et al., 2025).

Model-based assessments of ecosystem services inevitably involve multiple sources of uncertainty.
These uncertainties primarily arise from errors in input data (such as climate variables, land cover
types, and soil parameters, etc.), which propagate through the modeling process and have a
cumulative effect on the results (Walther et al., 2025). Although cross-validation with existing
products and ground-based observations demonstrates the overall robustness of the dataset, this
study did not conduct a systematic approach to quantifying uncertainty. Future studies should
incorporate quantitative uncertainty analysis, such as sensitivity analysis and error propagation
analysis, to provide confidence intervals for key ecosystem service estimates. These potential
uncertainties should be carefully considered when applying this dataset to fine-scale ecological
planning, ecosystem restoration decision-making, and the design of payment for ecosystem

services (PES) schemes.



Sun, J., Yue, Y., Niu, H.: Evaluation of NPP using three models compared with MODIS-NPP data
over China, PLoS ONE., 16(11), €0252149, https://doi.org/10.1371/journal.pone.0252149, 2021.
Zhang, Z., Zhao, W., Liu, Y., Pereira, P.: Impacts of urbanisation on vegetation dynamics in
Chinese cities, Environ. Impact Assess. Rev., 103, 107227,
https://doi.org/10.1016/j.eiar.2023.107227, 2023.

Zong, R., Fang, N., Zeng, Y., Lu, X., Wang, Z., Dai, W., Shi, Z.: Soil Conservation Benefits of
Ecological Programs Promote Sustainable Restoration, Earth's Future., 13, ¢2024EF005287,
https://doi.org/10.1029/2024EF005287, 2025.

Yang, J., Wang, S., Feng, J., He, H., Wang, L., Sun, Z., Zheng, C.: New 30-m resolution dataset
reveals declining soil erosion with regional increases across Chinese mainland (1990-2022),
Remote Sens. Environ., 323, 114681, https://doi.org/10.1016/j.rse.2025.114681, 2025.

Yin, L., Wang, X., Wang, Y.: Water Yield Product 1-km Grid Yearly Dataset in National Barrier
Zone of China, 1-km resolution dataset of water yield in the National Ecological Barrier Zone
(2000-2015), Journal of Global Change Data & Discovery., 4(4), 332-337,
https://doi.org/10.3974/geodp.2020.04.03, 2020.

Redhead, J., Stratford, C., Sharps, K., Jones, L., Ziv, G., Clarke, D., Oliver, T., Bullock, J.:
Empirical validation of the InVEST water yield ecosystem service model at a national scale, Sci.
Total Environ., (569-570), 1418-1426, https://doi.org/10.1016/j.scitotenv.2016.06.227, 2016.
Walther, F., Barton, D., Schwaab, J., Kato-Huerta, J., Immerzeel, B., Adamescu, M., Andersen, E.,
Coyote, M., Arany., [, Balzan, M., Bruggeman, A., Carvalho-Santos, C., Cazacu, C., Geneletti, D.,
Giuca, R., Inicio, M., Lagabrielle, E., Lange, S., Le Clec’ h, S., Vanessa Lim, Z., Mortberg, U.,
Nedkov, S., Portela, A., Porucznik, A., Racoviceanu, T., Rendén, P., Ribeiro, D., Seguin, J., Hribar,
M., Stoycheva, V., Vejre, H., Zoumides, C., Grét-Regamey, A.: Uncertainties in ecosystem
services assessments and their implications for decision support - A semi-systematic literature
review, Ecosyst. Serv., 73, 101714, https://doi.org/10.1016/j.ecoser.2025.101714, 2025.

Comment 3: Currently, only net primary productivity (NPP) is wvalidated through
cross-comparison with existing datasets. Other ES outputs lack wvalidation, which limits
confidence in their reliability. Where possible, incorporate in situ measurements or site-level
observed data for validating additional ES variables (e.g., soil erosion, water yield). Multiple
open-source NPP datasets are available and should be utilized for more robust validation. Please
provide more comprehensive validation for the published dataset.

Response: Thanks for your insightful consideration. We must acknowledge that a comprehensive
validation with existing datasets is lacking for all ecosystem services other than NPP, which limits
the assessment of their reliability (Lines 366-372). The detailed content is as follows:

In response to this kind of situation, we have developed an indirect cross-validation framework
that integrates multiple dataset sources and land cover stratification. The framework
systematically leverages diverse, authoritative proxy datasets to triangulate the reliability of the
simulations from multiple perspectives, thereby minimizing dependence on any single
observational source. Beyond multi-source datasets, we stratify all evaluations by land cover class
(e.g., cropland, forest, grassland, shrubland, and barren), enabling class-specific accuracy

diagnostics and revealing class-dependent biases that might be masked in aggregate assessments.


https://doi.org/10.1371/journal.pone.0252149,
https://doi.org/10.1016/j.eiar.2023.107227,
https://doi.org/10.1029/2024EF005287,
https://doi.org/10.1016/j.rse.2025.114681,
https://doi.org/10.3974/geodp.2020.04.03,

The verification results show that the ecosystem services simulated in this study have high
accuracy both overall (Fig. 2, Fig. 3, Fig. 4, Fig. 5) and by land cover type (Fig. S1, Fig. S2, Fig.
S3, Fig. S4) compared with the published data products (Lines 365-529).
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Figure 2: Validation of the NPP in this study, (a) the aboveground biomass and NPP of China in 2010,
(b) the NPP estimated in this study and MODIS/Terra Net Primary Production Gap-Filled Yearly L4
(MOD17A3HGF), (c) the NPP estimated in this study and Global Primary Production Data Initiative
(GPPDI) NPP data, (d) the NPP estimated in this study and Resource and Environment Science and
Data Center (RESDC) NPP data.
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Figure 3: Validation of the soil conservation in this study, (a) the simulations and measurement of
annual soil erosion rates for six river basins, including those of the Yangtze, Yellow, Haihe, Huaihe,
Pearl, and Songhua and Liaohe in 2000 and 2010, (b) the soil conservation simulated in this study and
Science Data Bank (SDB) soil conservation data in 2010, (¢) the soil conservation simulated in this
study and Resource and Environment Science and Data Center (RESDC) soil conservation data.
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Figure 4: Validation of the sandstorm prevention in this study, (a) the simulated sandstorm prevention
and dust optical depth of China in 2010, (b) the sandstorm prevention simulated in this study and
Science Data Bank (SDB) soil conservation data in 2010, (c) the sandstorm prevention simulated in
this study and Resource and Environment Science and Data Center (RESDC) soil conservation data.
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Figure 5: Validation of the water yield in this study, (a) the simulations and measurements of water
yield for 34 provinces in 2000 and 2020. (b) the water yield simulated in this study and Science Data
Bank (SDB) water yield data in 2010, (c) the water yield simulated in this study and Resource and
Environment Science and Data Center (RESDC) water yield data.
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Figure S1: The verification map of the land cover type of NPP simulated by the CASA model and the

published NPP products.
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Figure S2: The verification map of the land cover type of soil conservation simulated by the RUSLE

model and the published soil conservation products.



51 g 6 51
=] Cropland 2 Forest 3 Grassland
S 2l y077+1.06x 8 y=0.27+0.89x 5 y-021+0.14x
2 ~t Ta
& R2-0.87, p<0.001 2 |R=091,p<0.001 g R*0.84, p<0.001
‘g = 95% confidence interyats »g = 4 95% confidence intervak .g = 95% confidence interyals
B NE = £ F:E o g n:E o
~ = ~= e =
2 2 5 Bl : 5 e =
a = a = 5 o =5
a -
E s E £
7] . k73 173
=l & =1 <]
E e = i
] =) ol 3
= 02 04 06 = 2 T . = P S
: 5 2
Simulated sandstorm prevention(kg/m-) Simulated sandstorm prevention(kg/m?) imulaied sandstorm preention(ke/in)
®" Shrubland Z[Barren
y=-0.003+0.98x S| y=0.003+0.91x
R*=0.89, p<0.001 o | R?=0.69, p<0.001
4 95% confidence interval g 95% confidence intervals

()
(kg/m?)
0.04

0.02
<

Sandstorm prevention product
(kg/m?)
Sandstorm prevention product

=]

0 3 i 3 000 002 .04 0.06 00
Simulated sandstorm prevention(kg/m?) Simulated sandstorm prevention(kg/m?)

Figure S3: The verification map of the land cover type of sandstorm prevention simulated by the

RWEQ model and the published sandstorm prevention products.
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Figure S4: The verification map of the land cover type of water yield simulated by the InVEST model
and the published water yield products.

Comment 4: The spatial patterns of ES are well illustrated, but the drivers behind temporal
changes (e.g., increased NPP due to afforestation, CO- fertilization, or climate influences) are not
adequately discussed. Similarly, changes in water yield should be explicitly linked to potential
drivers such as urbanization or climate variability. The figures currently rely on qualitative
descriptions; adding quantitative summaries—such as provincial averages, standard deviations,

and statistical significance tests for change maps—would greatly enhance interpretability.

Response: Thanks for your detailed consideration. The reviewer has correctly pointed out the
importance of delving into the drivers of time changes in ecosystem services (ES) and increasing

quantitative analysis. We have now revised th

e Ecosystem services dynamics section to add discussions on drivers of ES dynamics and to include

quantitative summaries (Lines 618-667). Specifically, Table S7 (Supplementary material) reports



province-level absolute changes and percentage changes of all four ES (NPP, soil conservation,

sandstorm prevention, and water yield) over 2000 - 2020. The detailed content is as follows:

The provincial differences in ecosystem services are mainly affected by area, terrain, climate, and
land cover. Yunnan, Sichuan, Guangdong, Guangxi, and Heilongjiang have good hydrothermal
conditions and vegetation growth. Ecological initiatives, such as the Natural Forest Protection
Project and Shelterbelt Project in the Upper-middle Reaches of the Yangtze River, have positively
impacted net primary productivity (NPP). Meanwhile, negative human activities such as
deforestation have relatively low interference, resulting in higher net primary productivity in these
regions (Lu et al., 2018). Beyond land-cover change, interannual NPP gains are also consistent
with broader climate influences (warmer springs, adequate precipitation, increased radiation) and
a background rise in atmospheric CO 2  that may enhance photosynthetic capacity (CO 2

fertilization), especially where water is not limiting (Li et al., 2021). Sichuan, Xinjiang, Tibet, and
Qinghai have more soil retention due to their extensive administrative areas. These provinces have
rugged terrain, and most of the land cover is barren, which easily leads to soil erosion (Rao et al.,
2023). Inner Mongolia, Xinjiang, Gansu, and Qinghai belong to arid or semi-arid climates, with
relatively low precipitation and dry soil, making them prone to wind erosion and sandstorms due
to high wind speeds and extensive barren (Piao et al., 2020). Yunnan, Sichuan, Guangdong,
Guangxi, Jiangxi, Hunan, Hubei, and Heilongjiang have greater water yield due to abundant
rainfall, complex terrain with various landforms such as mountains, plateaus, and hills, which
facilitates the formation and accumulation of precipitation. Moreover, these regions are mostly
covered by rich vegetation, and the transpiration effect of vegetation promotes precipitation
formation and circulation (Yang et al., 2023). The interplay of climate and urbanization drives
water yield dynamics. Climatically, yield is primarily a function of net water supply (precipitation
minus PET), where warming-induced PET increases can negate the benefits of higher
precipitation (Zhou et al., 2015). In parallel, urbanization alters the hydrological partitioning:
impervious surfaces generate more rapid runoff, but this comes at the cost of reduced infiltration,

ultimately diminishing groundwater recharge and baseflow in river basins (Huang et al., 2024).

In recent decades, China has implemented ambitious ecological projects, such as the Natural
Forest Protection Project (NFPP), the Grain for Green Program (GFGP), the Three-north Shelter
Forest Project (TSFP), and the Project for Preventing and Controlling Desertification (PPCD). The
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implementation of these projects has changed the land cover, effectively increasing vegetation
coverage and improving ecosystem stability (Cai et al., 2022). Concurrently, warming
temperatures in recent years have also supported the vegetation growth (Song et al., 2021),
contributing to a general increase in net primary productivity (NPP). Our province-level
summaries indicate widespread positive NPP trends in regions targeted by NFPP and GFGP,
consistent with afforestation effects and climate co-benefits. The enhanced NPP reflects improved
photosynthetic capacity driven by vegetation recovery, particularly in areas targeted by national
restoration projects. The expansion of forests, shrubs, and grasslands under these ecological
programs has strengthened vegetation and root systems, improving soil stability and sand retention
capacity. These improvements have led to notable increases in soil conservation, particularly
within watersheds affected by reforestation and revegetation efforts (Wang et al., 2016). The
spatial patterns of increased soil conservation are closely associated with the implementation areas
of the GFGP and NFPP. Simultaneously, the observed reduction in desertified land and
improvements in sandstorm prevention capacity correspond well with the effects of the TSFP and
anti-desertification efforts (Li et al., 2023b). These spatial patterns indicate that this
high-resolution dataset can serve as an effective tool for assessing the ecological outcomes of
national policy initiatives. Nevertheless, the increased vegetation cover has also affected
hydrological processes, particularly through increased evapotranspiration and reduced surface
runoff, which may result in declining water yield in afforested regions (Zhao et al., 2021). This
highlights the importance of considering potential trade-offs between restoration benefits and

water resource availability, especially in arid and semi-arid regions.
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Comment 5: The Discussion section should be expanded to address limitations more thoroughly,
including model simplifications (e.g., INVEST’s omission of groundwater processes), data scarcity
in remote regions, and remote sensing artifacts (e.g., NDVI distortions due to cloud cover).
Additionally, suggestions for future improvements - such as annual dataset generation, inclusion
of additional ES (e.g., biodiversity), or integration with socioeconomic data- -would help outline
pathways for further development and application.

Response: Thanks for your comment. In the Limitation and Uncertainties section, we have now added
discussions on model simplification, uncertainties caused by data loss, and suggestions for future

improvements. The detailed content is as follows (Lines 697-754):

This study utilized remote sensing datasets and meteorological station data to compile long-term
datasets of NDVI, vegetation coverage, evapotranspiration, potential evapotranspiration, and snow
cover in China. These datasets effectively removed the missing or low-quality pixels in the
original images, overcame the challenge of reconstructing data under cloud cover with limited
information, and improved the precision of the monthly data. Although we used high-precision

data to assess ecosystem services, there are several uncertainties and limitations. For example, we

12


https://doi.org/10.1038/ncomms6918
https://doi.org/10.1016/j.jhydrol.2024.131194,

calibrated the Landsat 5 and 8 spectral response data and calculated monthly and quarterly NDVIL.
However, there remains the possibility that sensor-related bias has not been fully eliminated
(Anderson et al., 2020). Residual remote-sensing artifacts may remain after preprocessing,
including undetected clouds/cloud-shadows and topographic illumination effects, mixed-pixel
issues in ecotones, and NDVI saturation over dense-canopy regions (Lin et al., 2021). These
factors may bias both spatial contrasts and temporal trends despite our cross-sensor harmonization.
Although this study extensively utilizes site data to maximize available information and enhance
spatial and temporal continuity, the ground observation data still face representativeness issues,
and accuracy requires improvement in certain areas. Validating remote sensing products with site
observation data is also subject to representativeness challenges, and uncertainties still exist in the

accuracy verification process (Zhao et al., 2020).

The four ecosystem services were assessed using different satellite sources of data, while the
ecosystem service maps are presented at 30m resolution - driven by the highest-resolution data
(Landsat NDVI, GlobeLand30, and DEM) - other essential input data (e.g., climate and soil
properties) were originally at coarser resolutions. Although these data were resampled to 30m
resolution, this process inevitably introduces uncertainty (Yan et al., 2025). The fine-resolution
output effectively captures spatial patterns defined by the land cover and NDVI. Still, the
precision of absolute values in highly heterogeneous areas may be constrained by the inherent

information content of the original coarser datasets (Liu et al., 2023).

Model-related structural limitations should also be acknowledged. Some of the ecosystem service
modules (e.g., INVEST water yield) simplify hydrological and geomorphic processes and typically
do not explicitly simulate groundwater recharge, surface - groundwater interactions, or
threshold/nonlinear responses during extreme events (Redhead et al., 2016). Such simplifications
can reduce accuracy in arid basins, karst areas, or groundwater-dependent systems. Data scarcity
further increases uncertainty in remote regions. In high-elevation and desert areas (e.g., the
Tibetan Plateau and arid Northwest), meteorological and hydrological stations are sparse,
quality-controlled long time series are limited, and cloud/ice/snow contamination of optical

imagery is more frequent (Walther et al., 2025).
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Model-based assessments of ecosystem services inevitably involve multiple sources of uncertainty.
These uncertainties primarily arise from errors in input data (such as climate variables, land cover
types, and soil parameters, etc.), which propagate through the modeling process and have a
cumulative effect on the results (Walther et al., 2025). Although cross-validation with existing
products and ground-based observations demonstrates the overall robustness of the dataset, this
study did not conduct a systematic approach to quantifying uncertainty. Future studies should
incorporate quantitative uncertainty analysis, such as sensitivity analysis and error propagation
analysis, to provide confidence intervals for key ecosystem service estimates. These potential
uncertainties should be carefully considered when applying this dataset to fine-scale ecological
planning, ecosystem restoration decision-making, and the design of payment for ecosystem

services (PES) schemes.

In stable climatic conditions, many ecosystem services exhibit slow inter-annual variation. Thus,
for numerous policy and management applications - such as evaluating long-term ecological
restoration programs - a decadal assessment is often sufficient (Ouyang et al., 2016). However, we
also note that with the increasing frequency of extreme climate events, which can significantly
alter ecosystem services dynamics year-to-year, there is a growing scientific need for annual
assessments (Dee et al., 2025). Moreover, improving data availability, particularly the emergence
of more detailed annual land cover products, along with advancements in downscaling techniques,
will further support the generation of annual ecosystem service datasets (Yang et al., 2021). We
also provide suggestions for users who may wish to interpolate or model annual data, such as
using our decadal data as benchmarks and integrating it with annually available coarser-resolution
remote sensing indices (e.g., MODIS NDVI) for trend analysis and interpolation. Future research
can also focus on other ecosystem services, including biodiversity and habitat quality, pollination,
flood regulation, and water quality purification, thereby supporting a more comprehensive
assessment. In addition, the biophysical layer can be combined with socio-economic data (such as
population density, accessibility and infrastructure, water intake, economic activities and PES

programs) to achieve scenario analysis, trade-off assessment and fair-oriented decision-making.
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