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Abstract. Cooking emissions are a significant source of PM2.5, posing considerable public health risks due to their high

toxicity and proximity to densely populated areas. Despite their importance, there is currently a lack of an accurate, long-

term, high-resolution national cooking emission inventory in China, primarily due to the challenges in obtaining high-quality

activity level data over extended periods and at fine spatial scales. Here, we address these limitations by leveraging advanced

machine learning techniques to predict activity levels and further estimate emissions.20

Specifically, we develop an ensemble model of machine learning algorithms—Random Forest (RF), eXtreme Gradient

Boosting (XGBoost), Multilayer Perceptron Neural Network (MLP), and Deep Neural Networks (DNN)—to accurately

predict cooking activity levels across Chinese counties based on statistical indicators related to population, economy, and the

catering industry. The ensemble machine learning model demonstrates exceptional generalization and transferability

(R2=0.892-0.989), outperforming traditional statistical models and individual machine learning models. Unlike previous25
inventories that rely on simplistic proxy data such as population for calculation and downscaling, our inventory directly

calculates county-level cooking emissions, providing more accurate emission estimates and spatial distributions.

Furthermore, we incorporate critical but previously missing toxic pollutants, such as ultrafine particles (UFPs) and

polycyclic aromatic hydrocarbons (PAHs), into the national cooking emission inventory. Therefore, we develop China's first

county-level cooking emission inventory, spanning from 1990 to 2021, with high spatial resolution and wide pollutant30
coverage.

According to our inventory, in 2021, China’s total cooking emissions of organics in the full volatility range, PM2.5, UFPs,

and PAHs are 997 kt, 408 kt, 6.50 × 1025 particles, and 15.8 kt, respectively. From 1990 to 2021, emissions of these
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pollutants increased by over 65%, and their spatiotemporal trends were affected to varying degrees by external factors, such

as population migration, economic development, pollution control policies, and the pandemic at different periods. Using the35
SHapley Additive exPlanations (SHAP) algorithm, we further analyze the contribution patterns of key driving factors, such

as urbanization rate, population, and local emission factors, to emission changes. Notably, driver analysis reveals that

existing control measures are insufficient to curb the rapid growth of emissions, necessitating enhanced controls. Regarding

control strategies, our county-level inventory finds that 62.3% of the China’s organic emissions are concentrated in 30% of

the counties, which are densely populated and occupy only 14.4% of the national land area. Therefore, prioritizing control of40
these areas will be an efficient and targeted strategy. Our research provides crucial data and insights for understanding the

impact of cooking emissions on air pollution and health, aiding in policy development. Our long-term, high-resolution

emission datasets are publicly available at https://doi.org/10.6084/m9.figshare.26085487 (Li et al, 2025).

1 Introduction

Cooking activities, through the heating and processing of oil and food ingredients, emit large amounts of pollutants, posing45
significant harm to air quality and human health. Cooking emissions are one of the major sources of organic aerosols (OA,

the organic component of PM2.5) in urban areas (Lee et al., 2015; Logue et al., 2014; Zhao and Zhao, 2018). Source

apportionment results indicate that cooking organic aerosols account for 5%-37% of the total OA concentration in various

urban atmospheres (Abdullahi et al., 2013; Huang et al., 2021; Mohr et al., 2012). Furthermore, pollutants emitted from

cooking have been proven to contain numerous harmful components, such as ultrafine particles (UFPs) and polycyclic50
aromatic hydrocarbons (PAHs) (Guo et al., 2023; Kim et al., 2024; Lin et al., 2022a). Given that cooking emissions typically

occur in densely populated areas, they pose significant public health risks (Li et al., 2023b; Lin et al., 2022b). Therefore, the

long-term high-spatial-resolution emission inventories are critical for assessing the impacts of cooking emissions on human

health, as they support exposure analysis studies across different locations and periods.

However, existing cooking emissions inventories have some limitations, including high uncertainties, low spatial resolution,55
or limited temporal coverage, often restricted to recent years (Cheng et al., 2022; Jin et al., 2021; Liang et al., 2022; Wang et

al., 2018a). These limitations are mainly due to the difficulty in obtaining high-quality data, particularly activity level data,

over long time scales and at fine spatial resolutions. Some studies have collected key data for emission calculations by door-

to-door surveys of restaurants and online fume monitoring systems, and thereby established high-resolution inventories of

single years in cities or districts such as Beijing, Shanghai, and Shunde (Lin et al., 2022b; Wang et al., 2018b, 2018a; Yuan60
et al., 2023). However, on a larger spatiotemporal scale, the acquisition of accurate cooking activity level data (e.g., the

number of restaurants) remains difficult. Traditional China’s national cooking emission inventories either use simplistic

statistical data (such as population and catering consumption expenditure) as proxies for activity levels, or linearly

extrapolate the activity levels of one city to other areas based on these simple statistics (Cheng et al., 2022; Jin et al., 2021;

Liang et al., 2022; Wang et al., 2018a). These simplifications and linear assumptions result in high uncertainties and low65
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spatial resolution. Recent studies have more accurately estimated national cooking emissions based on data from digital

maps or catering service platforms (Li et al., 2023b; Zhang et al., 2024). However, these inventories are limited to recent

years, as they rely on data platforms that have only been fully developed recently.

In addition to emission estimation, a detailed analysis of the driving factors of cooking emissions in different periods and

regions is of great significance in developing targeted, precise, and long-term control strategies (Wang et al., 2025).70
However, existing emission estimation methods struggled to uncover the deep driving forces behind emission changes.

Previous studies mainly used a brute-force method to isolate the impact of various activity level factors, such as the number

of restaurants and oil usage, on emissions (Li et al., 2023a; Li et al., 2023b). However, this approach fails to elucidate and

quantify the nonlinear relationships between emission changes and the underlying factors tied to regional development, such

as population change and, economic growth, hindering the development of long-term planning and policies for local75
pollution control. In conclusion, there is an urgent need to develop an advanced estimation and analysis technique to provide

long-term, high-resolution emission inventories for cooking and to deeply analyze the driving factors behind cooking

emissions.

In recent years, machine learning has been extensively applied in atmospheric pollution research, due to its powerful

capability to handle and learn from large-scale spatiotemporal datasets and capture the complex nonlinear relationships80
within them (Liu et al., 2023; Prodhan et al., 2022a; Zhang and Zhao, 2024; Zheng et al., 2021). Models such as Random

Forest (RF), eXtreme Gradient Boosting (XGBoost), and Deep Neural Networks (DNN), combined with the SHapley

Additive exPlanations (SHAP) additivity algorithm, have demonstrated strong performance in forecasting pollutant

concentration time series, identifying spatial distributions, and explaining pollution causes (Chen et al., 2024; Prodhan et al.,

2022b; Ren et al., 2022; Wu et al., 2024; Xu et al., 2023). More importantly, machine learning techniques have the potential85
to overcome the aforementioned challenges in data acquisition at large spatiotemporal scales (Zhu et al., 2023). By

leveraging their ability to handle large-scale spatiotemporal datasets and capture complex nonlinear relationships, machine

learning may enable us to predict long-term and high-resolution activity levels, and provide deeper insights into the driving

forces behind emission changes. However, such efforts have not yet been made.

Apart from lacking accuracy and breadth, another limitation of existing cooking emission inventories is their limited90
pollutant coverage. Previous studies on cooking emissions primarily focused on PM2.5 (whose organic component is primary

organic aerosol, POA) and volatile organic compounds (VOCs) (Jin et al., 2021; Wang et al., 2018a, 2018b). However,

recent advancements in the framework for organic compounds in the full volatility range (including VOCs, intermediate-

volatility organic compounds (IVOCs), semi-volatile organic compounds (SVOCs), and organic compounds with even lower

volatility (xLVOCs)) have revealed the previously overlooked significant contributions of I/SVOCs to secondary organic95
aerosols (SOAs) (Chang et al., 2022; Zhang et al., 2021). Therefore, our latest work has supplemented the emission

inventory with organics in the full volatility range for cooking sources (Li et al., 2023b). Additionally, UFPs and PAHs

emitted from cooking have also received considerable attention due to their high toxicity (Chen and Zhao, 2024; Jørgensen
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et al., 2013; Lachowicz et al., 2023; Lin et al., 2022a). However, emission inventories for these critical pollutants from

cooking in China are very sparse. Existing PAH inventories for cooking emissions are limited to a few cities (Chen et al.,100
2007; Li et al., 2003), and UFP emission inventories from cooking are almost nonexistent. This gap limits our

comprehensive assessment of the environmental and health risks associated with cooking emissions.

In conclusion, limited by the difficulty in obtaining high-quality activity data, there is currently a lack of an accurate, long-

term, high-resolution national cooking emission inventory, which hinders studies on PM2.5 modeling, source apportionment,

and health risk analysis. Additionally, traditional methods fail to reveal the underlying driving factors behind emission105
changes. Furthermore, there is insufficient coverage of important non-traditional pollutants (such as PAHs and UFPs) in

previous cooking emission inventories.

In this study, we use machine learning models to overcome the limitations of data acquisition and driving force analysis,

while also expanding the range of pollutants covered in the emission inventory. Specifically, we employ an ensemble of four

preferred machine learning algorithms to estimate long-term, high-spatial-resolution cooking activity data. This ensemble110
model integrates the strengths of the four base models—RF, XGBoost, Multilayer Perceptron Neural Network (MLP), and

DNN)—enabling it to accurately predict cooking activity levels across various Chinese counties based on statistical

indicators related to population, economy, and catering industry. We validate the model's generalizability and transferability

using unseen testing data sets. By further combining advanced emission factors and pollution control data, we estimate the

emissions of various pollutants (including organics in the full volatility range, PM2.5, UFPs, and PAHs) from commercial,115
residential, and canteen cooking at the county level from 1990 to 2021. Finally, using the one-factor-at-a-time method and

the SHAP algorithm, we reveal the long-term driving factors of cooking emissions at both the national and county levels.

This provides essential data and new insights for studies of the impact of cooking emissions on air pollution and human

health, and helps to formulate targeted emission control policies.

2 Data and Method120

The calculation method for emissions of the three sectors of cooking (commercial cooking, residential cooking, and canteen

cooking) is based on Li et al., (2023b), as shown in Eq (1):

� = � × [�� × � + ��'(1 − �)] (1)

where � represents the activity level, �� and ��' are the controlled and uncontrolled EFs for a certain pollutant, and � is the

purification facility installation proportion (PFIP).

Fig. 1 illustrates the workflow of activity level modeling, emission estimation, and driver analysis in this study. We first125
gather historical annual statistical data related to population, economy, and catering industry as predictive variables, and

collect existing high-resolution cooking activity levels as response variables. All data is standardized to the resolution of
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county level, ensuring that the sample set used for modeling is rich, diverse, and of high spatial resolution. Then, we

integrate four machine learning algorithms - RF, XGBoost, MLP, and DNN - which are selected for their superior predictive

performance and complementary strengths, to develop predictive models for cooking activity levels across three sectors:130
commercial, residential, and canteen cooking. The reliability of the model is validated on unseen testing data sets. The

activity levels predicted by the model, combined with emission factors and the PFIPs, can yield historical county-level

cooking emissions. Finally, through the one-factor-at-a-time method and SHAP additivity algorithm, we can also identify the

driving factors of national and county-level cooking emissions.

135

Figure 1: Schematics of the model developed in this study including model development, emission calculation, and

driver analysis.

2.1 Data acquisition and processing

To obtain long-term, high-resolution national emissions, it is important to acquire the nationwide activity level data that140
spans extended periods and maintains fine spatial resolution (such as county-level, or at least municipal-level). However, this

is a highly challenging task, especially before the year 2000, when a significant amount of data was missing. Fortunately, we

can leverage the powerful data imputation and predictive capabilities of machine learning to overcome this challenge.

Specifically, the activity levels for commercial, residential, and canteen cooking are the annual total fume volume, annual

total household edible oil consumption, and the annual total number of meals served in canteens, respectively. We develop145
predictive models based on machine learning algorithms that only use easily accessible statistical data to estimate these

county-level activity levels (as discussed in Section 2.2).

We collect 14 statistical indicators related to population, economy, and catering industry from 1990 to 2021 for modeling

and predicting. The types, sources and initial resolution of all statistical data can be accessed in Table S1. Population-related

variables include population, the number of employees in enterprises, and the number of students in primary school and150
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middle school. Economy-related variables encompass urbanization rate, total gross domestic product (GDP), GDP of

primary, secondary, and tertiary industries, and per capita disposable income. Variables related to the catering industry

include household per capita oil consumption, household per capita meat consumption, the number of chain restaurants, and

the number of employees in the catering and accommodation industry. These data, mostly at the county-level resolution,

primarily originate from statistical yearbooks (National Bureau of Statistics of China, 2022a, c, b). These long-term datasets155
are preprocessed to meet the requirements of machine learning by imputing missing values using inverse distance weighting,

K-nearest neighbor methods, and allocation of higher-order statistical data (Murti et al., 2019; Sree Dhevi, 2014). Given the

changes in China's county administrative divisions over the past 31 years (Yu et al., 2018), we trace the renaming, merging,

and splitting events of counties, mapping the data of each year to the county administrative system of 2020 (a total of 2848

counties) to ensure continuity across years. Additionally, we standardize the initial resolution of some variables, which may160
be at the provincial, municipal, or grid level (1km*1km), to the county level by allocating based on population or GDP,

taking provincial averages, or using cumulative summation. We also normalized all predictor variables to a range of 0 to 1 to

ensure a consistent scale.

Next, we conduct feature selection on 14 predictor variables to reduce dimensionality and minimize multicollinearity (Zhu et

al., 2023). We preliminarily identify variables of lower importance to the predictive target through the feature importance165
scores of the RF model (Alduailij et al., 2022; Rogers and Gunn, 2006). Then, we incrementally exclude insignificant

variables and monitor changes in model performance (R2) to remove variables with minimal impact on the model

performance. Besides, we perform multicollinearity checks using the variance inflation factor (VIF), gradually removing

features with higher VIF values until all remaining features were mutually independent (all VIF values of independent

variables were below 10) (Daoud, 2017; Hu et al., 2017). By removing irrelevant or redundant features in this way, we can170
reduce the influence of noise, decrease the risk of overfitting, enhance the model's predictive performance and

generalizability, and provide clearer and more meaningful model explanations (Zhu et al., 2023).

For machine learning modeling, the dataset needs to be partitioned into the training data set and the testing data set. During

the data partitioning, we implement strict data leakage management to ensure that information from the testing data set

would not be used during training, thus guaranteeing an accurate model evaluation (Nayak and Ojha, 2020; Zhu et al., 2023).175
The response variables available for modeling and testing, namely high-resolution cooking activity levels, are limited to the

years 2015 to 2021 (Li et al., 2023b). This gives us data samples for seven years, with 2848 counties each year. Given the

significant similarity in data for the same county across different years, we bundle data samples from different years for the

same county during the data partitioning. As shown in the second column of Fig. 1, we use data from 70% of the counties

from 2017 to 2019 (totaling 5982 samples) for training to establish the underlying relationships between input factors and the180
prediction target. Additionally, we use data from the remaining 30% of the counties in the years 2015, 2016, 2020, and 2021

(totaling 3416 samples) as the testing data set to validate the model. Under this partitioning strategy, data from the same

county only appears in either the training data set or the testing data set, ensuring that the model can effectively generalize
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and be tested on unseen datasets, thereby demonstrating the model's transferability across different times and locations

(Nayak and Ojha, 2020; Zhu et al., 2023). Modelling and validation of the machine learning model are described in detail in185
section 2.2.

After obtaining activity levels through the machine learning model, we further collect data for Eq (1) to calculate cooking

emissions. As for the EF, we consider various types of pollutants of concern emitted from cooking activities, including

organics in the full volatility range (VOCs, SVOCs, IVOCs, and xLVOCs), PM2.5, UFP, and PAHs (encompassing gaseous

PAHs, particulate PAHs, and benzo[a]pyrene toxic equivalent quantity (BaPeq)). The organic EFs in the full volatility range190
are sourced from Li et al., (2023b). The EFs for PM2.5 are calculated as POA/81.5% (Li et al., 2023b), where POA represents

the particulate fraction of organics in the full volatility range. The EFs for UFPs are derived from the literature (Chen et al.,

2017, 2018; Géhin et al., 2008; Kim et al., 2024; Zhang et al., 2010). The EF of gaseous and particulate PAHs are mainly

sourced from simultaneous gas-particle testing in multiple studies (Chen et al., 2007; Feng et al., 2021; Li et al., 2003, 2018;

Lin et al., 2022a; Saito et al., 2014; Ye et al., 2013). We considered 16 priority PAHs and 5 non-priority PAHs commonly195
found in cooking emissions. Their BaPeq were calculated based on the recommended toxic equivalency factors (TEFs)

suggested in the literature to estimate the carcinogenic toxicity of PAH emissions (Greim, 2008; Larsen et al., 1998;

Malcolm et al., 1994; Nisbet et al., 1992). The molecular information and recommended TEF values for all PAH species

considered in this study are listed in Table S2. The specific values and sources of EFs for various pollutants are listed in

Table S3. Finally, the provincial PFIPs are determined according to the intensity of local control policies by referencing the200
method proposed by Li et al., (2023b), with results over the years shown in Table S4-5.

2.2 Establishment and optimization of ensemble machine learning model

Ensemble methods of machine learning have recently been increasingly applied in the large-scale spatiotemporal estimation

of atmospheric pollution (Yang et al., 2023; Zhu et al., 2022). These methods enhance prediction accuracy and robustness by

combining the forecast results from multiple base models and reducing the risk of overfitting. In this study, we establish an205
ensemble prediction model for cooking activity levels by integrating four machine learning algorithms - RF, XGBoost, MLP,

and DNN. These four models are selected because they exhibit superior performance in predicting activity levels (as

discussed in Section 3.1), and each of them possesses unique strengths, as discussed below.

RF and XGBoost are both ensemble learning algorithms based on decision trees. RF improves accuracy and generalization

by combining multiple independent decision trees, making it suitable for handling high-dimensional data (Liu et al., 2023;210
Segal, 2004). Its advantage lies in the effective reduction of overfitting through random feature selection (Wu et al., 2024).

XGBoost, as an efficient gradient-boosting decision tree method, also reduces overfitting by introducing regularization and

has a high execution speed, making it suitable for processing large-scale datasets (Chen and Guestrin, 2016). While these

tree-based algorithms provide stable predictions and good interpretability, they may have limited extrapolation capabilities

(Wang et al., 2023). To address this, we introduce MLP and DNN, two deep learning algorithms, to enhance the model's215
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applicability. MLP, a fundamental deep learning model with a multi-layer structure, can capture complex nonlinear trends in

data and can infer patterns beyond the training data range, with lower computational requirements compared to other deep

learning models (Pinkus, 1999). DNN, on the other hand, captures advanced abstract features in complex data through

deeper network structures, offering powerful feature learning and generalization capabilities (Zhang et al., 2016). However,

both MLP and DNN may face the challenge of overfitting (Pinkus, 1999; Zhang et al., 2016), which can be mitigated by220
integrating them with RF and XGBoost.

To combine the advantages of these four models, we use ridge regression as the integrator to build an ensemble machine

learnling model (McDonald, 2009). Ridge regression is chosen for its ability to balance model complexity and generalization

through regularization, which helps prevent overfitting (Ebrahimi et al., 2024; McDonald, 2009). By adjusting the ridge

parameter λ, it incorporates a regularization mechanism that penalizes large coefficients, thereby finding a balance between225
model complexity and generalization ability. The predictions from the base models serve as new features input into the ridge

regression model, which then determines how to effectively combine these predictions (Carneiro et al., 2022). This approach

allows us to leverage the strengths of each model: the interpretability and stability of RF and XGBoost, and the ability of

MLP and DNN to capture complex nonlinear patterns. By integrating these models, we aim to achieve a more robust and

accurate prediction model that can handle diverse data scenarios (Carneiro et al., 2022).230

Due to variations in influencing factors and mechanisms within different cooking emission sectors, we develop an ensemble

model for commercial, residential, and canteen cooking, respectively. For each sector's training data set, models are trained

using 10-fold cross-validation to ensure that their predictive capabilities are not influenced by specific data subsets (Santos et

al., 2018). Moreover, a grid search is conducted on the hyperparameters of each base machine learning model and the ridge

regression model to identify the optimal hyperparameter combination that maximizes overall predictive performance (Belete235
and Huchaiah, 2022; Lou et al., 2024)

2.3 Model validation and comparison

After completing the modeling, we apply the models to the unseen testing data sets and evaluate their predictive performance

using various statistical metrics. The validation metrics include the coefficient of determination (R2), root mean square error

(RMSE), and mean absolute error (MAE). Their calculation formulas are as follows:240

�2 = 1 −
∑�=1

n (���� − �����)2

∑�=1
n (���� − MeanObs)2 (2)

���� =
∑�=1

n (���� − �����)2

n
(3)

��� =
1
n ∑�=1

n   ����� − ���� (4)
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where ���� represents the actual values (i.e., the activity levels obtained from accurate calculations); ����� refers to the

model-predicted activity levels; MeanObs is the average of all ����; n is the number of samples in the testing data sets.

To demonstrate the superiority of our ensemble model, we also compare its predictive performance with the above-

mentioned four individual machine learning models and five advanced traditional statistical models, including multiple

linear regression, non-negative least squares regression, generalized linear models with exponential link, Poisson regression,245
and power function regression (Frome, 1983; Jansson, 1985; Myers and Montgomery, 1997; Slawski and Hein, 2013;

Uyanık and Güler, 2013).

2.4 Driver analysis of cooking emissions at national and county scales

Based on the model-predicted cooking activity levels, the EFs applicable at all times, and PFIPs that can be extrapolated to

any time, we theoretically can estimate the cooking emissions in various scenarios (such as different population conditions,250
economic circumstances, and pollution control intensities). In this study, we first obtain the emissions of three cooking

sectors in each county from 1990 to 2021. Further, we can conduct sensitivity analysis on emissions by adjusting various

influencing factors (input features of the ensemble model and PFIPs). Since EFs are static data that do not change across

different years, we do not consider their impact. We first pay attention to the national total emissions, using the one-factor-

at-a-time method (Zhang et al., 2018) to illustrate the sensitivity of each factor to emission variations. We divide the years255
from 1990 to 2021 into several periods. For a given period, we sequentially adjust the value of a single factor from the initial

value at the beginning of the period to the final value at the end of the period. The difference between the emissions before

and after the adjustment is considered as the contribution of that factor to the change in emissions during that period. This

enables us to quantify the contributions of each factor to emissions in different periods.

The dominant factors driving emission changes for counties at different development stages are also worth elucidating,260
which are crucial for understanding the current and future trends in cooking emissions, and for the targeted development of

control strategies. We employ the SHAP algorithm (Lundberg and Lee, 2017) to quantify the impact of each factor on

cooking emissions in different counties. These factors include those features related to population, economy, and catering

industry that are input to the activity level prediction model, as well as the EF and the PFIP. The SHAP algorithm is based

on cooperative game theory (Jiménez-Luna et al., 2020; Lundberg and Lee, 2017). By including or excluding a variable from265
all possible subsets of the remaining variables, the model is retrained to calculate the difference in predicted values in two

scenarios, referred to as SHAP values. The magnitude of SHAP values quantifies the specific contribution of each feature to

the model's predictions. A positive value indicates that the feature raises the predicted result relative to the baseline, while a

negative value signifies a reduction in the predicted result(Hou et al., 2022; Zhu et al., 2023).
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3 Results270

3.1 Performance comparison of the models

We first train five traditional statistical models, four individual machine learning models, and our ensemble model using the

training data set. The performance of each model on the training data set is shown in Table S6. Then, all models are applied

to an unseen testing data set (detailed dataset partitioning is described in Section 2.1) to assess their performance in

predicting the activity levels of three cooking sectors. The predictive performance of all models for activity levels of three275
cooking sectors on the testing data set is shown in Table 1 and Fig. S1-3. To enhance clarity, we scale the units for the three

activity levels: the activity levels for commercial, residential, and canteen cooking are represented respectively as annual

total fume volume (unit: 109m3 fume), annual total household edible oil consumption (unit: kt oil), and annual total number

of meals served in canteens (106 meals). We also present the predictive performance of the best statistical models, the best

individual machine learning models, and the ensemble machine learning model for the three cooking sectors in Fig. 2(a).280

Table 1: The values of validation metrics of all models for activity levels of three cooking sectors on the testing data

set.

According to Table 1, validation metrics indicate that machine learning models greatly outperform the best traditional

statistical models, with the ensemble machine learning model even surpassing the best individual machine learning models.285
Among statistical models, multiple linear regression has moderate performance, but it is prone to predicting negative values,

which do not correspond to real-world cooking activity. Besides, among the other four non-negative predictive models,

power function regression performs best for predicting commercial cooking and residential cooking, while non-negative

least squares regression performs best for predicting canteen cooking. Generalized linear models with exponential links and

Poisson regression perform poorly in most cases.290

Model
Commercial cooking Residential cooking Canteen cooking

R2 RMSE
(109m3 )

MAE
(109m3) R2 RMSE

(kt)
MAE
(kt) R2 RMSE

(106 meals )
MAE

(106 meals )
Multiple linear regression 0.718 25.618 16.199 0.936 1.078 0.625 0.955 5.697 3.202

Non-negative least squares regression 0.617 29.857 18.910 0.898 1.368 0.953 0.955 5.750 3.172

Generalized linear models with exponential link 0.625 29.548 17.777 0.348 3.455 2.649 0.496 19.157 14.666

Poisson regression 0.454 35.673 19.737 0.056 4.156 2.947 0.278 22.940 16.294

Power function Regression 0.772 23.055 10.599 0.965 0.804 0.406 0.950 6.044 3.085

RF 0.835 19.589 10.173 0.979 0.618 0.155 0.958 5.545 3.109

XGBoost 0.807 21.224 11.582 0.971 0.726 0.277 0.958 5.561 3.037

MLP 0.856 18.316 9.867 0.972 0.714 0.185 0.970 4.675 1.750

DNN 0.866 17.644 8.355 0.970 0.738 0.231 0.969 4.764 2.360

Ensemble machine learning model 0.892 15.834 7.968 0.989 0.455 0.109 0.973 4.447 1.832
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Figure 2. Comparison of statistical models, individual machine learning models, and ensemble machine learning

models: (a) Scatter plots comparing the actual and predicted values of the best statistical model, best individual machine
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learning model, and ensemble machine learning model for the activity levels in three cooking source sectors in China, with

each point representing the activity level in a county from the testing data set. (b) Predicted and actual values of Chinese295
total activity levels of the three cooking sectors for each year from 2015 to 2021. The black line represents the actual values.

Lines of other colors represent model predictions, where the solid lines are for machine learning model predictions, and

dashed lines are for predictions from traditional statistical models.

Machine learning models tend to have better predictive capabilities than the traditional statistical models. Among the five300
machine learning models, we find that ensemble machine learning models consistently perform the best, with R2 values of

0.892, 0.989, and 0.973 for commercial cooking, residential cooking, and canteen cooking activity levels, respectively.

RMSE and MAE metrics of the ensemble models are also relatively low. The superiority of validation metrics implies that

the ensemble model can effectively depict the relationship between indicators related to statistic indicators and cooking

activity levels. Moreover, the overall performance of individual machine learning models is also satisfactory. Specifically,305
for commercial cooking and canteen cooking, which are influenced by complex factors, the performance of the two deep

learning models is superior, as they are more adept at capturing complex nonlinear relationships. On the other hand, for

residential cooking, whose influencing factors are relatively simple and clear, the performance of RF is better than that of

deep learning models, possibly because it can effectively prevent overfitting. Finally, the ensemble models can exploit

complementary advantages, reduce the uncertainties of single models, and achieve performance maximization.310

We also review the predictive performance of all models on the Chinese total activity levels of the three cooking sectors for

each year from 2015 to 2021, as shown in Fig. 2(b). Although the training data set was randomly sampled from counties only

from 2017 to 2019, the machine learning models (represented by the solid line) demonstrate a robust ability for

generalization and extrapolation. They accurately capture the Chinese total activity level trends of the modeling years (2017-

2019) and extend to historical years (2015-2016) and future years (2020-2021), whereas traditional statistical models315
(represented by the dashed lines) often fail to accurately reproduce the changes in total activity levels.

3.2 Long-term county-level cooking emissions

After verifying the reliability and superiority of the ensemble model, we utilized it to predict precise county-level activity

data at a broad spatial and temporal scale, and further obtain county-level cooking emissions in China from 1990 to 2021.

Each county's annual emissions inventory for organics (hereafter representing the organic compounds in the full volatile320
range), PM2.5, UFPs, and PAHs is available at the repository (https://doi.org/10.6084/m9.figshare.26085487) (Li et al, 2025).

Considering that organics have significant impacts on atmospheric pollution, particularly OA pollution, and that various

pollutants share the same activity levels leading to similar spatial and temporal distributions, we primarily focus on organic

compounds in the following discussion.
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Fig. 3 provides high-resolution spatial distribution maps of cooking organic emissions in China from 1990 to 2021. We also325
provided a map of the Chinese provinces (Fig. S4) for reference to the location of the emissions mentioned below. In 1990,

cooking organic emissions were mainly distributed in densely populated areas such as the North China Plain (including

Beijing, Tianjin, Hebei, Henan, and Shandong), the Middle-Lower Yangtze Plain (including Hubei, Hunan, Anhui, Jiangxi,

Jiangsu, and Zhejiang), and Sichuan Basin (including Sichuan and Chongqing). Besides, emission hotpots were often

observed in the core urban areas of provincial capitals. Over time, the national total organic emissions have generally330
increased, and high-emission areas have expanded. By 2021, many counties in eastern China, especially along the southeast

coast, exhibited extensive high emissions. The Beijing-Tianjin-Hebei region, the Yangtze River Delta, the Pearl River Delta,

and the Sichuan Basin became the four key emission regions.

Figure 3. The spatial distribution of nationwide county-level cooking organic emission intensity from 1990 to 2021.335
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In summary, cooking emissions are concentrated in densely populated and economically developed areas. For example, in

2021, there was a strong correlation between county population size and cooking emissions, with an R2 of 0.873 for the

emissions and population of 2848 counties in 2021. Notably, the top 30% of counties by population (as shown in Fig. S5(a))

accounted for 62.3% of the total national cooking organic emissions. These counties cover only 14.5% of China's total land340
area but support 59.9% of the country's population. This finding indicates that, when formulating control strategies, these

densely populated counties should be prioritized to enhance pollution control efficiency and effectively reduce the health

risks associated with cooking emissions. From 1990 to 2021, the proportion of total national emissions contributed by the top

30% of counties by population increased from 49.6% to 62.3%, suggesting that cooking emissions in densely populated

counties have grown faster than in other areas, necessitating stricter pollution control measures. Additionally, cooking345
emissions are also correlated with local GDP, although this correlation is weaker than with population, with an R² of 0.563

for emissions and GDP across all counties in 2021. The top 30% of counties by GDP (as shown in Fig. S5(b)) accounted for

55.9% of the total national cooking organic emissions.

Fortunately, in these densely populated and economically developed areas (Fig. S5), where emissions are typically high, our

county-level emissions inventory achieves a very high spatial resolution. Compared to traditional provincial inventories, our350
fine-grained inventory is more capable of accurately studying the impact of cooking emissions on air pollution and human

health. Specifically, our inventory may update the understanding of PM2.5 sources. Combining the full-volatility organic

emissions inventory (excluding the cooking source) developed by Zheng et al. (2023), we find that cooking emissions are

significant sources of I/SVOC emissions in densely populated counties. In 2019, for counties within the top 30% of

population density (as shown in Fig. S5(c)), cooking emissions can account for an average of 20.1% of IVOCs and 38.5% of355
SVOCs emitted from all anthropogenic sources, and the maximum contribution of cooking emissions to total IVOC and

SVOC emissions in these counties even reached 52.9% and 88.4%, respectively. Given the high formation potential for SOA

of I/SVOCs emitted from cooking (Yu et al., 2022), the contribution of cooking organic emissions to PM2.5 and their hazards

on human health could be substantial. However, if considering only national or provincial emissions, the contribution of

cooking emissions to the total IVOC emissions and total SVOC emissions are both less than 16%, potentially leading to an360
underestimation of the importance of the cooking source.

3.3 Trends of national total cooking emissions

Fig. 4 illustrates the long-term trend of national cooking emissions of organic compounds in the full volatility range from

1990 to 2021. The total cooking organic emissions in China exhibit an overall increasing trend, rising from 517 (272-828,

95% confidence level) kt/yr in 1990 to 997 (530-1590) kt in 2021, with the uncertainty range determined through Monte365
Carlo simulations referencing previous studies (Chang et al., 2022; Nan Li, 2017). Notably, there were slight decreases in

total organic emissions after 2001 and after 2013, attributed to the implementation of crucial control policies. In 2001, the
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issuance of the Emission Standards of Catering Oil Fume (GB 18483-2001) (State Environmental Protection Administration

of China, 2001) marked the first significant attention of the Chinese government to cooking emission control. It imposes

requirements on the concentration of oily fumes emitted by restaurants and the removal efficiency of the purification370
facilities, which has contributed to the reduction of emissions (State Environmental Protection Administration of China,

2001). Furthermore, the release of the Action Plan for the Prevention and Control of Air Pollutants in 2013 pushed

provinces to comprehensively strengthen air pollution control (CPGPRC, 2013), leading to a corresponding enhancement of

the catering industry's regulation in many regions. Additionally, the downturn observed in the 2020 emission was brought

about by the lockdown measures implemented due to the COVID-19 pandemic.375

As for source apportionment, the cooking organic emissions mainly come from commercial cooking and residential cooking.

Commercial cooking emissions show an overall upward trend, with some slight fluctuations due to its high sensitivity to

external factors such as pollution control policies and epidemic lockdowns. Commercial cooking emissions have increased

from 241 kt in 1990 to 622 kt in 2021, and its share has correspondingly increased from 46.7% to 62.3%. Residential

cooking emissions show an overall slow upward trend, with its share ranging between 28.3% and 37.2%. In contrast, canteen380
cooking emissions show an overall stable or slightly declining trend. This is possible because they mainly come from staff

and student canteens, where the number of staff and students and their meal frequencies are relatively stable. However, with

pollution control measures becoming stricter, this has led to a reduction in total canteen cooking emissions.

Figure 4. Organic emissions in the four volatility ranges from the three cooking sectors from 1990 to 2021 in China.385
The blue, red, and green bars represent the organic emissions from commercial cooking, residential cooking, and canteen

cooking. Within each color group, the four different shades represent organic compounds of different volatility ranges. The

error bars represent the uncertainty range at the 95% confidence level.

https://doi.org/10.5194/essd-2025-104
Preprint. Discussion started: 7 April 2025
c© Author(s) 2025. CC BY 4.0 License.



16

Furthermore, we also present emissions of PM2.5, UFPs, and PAHs (including gaseous PAHs, particulate PAHs, and BaPeq)390
from the three cooking sectors in China from 1990 to 2021, as shown in Fig. S6. The trends and source apportionment of

PM2.5 emissions are similar to those of organic emissions. The total PM2.5 emissions increased from 215 kt in 1990 to 408 kt

in 2021, representing a growth of 90.7%. Commercial cooking is the most significant emission source, accounting for

39.3%-57.7%, followed by residential cooking (34.8%-44.3%). The total UFP emissions increased from 3.93×1025 particles

in 1990 to 6.50×1025 particles in 2021, with an increase of 66.0%. Commercial emissions have consistently been the largest395
source, maintaining a share of over 71%.

The total PAH emissions increased from 6.76 kt in 1990 to 15.8 kt in 2021, representing a growth of 134%. The BaPeq
emissions rose from 0.359 kt in 1990 to 0.853 kt in 2021, with an increase of 137%. Additionally, the emissions of the 16

priority PAHs increased from 6.20 kt in 1990 to 14.5 kt in 2021. After supplementing the emissions inventory of the 16

priority PAHs in China (excluding cooking sources) by Wang et al. (2021), we find that cooking emissions accounted for400
11.0% of the total anthropogenic emissions of priority PAHs in China in 2017, and the share may be even larger in urban

areas. Among these priority PAHs, naphthalene has the highest emissions share (46.8%), followed by acenaphthylene

(11.7%) and phenanthrene (10.5%). As for toxicity, dibenz(a,h)anthracene has the highest BaPeq emissions share (42.8%),

followed by benzo(a)pyrene (36.1%). Notably, high molecular weight PAHs (containing five- to seven-ringed PAHs)

accounted for only 8.2% of the emissions but contributed 85.3% of the BaPeq emissions due to their high toxicity. Besides,405
over the 31 years, gaseous and particulate PAHs accounted for an average of 78.6% and 21.4% of the total PAH emissions,

respectively. Commercial cooking remained the primary emission source, contributing 74.6%-83.2% of the national PAH

emissions.

3.4 Comparison with other studies

We compare our cooking emission inventory with other China’s national cooking emission inventories (Cheng et al., 2022;410
Jin et al., 2021; Liang et al., 2022; Wang et al., 2018a; Zhang et al., 2024). Most previous inventories only included

pollutants such as VOC and PM₂.₅ (or organic carbon (OC), a component of PM₂.₅), and provided emissions for only a single

year. We first compare the national total emissions for the corresponding years and pollutants with theirs, and the results are

presented in Table S7. Many previous inventories underestimated emissions due to the omission of emission sources (e.g.,

residential cooking) or the use of simple proxy data (e.g., population, meat consumption) (Cheng et al., 2022; Jin et al., 2021;415
Liang et al., 2022; Wang et al., 2018a), so their total emissions are much lower than ours. The latest studies (Zhang et al.,

2024), which used data from a service platform of Chinese catering enterprises, yielded national total VOC emissions

relatively close to those of our inventory, supporting the accuracy of our emission calculations. In contrast, our inventory

covers a longer time range (1990–2021), comprehensive cooking sources (including commercial, household, and canteen

cooking), and a wider range of pollutants (not limited to VOC and PM₂.₅, but also including PAHs, UFP, etc.), which is420
difficult to achieve in previous studies.
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Furthermore, our inventory demonstrates superior accuracy in spatial distribution. Unlike previous studies, this study directly

calculates emissions at the county level, rather than first estimating provincial-level inventories and then downscaling them

to the county level (or further to the grid level) using proxy data such as population. We compared our inventory with the

aforementioned latest inventory based on data from the catering service platform (Zhang et al., 2024), which calculated the425
provincial emission inventory and then allocated it to the county levels based on population. We select the county-level

emissions in Guangdong in 2020 as a case study for comparison, as Guangdong is a province with high cooking emissions, a

large population, and a developed economy. In terms of total emissions, the Guangdong provincial emissions from this study

and Zhang's inventory are 63.2 kt and 58.6 kt, respectively (Zhang et al., 2024), showing close agreement. Fig. 5 illustrates

the emission intensity across all counties in Guangdong from the two inventories. The key difference between the two is that430
the emissions in our study are more concentrated in economically developed regions such as the Pearl River Delta, while the

emission intensity in non-coastal areas is lower. This discrepancy arises because allocating provincial inventories to the

county level based on population distribution may not fully reflect real-world conditions. In fact, some residential areas may

have high population density, but dining activities are often more concentrated in commercial districts (Lin et al., 2022b). As

discussed in Section 3.2, although the correlation between population and emissions is high at the county level (R² = 0.873),435
it is not a perfect match. In contrast, our methodology employs an effective machine learning model trained on advanced

point-source cooking emission inventories (Li et al., 2023b), with predictive variables related to population, economic, and

catering industry. This method effectively captures the spatial distribution of comprehensive cooking activities, including

information on catering industry, residential cooking, and other factors considered in the previous advanced inventory (Li et

al., 2023b), thereby enabling an accurate representation of the spatial distribution of county-level cooking emissions.440

Figure 5. A comparison of (a) county-level emissions in this study, (b) county-level emissions allocated from

provincial emissions based on population in Guangdong in 2020, and (c) the difference between the two emissions

inventories.

https://doi.org/10.5194/essd-2025-104
Preprint. Discussion started: 7 April 2025
c© Author(s) 2025. CC BY 4.0 License.



18

4 Discussion445

4.1 Spatiotemporal trends of county-level cooking emissions

To explore the spatiotemporal variation trends of cooking emissions in China, we obtain the changes in county-level organic

emissions every 5 or 6 years through differencing, as illustrated in Fig. 6, where the red color indicates an increase in

emissions during a particular period and blue represents a decrease. From 1990 to 1995, emissions across various counties

generally increased, but emissions in a few counties experienced decreases probably due to population migration. Between450
1995 and 2000, this shift in emissions driven by population migration became more pronounced (Fan, 2005). For example,

emissions in Guangdong Province became concentrated in the Pearl River Delta region, and emissions in Zhejiang and

Fujian Province areas became concentrated in the Yangtze River Delta and other coastal regions. Besides, emissions from

eastern Sichuan are shifting towards Chengdu (the provincial capital of Sichuan) and Chongqing. The migration was

probably because these areas became focal points of economic reform during this period, attracting large populations (Fang455
et al., 2009), such as Chongqing being designated a directly-controlled municipality in 1997 (Hong, 2004).

Figure 6. Changes in organic emission intensity in each county during different periods.
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From 2000 to 2005, emissions declined in most parts of the country, due to pollution control policies (discussed in Section460
3.3) (State Environmental Protection Administration of China, 2001). However, emissions in Guangdong, Zhejiang, and

Beijing generally increased during this period, possibly due to the rapid economic development and population influx in

these three provinces (Kong, 2022; Zhu, 2012). From 2005 to 2010, cooking emissions in most counties in eastern China

increased rapidly, likely because the emissions increase driven by rapid economic development outweighed the reductions

from pollution control measures (Fleisher et al., 2010). In contrast, emissions in the slower-developing western regions465
decreased during this period (Fleisher et al., 2010). From 2010 to 2021, emissions increased significantly in most counties

across the country, except in some provinces where strict provincial-level emission control policies may have led to

reductions in emissions (Beijing Environmental Protection Bureau, 2018; Feng et al., 2019; Liaoning Provincial Government,

2017; Shanxi Provincial Government, 2017).

Additionally, we specifically examine the impact of the COVID-19 pandemic on cooking emissions from 2019 to 2021. In470
2020, lockdown measures were implemented across China to control the spread of the pandemic (Chang et al., 2023). As

shown in Fig. 6(g), cooking emissions in many regions decreased in 2020. For example, Beijing, the Yangtze River Delta,

and the Pearl River Delta saw significant reductions in cooking emissions, likely because these areas originally had thriving

catering industries that were heavily restricted by lockdown policies in 2020 (Lan et al., 2018; Li et al., 2021; Yuan et al.,

2024), leading to a substantial decrease in commercial cooking emissions. Conversely, emissions increased in many other475
regions, likely because lockdown policies forced people to stay at home, shifting cooking and dining from centralized

locations like canteens and restaurants to more dispersed cooking and dining at home (Yang et al., 2021), thereby increasing

overall cooking emissions. In 2021, as lockdown policies were gradually relaxed and the catering industry began to recover,

overall cooking emissions rebounded nationwide (Li et al., 2021).

The observations above indicate that our emission calculation methodology can effectively capture the influences of pivotal480
external factors affecting emissions. In the 1990s, changes in emissions across counties were primarily influenced by

economic growth rates and population migration. After 2000, variations in emissions were likely influenced by the

promotion of pollution control measures and the development of the catering industry. Overall, cooking emissions have

increased in the vast majority of the country over the last three decades (1990–2021) as shown in Fig. 6(i), with particularly

significant increases in the eastern region. Only a few counties have seen a reduction in emissions, typically coinciding with485
population changes.

4.2 Driving factors of national and county-level cooking emissions

Based on sensitivity simulation, we find significant differences in the driving factors of the China’s cooking organic

emissions during different periods. The decomposition of emission change drivers for each period is shown in Fig. 7. From

1990 to 2000, emission levels grew slowly, mainly driven by the increasing population and urbanization rate, which490
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contributed 51.7% and 22.9% to the emission growth, respectively. From 2001 to 2005, while population growth and

urbanization also promoted an increase in emissions, the implementation of emission standards in 2001 significantly

strengthened pollution control measures (State Environmental Protection Administration of China, 2001), leading to a

considerable reduction in cooking emissions. From 2005 to 2015, while pollution emission standards continued to be

enforced, the emission reductions achieved through pollution control were limited because of the lack of new regulatory495
policies targeting cooking sources (Gao, 2020). Meanwhile, the rise in tertiary GDP and urbanization rates, marking rapid

economic development, prompted a rapid increase in cooking emissions. Between 2005 and 2015, the rise in tertiary GDP

and urbanization rates contributed 33.1% and 28.0% to the growth in emissions, respectively. Since 2015, the increase in the

number of chain restaurants has been the main driver for cooking emissions, possibly attributed to the prosperity of the

catering industry brought about by online food delivery services (Maimaiti et al., 2018; Zhao et al., 2021). From 2015 to500
2017, the number of users of online food delivery surged from 114 million to 343 million, and this figure continues to climb

(Maimaiti et al., 2018). Besides, tertiary GDP, urbanization rate, and population also contribute to the growth of cooking

emissions. Meanwhile, the stricter pollution control measures have led to a more notable reduction in emissions, but the

effect is still relatively limited compared to the rapid growth of emissions. This suggests that existing regulations were

insufficient to address the growing emissions from the catering industry, highlighting the need for updated and more505
stringent policies specifically aimed at controlling cooking emissions. Overall, the primary driving factors of cooking

organic emissions in the early (1990-2001), middle (2001-2015), and recent (2015-2021) periods are population growth, the

rise in tertiary GDP and urbanization rates, and the increase in the number of chain restaurants.

Figure 7. The contribution of various driving factors to the changes in national cooking organic emissions across510
different periods.
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We also explored the impact of the pandemic on the total national cooking emissions. From 2019 to 2020, factors such as the

number of chain restaurants, population, and tertiary GDP were negatively affected by the pandemic, leading to a decrease in

cooking emissions. However, some factors, including the urbanization rate and household cooking oil consumption,515
contributed to an increase in emissions. Despite the pandemic, China's urbanization rate rose from 60.6% in 2019 to 63.9%

in 2020. This could be attributed to the Chinese government’s efforts towards achieving the goal of a moderately prosperous

society in all respects before 2021 (Li, 2023), which involved continued urban development and infrastructure improvements.

Additionally, the increase in household cooking oil consumption likely drove up emissions because lockdowns led to more

people cooking at home rather than dining out (Yang et al., 2021). In 2021, as the economy recovers and the catering520
industry rebuilds, many factors (including the number of chain restaurants, population, and tertiary GDP) begin to lead the

way again for increased cooking emissions (Li et al., 2021).

Furthermore, we also pay attention to the emission drivers of various counties at different development stages, applying the

SHAP algorithm for the quantitative analysis. Fig. S7 presents an overview of the SHAP values for each factor influencing

emissions of the three cooking emission sectors, with the y-axis sorted from high to low based on the impact of each factor525
on emissions. The influencing factors of commercial cooking emissions are the most complex. Urbanization rate (UR),

population (POP), and EFs are the top three factors that have the greatest impact on commercial cooking emissions of

counties, with increasing values leading to emissions growth. Additionally, PFIP, the tertiary GDP (GDP3), per capita

household edible oil consumption (HOC), the number of chain restaurants (NCR), and per capita disposable income (DI) all

affect commercial cooking emissions to some extent. Additionally, residential cooking emissions are mainly influenced by530
population and per capita household edible oil consumption. Canteen cooking emissions are mainly affected by population,

PFIP, and the population of employees in enterprises (PEE).

We further analyze the marginal effects of each influencing factor on the cooking organic emissions, that is, how emission

values (indicated by SHAP values) vary with the values of individual influencing factors. Taking commercial cooking

emissions as an example, the partial dependence plot of SHAP values on the main influencing factors is shown in Fig. 8. For535
the urbanization rate, the relationship between SHAP values and the urbanization rate forms an S-shaped curve. This means

that the sensitivity of commercial cooking emissions to the urbanization rate is relatively high when the urbanization rate is

at the medium level (45%-75%). Additionally, the SHAP values are approximately linearly correlated with the local

population and EFs, while the emissions are negatively correlated with the PFIP value. The relationship between the tertiary

GDP and the number of chain restaurants and SHAP values approximates a logarithmic growth curve, where growth is rapid540
at lower feature values and slows down as the feature values increase. The relationship between HOC and commercial

cooking emissions is very intricate. When the HOC value is low, its increase signifies an improvement in people's living

standards starting from a low level, which in turn leads to a corresponding increase in commercial cooking emissions. As the

HOC value reaches a certain level, further increases indicate an increase in the frequency of residential cooking that

competes with commercial cooking, resulting in a decrease in commercial cooking emissions. Finally, an overall increase in545
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per capita disposable income will lead to an increase in commercial cooking emissions, as this can be explained by people

having more funds for dining out. The relationship between residential cooking emissions and its main influencing factors

(population and HOC), as well as the relationship between canteen cooking emissions and its main influencing factors (POP

and PFIP), is very similar to the relationship between commercial cooking emissions and these variables.

550

Figure 8. The partial dependence plot of SHAP values on the main influencing factors of commercial cooking organic

emissions in Chinese counties.

5 Data availability

The county-level cooking emission inventory in China from 1990 to 2021 is publicly available at the repository

(https://doi.org/10.6084/m9.figshare.26085487) (Li et al, 2025). This dataset provides comprehensive emissions data at the555
county level, covering all 2,848 counties in mainland China based on the 2020 administrative divisions, and includes annual

emissions for every year from 1990 to 2021. The emissions are categorized by subsectors, including commercial cooking,

residential cooking, and canteen cooking, and by pollutants, including organics across the full volatility range (VOCs,

SVOCs, IVOCs, and xLVOCs), PM2.5, UFPs, and PAHs. The types of emission pollutants related to PAHs include gaseous

PAHs, particulate PAHs, and BaPeq. Besides, the main text and supplementary materials (Table S2-S5) also provide detailed560
listings of emission factors, PFIPs, PAHs' TEF, and other parameters used for calculating emissions. Additionally, the input

data for the machine learning models, such as population, economic, and catering-related statistical indicators, are sourced

from the Chinese County Statistical Yearbook, China Urban Statistical Yearbook, and China Market Statistics Yearbook,

with a full description provided in Table S1 (National Bureau of Statistics of China, 2022a, c, b).
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6 Conclusions and implication565

In this study, leveraging machine learning to overcome the challenges of obtaining activity data, we establish China's first

county-level cooking emission inventory, with a temporal scale extending back to 1990. Unlike previous inventories that

relied on proxy data such as population for calculation and downscaling, our inventory employs a powerful ensemble

machine learning model to capture the complex relationships between county-level cooking activities and factors involving

population, economic, and the catering industry. This method enables direct calculation of emissions at the county level,570
resulting in spatial distributions that better reflect real-world conditions. Moreover, our method can sensitively identify the

impact of external factors, such as the COVID-19 pandemic and the rise of food delivery services, on cooking emissions.

Based on this accurate, high-resolution, and long-term inventory, we have updated the scientific understanding of the

spatiotemporal trends and driving forces of cooking emissions.

Given that cooking is a significant source of PM2.5 (Yuan et al., 2023), our long-term, high-spatial-resolution cooking575
emission inventory provides essential data for accurately simulating PM2.5 concentrations and conducting precise source

apportionments at large spatiotemporal scale. Furthermore, for the first time, we incorporate UFPs and PAHs into the

national cooking emission inventory, filling a gap in studies on the health impact of cooking emissions. Previous studies on

the health impacts of cooking emissions primarily focused on indoor environments (Chen et al., 2018; Zhang et al., 2023;

Zhao and Zhao, 2018). However, pollutants emitted into the outdoor atmosphere from cooking may also have significant580
health risks, due to the proximity of cooking emission sources to the human living environment. Our accurate, high-

resolution cooking inventory, combined with the inclusion of highly toxic pollutants, provides critical but previously missing

data for assessing exposure risks to cooking-related pollutants in outdoor environments. This enables a comprehensive

understanding of the health impacts of cooking emissions by integrating both indoor and outdoor exposure assessments.

Our identification of the spatiotemporal patterns and driving factors of national cooking emissions also provides valuable585
insights for targeted policy formulation. With the significant reduction in emissions from sectors such as industry and energy,

the critical impact of cooking emissions is becoming increasingly prominent and may become a major source in the future

(Zhao and Zhao, 2018). However, our results indicate that existing control measures are insufficient to curb the rapid growth

of cooking emissions, necessitating the development of updated and more effective control strategies. Given that cooking

involves basic human needs, it is not feasible to reduce emissions by restricting people's cooking activities or changing their590
eating habits. A more appropriate approach is to manage it by enhancing end-of-pipe purification. However, cooking

emission sources are numerous and widespread, making comprehensive control efforts highly labor-intensive. Fortunately,

based on our detailed county-level inventory, we found that 30% of the counties, occupying only 14.5% of the national land

area, contributed more than 60% of the cooking organic emissions, and these counties are home to 60% of the population.

This indicates that both cooking emissions and the populations under their influence are highly concentrated. Therefore,595
prioritizing control measures in high-emission, high-population-density areas will be a more effective strategy. We
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recommend that the government focus on promoting efficient purification facilities, providing subsidies, and strengthening

monitoring in these areas.

Additionally, the methodology adopted in this study also offers a reference for the long-term and accurate estimation of

emissions from other sources and other regions. We innovatively use counties as the basic unit to estimate emissions, which600
not only provides the machine learning model with rich and wide-span county samples at different development stages,

enhancing the model's performance, but also ensuring a high spatial resolution. Besides, the data used for machine learning

modelling are also readily available, significantly reducing the difficulty of activity level acquisition. Similar to cooking

emissions, emissions from domestic combustion, for example, can be estimated using statistical indicators such as

temperature, per capita disposable income, urbanization rate, and energy consumption. In other regions, this methodology605
also shows potential in estimating high-resolution emissions through machine learning models and localized datasets. This

contributes to more comprehensive and accurate research on air pollution.
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