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Abstract. This work presents Mexico’s High Resolution Climate Database (MexHiResClimDB), which is a newly developed

gridded, high-resolution climate dataset comprised of daily, monthly and yearly precipitation and temperature (Tmin, Tmax,

Tavg). This new database provides the largest temporal coverage of the aforementioned climate variables at the highest spatial

resolution (20 arc sec, or 560 m on Mexico’s CCL projection) when compared to the other currently available gridded datasets

for Mexico and its development has allowed to analyze the country’s climate extremes for the 1951–2020 period. By comparing5

the spatial distribution of precipitation from the MexHiResClimDB with other gridded data (Daymet, L15, CHIRPS and

PERSIANN CDR), it was found that the precipitation provided by this new dataset is the only one that adequately represents

the spatial variation of extreme precipitation events, in particular for the precipitation that occurred during September 15–16

of 2013, caused by the presence of Tropical storm Manuel in the Pacific Ocean and Hurricane Ingrid (Cat 1) in the Gulf of

Mexico. With this new database it was possible to summarize extreme events of precipitation and temperature in Mexico for10

the 1951–2020 period – a summary that was not available before: the wettest year was 1958, the wettest day 1970-09-26,

and September of 2013 the wettest month. It was also found that eight out of the ten days with the highest Tmin occurred in

2020, the two months with the highest Tmin were July and August of 2020 and that the six years with the highest Tmin were

2015–2020. When Tmax was analyzed, it was found that the hottest day was 1998-06-15, while June of 1998 was the hottest

month and 2020 the hottest year, and that the four hottest years occurred between 2011–2020. Nationwide (and considering15

1961–1990 as the baseline period), Tmin, Tavg and Tmax have increased, with their anomalies drastically increasing in recent

years and reaching values above 1.0 ◦C in 2020. At the same time, precipitation has also decreased in recent years – which

combined with the increase in temperature will have severe impacts on water availability that need to be analyzed in detail, for

example at the watershed level. This new database provides a tool to quantify – in detail – the spatio-temporal variability of

climate throughout Mexico.20

The MexHiResClimDB entire dataset is available on Figshare (DOI:10.6084/m9.figshare.c.7689428, Carrera-Hernández

(2025a))
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1 Introduction

Gridded climate data are important because regional changes are highly spatially heterogeneous (Walther et al., 2002), and

long-term climate information is of primary importance to estimate groundwater recharge (Carrera-Hernández and Gaskin,25

2008a; Carrera-Hernández et al., 2012, 2016), to study floods, droughts (Wehner et al., 2011), heatwaves or changes in the

water cycle intensity (Huntington et al., 2018). Furthermore, the spatial distribution of climate variables is required not only

on the development of water management related analyses, but also to study the distribution of vegetation (Sáenz-Romero

et al., 2010), shifts in the composition of plant communities (Feeley et al., 2020), to identify potential areas for resting, feeding

and reproduction along the migratory route of the Monarch butterfly (Castañeda et al., 2019), to develop niche-based species30

distribution models (Perez-Navarro et al., 2021), to quantify the main drivers of extinction risk of terrestrial animals and

vascular plants (Esperon-Rodriguez et al., 2024), or to locate conservation hotspots for reptiles (Ramírez-Arce et al., 2024).

Due to the importance of climate and of quantifying its spatial distribution through time, several authors have developed

gridded datasets – with different geographic and temporal coverages – of various climate variables: Hijmans et al. (2005)

developed the WorldClim dataset, which comprises interpolated monthly climate surfaces (Tmin, Tavg, Tmax and precipitation)35

for global land areas covering the 1950–2000 period at a resolution of 30’ (≈1 km at the equator). This dataset was updated

by Fick and Hijmans (2017) who created a monthly dataset for the 1970–2000 period using the thin-plate smoothing algorithm

implemented in ANUSPLIN (Hutchinson, 2007) using covariates such as elevation, distance to the coast and three satellite-

derived covariates (maximum and minimum land surface temperature as well as cloud cover obtained from MODIS). Becker

et al. (2013) document the global land-surface precipitation data products of the monthly Global Precipitation Climatology40

Centre (GPCC at a 0.25◦ – or 15’ – resolution, ≈25 km), which was later improved (Schneider et al., 2014). Other datasets

provide gridded data not only for precipitation, but for other climate variables as well, such as Terraclimate (Abatzoglou et al.,

2018), which is a world-wide monthly climate dataset (Precip, Tmin, Tmax, wind speed, vapor pressure and solar radiation) for

the 1958–2015 period at a resolution of ≈4 km, which was developed using the climate normals from the WorldClim dataset

along with monthly data from other sources.45

In order to improve the temporal and/or spatial resolution of globally available datasets, several authors have developed

gridded climate datasets in different countries: for Croatia, Tadić (2010) developed maps for the 1961–1990 normals of 20

climate variable using 567 weather stations and a spatial resolution of 1 km, while Yatagai et al. (2012) developed a daily

gridded precipitation dataset for Asia (APHRODITE) at a resolution of 0.25◦(≈25 km). For Finland, Aalto et al. (2016)

developed FMI ClimGrid for the 1961–2010 period with a resolution of 10×10 km2 for an area of ≈338,000 km2; Hollis50

et al. (2019) developed HadUK-Grid, which is a dataset of interpolated observations of daily temperature (maximum, mean

and minimum starting in 1960), precipitation (since 1891) and other monthly variables at a resolution of 1×1 km2. More

recently, Razafimaharo et al. (2020) updated the HYRAS dataset (mean, minimum and maximum temperature along with

relative humidity) developed in 2014 for Germany (357,596 km2) at a resolution of 5×5 km2 for the 1951–2015 period through

the use of Inverse Distance Weights (IDW, Frick et al. (2014)); for Serbia, Sekulić et al. (2021) developed MeteoSerbia1km,55

which is a daily gridded meteorological dataset at a 1 km2, covering an area of 88,361 km2, while Xavier et al. (2022) developed
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daily weather gridded data for 1961–2020 for Brazil using Inverse Distance Weights (IDW). For some countries – like Spain

– there are different gridded datasets: the Spanish PREcipitation At Daily scale (SPREAD) dataset (Serrano-Notivoli et al.,

2017), developed for the 1950–2012 period at a 5×5 km resolution for peninsular Spain (with an area of 494,011 km2), the

Monthly Precipitation dataset (MOPREDAScentury), developed for the 1916–2020 period, with a spatial resolution of 0.1◦60

(≈10 km), or the Iberia01 (Herrera et al., 2019), which comprises daily gridded data for the 1971–2015 period with the same

spatial resolution (≈10 km).

For North America (Mexico, United States and Canada) the currently available gridded climate datasets that incorporate

precipitation and temperature are the L15 (Livneh et al., 2015) with a resolution of approximately 6 km, and Daymet (Thornton

et al., 2021), with a resolution of 1 km; the temporal coverage of the previously mentioned datasets is 1951–2015 for L15, while65

daymet starts in 1980 and is updated yearly. For the contiguous United States (CONUS), there are several gridded climate

datasets, with the latest being nClimGrid-Daily, which provides temperature and precipitation at a resolution of ≈5 km and

temporal coverage between 1951–2022 (Durre et al., 2022). For Canada, the Natural Resources Canada observational dataset

(NRCANmet, Hopkinson et al. (2011)) is availabe at a resolution of 10 km and provides daily data of precipitation along

with minimum and maximum temperature for the 1950–2008 period. For Mexico, Englehart and Douglas (2004) developed70

monthly maps of surface air temperature at a resolution of 2.5◦× 2.5◦ for the 1940–2001 period using data from 103 stations.

Sáenz-Romero et al. (2010) developed interpolated surfaces of Tmin, Tavg and Tmax and precipitation for monthly normals of the

1961–1990 period at a spatial resolution of 1×1 km. Fernández-Eguiarte et al. (2012) developed the Climatological Atlas for

Mexico, which consists of monthly gridded data of Precipitation, Tmin, Tavg and Tmax averaged for the 1903–2010 period (i.e.

12 rasters per climate variable, for a total of 48 rasters) at a spatial resolution of 926 metres. This database was later updated75

in order to provide monthly data of the aforementioned variables for the 1979–2009 period. Cuervo-Robayo et al. (2014)

developed monthly surfaces of precipitation, Tmin and Tmax for the 1910–2009 period (i.e. 12 surfaces in total) at a 30 arc-sec

resolution (≈900 m), and more recently (Cuervo-Robayo et al., 2020) averaged data for three periods (1910–1949, 1950–

1979, 1980–209), using the same methodology and spatial resolution as in their previously mentioned study (interpolation

with ANUSPLIN and 900 m2). From this summary, it can be seen than to date, there is not a daily high resolution climate80

dataset available for Mexico, which is why the Mexico’s High Resolution Climate Database (MexHiresClimDB), which covers

the 1951–2020 period at a spatial resolution of 20” (≈600) meters was developed, as described in this work.

2 Study area

Mexico – with a continental area of 1.96×106 km2 – is surrounded on the west by the Pacific Ocean and on the East by the

Gulf of Mexico, with an abrupt topography that varies from sea level up to even nearly 5,700 m a.s.l. (Fig. 1(a)). Due to the85

interaction between warm and cold air masses and Mexico’s topography, climates that range from very arid to humid are found

within it, with vegetation that varies from xerophyle shrubs and grasslands to tropical forests and even cloud forests (Fig. 1(b)).

Mexico’s main sierras – the Western and Eastern Sierras, which run nearly parallel to the Pacific and Gulf coasts, as shown in

Fig. 1(a) – block moist air masses from the aforementioned coasts. Accordingly, the area enclosed by the Western and Eastern
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Figure 1. Mexico’s (a) topography and (b) climates. The cities shown – except Mexico City, which is only shown as reference – have had

catastrophic floods and landslides caused by to different Tropical Cyclones. Mexico is shown in Lambert Conformal Conical projection

with shaded relief derived from the AW3D30 DSM and a cross-blended hypsometric color scale (Patterson and Jenny, 2011) to differentiate

between arid and non-arid regions (the color scale varies according to the precipitation normal of 1961–1990); the distribution of climates in

Mexico is adapted from García (2004)

Sierras – the Northern Mexican Plateau – has semiarid to very arid climates, while humid climates are found on the windward90

side of these Sierras (Fig. 1(b)). Furthermore, Tropical Cyclones that originate from both the Atlantic and the Eastern Pacific

basin make landfall in Mexico (Farfán et al., 2014); in fact, on the second half of the XXth century, a total of 65 hurricanes

impacted Mexico’s Pacific coast, while 27 impacted its eastern coast (Jauregui, 2003). Due to Mexico’s geographic context, its

precipitation is extremely variable, as on a given day during the rainy season, precipitation can vary from 0 to more than 300

milimeters.95

3 Methodology

The climate data used in the present study was downloaded from Mexico’s meteorological service website (last date consulted:

December 2024) on a station by station basis through a bash script, and further processed with a series of both bash and R

scripts in order to generate a PostgreSQL relational database, as exemplified in Carrera-Hernández and Gaskin (2008b).

To develop the aforementioned database, the location of all weather stations was first verified (as some stations had wrong100

coordinates) and once the climate records were in PostgreSQL only those stations with more than 10 years of registered data

were selected; accordingly, not all available stations were used, and the number of stations varied across the 1951–2021 period,

as shown in Fig. 2. The aforementioned figure shows that there are fewer records of temperature than precipitation and that

the maximum number of records for both variables were registered in years 1982 and 1983 (with over 4000 daily records for

precipitation and between 3000–3500 for temperature), and that years 1951 and 2021 exhibit the lowest number of records.105
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Figure 2. Number of weather stations used for daily interpolations of: (a) Temperature, (b) Precipitation. It can be seen that 1982 and 1983

were the years with the largest number of stations and that a decrease of records for both temperature and precipitation started in 2013.

However, it should be kept in mind that a larger amount of records does not represent better spatial coverage, as shown on

Fig. 3, where it can be seen that by 2021 the spatial coverage of weather stations is limited outside Mexico’s central region –

which is why the MexHiResClimDB does not include data for 2021. To avoid outliers on the dataset, daily precipitation values

above 600 mm, as well as temperature values below -30 ◦C or above 60 ◦C were discarded.

The interpolations were developed using Kriging with External Drift on a local neighborhood (KEDl) using topography as110

an auxiliary variable because it has been found to be an adequate technique to interpolate both precipitation and temperature

on a daily and yearly basis (Carrera-Hernández and Gaskin, 2007; Page et al., 2022; Carrera-Hernández et al., 2024). The

ALOS AW3D30 DEM was used as auxiliary variable because it has been shown to better represent Mexico’s topography

(Carrera-Hernández, 2021), and the original 1 arc-sec AW3D30 DEM was resampled to a 20 arc-sec resolution using the

r.neighbors command of the GRASS GIS. There are currently several books and articles that describe the equations and115

assumptions behind Kriging and its different variants; accordingly, they are not discussed in this work, but interested readers are

referred to some of them (Isaaks and Srivastava, 1989; Goovaerts, 1997, 2000; Carrera-Hernández and Gaskin, 2007; Pebesma,

2014), while guided examples on the implementation of Kriging with R and gstat are given in Pebesma and Benedikt (2023)

and Pebesma and Bivand (2023).

The interpolations were carried out using the GRASS GIS and R with the libraries RPostgreSQL, parallel, gstat,120

sp and rgrass7 (Conway et al., 2023; Pebesma and Bivand, 2023). The climate records (i.e. time series data) were stored

in PostgreSQL while all the generated raster files were stored in the file structure of GRASS. A Gaussian semivariogram was

fitted to the experimental semivariogram of each variable for each day using GSTAT’s automated fitting procedure – which uses
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Figure 3. Spatial coverage of weather stations from 1951–2021. It can be seen that in 2021 the spatial coverage is mainly limited to Mexico’s

central region, which is why even though there are some climate data for 2021, the MexHiResClimDB does not include 2021.
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an iterative reweighted least squared estimation (Pebesma, 2014). However, some semivariograms had to be manually fitted

when the automated procedure could not fit the semivariogram parameters. Based on the author’s previous work on nation-125

wide interpolation of yearly precipitation in Mexico, a cut-off distance of 140 km and a local neighborhood of 30 stations

was used, because KEDl with these parameters adequately interpolates precipitation even when this process is anisotropic

(Carrera-Hernández and Gaskin, 2007; Carrera-Hernández et al., 2024).

Each interpolation required 26 GB of RAM and a processing time of approximately 16 minutes; the interpolations were

carried out on three workstations with multi-core processors and 256 GB of RAM located at the Hydrogeomatics Laboratory130

of the Geosciences Institute, UNAM. As previously mentioned, the interpolations were carried out using R’s parallel

library and it was found that the use of five cores for each interpolation provided the fastest interpolation time (≈16 minutes,

because parallelizing the process also requires time). For each variable 25,564 rasters were interpolated, thus yielding a total

of 76,692 rasters, which required a computation time of 1.227×106 minutes (although this time was larger because some days

required a manual adjustment of the semivariograms).135

4 Validation

To validate the undertaken interpolations, leave-one-out cross validation (which basically computes an interpolated value at the

location of each station used, without using its value for interpolation) was applied to each variable for each day. With these

data, four different measures of error were used to validate the interpolations: Coefficient of Determination (R2), Coefficient

of Efficiency (COE), Mean Absolute Error (MAE), and Index of Agreement (IOA), which are explained in detail by Legates140

and McCabe (1999). The Coefficient of Efficiency (COE), Mean Absolute Error (MAE) and the Index of Agreement (IOA)

are reported in this work because average-error and agreement measures based on sums of error magnitudes are – in general –

superior to comparable measures based on sums of squared errors (Willmott et al., 2015).

In addition to the aforementioned indices, the coefficient of determination (R2) is also reported in this work due to the ease

of its interpretation, as it describes the proportion of the total variance in the observed data that can be explained by the model145

(i.e. if R2=0.80, then the model explaines 80% of the variability in the observed data) and is given by:

R2 =

( ∑n
i=1(Tmi−Tm)(Ti−T )

∑n
i=1

(
Tmi−Tm

)0.5∑n
i=1

(
Ti−T

)0.5

)2

(1)

where Ti refers to the ith interpolated temperature value, Tmi refers to the ith measured temperature value, n is the

number of measurements, while Tm and T represent the mean for the entire dataset of the observed and interpolated values,

respectively. The coefficient of determination (R2) varies from 0.0–1.0; however, it is limited because it standardizes the150

differences between the observed and simulated means and variances because it only evaluates linear relationships between

the variables, thus it is insensitive to the additive and proportional differences between the observed and interpolated values

(Legates and McCabe, 1999).
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The Coefficient of Efficiency (COE) is an improvement over R2 because it is sensitive to differences in the observed and

interpolated means and variables (Legates and McCabe, 1999), ranging from −∞ to 1.0, and obtained by:155

COE = 1.0−
∑n

i=1 |Tmi−Ti|∑n
i=1 |Tmi−Tm| (2)

where a value of COE=1.0 represents a perfect model, and a value of COE=0.0 indicates that the model is not better to

predict the observed values than the observed mean, while negative values indicate that the model is less effective than the

observed mean in predicting the variation in observations.

The Mean Absolute Error (MAE) is also used in this work because it is an unambiguous and more natural measure of average160

error than the Root Mean Square Error (RMSE, Willmott and Matsuura (2005)) due to the bias of RMSE when large outliers

are present (Legates and McCabe, 1999). The MAE is determined by:

MAE =
∑n

i=1 |Tmi−Ti|
n

(3)

The modified Index of Agreement (IOA, Legates and McCabe (1999)) has the advantage that errors and differences are not

inflated by their squared values and is computed by:165

IOA = 1.0−
∑n

i=1 |Tmi−Ti|∑n
i=1

(
|Ti−Tm|+ |Tmi−Tm|

) (4)

Another advantage of the IOA is that it is related to the Mean Average Error (MAE) and the Mean Absolute Deviation

(MAD) as follows:

IOA = 1.0− MAE

MAD
(5)

The above metrics were computed daily for each of the three interpolated climate values through the use of the OpenAir170

library for R (Carslaw and Ropkins, 2012). Due to the large variability of precipitation in Mexico, the Mean Absolute Error

(MAE) was only determined for Tmin and Tmax as shown in Fig. 4, where it can be seen that the MAE values are lower for Tmin

than for Tmax, and that for both temperatures the MAE is lower for the summer months. For Tmin, the MAE varies between

1.5–2.0 ◦C from June through October and between 2.0–2.5 ◦C for the remainder months, except for some days in January

and December, where it reaches 2.5–3.0 ◦C. A similar behavior is observed for the MAE values of Tmax, but with MAE values175

0.5◦C higher.

The three dimensionless performance indices (R2, COE, and IOA) obtained for the three climate variables are shown in

Fig. 5, where it can be seen that Tmin exhibits the highest values for the three performance indices; in fact, for Tmin, R2 >0.7 on

most days (with 0.6<R2<0.7 only for some days). For the same climate variable (Tmin), the Index of Agreement (IOA) is >0.8

for several days – in a similar (but more persistent) temporal distribution as MAE (Fig. 4) – with the remaining days having180

values of 0.7<IOA<0.8. Of interest is the fact that the values of the three performance indices are better during summer and

particularly better for the 1960–1990 period (as can be easily observed in Fig. 4(b)), with precipitation exhibiting a similar –

8

https://doi.org/10.5194/essd-2025-100
Preprint. Discussion started: 17 March 2025
c© Author(s) 2025. CC BY 4.0 License.



10050 200150 300 350250

1960

1970

1980

1990

2000

2010

2020

1.0

1.5

2.0

2.5

3.0

4.0

1960

ye
ar

1970

1980

1990

2000

2010

2020

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

10050 200150 300 350250

1960

1970

1980

1990

2000

2010

2020

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

day of year day of year

(  C)o

(a) Tmin (b) Tmax

Figure 4. Mean Absolute Error of daily interpolations for: (a) Tmin, (b) Tmax.

but more subtle – behavior. The values of R2, COE, and IOA for precipitation are lower due to its heterogeneity (which is why

the MAE is not shown for this variable).

5 Comparison with other datasets and applications185

Different gridded climate datasets that cover Mexico are currently available, as summarized in Table 4. These datasets have

been used in Mexico for different purposes: to analyze the duration and intensity of Mexico’s midsummer drought during the

1981–2010 period (Perdigón-Morales et al., 2018), to study climate trends in both the North American Monsoon (NAM) and

Mid-Summer drought (MSD) regions (Cavazos et al., 2020), to analyze trends of daily rainfall indices (Colorado-Ruiz and

Cavazos, 2021), or to validate the accuracy of their precipitation values on Mexico’s northwestern region (Esquivel-Arriaga190

et al., 2024; de la Fraga et al., 2024).

Some of these datasets were developed through interpolation of observed climate values at meteorological stations (Daymet,

L15) while others were derived from satellite observations (PERSIANN-CDR) or a mixture of these two methodologies

(CHIRPS). Due to Mexico’s abrupt topography – and its effect on both temperature and precipitation – it is imperative for

any method used to estimate the aforementioned climate variables in the country to consider the impact of topography on their195

spatial distribution. In order to validate the daily precipitation values of the HiResMexClimDB, different datasets obtained

through either interpolation, remote sensing or a mixture of both are compared for five events of extreme precipitation. As can

be seen in Table 4, the MexHiResClimDB has the finest spatial resolution and the longest temporal coverage of the five datasets

that were compared, which are briefly described in the following paragraphs.

5.1 Daymet200

The latest release of the Daymet database (version 4, Thornton et al. (2021)) provides daily Tmin and Tmax along with Precip

and other variables for North America – Mexico, the Conterminous U. S. (CONUS) and Canada – at a resolution of 1 km

for the 1980–2023 period. The estimation of Tmin, Tmax and Precip in Daymet is through a truncated Guassian filter that

9
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Figure 5. Performance indices – coefficient of determination (R2), Coefficient of Efficiency (COE) and Index of Agreement (IOA) – for the

daily interpolations developed in this work: (a) Minimum Temperature, (b) Maximum Temperature, and (c) Precipitation.

Table 1. Spatial resolution and temporal coverage of the MexHiResClimDB and the other four gridded climate datasets used for comparison.

Coverage

Dataset Source Climate variable Spatial resolution Temporal Area

MexHiResClimDB (Carrera-Hernández, 2025a) Weather station Tmin, Tmax, Precip 20”≈ 0.6 km 1951 – 2020 Mexico

Daymet (Thornton et al., 2021) Weather station Tmin, Tmax, Precip + 4 more* 35”≈ 1.0 km 1980 – 2023 North America

L15 (Livneh et al., 2015) Weather station Tmin, Tmax, Precip 3’20”≈ 6.0 km 1950 – 2013 North America

CHIRPS (Funk et al., 2015) Satellite and weather station Precip 3’00”≈ 5.4 km 1981 – 2023 Global

PERSIANN CDR (Ashouri et al., 2015) Satellite Precip 15’00”≈ 25.0 km 1983 – 2024 Global

*The other three variables included in Daymet are shortwave radiation, vapor pressure, snow water equivalent and day length.
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uses inputs from multiple weather stations and weights that reflect the spatio-temporal relationships between each cell and

the surrounding stations. For each grid cell the station list and associated weights are calculated on a yearly basis for Tmin,205

Tmax and Precip; additionaly, this dataset also includes other secondary variables such as daylight average shortwave radiation,

daily average water vapor pressure, daylength and an estimate of accumulated snowpack. The daylength estimate is based on

geographic location and time of year, while the remainder secondary variables are derived from Tmin and Tmax and Precip based

on atmospheric theory and empirical relationships, as detailed in Thornton et al. (2021).

5.2 L15210

The L15 dataset (Livneh et al., 2015) is a daily gridded dataset with a resolution of 1/16◦ (3’20” or ≈6 km) derived from

observed Precip, Tmin and Tmax for North America (Mexico, the CONUS, and regions of Canada south of 53 N◦) for the 1950–

2013 period. This dataset was created by applying the SYMAP interpolation algorithm, which uses Inverse Distance Weighting

(IDW, Shepard (1984)). To develop this dataset, weather stations from Mexico, CONUS and Canada were used; however, the

selection criteria on which stations to use were different according to their location: a minimum of >20 years of data were215

required for weather stations located in CONUS or Canada, while only >50 days of data were required for the weather stations

located in Mexico.

In order to consider the effect of topography on both temperature and precipitation, a lapse rate of 6.5◦C/km was applied

to Tmin and Tmax, while precipitation was scaled based on existing estimates of monthly precipitation that were developed

by considering topography into account. For the CONUS, the Parameter-elevation Regressions on Independent Slopes Model220

(PRISM, Daly et al. (1997)) dataset was used to scale precipitation, while for both Canada and Mexico the gridded climate

dataset developed by Wehner et al. (2011) – which was obtained by using trivariate thin plate smoothing splines that employed

latitude, longitude and elevation as predictors – was used to incorporate the effect of topography on precipitation.

5.3 PERSIANN-CDR

The global dataset Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data225

Record (PERSIANN-CDR, Ashouri et al. (2015)) provides world wide daily precipitation at a resolution of 0.25◦ (≈25 km at

the equator) since 1983. The PERSIANN dataset is estimated through an Artificial Neural Network (ANN) model that extracts

cold-cloud pixels and neighboring features from GEO infrared images that associates variations in each pixel’s brightness

temperature to estimate the pixel’s rainfall rate and uses monthly data from the Global Precipitation Climatology Project

(GPCP) to reduce biases in the estimation of precipitation (Ashouri et al., 2015).230

5.4 CHIRPS

The Climate Hazards group Infrared Precipitation with Stations (CHIRPS) was developed using precipitation estimates based

on infrared cold cloud duration observations calibrated through the Tropical Rainfall Measuring Mission Multi-satellite PRecipitation

Analyis version 7 and a moving window regression that used latitude, longitude, elevation and slope – as detailed in Funk et al.
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(2015). The CHIRPS dataset provides world wide daily precipitation since 1981 with a spatial resolution of 3’ (≈5.4 km at the235

equator). Although the main advantage of precipitation estimates derived from satellite observations is their aereal coverage,

it should be kept in mind that the main drawback of estimates based on IR techniques (PERSIANN-CDR and CHIRPS) is

that they are based on the assumption that colder clouds produce more intense rainfall and may miss heavy precipitation from

shallow clouds (Behrangi et al., 2016).

5.5 Validation and comparison of Precipitation240

The spatial variation of daily precipitation from the MexHiResClimDB dataset is compared with the previously mentioned

datasets using five different events of extreme precipitation in Mexico (shown in Fig. 6 and caused by hurricanes or tropical

storms). These events and their impact in Mexico are briefly described in the following paragraphs:

1. On September 16th of 1988, Hurricane Gilbert – once labelled the "storm of the century" because of the meteorological

records it set (Meyer-Arendt, 1991) – caused torrential rains, which led to floods that caused fatalities and destruction245

in Monterrey, Mexico’s third largest city (Meyer-Arendt, 1991). The first landfall of this hurricane was in Cozumel on

September 14th as a Force 5 Hurricane, and due to the floods it caused, 225 people died in the Monterrey Metropolitan

Area (Aguilar-Barajas et al., 2019).

2. The large rainfall events of October 4–6 of 1999 caused by Tropical Depression 11, that triggered several landslides in

the northern Sierra of Puebla, affecting different areas (Capra et al., 2003a, b; Alcántara-Ayala, 2004; Borja-Baeza and250

Alcántara-Ayala, 2004; Alcántara-Ayala et al., 2006). A total of nearly 3000 landslides that ranged from soil slides to

debris flows and avalanches occured in this area and on October 5, in the town of Teziutlán, a single landslide caused

approximately 150 casualties in this town – with a total of 263 casualties – affecting 1.5 million people.

3. In July 2010 Hurrican Alex affected the Monterrey Metropolitan Area. Hurricane Alex was a Category 2 hurricane before

landfall in Tamaulipas (Cázares-Rodríguez et al., 2017) and flash floods triggered by it caused fifteen fatalities in the255

Monterrey Metropolitan Area (Aguilar-Barajas et al., 2019).

4. The simultaneous ocurrance of the tropical storm Manuel on the Pacific coast and of hurricane Ingrid (Cat 1) on the

Gulf of Mexico in September 2013 caused flooding and substantial damage in several states of Mexico. The rainfall

from tropical storm Manuel triggered a landslide at the La Pintada village in Guerrero, causing 78 fatalities – with an

additional eight missing people (Alcántara-Ayala et al., 2017). The floods caused by Manuel destroyed several highways260

and bridges in the state of Guerrero, leaving 40,000 tourists stranded in the Acapulco bay because its main highway

could not be used for a week, and its airport was flooded (CENAPRED, 2014).

The spatial distribution of precipitation for each of the aforementioned events is shown in Fig. 6, where it can be seen that

PERSIANN-CDR exhibits lower precipitation values than the other four datasets for the five events considered, and that the

areal coverage of precipitation obtained with both CHIRPS and PERSIANN CDR is smaller than the one obtained with the265

other three datasets (which can be clearly seen for the events of 1988, 1999 and 2010). Of particular interest are the events of
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Figure 6. Spatial distribution of daily precipitation on five different days according to five different datasets: (a) MexHiResClim, (b) Daymet,

(c) L15, (d) CHIRPS, and (e) PERSIANN CDR. These days were selected due to the large precipitation registered on them: September 16th,

1988, when Hurricane Gilbert caused large precipitation events – and flooding – in the Monterrey Metropolitan Area (MMA); October

5th 1999, when Tropical Depression 11 caused several landslides in the state of Puebla; June 30th 2010, when Hurricane Alex caused

flooding in the MMA; September 15–16 of 2013, when Tropical storm Manuel in the Pacific and Hurricane Ingrid (Cat 1) in the Gulf of

Mexico occurred simultaneously, causing floods – and triggering landslides – in different parts of Mexico. Only the MexHiResClim dataset

adequately represents the precipitation caused in both the Pacific and the Gulf of Mexico regions for September 15–16 of 2013.
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2013: for September 15th, the MexHiResClimDB shows a large area with precipitation along the Pacific Coast caused by the

Tropical Storm Manuel and another area with precipitation on the Northeastern region of Mexico, near the Gulf of Mexico’s

coast, caused by Hurricane Ingrid. This precipitation pattern is similar to that reported in Pedrozo-Acuña et al. (2014) and

Rosengaus-Moshinsky et al. (2016), but not present on the L15 and Daymet datasets (as shown in Fig. 6(b) and (c)). In fact,270

for this day (2013-09-15), the L15 dataset shows larger precipitation on the leeward side of the mountain range near Acapulco

(Fig. 1(a)) – which is opposite to what actually occured, and represented on the other four datasets, although with some caveats,

as is the case of Daymet (i.e. interpolation artifacts).

To provide further insight into how well these five datasets represent the registered precipitation of these five events, the

Coefficient of Determination (R2), the Coefficient of Efficiency (COE) and the Index of Agreement (IOA) were determined275

for each event and dataset by leave-one-out cross-validation in the case of the MexHiResClimDB and through raster sampling

of the remainder datasets using the v.what.rast command of the GRASS GIS. These performance statistics are shown in

Fig. 7 along with their respective scattergrams of differences; however, it should be kept in mind that the performance metrics

shown in the aforementioned figure for the MexHiResClimDB can not be directly compared with the metrics of Daymet, L15

or CHIRPS, because for the latter three cases some of the weather stations used to compute the metrics were used to develop280

the datasets – in summary, the performance metrics obtained through cross-validation are expected to be lower. As can be

seen on Fig. 7, the PERSIANN CDR is the dataset with the lowest metrics for four of the five events considered, followed

by CHIRPS. For the precipitation events considered, L15 showed the largest performance values for only one event (1988-

09-16), while Daymet for two (1999-10-05, 2010-06-05) and MexHiResClimDB for the remainder two events (2013-09-15,

2013-09-16). However, the differences between the performance statistics of L15 or Daymet compared to MexHiResClimDB285

for the first three events are not drastic: if the IOA is considered, for 1988-09-16, IOAL15 = 0.863, while IOADaymet = 0.811 and

IOAMexHiResClimDB = 0.751. For the last two days – for which the performance indices of the MexHiResClimDB are better –

these differences are larger, as for 2013-09-15, IOAMexHiResClimDB = 0.703, IOADaymet = 0.525 and IOAL15 = 0.334. However, if

the Coefficient of Efficiency (COE) is considered, the performance difference for the 2013 events is even larger, as COEL15 = -

0.331, COEDaymet = 0.051 and COEMexHiResClimDB = 0.405. From this analysis, it can be concluded that the precipitation patterns290

obtained with the MexHiResClimDB represent precipitation in a better way than the other four datasets considered in this work.

5.5.1 Extreme records of precipitation

The MexHiResCLimDB provides not only daily precipitation, but monthly and yearly aggregated values as well. One application

of this new database is the generation of a summary of precipitation extremes (i.e. wettest and driest) at the aforementioned

aggregation times (which will provide information that is not available for Mexico at this time). In order to generate this295

information, the volume of precipitation was computed for each day and aggregated at the national level (the use of volume

was selected instead of mm due to the variability of precipitation in Mexico, as shown in Fig. 6). In order to create this

information, the r.univar command of the GRASS GIS was used to compute the nation-wide precipitation volume at the

required aggretion time and stored in a relational database for efficient handling – which is required for monthly and daily data.

With this procedure, the ten wettest and driest days, months and years were obtained and summarized in Table 2, where it can300
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Figure 7. Validation scatterplots and error metrics for the precipitation events shown in Figure 6 for (a) MexHiRexClim, (b) Daymet, (c)

L15, (d) CHIRPS, and (e) PERSIANN CDR. It is important to keep in mind that the values shown for Daymet and L15 do not correspond to

cross-validation, but rather to sampling of the rasters provided by each dataset; accordingly, cross-validation of both Daymet and L15 would

exhibit lower values for the performance indices used. It can be seen that MexHiResClim is the only dataset that adequately represents the

precipitation events of September 15–16 caused by the presence of Tropical Storm Manuel and Hurricane Ingrid.
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Table 2. Countrywide (a) Maximum and (b) Minimum values of daily, monthly and yearly accumulated values for precipitation.

Maximum Minimum

daily monthly yearly daily monthly yearly

date precip

(109 m3)

date precip

(109 m3)

date precip

(109 m3)

date precip

(109 m3)

date precip

(109 m3)

date precip

(109 m3)

1970-09-26 28.878 2013-09 387.716 1958 1,826.167 1951-01-17 0.000 1953-01 6.129 1953 1,106.309

1967-09-22 27.725 2010-07 379.970 2013 1,646.250 1953-02-05 0.000 1984-04 8.882 1957 1,158.624

1973-06-22 26.975 1958-09 355.837 1981 1,591.904 2007-03-01 0.001 1955-04 8.910 1994 1,161.331

1974-09-21 26.763 1955-07 354.232 1984 1,552.483 1956-03-05 0.001 1998-04 9.381 1951 1,164.111

1974-09-22 26.333 1955-09 351.492 1978 1,532.719 1977-03-13 0.001 1975-04 9.427 2011 1,164.234

2013-09-16 25.952 1973-08 349.515 1992 1,524.137 1953-01-05 0.001 1960-03 9.699 1962 1,176.275

2013-09-15 24.925 1978-09 339.886 2015 1,522.222 1953-01-10 0.002 1955-03 10.246 1987 1,179.864

1974-09-20 23.987 2014-09 338.307 1976 1,517.643 1956-03-04 0.002 1962-02 10.497 1982 1,191.108

1978-09-22 23.954 1976-07 334.457 2010 1,517.590 1952-02-13 0.003 1984-03 10.934 2009 1,192.888

2010-02-03 23.818 1969-08 333.554 1955 1,509.553 1958-02-27 0.003 1970-04 11.447 1956 1,201.528

be seen that the wettest day was 1970-09-26 (28.878×109 m3) – which surprisingly was not caused by a hurricane – while

September of 1974 had the largest precipitation events for two and three consecutive days (21–22 and 20–22 respectively)

which were caused by the Fifi-Orlene Hurricane (which entered as Tropical Storm on the eastern side of Mexico and moved

westwards over the country to regain energy once entering the Pacific Ocean to turn into Hurricane Orlene). Of interest is the

10th wettest day (2010-02-03), which occurred outside Mexico’s rainy season. The month with the largest precipitation was305

September of 2013 (387.716×109 m3, due to the precipitation caused by both Manuel and Ingrid, as described in the previous

section), while the wettest year was 1958 (1,826.167×109 m3). The driest year was 1953 while January of the same year was

the driest month. An interesting finding was that the precipitation event of 2013-09-16 (25.952×109 m3) is ranked as the 6th

wettest day and that no wettnes or dryness tendency is easily seen on the values shown in Table 2.

5.6 Validation and comparison of temperature310

The MexHiResClimDB also includes temperature data – as well as the Daymet and L15 datasets (Table 4). To validate and

compare the precipitation of the MexHiResClimDB with other datasets, five different days with well known extreme events

were selected; however, there are currently no studies in Mexico to provide guidance on days with extreme temperatures.

Accordingly, to select the days with extreme temperatures, the temperature rasters generated in the MexHiResClimDB were

processed in a similar way as was done with precipitation in order to summarize the ten hottest and coldest days, months and315

years for Tmin, Tmax and also Tavg (which is a secondary product of the interpolated temperature values), as shown in Table 3.

In contrast to the precipitation values shown on Table 2 (which showed no particular trend), the highest temperature values

(Table 3(a)) show a clear warming trend (in particular for minimum temperature): eight out of the ten days with the highest

Tmin occurred in 2020, the two months with the highest Tmin were July and August of 2020 and the six years with the highest

Tmin were 2015–2020. The hottest day was 1998-06-15, while June of 1998 was the hottest month and 2020 the hottest year;320

of interest is to note that the four hottest years occurred between 2011–2020. The values of Table 3(b) show that the coldest
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day for the 1951–2020 period was January 12th of 1962, while the coldest month was January of 1987, with 1987 being the

coldest year – as can be seen, the 1970–1979 decade was the coldest for the 1951–2020 period – and surprisingly, 2010 was

the third coldest year.

To validate the interpolated temperature maps, the maximum and minimum values of Tmax (1998-6-15, 1967-1-10) and Tmin325

(2020-8-31, 1962-1-12) were selected to report their validation in detail. The results obtained with the leave-one-out cross-

validation are shown on Fig. 8, where it can be seen that the performance statistics are better for Tmin than for Tmax – a fact

that was previously pinpointed in the previous section. For temperature, the minimum value for the Index of Agreement (IOA)

is 0.714 (Tmax for 1998-06-15), while its maximum value is IOA=0.822 (Tmin for 2020-8-31). The scattergrams of Fig. 8 only

show the differences obtained through cross-validation for the MexHiResClimDB and not the other datasets because it is not330

possible to obtain cross-validation values for L15 or Daymet – and using the sampled values would yield values that are not

comparable to those shown on Fig. 8. However, a visual comparison of the spatial distribution of both Tmin and Tmax for the

dates with minimum and maximum values of the aforementioned temperature values is done in Fig. 9, where it can be seen

that the MexHiResClimDB is the database with the longest temporal coverage and that neither L15 nor Daymet were capable

of showing the temperature extremes that were obtained through the MexHiResClimDB. For the hottest day of the 1951–2020335

period (1998-06-15), L15 and Daymet show colder areas in the northern region of the Baja California Peninsula; a situation

that is also apparent for the other three days of the comparison (although Daymet does not have data for the coldest day or the

day when Tmax is minimum – 1962-01-12 and 1967-01-10, respectively – and L15 does not have data for the day when the

minimum value of Tmax was obtained: 2020-08-31). Of note is the patchiness observed on the temperature maps provided by

L15 (Fig. 9).340

5.7 Climate summary and trends

The MexHiResClimDB (Carrera-Hernández, 2025a) provides daily, monthly and yearly data for Tmin, Tmax, Precip and also

for Tavg (Carrera-Hernández, 2025b, c, d, e, f, g, h, i, j) – which is a derived product of the interpolated temperature variables –

along with monthly and yearly climate normals of the four previously mentioned variables (Carrera-Hernández, 2025k, l, m, n, o).

This new database has been used to determine climate extremes (both minimum and maximum, as shown in Tables 2 and 3).345

To show how the climate variables vary through the 1951–2020 period according to the different aggregation times on which

they are distributed, Fig. 10 was created, where it can be seen how temperature has increased in recent years.

It is interesting to note that for daily temperature, the distribution of warmer days for the three temperatures shown in Fig. 10

has an hourglass shape, thus showing colder temperatures for the 1961–1990 period – in particular for those years between

1970–1979. However, the bottom of this hourglass (for the three temperatures reported) is narrower than it is at its top, which350

clearly shows a warming trend – a trend that is easier to note when Tmin (Fig. 10(c)) is observed, as the days with Tmin between

17.5–20.0 ◦C have increased since the summer of 2013. The daily trends observed in this Figure are consistent with the values

of Table 3, where it can be seen that the eight days with the highest Tmin occurred in 2020. On a monthly basis, the warming

trend can also seen on Fig. 10 because 2019 was the year where three months (Jun-Aug) exceeded 32.5◦C, while on 2020 four
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Table 3. Country wide (a) Maximum and (b) Minimum values of daily, monthly and yearly accumulated values for Tmin, Tavg and Tmax.

(a) Maximum values

Tmin Tavg Tmax

daily monthly yearly daily monthly yearly daily monthly yearly

date temp

(◦C)

date temp

(◦C)

date temp

(◦C)

date temp

(◦C)

date temp

(◦C)

date temp

(◦C)

date temp

(◦C)

date temp

(◦C)

date temp

(◦C)

2020-08-31 19.7 2020-07 18.9 2020 13.8 2018-07-24 26.8 1998-06 25.8 2020 21.1 1998-06-15 35.4 1998-06 34.2 2020 29.2

2020-07-11 19.6 2020-08 18.8 2015 13.6 2017-06-23 26.6 2019-08 25.7 2017 21.0 2011-05-28 35.2 1980-06 33.6 2017 29.0

2020-07-09 19.4 2019-08 18.7 2019 13.6 2018-07-25 26.6 2020-07 25.5 2019 20.9 1951-06-19 35.2 2011-06 33.5 2011 28.8

2020-08-30 19.4 2016-07 18.6 2018 13.5 2020-07-13 26.6 2020-08 25.5 2016 20.8 2011-05-27 35.1 2003-05 33.4 2019 28.8

2020-07-08 19.4 1957-07 18.5 2017 13.5 2020-07-12 26.5 1980-06 25.4 2018 20.7 1951-06-18 35.1 2005-06 33.4 1998 28.8

2020-08-29 19.3 1960-07 18.5 2016 13.5 2020-07-11 26.5 1980-07 25.3 2015 20.6 2018-05-31 35.0 1960-06 33.2 1995 28.7

2020-08-13 19.3 1969-07 18.5 1958 13.3 1998-07-13 26.5 2016-07 25.2 1995 20.6 2003-05-17 35.0 1998-05 33.2 1996 28.7

2020-07-13 19.3 1980-07 18.4 2014 13.2 1951-06-19 26.5 1960-06 25.2 1994 20.6 1998-06-19 35.0 1996-05 33.2 1999 28.6

1998-07-13 19.3 1953-07 18.4 1957 13.2 1998-07-14 26.5 1998-07 25.2 1954 20.5 2003-05-18 34.9 1953-06 33.2 2009 28.6

1998-07-14 19.3 1998-07 18.4 1994 13.1 2018-07-23 26.4 1953-06 25.2 2014 20.5 2018-06-02 34.9 2019-08 33.1 1953 28.6

(b) Minimum values

Tmin Tavg Tmax

daily monthly yearly daily monthly yearly daily monthly yearly

date temp

(◦C)

date temp

(◦C)

date temp

(◦C)

date temp

(◦C)

date temp

(◦C)

date temp

(◦C)

date temp

(◦C)

date temp

(◦C)

date temp

(◦C)

1962-01-12 1.3 1987-01 5.7 1987 12.1 1962-01-11 9.0 1985-01 13.1 1976 19.4 1967-01-10 15.2 1992-01 20.0 1976 27.1

2011-02-04 1.8 1967-01 5.7 1975 12.1 2011-02-04 9.1 1966-01 13.2 1968 19.6 1967-01-09 16.0 1985-01 20.6 1966 27.2

1962-01-11 2.3 1951-01 5.9 2010 12.2 1967-01-10 9.2 1958-01 13.3 1966 19.6 1967-01-11 16.1 1966-01 20.6 1968 27.2

1951-02-03 2.5 1964-01 5.9 1999 12.2 1967-01-09 9.6 1964-01 13.4 1987 19.6 1962-01-11 16.1 1958-01 20.9 1992 27.4

1951-02-02 2.6 1973-12 5.9 1976 12.2 1962-01-12 9.7 1987-01 13.6 1975 19.7 1992-01-16 16.6 1981-01 21.1 1984 27.4

1997-12-15 2.6 1976-01 6.0 1970 12.3 1967-01-11 9.9 1973-01 13.7 1984 19.7 1992-01-17 16.7 2007-01 21.2 1958 27.5

1962-01-13 2.7 1999-12 6.0 1979 12.3 2011-02-03 9.9 1979-01 13.7 1973 19.7 1981-01-18 16.7 1976-12 21.3 1985 27.5

1973-12-21 2.7 2010-12 6.1 1973 12.3 1997-12-13 10.0 1967-01 13.8 2010 19.7 2011-02-04 16.8 1984-01 21.4 1987 27.6

1997-12-14 2.8 1960-02 6.1 1971 12.4 1971-01-07 10.3 1981-01 13.8 1964 19.8 2011-02-03 17.0 1964-01 21.4 1973 27.6

2011-02-05 2.9 1985-01 6.1 1974 12.4 1964-01-14 10.3 1992-01 13.8 1985 19.8 1985-01-13 17.1 1979-01 21.5 1964 27.6
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Figure 8. Scatterplots for minimum and maximum temperatures of (a) Tmax and (b) Tmin obtained through cross-validation.

months (May-Aug) also exceeded this temperature (Fig. 10(a)); similar warmer blocks are also observable for both Tavg and355

Tmin.

The summary plots of precipitation (Fig. 10(d)) clearly show that the rainy season in Mexico is from May to October, with

the wettest months being July, August and September. The monthly plot of precipitation clearly shows that January of 1992

was an exceptionally wet January, while the yearly plot shows that 1958 was the wettest year for the period covered by the

MexHiResClimDB. However, although the aforementioned extremes can be easily seen on Fig. 10(d), a trend in precipitation360

is difficult to observe, as is the case for yearly temperatures (due to the color scale selected in order to represent the temperature

range between Tmin and Tmax). To provide further insight into this situation, the yearly anomalies of the four climate variables

available on the MexHiResClimDB were computed for the 1951-2020 period as shown in Fig. 11 in both the well known

"warming stripes" format and as bar plots (considering 1961–1990 as the baseline period, according to the recommendation of

the World Meteorological Organization, (WMO, 2017)).365

The temperature anomalies shown in Fig. 11 show a warm period before 1964, and a fluctuation between colder and warmer

periods between 1964–1990, although the anomalies for Tmin (Fig. 11(a)) still fluctuated until 2010. However, in contrast to

Fig. 10, the anomalies shown in Fig. 11 clearly show a warming trend, in particular for Tmax, because its latest warming trend

(which started in 1992) reached 1.0 ◦C above the 1961–1990 normal in 1998 (thus yielding a Tmax increase rate of 0.13 ◦C/yr

for the 1992–1998 period) and an anomaly of 1.4 ◦C in 2020, with a five-year moving average trend of around 0.6 ◦C between370

2000–2016 that reached 1.0 ◦C in 2020 (Fig. 11(c)). For the 2016–2020 period the Tmax increase rate was similar to that of

1992.
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Figure 9. Spatial distribution of (a) Tmax and (b) Tmin for their maximum and minimum events from 1951–2020. The temperature values

shown on each map represent the average temperature for that day considering the entire country. The MexHiResClimDB is the only dataset

that covers the entire 1951–2020 period

As previously mentioned, the Tmin anomalies fluctuated between cold and warm periods until 2012, when the Tmin anomaly

started to increase from two cold years (2010 and 2011) to 0.2 ◦C in 2012 and to 1.2 ◦C in 2020 (Fig. 11(a)), which represents

a warming trend of 0.15 ◦C per year. Finally, the Tavg anomalies show a warming trend that started in 1990 that drastically375

increased in 2014, with a maximum value of 1.2 ◦C in 2020.

The precipitation anomalies shift between dry and wet spells, although the 1995–2003 were dry years which were folowed

by a couple of wet years before the 2009 and 2011 dry years (in fact, the five-year moving average shows a dry spell of 12

years between 1995–2007). This tendency in precipitation is important for water management and water supply, because even

though the 2013–2020 five-year moving average shows a seven year wet period, 2019 and 2020 were dry years. When this380

tendency is compared with that of temperature, it can be concluded that higher temperatures will increase evapotranspiration

and less water will be available. However, it should be kept in mind that even though the plots of Fig. 11 show an undeniable

warming trend in Mexico, further studies are needed in order to pinpoint the areas where climate change is having a profound

impact – for example, at the watershed level – a task that can be now done using the MexHiResClimDB.
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Figure 10. Countrywide daily, monthly and yearly values for the climate variables derived in this work. Precipitation values are given in

volume (109 m3) and it can clearly be seen that Mexico’s rainy season is from May to October, that 1958 was the year with the largest

precipitation for the 1951–2020 period, and that January 1992 was an exceptionally wet month. The daily and monthly temperature averages

show a warming trend – particularly during the summer months. 21
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Figure 11. Yearly anomalies with respect to the 1961–1990 normals of (a) Tmin, (b) Tavg, (c) Tmax and (d) Precipitation

6 Conclusions385

This work presents Mexico’s High Resolution Climate Database (MexHiResCLimDB), which is a new gridded, high-resolution

(≈600 m) climate dataset comprised of daily, monthly and yearly precipitation and temperature (Tmin, Tmax, Tavg). The monthly

and yearly values were derived from daily interpolations obtained by using Kriging with External Drift on a local neighborhood

through gstat within R and GRASS along a relational database developed in PostgreSQL.

Although different gridded climate datasets that cover Mexico are currently available, the MexHiResClimDB improves390

the spatio-temporal representation of climate variables over the country, as it is now the gridded climate database with the

largest time coverage (1951–2020) and the highest spatial resolution (with 20” or ≈ 600 m). Furthermore, the precipitation

data provided by this database is the only one that adequately represents the spatial variation of extreme precipitation events,

in particular for the precipitation that occurred during September 15–16 of 2013, caused by the presence of Tropical storm

Manuel in the Pacific Ocean and Hurricane Ingrid (Cat 1) in the Gulf of Mexico.395

With this new database it was possible to summarize extreme events of precipitation and temperature in Mexico for the

1951–2020 period – a summary that was not available before. With this summary, it was found that the wettest year was 1958,
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Table 4. Datasets included in Mexico’s High Resolution Climate Database (MexHiResClimDB, Carrera-Hernández (2025a)). The daily

datasets are comprised of data for all days of the 1951–2020 period, monthly data for all months (i.e., 12 months× 70 years) and yearly data

for all years (70).

Citation Data Digital Object Identifier

Carrera-Hernández (2025b) Daily Tmin for 1951–2020 DOI:10.6084/m9.figshare.28462808

Carrera-Hernández (2025c) Daily Tavg for 1951–2020 DOI:10.6084/m9.figshare.28462835

Carrera-Hernández (2025d) Daily Tmax for 1951–2020 DOI:10.6084/m9.figshare.28462820

Carrera-Hernández (2025e) Daily Precip for 1951–2020 DOI:10.6084/m9.figshare.28462796

Carrera-Hernández (2025f) Monthly Tmin for 1951–2020 DOI:10.6084/m9.figshare.28124789

Carrera-Hernández (2025g) Monthly Tavg for 1951–2020 DOI:10.6084/m9.figshare.28462769

Carrera-Hernández (2025h) Monthly Tmax for 1951–2020 DOI:10.6084/m9.figshare.28462679

Carrera-Hernández (2025i) Monthly Precip for 1951–2020 DOI:10.6084/m9.figshare.28462787

Carrera-Hernández (2025j) Yearly data for Tmin, Tavg, Tmax and Precip. DOI: 10.6084/m9.figshare.28074998

Carrera-Hernández (2025k) Monthly and yearly normals (1951–1980) for Tmin, Tavg, Tmax and Precip. DOI: 10.6084/m9.figshare.28464398

Carrera-Hernández (2025l) Monthly and yearly normals (1961–1990) for Tmin, Tavg, Tmax and Precip. DOI: 10.6084/m9.figshare.28464458

Carrera-Hernández (2025m) Monthly and yearly normals (1971–2000) for Tmin, Tavg, Tmax and Precip. DOI: 10.6084/m9.figshare.28464461

Carrera-Hernández (2025n) Monthly and yearly normals (1981–2010) for Tmin, Tavg, Tmax and Precip. DOI: 10.6084/m9.figshare.28464488

Carrera-Hernández (2025o) Monthly and yearly normals (1991–2020) for Tmin, Tavg, Tmax and Precip. DOI: 10.6084/m9.figshare.28074998

the wettest day 1970-09-26 (which surprisingly was not caused by a hurricane) and that September of 1974 had the largest

precipitation events for two and three consecutive days (21–22 and 20–22 respectively) – with September of 2013 being the

wettest month. Regarding temperature extremes, it was found that eight out of the ten days with the highest Tmin occurred in400

2020, the two months with the highest Tmin were July and August of 2020 and that the six years with the highest Tmin were

2015–2020. When Tmax was analyzed, it was found that the hottest day was 1998-06-15, while June of 1998 was the hottest

month and 2020 the hottest year, and that the four hottest years occurred between 2011–2020.

The anomalies obtained with this dataset show an undeniable warming trend in Mexico; however, further studies are needed

in order to pinpoint the areas where climate change is having a profound impact – for example, at the watershed level – a task405

that can be now done using the MexHiResClimDB due to its spatio-temporal resolution.

7 Data availability

The datasets included in Mexico’s High Resolution Climate Database (MexHiResClimDB, Carrera-Hernández (2025a)) are

distributed as GeoTiffs (and not in NetCDF format in order to provide data for the 366 days of leap years); in addition to

Precip, Tmin, and Tmax, the derived Tavg from the aforementioned temperature values is also distributed. The available data410

are distributed at different aggregation (precip) or average (temperature) time steps (daily, monthly and yearly) as well as

monthly and yearly normals for five different periods (1951–1980, 1961–1990, 1971–2000, 1981–2010 and 1991–2020). The

datasets are provided on geographic coordinates referred to the WGS84 ellipsoid and are available on Figshare through the

links provided in Table 4.
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