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Abstract 11 

Long-term PM2.5 data are essential for the atmospheric environment, human health, and climate 12 
change. PM2.5 measurements are sparsely distributed and of short duration. In this study, daily PM2.5 13 
concentrations are estimated using a machine learning method from 1959 to 2022 in the Northern 14 
Hemisphere based on near-surface atmospheric visibility, which are extracted from the Integrated 15 
Surface Database (ISD). Daily continuous monitored PM2.5 concentration is set as the target, and 16 
near-surface atmospheric visibility and other related variables are used as the inputs. The 80% of 17 
the samples of each site are the training set, and the 20% are the testing set. The training result 18 
shows that the slope of linear regression with a 95% confidence interval (CI) between the estimated 19 
PM2.5 concentration and the monitored PM2.5 concentration is 0.955 [0.955, 0.955], the coefficient 20 
of determination (R2) is 0.95, the root mean square error (RMSE) is 7.2 μg/m3, and the mean 21 
absolute error (MAE) is 3.2 μg/m3. The test result shows that the slope within a 95% CI between 22 
the predicted PM2.5 concentration and the monitored PM2.5 concentration is 0.864 [0.863, 0.865], 23 
the R2 is 0.79, the RMSE is 14.8 μg/m3, and the MAE is 7.6 μg/m3. Compared with a global PM2.5 24 
concentration dataset derived from satellite aerosol optical depth product with 1 km resolution, the 25 
slopes of linear regression on the daily (monthly) scale are 0.817 (0.854) from 2000 to 2021, 0.758 26 
(0.821) from 2000 to 2010, and 0.867 (0.879) from 2011 to 2022, indicating the accuracy of the 27 
model and the consistency of the estimated PM2.5 concentration on the temporal scale. The 28 
interannual trends and spatial patterns of PM2.5 concentration on the regional scale from 1959 to 29 
2022 are analyzed by Generalized Additive Mixed Model (GAMM), suitable for the situation with 30 
an uneven spatial distribution of monitoring sites. The trend is the slope of the Sen-Theil estimator. 31 
In Canada, the trend is -0.10 μg/m3/decade and the PM2.5 concentration exhibits an east-high to 32 
west-low pattern. In the United States, the trend is -0.40 μg/m3/decade, and PM2.5 concentration 33 
decreases significantly after 1992, with a trend of -1.39 μg/m3/decade. The high PM2.5 concentration 34 
areas are in the east and west and the low are in the central and northern regions. In Europe, the 35 
trend is -1.55 μg/m3/decade. High concentration areas are distributed in eastern Europe, and the low 36 
areas are in northern and western Europe. In China, the trend is 2.09 μg/m3/decade. High 37 
concentration areas are distributed in northern China and the low areas are distributed in southern 38 
China. The trend is 2.65 μg/m3/decade up to 2011 and -22.23 μg/m3/decade since 2012. In India, the 39 
trend is 0.92 μg/m3/decade. The concentration exhibits a north-high to south-low pattern, with high 40 
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concentration areas distributed in northern India, such as Ganges Plain and Thar Desert and the low 41 
area is in Deccan Plateau. The trend is 1.41 μg/m3/decade up to 2013 and -23.36 μg/m3/decade since 42 
2014. The variation in regional PM2.5 concentrations is closely related to the implementation of air 43 
quality laws and regulations. The daily site-scale PM2.5 concentration dataset from 1959 to 2022 in 44 
the Northern Hemisphere is available at National Tibetan Plateau / Third Pole Environment Data 45 
Center (https://doi.org/10.11888/Atmos.tpdc.301127) (Hao et al., 2024). 46 
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1 Introduction 49 

Fine particulate matter (PM2.5) refers to particulate matter suspended in air with an aerodynamic 50 
diameter of less than 2.5 micrometers. PM2.5 has various shapes and is composed of complex 51 
components, such as inorganic salts (e.g., sulfate, nitrate, and ammonium), as well as organic carbon 52 
and elemental carbon, metallic elements, and organic compounds (Chen et al., 2020; Fan et al., 53 
2021). PM2.5 can be emitted directly into the atmosphere (Viana et al., 2008; Zhang et al., 2019) and 54 
generated through photochemical reactions and transformations (Guo et al., 2014). PM2.5 exhibits 55 
high concentrations near emission sources, which gradually decreases with distance. Due to the 56 
smaller size and longer life span compared with coarse particulate matter, PM2.5 can be transported 57 
over long distances by atmospheric movements, leading to wide-ranging impacts. Studies indicate 58 
that regional transport contributes significantly to local PM2.5 concentration (Wang et al., 2014; 59 
Chen et al., 2020). 60 

PM2.5 reduces atmospheric visibility and facilitates the formation of fog and haze conditions (Fan 61 
et al., 2021). Direct and indirect effects of PM2.5 on solar radiation in the atmosphere (Albrecht, 62 
1989; Ramanathan et al., 2001; Bergstrom et al., 2007; Chen et al., 2022) alter the energy balance 63 
and the number of condensation nuclei, thereby influencing atmospheric circulation and the water 64 
cycle (Wang et al., 2012; Liao et al., 2015; Samset et al., 2019; Li et al., 2022). 65 

PM2.5 is also known as respirable particulate matter. Due to its complex composition, PM2.5 may 66 
carry toxic substances that can significantly impair human health. The World Health Organization 67 
states explicitly that PM2.5 is more harmful than coarse particles, and long-term exposure to high 68 
PM2.5 concentrations increases the risk of respiratory diseases, cardiovascular diseases, and lung 69 
cancer (Lelieveld et al., 2015), regardless of a country's development status. A Global Burden of 70 
Diseases study reveals that exposure to environmental PM2.5 causes thousands of deaths and 71 
millions of lung diseases annually (Chafe et al., 2014; Kim et al., 2015; Cohen et al., 2017). 72 

PM2.5 is an important parameter for assessing particulate matter pollution and air quality (Wang et 73 
al., 2012). PM2.5 can lead to soil acidification, water pollution, disruption of plant respiration, and 74 
ecological degradation (Wu and Zhang, 2018; Liu et al., 2019). Due to globalization and economic 75 
integration, preventing and controlling particulate matter pollution is a challenge at city, country 76 
and global scales. 77 

Therefore, long-term PM2.5 concentration data are needed for studies on the environment, human 78 
health, and climate change. At present, ground-based measurements, chemical models, and 79 
estimations of alternatives are the primary sources of PM2.5 concentration data. 80 
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Ground-based measurements are the most effective means to measure PM2.5 concentration. PM2.5 81 
monitoring has been ongoing since the 1990s in North America and Europe (Van Donkelaar et al., 82 
2010), and large-scale PM2.5 monitoring has been implemented in other regions since 2000, 83 
including China in 2013 (Liu et al., 2017). As a result, the records for PM2.5 concentration are short, 84 
with only a few years of data available in many countries. The scarcity of PM2.5 measurements 85 
makes it challenging to provide long-term historical data for research. 86 

Many studies have employed statistical methods, machine learning and deep learning methods to 87 
estimate PM2.5 concentrations based on aerosol optical depth. Van Donkelaar et al. (2021) has 88 
utilized satellite aerosol optical depth data, aerosol vertical structure of chemical transport models, 89 
and ground-level measurements to estimate monthly PM2.5 concentrations and their uncertainties 90 
over global land from 1998 to 2019, and there are several related studies (Van Donkelaar et al., 2010; 91 
Boys et al., 2014; Van Donkelaar et al., 2015; Van Donkelaar et al., 2016; Hammer et al., 2020). 92 
Many studies have been conducted at the regional scale, such as in the United States (Beckerman et 93 
al., 2013), China (Wei et al., 2019b; Xue et al., 2019; Wei et al., 2020; He et al., 2021; Wei et al., 94 
2021), and India (Mandal et al., 2020). Although the PM2.5 concentrations derived from satellite 95 
retrievals have high spatial coverage, there are some limitations that need to be considered. Aerosol 96 
optical depth describes the column property of aerosol, while PM2.5 concentration describes the 97 
near-surface properties of aerosol. Therefore, aerosol vertical structure is crucial in establishing the 98 
relationship between the two. The daily representativeness is also considerable, as PM2.5 99 
concentration is continuously monitored while the daily frequency of satellite observations is low 100 
(1-2 times). Surface types, cloud conditions (Wei et al., 2019a) and resolution (Nagaraja Rao et al., 101 
1989; Hsu et al., 2017) affect the accuracy of satellite products, thereby increasing uncertainty of 102 
estimation of PM2.5 concentration.  103 

Reanalysis datasets provide estimates of long-term particulate matter concentrations. The Modern-104 
Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) is an excellent 105 
reanalysis dataset from NASA that uses the Goddard Earth Observing System version 5 (GEOS-5), 106 
which provides global PM2.5 data since 1980 (Buchard et al., 2015; Buchard et al., 2016; Buchard 107 
et al., 2017; Gelaro et al., 2017; Sun et al., 2019). There are some emission inventories in the aerosol 108 
model, including: volcanic material; monthly biomass burning from 1980 to 1996; monthly SO2, 109 
SO4, POM, and BC from 1997 to 2009; annual anthropogenic SO2 between 100 and 500 m above 110 
the surface from 1980 to 2008; annual anthropogenic SO4, BC, and POM concentrations from 1980 111 
to 2006. In assimilation systems, satellite aerosol products from MISR and MODIS Aqua/Terra are 112 
assimilated after 2000. Another reanalysis dataset is the Copernicus Atmosphere Monitoring Service 113 
(CAMS) global reanalysis, which is a global reanalysis dataset of the atmospheric composition 114 
produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) and has 115 
provided PM2.5 data since 2003 (Che et al., 2014; Inness et al., 2019). Although reanalysis provides 116 
long-term PM2.5 data, the uncertainty in emission inventories increases the uncertainty in PM2.5 117 
concentration (Granier et al., 2011). The validation of the reanalysis based on emission inventories 118 
shows that PM2.5 concentration is still overestimated or underestimated in some regions (Buchard 119 
et al., 2017; Ali et al., 2022; Jin et al., 2022). The assimilation of aerosol optical depth products 120 
improves the aerosol column properties (Buchard et al., 2017), thereby improving the estimation of 121 
surface PM2.5 concentration, as it to some extent constrains the vertical structure of aerosols. 122 
However, the lack of high spatiotemporal resolution emission inventories and long-term 123 
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assimilation data greatly limits the accuracy of surface PM2.5 concentrations. 124 

Another alternative for estimating PM2.5 concentrations is the near-surface atmospheric horizontal 125 
visibility, which is the maximum distance at which observers with normal visual acuity can discern 126 
target contours under current weather conditions. In addition to manual observations, automated 127 
visibility measurement has been implemented early, typically relying on the aerosol scattering 128 
principle (Wang et al., 2009; Zhang et al., 2020). Both visibility and PM2.5 concentration are 129 
measurements of near-surface aerosols. They describe atmospheric horizontal transparency and are 130 
used to describe atmospheric pollution. Long-term visibility records have been used to quantify 131 
long-term aerosol properties (Molnár et al., 2008; Wang et al., 2009; Zhang et al., 2017; Zhang et 132 
al., 2020). Visibility observation stations are densely distributed across the world. Compared to 133 
satellite retrievals, visibility observations have longer historical records dating back to the early 20th 134 
century (Noaa et al., 1998; Boers et al., 2015), are not affected by cloud interference and provide 135 
continuous measurements. 136 

Visibility has been used as a proxy for PM2.5 concentration (Huang et al., 2009) and to estimate 137 
PM2.5 concentration (Liu et al., 2017; Li et al., 2020; Singh et al., 2020). Singh et al. (2020) has 138 
analyzed the air quality in East Africa from 1974 to 2018 using visibility data. Liu et al. (2017) has 139 
developed a statistical model and utilized ground-level visibility data to estimate long-term PM2.5 140 
concentrations in China from 1957 to 1964 and 1973 to 2014. Gui et al. (2020) has proposed a 141 
method to establish a virtual ground observation network for PM2.5 concentration in China using 142 
extreme gradient boosting modeling in 2018. Zeng et al. (2021) has used LightGBM to establish a 143 
virtual network for hourly PM2.5 concentrations in China in 2017. Zhong et al. (2021; 2022) has 144 
used LightGBM to predict 6-hour PM2.5 concentrations based on visibility, temperature, and relative 145 
humidity in China from 1960 to 2020. Meng et al. (2018) has utilized a random forest model to 146 
estimate the daily PM2.5 components in the United States from 2005 to 2015. These studies have 147 
provided various methods for estimating PM2.5 using visibility data. However, some have focused 148 
on only methodological innovations without providing long-term trends in PM2.5 concentration. 149 
Other studies offer long-term trends, but the primary focus is at urban ore national scale. There are 150 
few studies on long-term and high-temporal-resolution PM2.5 concentration at the global scale or 151 
across different countries. 152 

This study uses a convenient, accurate, and easily understandable machine learning approach to 153 
estimate daily PM2.5 concentrations based on visibility at 5023 land-based sites from 1959 to 2022. 154 
First, we build a machine learning model and then analyze the importance of the variables. Second, 155 
we evaluate the model's performance and predictive ability. Third, we discuss the errors and 156 
limitations of the dataset. Fourth, we compare the estimated PM2.5 concentration with the other 157 
dataset. Finally, we analyze the long-term trends and spatial patterns of PM2.5 concentration in 158 
different regions. We hope the PM2.5 dataset will provide support for the atmospheric environment, 159 
human health, and climate change studies. 160 

2 Data and methods 161 

2.1 Study Area 162 

The study area is the Northern Hemisphere. Figure 1 shows the distributions of visibility stations (a) 163 
and the PM2.5 monitoring sites (b). Table 1 lists information of stations such as the number and time 164 
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span in each region. The number of visibility stations and PM2.5 monitoring sites is 5023. Due to its 165 
relevance to national or regional development, the record length and distribution of PM2.5 166 
observation are uneven. In this study, the site-scale PM2.5 observations are met at least three years. 167 
These sites are densely populated in North America, East and South Asia, and Europe, and are very 168 
sparse in regions such as Africa and South America, and West Asia. 169 

 170 

Figure 1. Study area and distributions of visibility stations (a) and PM2.5 monitoring sites (b). The 171 
color of marker (circle) represents the year number of visibility observations and PM2.5 172 
concentration observations. 173 

Table 1. Data summary. 174 

 Region Sites 

Number 

Time Span Temporal/Spatial 

Resolution 

Data Source 

Visibility Global land 5023 1959-2022 Hourly/- https://www.weather.gov/asos 

PM2.5 

observations 

the United States 1111 1998-2022 Hourly/- https://www.epa.gov/aqs 

Canada 311 1995-2022 Hourly/- https://www.canada.ca 

Europe 1073 1998-2022 Hourly/- 
https://european-

union.europa.eu;https://www.eea.europa.eu 

China 1887 2014-2022 Hourly/- https://www.cnemc.cn 

India 270 2010-2022 Hourly/- https://app.cpcbccr.com 

Other regions 371 2016-2022 Hourly/- https://openaq.org 

LGHAP Land (-58~62°N) -- 2000-2021 Daily/1km https://zenodo.org/communities/ecnu_lghap 

2.2 PM2.5 Data 175 

2.2.1 PM2.5 Data in the United States 176 

The hourly PM2.5 concentration data for the United States from 1998 to 2022 are sourced from the 177 
Air Data System (AQS), which are available at https://www.epa.gov/aqs. The AQS provides PM2.5 178 
mass monitoring and routine chemical speciation data and contains other ambient air pollution data 179 
collected by the Environmental Protection Agency (EPA), state, local, and tribal air pollution control 180 
agencies from thousands of monitors, comprising the Federal Reference Method (FRM) and Federal 181 
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Equivalent Method (FEM). The primary purpose of both methods is to assess compliance with the 182 
PM2.5 National Ambient Air Quality Standards (NAAQS). FRMs include in-stack particulate 183 
filtration, and FEMs include beta-attenuation monitoring, very sharp cut cyclones, and tapered 184 
element oscillating microbalances (TOEMs). The measurement precision is ± (1~2) µg/m3 (hour) 185 
(Hall and Gilliam, 2016). The TEOM and beta-attenuation are automatic and near real-time 186 
monitoring methods. The TEOM, which is based on gravity, measures the mass of particles collected 187 
on filters by monitoring the frequency changes in tapered elements. The beta-attenuation method 188 
uses beta-ray attenuation and particle mass to measure the PM2.5 concentration. In this study, we use 189 
two PM2.5 measurement methods, FRM/FEM (88101) and non-FRM/FEM (88502). The 88502 190 
monitors are “FRM-like” but are not used for regulatory purposes. Both the 88101 and 88502 191 
monitors are used for reporting daily Air Quality Index values. 192 

2.2.2 PM2.5 Data in Canada 193 

The hourly PM2.5 concentration data for Canada from 1995 to 2022 are sourced from the National 194 
Air Pollution Surveillance (NAPS) program, which are available at https://www.canada.ca. The 195 
NAPS program is a collaborative effort between the Environment and Climate Change Canada and 196 
provincial, territorial, and regional governments and is the primary source of environmental air 197 
quality data. Since 1984, PM2.5 concentrations have been measured in Canada using a dichotomous 198 
sampler. Continuous or real-time particle monitoring began in the NAPS network in 1995 using 199 
TEOM and beta-attenuation monitoring (Demerjian, 2000). The samples are supplemented by EPA 200 
FRM samples obtained after 2009 (Dabek-Zlotorzynska et al., 2011).  201 

2.2.3 PM2.5 Data in Europe 202 

The hourly PM2.5 concentration data for Europe from 1998 to 2012 are obtained from the AirBase 203 
database, which is available at https://european-union.europa.eu. The hourly PM2.5 concentration 204 
data (E1a) from 2013 to 2022 are obtained from the AirQuality database, which is available at 205 
https://www.eea.europa.eu. AirBase is maintained by the European Environment Agency (EEA) 206 
through its European Topic Center on Air Pollution and Climate Change Mitigation. Airbase 207 
contains air quality monitoring data and information submitted by participating countries 208 
throughout Europe. After the Air Quality Directive 2008/50/EC was enforced, the PM2.5 209 
concentration data began to be stored in AirQuality database. The main monitoring methods for 210 
PM2.5 concentration include TEOM and beta attenuation (Green and Fuller, 2006; Chow et al., 2008). 211 
The sites are distributed across rural, rural-near city, rural-regional, rural-remote, suburban, and 212 
urban areas.  213 

2.2.4 PM2.5 Data in China 214 

The hourly PM2.5 concentration data for China from 2014 to 2022 are obtained from the China 215 
National Environmental Monitoring Center, which are available at https://www.cnemc.cn. The 216 
continuous monitoring of PM2.5 nationwide began in 2013 and PM2.5 concentration data are 217 
available to the public. (Su et al., 2022), and there are about 2000 air quality observation sites in 218 
2022. PM2.5 concentrations are measured using the TEOM and beta-attenuation method (Zhao et al., 219 
2016b; Miao and Liu, 2019). According to the China Environmental Protection Standards, 220 
instrument maintenance, data transmission, data assurance and quality control ensure the reliability 221 
of PM2.5 concentration measurements. The uncertainty in the PM2.5 concentration is < 5 μg/m-3 (Pui 222 
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et al., 2014).  223 

2.2.5 PM2.5 Data in India 224 

The hourly PM2.5 concentration data for India from 2010 to 2022 are obtained from the Central 225 
Pollution Control Board (CPCB), which are available at https://app.cpcbccr.com. The Air 226 
(Prevention and Control of Pollution) Act of 1981 is enacted by the Central Pollution Control Board 227 
(CPCB) of the Ministry of Environment, Forest and Climate Change (MoEFCC). The National Air 228 
Quality Monitoring Programme (NQAMP) is a key air quality monitoring programme employed by 229 
the Government of India, which is managed by the CPCB in coordination with the State Pollution 230 
Control Boards (SPCBs) and UT Pollution Control Committees (PCCs). A standard of 60 μg/m3 231 
PM2.5 concentration over 24 hours is added in 2009. The methods used by the Indian National 232 
Ambient Air Quality Standards (NAAQS) for PM2.5 concentration and related component 233 
measurements include the FRM and FEM (Pant et al., 2019). The measurement precision is ± (1-2) 234 
µg/m3 (hour). 235 

2.2.6 PM2.5 data in other regions 236 

The hourly PM2.5 concentration data of other regions from 2016 to 2022 are from openAQ 237 
(https://openaq.org), which is a nonprofit organization providing air quality data. These air quality 238 
data are collected from environmental protection departments and other departments over the world 239 
without any processing, therefore they have good accuracy. The PM2.5 concentrations almost are 240 
measured by the TEOM and beta-attenuation method, and have been used for scientific research 241 
(Jin et al., 2022; Tan et al., 2022). 242 

2.3 Visibility and Meteorological Data 243 

The hourly visibility and meteorological data are from the Integrated Surface Database (ISD) (Smith 244 
et al., 2011), which is a global database consisted of hourly and synoptic surface observations and 245 
archived at the NOAA's National Centers for Environmental Information (NCEI), available at 246 
https://www.ncei.noaa.gov/products/land-based-station/integrated-surface-database. The ISD 247 
database integrates data from more than 100 original data sources and incorporates data from over 248 
35000 stations around the world and includes observations data dating back to 1901. The strict 249 
quality control algorithms are used to ensure data quality by checking data format, extreme values 250 
and limits, consistency between parameters, and continuity between observations. Detailed 251 
information about the quality control are in http://www.ncei.noaa.gov/pub/data/inventories/ish-252 
qc.pdf. The best spatial coverage of stations is evident in North America, Europe, Australia, and 253 
parts of Asia, and the coverage in the Northern Hemisphere is better than the Southern Hemisphere.  254 

Visibility and meteorological records are filtered by the geophysical report type code. The codes of 255 
FM-12 and FM-15 are selected. FM-12 code represents the report is from Surface Synoptic 256 
Observations (SYNOP) report, which is a coding system developed by the World Meteorological 257 
Organization (WMO) for reporting observation data from ground meteorological stations. FM-15 258 
code represents the report is from Meteorological Terminal Aviation Routine Weather Report 259 
(METAR), providing weather information at the airport and its surrounding areas. The format and 260 
content of the METAR report are consistent globally and comply with WMO's international 261 
meteorological observation and reporting standards. The frequency of SYNOP report is generally 262 
every three or six hours, and the frequency of METAR report is usually once per hour. 263 



8 
 

In this study, visibility is an essential variable for PM2.5 concentration. The reciprocal of visibility 264 
is directly proportional to the aerosol extinction coefficient, which is closely related to the PM2.5 265 
concentration (Wang et al., 2009; Wang et al., 2012). Considering that temperature, wind speed, 266 
humidity, and precipitation are factors that impact particle dispersion, particle growth, and 267 
secondary generation (Zhang et al., 2020), temperature, dew point temperature, wind speed, and 268 
precipitation are selected. 269 

2.4 Data Preprocessing 270 

When processing the visibility and meteorological variables, we use some screening conditions from 271 
previous studies (Husar et al., 2000; Wang et al., 2009; Li et al., 2016; Zhong et al., 2021). We 272 
remove the records with missing visibility, temperature, dew point temperature, wind speed and 273 
hourly precipitation greater than 0.1 mm. Relative humidity is calculated using the Goff-Gratch 274 
formula (Goff, 1957). When relative humidity is greater than 90%, the record is removed to reduce 275 
the influence of fog, even precipitation. In high latitude regions, the low visibility records caused 276 
by ice fog and snow are removed, when the temperature is less than -29 ℃ and the wind speed is 277 
greater than 16 km/h. Since PM2.5 exhibits hygroscopic growth, dry visibility is calculated, when 278 
relative humidity is between 30% and 90% (Yang et al., 2021). 279 

���� = ���/(�. 
� + �. 

�� ∗ ���(��� − ����         (1) 280 

where VIS is the visibility, RH is the relative humidity, and VISD is the dry visibility. 281 

For a single visibility site, there should be at least 5 non-repetitive visibility values and at least three 282 
valid records per day. The upper limit of visibility is set to the 99% percentile of visibility (Li et al., 283 
2016). The harmonic mean is used to calculate the daily VIS and VISD because it can better capture 284 
rapid weather changes and enhance daily representativeness (Noaa et al., 1998). The arithmetic 285 
mean is used for other variables. 286 

The maximum hourly PM2.5 concentration is set to 1000 μg/m3. The daily PM2.5 concentration needs 287 
at least 3 hourly records. We select the PM2.5 monitoring sites with a condition of at least 3-year 288 
continuous monitoring. The distribution of PM2.5 sites is shown in Figure 1, and the details are 289 
shown in Table 1. 290 

The spatial matching between PM2.5 site and visibility station adopts the nearest principle, and the 291 
upper limit of distance is set to 100 km. Through experiments that the upper limit of distance has 292 
little effect on model training and prediction, but when the upper limit is small, the number of site 293 
pairs significantly decreases, especially in Asia. Matched visibility stations are not be used again. 294 
To match more PM2.5 monitoring sites, we construct a 'virtual' visibility station, whose variables are 295 
established by the average of variables of the two nearest visibility stations.  296 

We merge daily PM2.5 concentration and visibility and other meteorological variables. We have 297 
adopted two matching methods: (1) merge at the hourly scale first and then calculate the daily mean 298 
(2) and calculate the daily mean first and then match. The results of two methods have no impact 299 
on the training of the model, but there are differences in the predicted results. Since SNOPY's 300 
visibility is not continuously observed hourly, we select the second method to merge PM2.5 301 
concentration and visibility data on the daily scale to improve the daily representativeness of 302 
estimated PM2.5 concentration.  303 
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2.5 PM2.5 Data for Comparison 304 

The long-term gap-free high-resolution air pollutants (LGHAP) dataset provides daily PM2.5 305 
concentrations from 2000 to 2021 over global land, with a 1 km grid resolution, which is available 306 
at https://zenodo.org/communities/ecnu_lghap. The PM2.5 concentration is estimated using aerosol 307 
optical depth and other factors such as geographic location, land cover type, climate zone, and 308 
population density, based on a deep-learning approach, termed the scene-aware ensemble learning 309 
graph attention network. The correlation coefficient with ground-based measurements is 0.95 and 310 
the RMSE is 5.7 µg/m3 (Bai et al., 2024). This dataset provides global PM2.5 concentration with a 311 
high spatiotemporal resolution. 312 

For most regions in the Northern Hemisphere, except for North America and Europe, the duration 313 
of continuous monitoring PM2.5 concentration data is relatively short, making it difficult to evaluate 314 
historical PM2.5 concentration. For example, PM2.5 monitoring network in China was implemented 315 
from the end of 2012, resulting in the inability to verify the PM2.5 concentrations before 2012. 316 
Therefore, we compare our data with the LGHAP PM2.5 concentration to evaluate the predictive 317 
ability of the model and the consistency of our data on the temporal scale.  318 

2.6 Decision Tree Regression 319 

We employ decision tree regression (Teixeira, 2004) to estimate daily PM2.5 concentrations. The key 320 
to decision tree regression is to find the optimal split variable and optimal split point. The optimal 321 
split point of the predictor is determined by the minimum mean squared error, which determines the 322 
optimal tree structure. Decision tree regression is a commonly used nonlinear machine learning 323 
method that partitions the feature space based on the mapping between feature attributes and 324 
response values, with each leaf node representing a specific output for each feature space region. 325 
It's ability to handle complex relationships with relatively few model parameters is advantageous, 326 
minimizing the risk of overfitting and enabling the prediction of continuous and categorical 327 
predictive variables. 328 

The sample data includes predictor and response. The predictor is composed of 9 variables: the 329 
reciprocal of dry visibility (Vis_Dry_In), the reciprocal of visibility (Vis_In), temperature (Temp), 330 
dew point temperature (Td), temperature-dew point difference (Temp-Td), relative humidity (RH), 331 
wind speed (WS), wind numerical time (DateTime) and daily record number (DailyObsNum). Both 332 
visibility and meteorological variables are daily means. The response variable is the daily monitored 333 
PM2.5 concentration. 334 

For each site, we sort the sample data by time, with the first 80% being the training set and the last 335 
20% being the test set. Due to the inconsistent sample length among different sites, this approach is 336 
friendly for sites with small sample sizes (such as only 3-year observations).We use10-fold cross-337 
validation method (Browne, 2000) to train the model. The test set is used to evaluate the predictive 338 
ability of the model. 339 

2.7 Evaluation Metrics 340 

2.7.1 Statistical Metrics 341 

We use the root mean squared error (RMSE), mean absolute error (MAE), and correlation 342 
coefficient (ρ) as evaluation metrics to evaluate the model's performance and predictive ability. The 343 
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formulas are given as follows: 344 

��� = ��
 ∑ ("# − "$#�
 #%�               (2) 345 

�&� = �
 ∑ |"# − "$#| #%�                (3) 346 

( = ∑ ("#)"*�("$#)"$*� #+�
,-./(∑ ("#)"*� #+� 
 ∑ ("$#)"$*� #+�


�             (4) 347 

where 01 and 02 are the predicted value and the average of the predicted values. 031 and 032 are 348 
the target and the average of the target. 4 =  1,2, . . . , 9. 9 is the length of sample. 349 

2.7.2 Partial Dependence 350 

The importance of predictor variables is assessed via partial dependence. Partial dependence 351 
represents the relationship between the individual predictive variable and the predicted response 352 
(Friedman, 2001). By marginalizing the other variables, the expected response of the predicted 353 
variable is calculated. All the partial dependences of the predicted response on the subset of 354 
predicted variables are calculated. The calculation process of the partial dependency method is 355 
described as follows: 356 

The dataset of the predictor is X, X =  [<=, <>, . . . , <?], and n represents the number of predictive 357 
factors. The complement of subset <A is <B, where <A is a single variable in X and <B is all 358 
other variables in X. The predicted response f(x� depends on all variables in X, and it is expressed 359 
as follows: 360 

E(F�  =  E(G,, GH�                (5� 361 

The partial dependence of the predicted response to <A is expressed as follows: 362 

E,(G,� = J E(G,, GH�KL(GH�MGH              (6) 363 

where pC(XQ� is the marginal probability of <B, that is, pC(XQ� ≈  J S(<A, <B�T<A. Assuming 364 
that the likelihood for each observation is equal, the dependence between <A  and <B  and the 365 
interactions of <A and <B in response are not strong. The partial dependence is shown below: 366 

E,(G,� ≈ �
U ∑ E(G,, G#,�U#%�               (7) 367 

where N is the number of observations and # represents the ith observation. 368 

2.7.3 Generalized Additive Mixed Model 369 

Generalized Additive Mixed Model (GAMM) originates from two independent yet complementary 370 
statistical methods: Generalized Additive Model (GAM) and Mixed Effects Models. GAM is 371 
introduced by Trevor Hastie and Robert Tibshirani in the 1980s (Hastie and Tibshirani, 1987). GAM 372 
employs smooth functions (such as splines) to replace linear terms in traditional regression, 373 
capturing nonlinear relationships between response and explanatory variables. The primary aim of 374 
GAM is to enhance model flexibility, allowing the data to determine the form of the nonlinear 375 
relationships rather than pre-specifying them. Mixed Effects Model includes both fixed and random 376 
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effects, enabling the analysis of hierarchical and correlated data (Verbeke and Lesaffre, 1996). Fixed 377 
effects apply to the entire sample, whereas random effects account for variations within individuals 378 
or groups, explaining data correlation and variability. GAMM represents the evolution of statistical 379 
models from linear to nonlinear, from simple to complex, and from single effects to mixed effects. 380 
GAMM has been widely applied in various fields such as ecology and climate, air pollution 381 
becoming essential tools for studying complex nonlinear relationships and hierarchical data (Park 382 
et al., 2013; Polansky and Robbins, 2013; Chang et al., 2017; Ravindra et al., 2019). 383 

The relationship between PM2.5 concentrations and time (e.g., months, seasons) is typically 384 
nonlinear and exhibits seasonal variation. GAMM model uses smooth functions (such as splines) to 385 
capture the nonlinear variations and model the periodic features with cyclical smooth functions. 386 
Interannual variations in PM2.5 concentrations can also be captured using smooth functions. Due to 387 
the inherent autocorrelation in time series, GAMM model effectively handles the autocorrelation by 388 
incorporating time-related smooth functions or random effects, thereby enhancing the model 389 
accuracy. PM2.5 concentrations from neighboring locations often exhibit spatial correlation. GAMM 390 
model can address this spatial correlation by introducing spatially correlated smooth functions or 391 
random effects. Therefore, it is also suitable for spatial variations, especially when the spatial 392 
distribution of sites observations is uneven. 393 

Based on the GAMM, the PM2.5 concentration 0(4, W� at site 4 and time W can be expressed as: 394 

"(#, /� = FX + E(∙� + Z(#, /� + [(#, /�            (8) 395 

The following is an explanation of the expression and parameter settings. 396 

Linear terms ef: e is the vector of explanatory variables, including site elevation and the overall 397 
mean PM2.5 concentration. f is a coefficient vector. 398 

Smooth terms S(∙� can be decomposed into three individual smooth terms: seasonal smooth term, 399 
interannual smooth term, and spatial smooth term, as shown in equation (9).  400 

E(∙� = E(g� /h� + E("ij.� + E(klmnomp �          (9) 401 

They are composed of linear combinations using spline basis functions. For seasonal smooth term, 402 
it is a function of the month, smooth function is the penalized regression cyclic cubic splines 403 
(assumed with periodic nature) (Wood et al., 2016) and the knot number is 12. For interannual 404 
smooth term, it is a function of the year, smooth function is the penalized regression cubic splines 405 
(Wood et al., 2016) and the knot number is 64. For spatial smooth term, it is a function for longitude 406 
and latitude, smooth function is the gaussian process penalized regression splines (Kammann and 407 
Wand, 2003) and the knot number is 80. In this study, they are used to describe the regional long-408 
term PM2.5 concentration annual cycle, interannual trends and spatial distribution, respectively. 409 

Station-specific effects term q(4, W� is a random effect term to describe the differences between 410 
observation sites, based on the assumption that observations are independent. 411 

The residual noise term r(4, W� 1-order autoregressive term. 412 

More explanations about GAMM model are detailed in the package mgcv of R. Some studies also 413 
provide an introduction and selection of parameters (Polansky and Robbins, 2013; Chang et al., 414 
2017; Ravindra et al., 2019).  415 
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3. Results and Discussion 416 

3.1 Evaluation of Variable Importance 417 

We evaluate the contribution of each variable to the response by partial dependence. The variable 418 
with the highest partial dependence value is the most important variable in the model. Figure 2 (a) 419 
shows the proportion of the most important variables for all sites and Figure 2 (b) shows the ranking 420 
of the importance of all variables. Reciprocal of dry visibility is the most important variable at 65.8% 421 
of sites, and Reciprocal of visibility is the second most important variable at 14.9% of sites. The 422 
contribution of meteorological variables ranges from 2.1% to 6.6%. The time variable contributes 423 
1.7%. The lowest contribution is daily number of visibility record at only 0.9%, because it is only a 424 
variable that describes the daily representativeness of visibility. It also indicates that daily visibility 425 
has high daily representativeness (under the conditions of at least three hourly records) 426 

The PM2.5 concentration level varies spatially, which are related to regional geographical 427 
environment, climate, and air quality laws and regulations. Therefore, we analyze the importance 428 
of variables in different regions, as shown in Figure 2 (c-h). The two most important variables are 429 
still reciprocal of dry visibility and reciprocal of visibility, with a proportion of 73.1% in the United 430 
States, 77.5% in Canada, 80.8% in Europe, 98.8% in China, and 60.2% in India. It indicates that 431 
PM2.5 concentration is the most significantly correlated with visibility in China. The contribution of 432 
meteorological variables is significantly higher in the United States and India than in other regions. 433 
It indicates that meteorological conditions have a significant contribution to PM2.5 concentration in 434 
these regions, which may be related to the formation mechanism and transport of particulate matter. 435 

The above results indicate a strong correlation between the PM2.5 concentration and visibility, as 436 
visibility can be considered an indicator of air quality without fog or precipitation. Meteorological 437 
factors play secondary roles, which influence the formation, dispersion and deposition of PM2.5 (Gui 438 
et al., 2020; Zhong et al., 2022). Although the number of daily records and time have the most 439 
negligible impacts on the PM2.5 concentration in the model, they have significant impacts on the 440 
cyclical changes and daily representativeness of PM2.5 concentration (Wang et al., 2012; Zhang et 441 
al., 2020).  442 
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 443 

Figure 2. The most important variable (a) and the ranking (b) at all sites. The most important 444 
variable in each region (c-h). The stacked bar shows the importance rankings of the variables 445 
('rank=1' represents the most important variable). The bar shows the proportion of the most 446 
important variable. The variables are the reciprocal of dry visibility (Vis_Dry_In), reciprocal of 447 
visibility (Vis_In), temperature (Temp), dew point temperature (Td), temperature-dew point 448 
difference (Temp-Td), relative humidity (RH), wind speed (WS), numerical time (DateTime) and 449 
daily number of visibility record (DailyObsNum).  450 

3.2 Evaluation of Model Performance 451 

We analyze the linear regression relationship between all estimated and corresponding response 452 
values to evaluate the model's performance. Figure 3 is the density scatter plot of the monitored 453 
PM2.5 concentration (response values) and the estimated PM2.5 concentration (estimated values). 454 
There is a total of 8031473 data pairs for all the sites. The linear regression slope (95% confidence 455 
interval) is 0.955 [0.955, 0.955], the R2 is 0.95, the RMSE is 7.2 μg/m3, and the MAE is 3.2 μg/m3. 456 
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 457 

Figure 3. Density scatter plot (a) between estimated PM2.5 concentration and monitored PM2.5 458 
concentration. The dashed black line is the linear regression line. N is the length of the data pairs, 459 
and Slope is the linear regression coefficient within a 95% confidence interval (CI). R2 is the 460 
coefficient of determination, RMSE is the root mean square error, and MAE is the mean absolute 461 
error. 462 

Figure 4 (a-c) shows the spatial distribution (a-c) and frequency of training of RMSE, MAE, and ρ. 463 
Table 2 lists the model's performance metrics in the United States, Canada, Europe, China, and India. 464 
For all sites, the average RMSE is 6.92 μg/m3, with a median of 4.76 μg/m3. The RMSE of 80% of 465 
the sites is less than 10.01 μg/m3. The RRMSE (the percentage of RMSE to mean of PM2.5 466 
concentration) is 28.7%. The MAE is 3.77 μg/m3, with a median of 2.72 μg/m3. The MAE is less 467 
than 5.66 μg/m3 for 80% of the sites. The RMAE (the percentage of MAE to mean of PM2.5 468 
concentration) is 15.4%. The average ρ is 0.91, and the median is 0.92. The ρ of 80% of the sites is 469 
greater than 0.87. Previous studies have shown that for PM2.5 concentration retrieved from daily 470 
visibility or satellite aerosol optical depth, the R2 range of the model is from 0.42 to 0.89, and the 471 
RMSE range is from 9.59 μg/m3 to 32.09 μg/m3 (Shen et al., 2016; Liu et al., 2017; Wei et al., 2019b; 472 
Gui et al., 2020; Li et al., 2021; Zhong et al., 2021). This finding indicates that our model performs 473 
well at the daily scale. 474 

On the regional scale, the RMSE values for the United States, Canada, Europe, China, and India are 475 
3.10 μg/m3, 2.78 μg/m3, 4.92 μg/m3, 9.65 μg/m3 and 17.46 μg/m3, respectively. and the RRMSE 476 
values are 34.9%, 40.4%, 29.8%, 23.1%, and 28.8%, respectively. The MAEs for the United States, 477 
Canada, Europe, China, and India are 1.61 μg/m3, 1.35 μg/m3, 2.54 μg/m3, 5.47 μg/m3, and 9.13 478 
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μg/m3, respectively. The RMAEs are 17.9%, 19.5%, 16.3%, 13.1%, and 14.4%, respectively. The ρ 479 
values for the United States, Canada, Europe, China, and India are 0.87, 0.88, 0.91, 0.94, and 0.92, 480 
respectively. The correlation coefficients are higher in China and India, low in the United States and 481 
Canada. 482 

The largest RMSE and MAE are in India, and the smallest are in Canada. The RRMSE and RMAE 483 
are larger in the United States, Canada and Europe than in China and India and other regions. 484 

Table 2. The metrics for all sites and sites in the United States (the US), Canada, Europe, China and 485 
India. RRMSE is the percentage of RMSE to mean of PM2.5 concentration. RMAE is the percentage 486 
of MAE to mean of PM2.5 concentration. 487 

Region RMSE 

(μg/m3) 

MAE 

(μg/m3) 

ρ Mean 

(μg/m3) 

RRMSE 

(%) 

RMAE 

(%) 

All 6.92  3.77  0.91  26.7  28.7  15.4  

the US 3.10  1.61  0.87  9.1  34.9  17.9  

Canada 2.78  1.35  0.88  6.9  40.4  19.5  

Europe 4.92  2.54  0.91  15.7  29.8  16.3  

China 9.65  5.47  0.94  42.1  23.1  13.1  

India 17.46  9.13  0.92  63.1  28.8  14.4  

Other 6.11  3.32  0.91  23.4  24.8  14.1  

 488 

Figure 4. Statistical Metrics distribution of training (left) and test (right). The bar is the frequency 489 
of sites. RMSE is the root mean square error, MAE is the mean absolute error, and ρ is the correlation 490 
coefficient.  491 

3.3 Evaluation of Model's Predictive Ability 492 

A total of 1911183 pairs of test data is employed to evaluate the model's predictive ability. Figure 5 493 
is the density scatter plot between the predicted PM2.5 concentration and the test PM2.5 concentration. 494 
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The linear regression slope (95% CI) is 0.864 [0.863, 0.865], R2 is 0.79, RMSE is 14.8 μg/m3, and 495 
MAE is 7.6 μg/m3. Previous studies have shown that the R2 range of the model's predictive results 496 
at the daily scale is 0.31 - 0.84, and the RMSE range is 13.8-29.0 μg/m3 (Gui et al., 2020; Zhong et 497 
al., 2021). The test results exhibit excellent predictive capability. 498 

 499 

Figure 5. Density scatter plot (a) between the predicted PM2.5 concentration and monitored PM2.5 500 
concentration of the test results. The dashed black line is the linear regression line. N is the length 501 
of the data pairs, and Slope is the linear regression coefficient within a 95% confidence interval (CI). 502 
R2 is the coefficient of determination, RMSE is the root mean square error, and MAE is the mean 503 
absolute error. 504 

We analyze the test results for Canada, the United States, Europe, China, and India to assess the 505 
predictive ability of the model in different regions. Figure 4 (d - f) shows the spatial distributions of 506 
the test RMSE, MAE, and ρ and their frequency. Table 3 lists the test results of the metrics. For all 507 
sites, the average RMSE is 11.50 μg/m3. The RRMSE is 46.0%. The average MAE is 7.72 μg/m3. 508 
The RMAE is 30.7%. The ρ is 0.81. For the United States, the RMSE, MAE, and ρ are 5.06 μg/m3, 509 
3.25 μg/m3, and 0.72, respectively. For Canada, the RMSE, MAE, and ρ are 4.73 μg/m3, 2.88 μg/m3, 510 
and 0.77, respectively. The results in the United States and Canada are better in the west than in the 511 
east. The RMSE, MAE, and ρ for Europe are 7.79 μg/m3, 5.10 μg/m3, and 0.80, respectively. For 512 
China, the RMSE, MAE, and ρ are 16.83 μg/m3, 11.50 μg/m3, and 0.85, respectively. For India, the 513 
RMSE, MAE, and ρ are 27.05 μg/m3, 17.89 μg/m3, and 0.85, respectively. The results show that in 514 
developing regions (China and India), ρ is better than that in developed regions (the United States, 515 
Canada, and Europe), which means that the predictive ability of the model is better for severely 516 
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polluted regions. 517 

Table 3. The test results of the model's performance metrics for all sites and sites in the United 518 
States, Canada, Europe, China and India. RRMSE is the percentage of RMSE to mean of PM2.5 519 
concentration. RMAE is the percentage of MAE to mean of PM2.5 concentration. 520 

Region RMSE 

(μg/m3) 

MAE 

(μg/m3) 

ρ Mean 

(μg/m3) 

RRMSE 

(%) 

RMAE 

(%) 

All 11.50  7.72  0.81  27.1  46.0  30.7  

the US 5.06  3.25  0.72  9.4  54.3  35.0  

Canada 4.73  2.88  0.77  7.2  65.6  40.0  

Europe 7.79  5.10  0.80  15.9  47.0  32.0  

China 16.83  11.50  0.85  42.6  39.6  27.1  

India 27.05  17.89  0.85  63.7  42.9  27.8  

Other 8.86  6.16  0.81  23.4  36.7  26.1  

3.4 Uncertainties and Limitations 521 

3.4.1 Uncertainty in the Pollution Level 522 

Figure 6 shows the uncertainty in the predicted PM2.5 concentration with respect to the pollution 523 
level of the monitored PM2.5 concentration. For all sites, the uncertainty in the bias increases as the 524 
pollution level increases. The mean and median of the bias shift from positive to negative with 525 
increasing pollution levels. 83.6% of PM2.5 concentration data is less than 45 μg/m3, and the mean 526 
bias (< 0.8 μg/m3) is positive. 36.8% is less than 10 μg/m3, and the median (< 0.4 μg/m3) of the bias 527 
is positive. 16.4% of PM2.5 concentration is great than 45 μg/m3, and the mean bias is negative. 63.2% 528 
of PM2.5 concentration is great than 10 μg/m3, and the median is negative. It indicates that the model 529 
overestimates at low pollution level and underestimates at high pollution level. 530 

The bias for each region also increases with pollution level. For the United States, the mean bias of 531 
69.4% is positive and less than 0.8 μg/m3, and the PM2.5 concentration is less than 10 μg/m3. When 532 
the PM2.5 concentration is greater than 10 μg/m3, the mean bias is negative. For Canada, the mean 533 
bias of 74.1% is positive and less than 0.7 μg/m3. When the PM2.5 concentration is greater than 8 534 
μg/m3, the mean bias is negative. For Europe, the mean bias of 67.1% is positive and less than 0.9 535 
μg/m3. When the PM2.5 concentration is greater than 15 μg/m3, the mean bias is negative. For China, 536 
67.7% of the bias is positive and less than 2.7 μg/m3. When the PM2.5 concentration is greater than 537 
45 μg/m3, the mean bias is negative. For India, 80.1% of the bias is positive and less than 4.2 μg/m3, 538 
and when the PM2.5 concentration is greater than 100 μg/m3, the mean bias is negative. When the 539 
PM2.5 concentration is greater than 60 μg/m3, the bias median is negative, with a percentage of 540 
40.3%. The uncertainty in each region is similar, and the uncertainty increases as the pollution level 541 
increases. 542 
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 543 

Figure 6. Boxplots of the pollution level and bias (predicted PM2.5 concentration - monitored PM2.5 544 
concentration) for all sites (a), sites in the United States (b), Canada (c), Europe (d), China (e), and 545 
India (f). The box's upper and lower limits represent ± 1 standard deviation, the whiskers represent 546 
2 times the standard deviation, the red circle represents the median, and the short line represents the 547 
mean bias. The frequency (%) on the right y-axis represents the percentage of data with different 548 
pollution levels (dashed line). 549 

3.4.2 Uncertainty in the Station Elevation 550 

With the spatial variability in PM2.5 concentration, we analyze the mean bias at different visibility 551 
station elevations. Figure 7 shows the relationships between the elevations of the visibility stations 552 
and the bias. The bias exhibits variations across different elevations for all stations. The mean bias 553 
of all sites ranges from -0.04 to 0.02 μg/m3. A total of 90.1% of the stations has positive biases. The 554 
median of the bias is almost positive, with a positive bias of 99.5% stations, except for the elevation 555 
at 4 km. The elevations of 86.5% of the stations are less than 1 km, with a positive median of the 556 
bias. High uncertainties in bias occur at elevations of 0.05 km, 0.2 km, and 0.3 km. Negative biases 557 
are observed at elevations of 0.4 km, 0.9-1 km, and 4 km. This finding indicates a nonsignificant 558 
overestimation of the predicted PM2.5 concentration due to the various elevations. 559 

The bias patterns vary across regions. For the United States, a total of 88.8% of the stations have 560 
negative biases. The median of the bias is negative with a percentage of 63.4%. High uncertainties 561 
in bias occur at elevations of 0.05 km, 2 km, and 0.3 km. For Canada, 52.3% of the stations have 562 
positive biases. The median of the bias is negative with a percentage of 33.8%. High uncertainties 563 
in bias occur at elevations of 0.05 km and 1 km. For Europe, 58.9% of the stations have positive 564 
biases. The median of the bias is negative with a percentage of 40.2%. High uncertainties in bias 565 
occur at elevations of 0.05 km and 0.9 km. For China, 76.7% of the stations have negative biases. 566 
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The median of the bias is negative with a percentage of 54.1%. High uncertainties in bias occur at 567 
elevations of 0.05 km, 0.5 km and 3 km. For India, 68.1% of the stations have positive biases. The 568 
median of the bias is negative with a percentage of 63.8%. The elevation of most stations with a 569 
high uncertainty is at 0.05 km. High uncertainties in bias occur at elevations of 0.1 km and 3 km. 570 
More stations with negative bias are in the United States and China. More stations with positive bias 571 
are in Canada, Europe and India.  572 

 573 

Figure 7. Boxplots of the bias (predicted PM2.5 concentration - monitored PM2.5 concentration) and 574 
the elevation of the visibility station for all sites (a), sites in the United States (b), Canada (c), Europe 575 
(d), China (e), and India (f). The box's upper and lower limits represent ± 1 standard deviation, the 576 
whiskers represent 2 times the standard deviation, the red circle represents the median, and the short 577 
line represents the mean bias. The station number (%) on the right y-axis represents the percentage 578 
of station number at different elevations (dashed line). 579 

3.4.3 Uncertainty in the Station Distance 580 

As the visibility stations and PM2.5 sites are not collocated, we analyze the mean bias of PM2.5 581 
concentration at different distances, as shown in Figure 8. For all sites, 86.1% of the stations have 582 
negative biases. The median of the bias is negative with a percentage of 70.8%. More stations have 583 
a negative bias caused by the distance. The uncertainty has no signification with the distance. The 584 
distances with low uncertainties are at 1 km and 20-40 km. The distances with high uncertainties 585 
are at 5 km and 60 km. 586 

For the United States, 63.1% of the stations have negative biases. The median of the bias is negative 587 
with a percentage of 69.2%. The distance with the lowest uncertainty is at 1 km. The distances with 588 
high uncertainties are at 5 km and 60 km. For Canada, 60.0% of the stations have positive biases. 589 
The median of the bias is positive with a percentage of 80.0%. The uncertainty shows an increase 590 
with the distance increasing. For Europe,72.7% of the stations have negative biases. The median of 591 
the bias is positive with a percentage of 67.1%. When the distance is less than 10 km, the uncertainty 592 
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increases with the distance. The distances with low uncertainties are at 1 km and 30-40 km. The 593 
distances with high uncertainties are at 10 km and 75 km. For China, 64.3% of the stations have 594 
negative biases. The median of the bias is negative with a percentage of 72.7%. The distance with a 595 
low uncertainty is at 30 km. The distance with a high uncertainty is at 60 km. For India, 62.3% of 596 
the stations have negative biases. The median of the bias is positive with a percentage of 59.1%. 597 
The distance with the lowest uncertainty is at 30 km. The distance with the highest uncertainty is at 598 
20 km. 599 

More visibility stations have negative biases, except for the stations in Canada. For the stations in 600 
the United States, Canada and Europe, the lowest uncertainty is at 1 km. For the stations in China 601 
and India, the uncertainty has no significant relationship with distance, though the distance has 602 
caused a negative bias. 603 

 604 

Figure 8. Boxplots of the mean bias (predicted PM2.5 concentration - monitored PM2.5 concentration) 605 
and the distance between the visibility station and the PM2.5 site and for all sites (a), sites in the 606 
United States (b), Canada (c), Europe (d), China (e), and India (f). The box's upper and lower limits 607 
represent ±1 standard deviation, the whiskers represent 2 times the standard deviation, the red circle 608 
represents the median, and the short line represents the mean bias. The station number (%) on the 609 
right y-axis represents the percentage of station number under different distances (dashed line). 610 

3.4.4 Discussion on the Uncertainties and Limitations 611 

There are some uncertainties and limitations in this study. The upper limit of visibility and PM2.5 612 
concentration can cause some uncertainties in model training. The maximum distance between the 613 
visibility stations and PM2.5 monitoring sites is 100 km due to the spatial variability in aerosols, 614 
which may increase the uncertainty in the estimated PM2.5 concentration. Because of the nonuniform 615 
vertical distribution of aerosols, the different elevations of the visibility stations and the PM2.5 616 
monitoring sites further increase the uncertainty in estimating PM2.5 concentration. In addition, the 617 
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spatial coverage of visibility stations, especially in China and India, is still limited, which may 618 
increase the uncertainty in the representativeness of regional PM2.5 concentration and pollution 619 
levels. With the increasing human concern of air pollution and the implementation of air pollution 620 
control measures, the types of major atmospheric pollutants may have changed at regional scale, the 621 
composition of particulate matter has also evolved, the scattering and absorption characteristics may 622 
have changed, and the relationship between visibility and PM2.5 concentration may change. These 623 
changes may lead to uncertainties in estimating historical PM2.5 concentration. It is challenging to 624 
validate by ground observations and satellite-based estimation prior to 2000. Despite these 625 
limitations and challenges, we establish a long-term PM2.5 concentration dataset based on visibility 626 
from 1959 to 2022, which has been carefully validated and evaluated, providing insights into the 627 
long-term spatiotemporal characteristics of concentration PM2.5 in the Northern Hemisphere. 628 

4 Comparisons with Other PM2.5 Concentration Dataset 629 

We compare the daily and monthly estimated PM2.5 concentration with the LGHAP PM2.5 630 
concentration from 2000 to 2021 to further demonstrate the reliability the estimated PM2.5 631 
concentration. When comparing on the regional scale, we split the time range into 2000-2010 and 632 
2011-2021, to further validate the accuracy and consistency of estimated PM2.5 concentrations, as 633 
in some regions such as India and China, there are almost no continuous PM2.5 monitoring data 634 
before 2010. 635 

4.1 Comparisons on the Daily Scale 636 

We spatiotemporally match the LGHAP PM2.5 concentration with the estimated PM2.5 concentration. 637 
Figure 9 shows the density scatter plot between the estimated PM2.5 concentration and LGHAP 638 
PM2.5 concentration. There is a total of 96188682 pairs during the period of 2000 and 2021, 639 
46846389 pairs during the period from 2000 to 2010, and 49342302 during the period of 2011 and 640 
2021, with slopes of 0.817, 0.758 and 0.867. The intercepts are 6.928 μg/m3, 8.933 μg/m3, and 5.377 641 
μg/m3, respectively. The slope decreases before 2010, which may be related to the upper limit of 642 
LGHAP PM2.5 concentration with a significantly decreasing quantity of the concentration (> 300 643 
μg/m3). 644 

We further compare the PM2.5 concentrations of the annual calendar cycles on the regional scale in 645 
Figure 10. The PM2.5 concentration of each day is the mean of the PM2.5 concentrations at all sites 646 
in the region. The correlation coefficients of the PM2.5 concentrations are greater than 0.89 from 647 
2011 to 2021 and greater than 0.92 from 2000 to 2010. The correlation is greater in Europe, China, 648 
and India than in the United States and Canada. There is no significant difference in the variation of 649 
annual calendar cycles between two periods on the regional scale. In the United States, PM2.5 650 
concentration between 2000 and 2010 is more similar than the concentration between 2011 and 651 
2021, and the bias decreases. In Canada, the correlation coefficient increases, although the bias 652 
increases. In Europe, the correlation coefficient and bias increase. There are similar changes in 653 
China and India. The bias increases on days 1 to 60 and 300 to 366, but the correlation remains 654 
significant. The difference of PM2.5 concentration during the two periods is mainly reflected in the 655 
increasing bias in Canada and Europe, which is a non-seasonal bias and the increasing bias in winter 656 
in China and India, which is a seasonal bias. Overall, PM2.5 concentrations show a good consistency 657 
before and after 2010 on the daily scale. 658 
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 659 

Figure 9. Density scatter plot between the estimated PM2.5 concentration (this study) and LGHAP 660 
PM2.5 concentration on the daily scale from 2000 to 2021 (a), from 2000 to 2010 (b) from 2011 to 661 
2021. The dashed black line is the linear regression line. N is the length of the data pairs, and Slope 662 
is the linear regression coefficient. Intercept represents the y-intercept. 663 
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 664 

Figure 10. Comparison of annual calendar cycle of PM2.5 concentration on the regional scale from 665 
2011 to 2021 (left) and from 2000 to 2010 (right) between the estimated PM2.5 concentration (this 666 
study) and LGHAP PM2.5 concentration on the daily scale. ρ is the correlation coefficient. 667 

4.2 Comparisons on the Monthly Scale 668 

Figure 11 shows the density scatter plot between the estimated PM2.5 concentration and LGHAP 669 
PM2.5 concentration on the monthly scale. The monthly PM2.5 concentration is calculated by the 670 
matched daily concentrations. There is a total of 3296739 pairs during the period from 2000 to 2021, 671 
1582161 pairs during the period from 2000 to 2010, and 1714578 during the period from 2011 to 672 
2021, with slopes of 0.857, 0.821 and 0.879. The intercepts are 6.774 μg/m3, 8.716 μg/m3, and 5.272 673 
μg/m3, respectively. The slope of monthly concentration significantly improves before 2010, and 674 
slightly increases after 2010 compared to the daily scale. 675 
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We also compare the PM2.5 concentrations of the annual cycles on the regional scale in Figure 12. 676 
The PM2.5 concentration of each month is the mean of the PM2.5 concentrations at all sites in the 677 
region. The correlation coefficients of the PM2.5 concentrations are greater than 0.92 from 2011 to 678 
2021 and greater than 0.87 from 2000 to 2010. In the United States, the PM2.5 concentrations before 679 
2010 are closer compared to those after 2010, except in April and August, and the biases in other 680 
months has significantly decreased. In Europe and Canada, the biases have increased. In China, the 681 
result is similar with the result on the daily scale. In India, the performance of the two is almost 682 
consistent, with a correlation coefficient of 0.99 and 0.96. The two datasets have a very high 683 
similarity in annual cycles, indicating that the estimated PM2.5 concentration in this study is accurate 684 
and consistent before and after 2010. 685 

 686 

Figure 11. Density scatter plot between the estimated PM2.5 concentration (this study) and LGHAP 687 
PM2.5 concentration on the monthly scale from 2000 to 2021 (a), from 2000 to 2010 (b) from 2011 688 
to 2021. The dashed black line is the linear regression line. N is the length of the data pairs, and 689 
Slope is the linear regression coefficient. Intercept represents the y-intercept. 690 
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 691 

Figure 12. Comparison of annual cycle of monthly PM2.5 concentration on the regional scale from 692 
2011 to 2021 (left) and from 2000 to 2010 (right) between the estimated PM2.5 concentration (this 693 
study) and LGHAP PM2.5 concentration on the daily scale. ρ is the correlation coefficient. 694 

4.3 Discussion on the Differences of PM2.5 Concentration from Visibility and Aerosol Optical 695 
Depth 696 

Both visibility and aerosol optical depth are excellent alternatives for estimating PM2.5 concentration, 697 
with its own advantages. However, they have differences in principle, which may be the reason for 698 
the difference between the two datasets in comparison. 699 

Fine particulate matter near the ground surface affects atmospheric visibility through scattering. 700 
Studies have shown visibility has a negative correlation with PM2.5 concentration, and the reciprocal 701 
of visibility has a positive correlation with the extinction coefficient and has a negative correlation 702 
with the particulate matter concentration (Wang et al., 2012; Zhang et al., 2017; Zhang et al., 2020). 703 
Therefore, visibility is often used as a proxy for particulate matter pollution (Huang et al., 2009; 704 
Singh et al., 2020) and it is the basis to estimate PM2.5 concentration. In addition, studies have shown 705 
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that meteorological observations such as temperature and humidity also play an important role in 706 
estimating PM2.5 concentration using visibility (Shen et al., 2016; Xue et al., 2019; Zhong et al., 707 
2021). Therefore, when estimating PM2.5 concentration based on visibility data, only conventional 708 
meteorological variables need to be added, which is convenient and accurate observational data. 709 
Besides, the long-term, complete and high-temporal ground-based observations are the advantage 710 
of historical estimation of PM2.5 concentration. The daily mean from continuous or equidistant 711 
hourly observations greatly increases the daily representativeness. 712 

The aerosol optical depth is a physical quantity that describes aerosol column properties, which is 713 
the integration of the extinction coefficient in the vertical direction. When establishing a connection 714 
between aerosol optical depth and near-ground PM2.5 concentration, it is essential to consider the 715 
vertical structure of aerosols. Studies have shown that the aerosol vertical profiles usually are 716 
provided by observations, assumptions, or chemical transport models to obtain the aerosol 717 
properties near the surface (Van Donkelaar et al., 2010; Wei et al., 2019b; Van Donkelaar et al., 718 
2021). Van Donkelaar et al. (2006; 2010) have demonstrated that aerosol vertical profile errors in 719 
chemical transport models and aerosol optical depth retrieval and sampling result in an 720 
approximately 25% uncertainty of one standard deviation. Sensitivity testing shows that a 1% 721 
estimation error in the aerosol optical depth can lead to a 0.27% estimation error in the PM2.5 722 
concentration (Wei et al., 2021). Besides, the retrieval of aerosol optical depth is affected by clouds 723 
or surface types and a finite number of daily observations (usually 1-2 times), though it has the 724 
advantage of high spatial coverage (Liu et al., 2017; Singh et al., 2020; Zhong et al., 2021). 725 

Another difference is the upper limit of PM2.5 concentration. In this study, the upper limit of the 726 
estimated daily PM2.5 concentration is set to 1000 μg/m3 (the same for input data). When the PM2.5 727 
concentration is greater than 500 μg/m3 during heavy pollution, which may contribute to the higher 728 
frequency at high pollution levels than in the LGHAP dataset, especially before 2010. We do not 729 
remove visibility records during dust weather when preprocessing the data, which may lead to an 730 
overestimation of PM2.5 concentration in dusty areas, such as northern China and northwestern India. 731 
In section 3.4, the uncertainty analysis has provided an explanation for the overestimation. Overall, 732 
our PM2.5 concentration dataset has a good consistency with PM2.5 concentration based on aerosol 733 
optical depth. 734 

5 Regional Trends and Spatial Patterns 735 

We use the estimated PM2.5 concentrations (at least 10-day records in a site) to calculate monthly 736 
PM2.5 concentrations, and analyze the annual cycles, interannual trends, and spatial patterns of PM2.5 737 
concentrations in different regions based on the GAMM model. The annual variation comes from 738 
the monthly smooth term of GAMM, the interannual variation comes from the annual smooth term, 739 
and the spatial pattern comes from the spatial smooth term. The regions include Canada, the United 740 
States, Europe, China, and India. The results are shown in Figure 13. The trend from 1959 to 2022 741 
in each region is the slope of the Sen-Theil (ST Slope) estimators (Sen, 1968; Theil, 1992), and 742 
Mann-Kendall test (Mann, 1945; Kendall, 1948) is used to calculate the significance of the trend. 743 
The test results show the p-values are all less than 0.01 in all regions. 744 

In the United States, the annual cycle curve shows that the PM2.5 concentration is a 'double peaks 745 
and double valleys' shape. The peaks occur in July and December, respectively, with the highest 746 
PM2.5 concentration in July throughout the year. The valley values are in April and October, and the 747 
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PM2.5 concentration levels are equivalent. The trend is -0.40 μg/m3/decade, and PM2.5 concentration 748 
decreases significantly after 1992, with a trend of -1.39 μg/m3/decade. The high PM2.5 concentration 749 
areas are in the east and west. The areas with low PM2.5 concentrations are mainly located in the 750 
central and northern regions. The high concentration in the eastern and western regions is related to 751 
extensive industrial activities and densely populated cities. The low concentration in the central and 752 
northern regions is relatively to high vegetation coverage, low industrial activity and low population 753 
density. 754 

In Canada, the annual cycle curve also shows that the PM2.5 concentration is a 'double peaks and 755 
double valleys' shape. The peak values occur in August and February, with the highest PM2.5 756 
concentration in August. The valley values are in April and October. The trend is -0.10 μg/m3/decade, 757 
and PM2.5 concentration increases after 2010. The PM2.5 concentration exhibits an east-high to west-758 
low pattern. The eastern regions, such as Ontario and Quebec, are characterized by high population 759 
density and significant industrial and transportation activities. 760 

In Europe, the annual cycle of PM2.5 concentration shows that the PM2.5 concentration is the highest 761 
in February, and is low from May to September. The valley values are in April and October. The 762 
trend is -1.55 μg/m3/decade. High concentration areas are distributed in eastern Europe, while low 763 
concentration areas are in northern and western Europe. Eastern Europe exhibits more 764 
industrialization, particularly with a prevalence of traditional heavy industries and the use of coal 765 
and other high-pollution energy sources. In contrast, the energy structure in western Europe tends 766 
to favor cleaner energy sources. 767 

In China, the annual cycle curve of PM2.5 concentration presents a V-liked shape. It indicates that 768 
high concentrations are in winter, while low concentrations are in summer. The trend is 2.09 769 
μg/m3/decade. The trend is 2.65 μg/m3/decade from 1959 to 2011 and -22.23 μg/m3/decade from 770 
2012 to 2022. High concentration areas are distributed in northern China, such as North China Plain, 771 
Northeast China, Sichuan Basin, Taklimakan Desert, and Badain Jaran Desert. Low concentration 772 
areas are in southern China and Northern Tianshan Mountains. Besides dust, industrial activities 773 
and coal combustion for heating during winter are significant contributors to the PM2.5 concentration 774 
in northern regions. 775 

In India, the annual cycle curve of PM2.5 concentration also presents a V-liked shape. High 776 
concentrations are in winter, and low concentrations are in summer. The trend is 0.92 μg/m3/decade. 777 
The trend is 1.41 μg/m3/decade from 1959 to 2013 and -23.36 μg/m3/decade from 2014 to 2022. 778 
Some studies have shown that the PM2.5 concentration in India has decreased since 2014, especially 779 
in northern cities. Singh et al. (2021) have found that five major cities in India show a downward 780 
trend from 2014 to 2019, with the largest decline of approximately -4.2 μg/m3 per year in New Delhi. 781 
Ravindra et al. (2024) also finds that the trend in New Delhi is about -5 μg/m3 per year from 2014 782 
to 2020. These studies have shown a faster downward trend than our study, as these PM2.5 783 
monitoring sites are mainly concentrated in urban areas. The PM2.5 concentration exhibits a north-784 
high to south-low pattern. High concentration areas are distributed in northern India, such as Ganges 785 
Plain and Thar Desert, because there are more industrial and densely populated areas and the terrain 786 
leads to the retention of air pollutants. Low concentration areas are in Deccan Plateau.  787 

Above all, the PM2.5 concentrations in developed countries and regions are significantly lower than 788 
those in developing countries in the Northern Hemisphere. Regional trends are similar with those 789 
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of previous studies in different periods (Van Donkelaar et al., 2010; Wang et al., 2012; Boys et al., 790 
2014; Ma et al., 2016; Li et al., 2017; Hammer et al., 2020). The trends in PM2.5 concentration 791 
changes in different regions are closely associated with the implementation of relevant policies. The 792 
earlier pollution control measures are taken, the earlier the decreasing trend in the PM2.5 793 
concentration occurs, and the lower the threat of particulate matter pollution is to humans. In 1997, 794 
the United States EPA classified PM2.5 as a hazardous substance in the National Ambient Air Quality 795 
Standard, and subsequent regulations in 2006 further strengthened the source control and 796 
management of fine particulate matter (Hall and Gilliam, 2016). In 1988, the Canadian federal 797 
government enacted the Canadian Environmental Protection Act, which enhanced the regulation of 798 
PM2.5 (Davies, 1988). The European Union introduced the Air Quality Directive in 1996, followed 799 
by multiple revisions and updated to regulate and restrict air pollutants, including PM2.5 (Kuklinska 800 
et al., 2015). However, Europe stands out due to its early adoption of clean production practices in 801 
heavy industries since the 1970s. Since 2012, China has implemented numerous regulations and 802 
standards for PM2.5. For instance, the Monitoring Method for Atmospheric Particulate Matter (PM2.5) 803 
was issued in 2012, and the Chinese Ministry of Environmental Protection released the Ambient Air 804 
Quality Standards in 2013, including emission standards for PM2.5 (Zhao et al., 2016a). In 2009, the 805 
Indian Ministry of Environment and Forests issued the National Ambient Air Quality Standards, 806 
which include control standards for PM2.5. Since 2015, the Indian government has launched the 807 
National Clean Air Programme (NCAP) to improve air quality by implementing a series of measures 808 
to reduce the emissions of PM2.5 and other pollutants (Ganguly et al., 2020). These environmental 809 
regulations have contributed significantly to the decline of PM2.5 concentrations. Some studies have 810 
shown that the variation of PM2.5 concentrations is also related to several factors, such as the energy 811 
structure, urbanization process, population distribution and vegetation coverage (Shi et al., 2018; 812 
Wu et al., 2018; Li et al., 2019; Wang et al., 2019; Lim et al., 2020; Qi et al., 2023). 813 
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 814 

Figure 13. Annual cycles, interannual trends and spatial patterns of PM2.5 concentrations in the 815 
United States (a1-a3), Canada (b1-b3), Europe (c1-c3), China (d1-d3), and India (e1-e3). The left 816 
column 'f(month)' is the annual cycle, the middle column 'f(year)' is the interannual trend, and the 817 
right column 'f(spatial)' is the spatial distribution from Generalized Additive Mixed Model 818 
(GAMM). The blue dashed lines represent ± 1 standard error of the month and annual mean of PM2.5 819 
concentrations. The red or black dashed lines represent the trends of the Sen-Theil estimators (ST 820 
Slope). Mann-Kendall test of trends shows that the p-values are less than 0.01 in all regions. The 821 
scatter points in right column are the locations of PM2.5 monitoring sites. 822 

6 Conclusions 823 

In this study, we use a machine learning method to estimate daily PM2.5 concentration for 5023 824 
terrestrial sites in the Northern Hemisphere from 1959 to 2022 based on daily visibility and related 825 
meteorological variables. The first 80% of PM2.5 concentration data in each site are used to train the 826 
model, and the last 20% are used to test. The model's performance and predictive ability are 827 
evaluated and a dataset of daily PM2.5 concentration based on aerosol optical depth is used to 828 
compare and evaluate the estimated PM2.5 concentration. We analyze the uncertainty and discuss 829 
the limitations of our dataset. Finally, the PM2.5 concentration variation (annual calendar cycle, 830 
interannual cycle and spatial distribution) in 5 regions over the past 64 years is analyzed based on 831 
GAMM. We hope our dataset will be useful for studying the atmospheric environment, human 832 
health, and climate change and provide auxiliary support for assimilation. Several key results of this 833 
study are described as follows: 834 
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The most important variable. Visibility is the most important variable at 80.7% of the PM2.5 sites, 835 
as visibility can be considered an indicator of PM2.5 concentration without fog or precipitation. Other 836 
meteorological variables play a secondary role in the model, especially temperature and dew point 837 
temperature.  838 

Model performance and predictive ability. The training results show that the slope between the 839 
estimated PM2.5 concentration and the monitored PM2.5 concentration within the 95% confidence 840 
interval is 0.955, the R2 is 0.95, the RMSE is 7.2 μg/m3, and the MAE is 3.2 μg/m3. The test results 841 
show that the slope between the predicted PM2.5 concentration and the monitored PM2.5 842 
concentration is 0.864 ± 0.0010 within a 95% confidence interval, R2 is 0.79, RMSE is 14.8 μg/m3, 843 
and MAE is 7.6 μg/m3. The model shows good stability and predictive ability. Compared with a 844 
global PM2.5 concentration dataset based on satellite retrieval, the slopes of linear regression on the 845 
daily (monthly) scale are 0.817 (0.854) from 2000 to 2021, 0.758 (0.821) from 2000 to 2010, and 846 
0.867 (0.879) from 2011 to 2022. The result indicates the accuracy of the model and the consistency 847 
of the estimated PM2.5 concentration on the temporal scale. 848 

Regional trends and spatial patterns. The interannual trends and spatial patterns of PM2.5 849 
concentration on the regional scale from 1959 to 2022 are analyzed based on GAMM. In Canada, 850 
the trend is -0.10 μg/m3/decade in Canada and the PM2.5 concentration exhibits an east-high to west-851 
low pattern. In the United States, the trend is -0.40 μg/m3/decade, and PM2.5 concentration decreases 852 
significantly after 1992, with a trend of -1.39 μg/m3/decade. The high PM2.5 concentration areas are 853 
in the east and west and the low are in the central and northern regions. In Europe, the trend is -1.55 854 
μg/m3/decade. High concentration areas are distributed in eastern Europe, while the low is in 855 
northern and western Europe. In China, the trend is 2.09 μg/m3/decade. High concentration areas 856 
are distributed in northern China and the low are distributed in southern China and Northern 857 
Tianshan Mountains. The trend is 2.65μg/m3/decade from 1959 to 2011 and -22.23 μg/m3/decade 858 
from 2012 to 2022. In India, the trend is 0.92 μg/m3/decade. The concentration exhibits a north-high 859 
to south-low pattern, with high concentration areas distributed in northern India, such as Ganges 860 
Plain and Thar Desert and the low in Deccan Plateau. The trend is 1.41 μg/m3/decade from 1959 to 861 
2013 and -23.36 μg/m3/decade from 2014 to 2012. The variation of PM2.5 concentration is 862 
inseparable with the implementation of pollution control laws and regulations, the energy structure, 863 
industrialization, population and vegetation coverage. 864 

7 Data Availability 865 

Daily PM2.5 concentration data in the Northern Hemisphere from 1959 to 2022 are available at 866 
https://cstr.cn/18406.11.Atmos.tpdc.301127 (Hao et al., 2024). 867 

All site-scale PM2.5 data files are in "PM25-Daily_1959_2022. zip". The file name includes a region 868 
name and a site number. For example, the file name, 'China_1001. txt', means that the site is in 869 
China, and the site number is 1001, which describes the daily PM2.5 concentration at a single site 870 
and can be directly opened using a text program (such as Notepad), separated by commas. The data 871 
includes four variables: Date, PM25(μg/m3), Longitude(degree_east), and Latitude(degree_north). 872 
Date is UTC time, PM25(μg/m3) is the daily PM2.5 concentration (unit: μg/m3), Longitude range is 873 
[-180 °E, 180 °E] and Latitude range is [0 °N, 90 °N]. 874 
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