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Abstract 11 

Long-term PM2.5 data are essential needed to for study the atmospheric environment, human health, 12 

and climate change. PM2.5 measurements are sparsely distributed and of short duration. In this study, 13 

daily PM2.5 concentrations are estimated from 1959 to 2022 using a machine learning method from 14 

1959 to 2022 at 4011 terrestrial sites in the Northern Hemisphere based on near-surface hourly 15 

atmospheric visibility data, which are extracted from the Me the Integrated Surface Database 16 

(ISD)teorological Terminal Aviation Routine Weather Report (METAR). Daily continuous 17 

monitored PM2.5 concentration monitoring is set as the target of machine learning, and near-surface 18 

atmospheric visibility and other related variables are used as the inputs. The 80% of the samples of 19 

each site are the training set, and the 20% are the testing set.  The training results shows that the 20 

slope of linear regression with a 95% confidence interval (CI) between the estimated PM2.5 21 

concentration and the monitored PM2.5 concentration is 0.955 46[0.955, 0.955]±0.0002 within the 22 

95% confidence interval (CI), the coefficient of determination (R2) is 0.95, the root mean square 23 

error (RMSE) is 7.20 μg/m3, and the mean absolute error (MAE) is 3.21 μg/m3. The test results 24 

shows that the slope within a 95% CI between the predicted PM2.5 concentration and the monitored 25 

PM2.5 concentration is 0.8642 [0.863, 0.865]± 0.0010 within a 95% CI, the R2 is 0.7980, the RMSE 26 

is 13.54.8 μg/m3, and the MAE is  6.97.6 μg/m3. Compared with a global PM2.5 concentration 27 

dataset derived from satellite aerosol optical depth product with 1 km resolution, the slopes of linear 28 

regression on the daily (monthly) scale are 0.817 (0.854) from 2000 to 2021, 0.758 (0.821) from 29 

2000 to 2010, and 0.867 (0.879) from 2011 to 2022, indicating the accuracy of the model and the 30 

consistency of the estimated PM2.5 concentration on the temporal scale. The interannual trends and 31 

spatial patterns of PM2.5 concentration on the regional scale from 1959 to 2022 are analyzed by 32 

Generalized Additive Mixed Model (GAMM), suitable for the situation with an uneven spatial 33 

distribution of monitoring sites. The trend is the slope of the Sen-Theil estimator. In Canada, the 34 

trend is -0.10 μg/m3/decade and the PM2.5 concentration exhibits an east-high to west-low pattern. 35 

In the United States, the trend is -0.40 μg/m3/decade, and PM2.5 concentration decreases 36 

significantly after 1992, with a trend of -1.39 μg/m3/decade. The high PM2.5 concentration areas are 37 

in the east and west and the low are in the central and northern regions. In Europe, the trend is -1.55 38 

μg/m3/decade. High concentration areas are distributed in eastern Europe, and the low areas are in 39 

northern and western Europe. In China, the trend is 2.09 μg/m3/decade. High concentration areas 40 



are distributed in northern China and the low areas are distributed in southern China. The trend is 41 

2.65 μg/m3/decade up to 2011 and -22.23 μg/m3/decade since 2012. In India, the trend is 0.92 42 

μg/m3/decade. The concentration exhibits a north-high to south-low pattern, with high concentration 43 

areas distributed in northern India, such as Ganges Plain and Thar Desert and the low area is in 44 

Deccan Plateau. The trend is 1.41 μg/m3/decade up to 2013 and -23.36 μg/m3/decade since 2014. 45 

The variation in regional PM2.5 concentrations is closely related to the implementation of air quality 46 

laws and regulations. The daily site-scale PM2.5 concentration dataset from 1959 to 2022 in the 47 

Northern Hemisphere The multiyear mean PM2.5 concentrations from 1959 to 2022 in the United 48 

States, Canada, Europe, China, and India are 11.2 μg/m3, 8.2 μg/m3, 20.1 μg/m3, 51.3 μg/m3 and 49 

88.6 μg/m3, respectively. PM2.5 is low and continues to decrease from 1959 to 2022. PM2.5 in the 50 

United States increases slightly at a rate of 0.38 μg/m3/decade from 1959 to 1990 and decreases at 51 

a rate of -1.32 μg/m3/decade from 1991 to 2022. Trends in Europe are positive (5.69 μg/m3/decade) 52 

from 1959 to 1972 and negative (-1.91 μg/m3/decade) from 1973 to 2022. Trends in China and India 53 

are increasing (3.04 and 3.35 μg/m3/decade, respectively) from 1959 to 2012 and decreasing (-38.82 54 

and -42.84 μg/m3/decade, respectively) from 2013 to 2022. The dataset is available at National 55 

Tibetan Plateau / Third Pole Environment Data Center 56 

(https://doi.org/10.11888/Atmos.tpdc.301127) (Hao et al., 2024). 57 
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1 Introduction 60 

Fine particulate matter (PM2.5) refers to particulate matter suspended in air with an aerodynamic 61 

diameter of less than 2.5 micrometers. PM2.5 has various shapes and is composed of complex 62 

components, such as inorganic salts (e.g., sulfate, nitrate, and ammonium), as well as organic carbon 63 

and elemental carbon, metallic elements, and organic compounds (Chen et al., 2020; Fan et al., 64 

2021). PM2.5 can be emitted directly into the atmosphere (Viana et al., 2008; Zhang et al., 2019) and 65 

generated through photochemical reactions and transformations (Guo et al., 2014). PM2.5 exhibits 66 

high concentrations near emission sources, which gradually decreases with distance. Due to the 67 

smaller size and longer life span of PM2.5 compared with coarse particulate matter, PM2.5it can be 68 

transported over long distances by atmospheric movements, leading to wide-ranging impacts. 69 

Studies indicate that regional transport contributes significantly to local PM2.5 concentration (Wang 70 

et al., 2014; Chen et al., 2020). 71 

PM2.5 reduces atmospheric visibility and facilitates the formation of fog and haze conditions (Fan 72 

et al., 2021). Direct and indirect effects of PM2.5 on solar radiation in the atmosphere (Albrecht, 73 

1989; Ramanathan et al., 2001; Bergstrom et al., 2007; Chen et al., 2022) alter the energy balance 74 

and the number of condensation nuclei, thereby influencing atmospheric circulation and the water 75 

cycle (Wang et al., 2012; Liao et al., 2015; Samset et al., 2019; Li et al., 2022). 76 

PM2.5 is also known as respirable particulate matter. Due to its complex composition, PM2.5 may 77 

carry toxic substances that can significantly impair human health. The World Health Organization 78 

states explicitly that PM2.5 is more harmful than coarse particles, and long-term exposure to high 79 

PM2.5 concentrations increases the risk of respiratory diseases, cardiovascular diseases, and lung 80 

cancer (Lelieveld et al., 2015), regardless of a country's development status. A Global Burden of 81 

https://doi.org/10.11888/Atmos.tpdc.301127


Diseases study revealsed that exposure to environmental PM2.5 causes thousands of deaths and 82 

millions of lung diseases annually (Chafe et al., 2014; Kim et al., 2015; Cohen et al., 2017). 83 

PM2.5 is an important parameter for assessing particulate matter pollution and air quality (Wang et 84 

al., 2012). PM2.5 can lead to soil acidification, water pollution, disruption of plant respiration, and 85 

ecological degradation (Wu and Zhang, 2018; Liu et al., 2019). Due to globalization and economic 86 

integration, preventing and controlling particulate matter pollution is a challenge at city, country 87 

and global scales. 88 

Therefore, long-term PM2.5 concentration data are needed for studies on the environment, human 89 

health, and climate change. At present, ground-based measurements, chemical models, and 90 

estimations of alternatives are the primary sources of PM2.5 concentration data. 91 

Ground-based measurements are the most effective means to measure PM2.5 concentration. PM2.5 92 

monitoring has been ongoing since the 1990s in North America and Europe (Van Donkelaar et al., 93 

2010), and large-scale PM2.5 monitoring has been implemented in other regions since 2000, 94 

including China in 2013 (Liu et al., 2017). As a result, the records for PM2.5 concentration are short, 95 

with only a few years of data available in many countries. The scarcity of PM2.5 measurements 96 

makes it challenging to provide long-term historical data for research. 97 

Many studies have employed statistical methods, machine learning and deep learning methods to 98 

estimate PM2.5 concentrations based on aerosol optical depth. Van Donkelaar et al. (2021) has 99 

utilized satellite aerosol optical depth data, aerosol vertical structure of chemical transport models, 100 

and ground-level measurements to estimate monthly PM2.5 concentrations and their uncertainties 101 

over global land from 1998 to 2019, and there are several related studies (Van Donkelaar et al., 2010; 102 

Boys et al., 2014; Van Donkelaar et al., 2015; Van Donkelaar et al., 2016; Hammer et al., 2020). 103 

Many studies have been conducted at the regional scale, such as in the United States (Beckerman et 104 

al., 2013), China (Wei et al., 2019b; Xue et al., 2019; Wei et al., 2020a; He et al., 2021; Wei et al., 105 

2021), and India (Mandal et al., 2020). Although the PM2.5 concentrations derived from satellite 106 

retrievals have high spatial coverage, there are some limitations that need to be considered. Aerosol 107 

optical depth describes the column property of aerosol, while PM2.5 concentration describes the 108 

near-surface properties of aerosol. Therefore, aerosol vertical structure is crucial in establishing the 109 

relationship between the two. The daily representativeness is also considerable, as PM2.5 110 

concentration is continuously monitored while the daily frequency of satellite observations is low 111 

(1-2 times). Surface types, cloud conditions (Wei et al., 2019a) and resolution (Nagaraja Rao et al., 112 

1989; Hsu et al., 2017) affect the accuracy of satellite products, thereby increasing uncertainty of 113 

estimation of PM2.5 concentration.  114 

Reanalysis datasets provide estimates of long-term particulate matter concentrations. The Modern-115 

Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) is an excellent 116 

reanalysis dataset from NASA that uses the Goddard Earth Observing System version 5 (GEOS-5), 117 

which has providesd global PM2.5 data since 1980 (Buchard et al., 2015; Buchard et al., 2016; 118 

Buchard et al., 2017; Gelaro et al., 2017; Sun et al., 2019). There are some emission inventories in 119 

the aerosol model, including: volcanic material; monthly biomass burning from 1980 to 1996; 120 

monthly SO2, SO4, POM, and BC from 1997 to 2009; annual anthropogenic SO2 between 100 and 121 

500 m above the surface from 1980 to 2008; annual anthropogenic SO4, BC, and POM 122 

concentrations from 1980 to 2006. In assimilation systems, satellite aerosol products from MISR 123 



and MODIS Aqua/Terra are assimilated after 2000. Another reanalysis dataset is the Copernicus 124 

Atmosphere Monitoring Service (CAMS) global reanalysis, which is a global reanalysis dataset of 125 

the atmospheric composition produced by the European Centre for Medium-Range Weather 126 

Forecasts (ECMWF) and has provided PM2.5 data since 2003 (Che et al., 2014; Inness et al., 2019). 127 

Although reanalysis provides long-term PM2.5 data, the uncertainty in emission inventories 128 

increases the uncertainty in PM2.5 concentration (Granier et al., 2011). The validation of the 129 

reanalysis based on emission inventories shows that PM2.5 concentration is still overestimated or 130 

underestimated in some regionsThe validation of PM2.5 for CAMS shows severe overestimations in 131 

some areas (Buchard et al., 2017; Ali et al., 2022; Jin et al., 2022). The assimilation of aerosol optical 132 

depth products improves the aerosol column properties (Buchard et al., 2017), thereby improving 133 

the estimation of surface PM2.5 concentration, as it to some extent constrains the vertical structure 134 

of aerosols. However, the lack of high spatiotemporal resolution emission inventories and long-term 135 

assimilation data greatly limits the accuracy of surface PM2.5 concentrations. 136 

The MERRA-2 surface PM2.5 assessment results are more consistent between observations located 137 

in rural areas, as cities and suburban areas are affected by high local emissions that do not represent 138 

the estimated grid average. Due to the lack of nitrate and low organic carbon emissions in GOCART, 139 

there is a difference in the total amount of PM2.5 during winter in the western United States, and sea 140 

salt aerosols are overestimated (Buchard et al., 2017). Another reanalysis dataset is the Copernicus 141 

Atmosphere Monitoring Service (CAMS) global reanalysis, which is a global reanalysis dataset of 142 

the atmospheric composition produced by the European Centre for Medium-Range Weather 143 

Forecasts (ECMWF) and has provided PM2.5 data since 2003 (Che et al., 2014; Inness et al., 2019). 144 

The validation of PM2.5 for CAMS shows severe overestimations in some areas (Ali et al., 2022; Jin 145 

et al., 2022). Although reanalysis provides long-term PM2.5 data, the uncertainty in emission 146 

inventories increases the uncertainty in PM2.5, which remains challenging (Granier et al., 2011). 147 

Many studies have employed statistical methods, machine learning, and deep learning methods to 148 

estimate PM2.5 concentrations based on aerosol optical depth (AOD). Van Donkelaar et al. (2021) 149 

utilized satellite AOD, chemical transport models, and ground-level measurements of AOD to 150 

estimate monthly PM2.5 concentrations and their uncertainties over global land from 1998 to 2019, 151 

and there are several related studies (Van Donkelaar et al., 2010; Boys et al., 2014; Van Donkelaar 152 

et al., 2015; Van Donkelaar et al., 2016; Hammer et al., 2020). Many studies have been conducted 153 

at the regional scale, such as in the United States (Beckerman et al., 2013), China (Wei et al., 2019b; 154 

Xue et al., 2019; Wei et al., 2020a; He et al., 2021; Wei et al., 2021), and India (Mandal et al., 2020). 155 

Although the PM2.5 data derived from satellite retrievals have high spatial coverage, the temporal 156 

range depends entirely on the satellite retrievals. The estimation of PM2.5 based on satellite products 157 

is also limited by bright surfaces, cloud conditions (Wei et al., 2019a) and resolution (Nagaraja Rao 158 

et al., 1989; Hsu et al., 2017). 159 

Another alternative for estimating PM2.5 concentrations is the near-surface atmospheric horizontal 160 

visibility, which is the maximum distance at which observers with normal visual acuity can discern 161 

target contours under current weather conditions. In addition to manual observations, automated 162 

visibility measurements were has been implemented early, typically relying on the aerosol scattering 163 

principle (Wang et al., 2009; Zhang et al., 2020). Both Vvisibility and PM2.5 concentration are 164 

measurements of near-surface aerosols. They describe atmospheric horizontal transparency and are 165 

used to describe atmospheric pollution. Long-term visibility records have been used to quantify 166 



long-term aerosol properties (Molnár et al., 2008; Wang et al., 2009; Zhang et al., 2017; Zhang et 167 

al., 2020). Visibility observation stations are densely distributed across the countryworld. Compared 168 

to satellite- retrieved AOD dataals, visibility observations have longer historical records dating back 169 

to the early 20th century  (Noaa et al., 1998; Boers et al., 2015), are not affected by cloud 170 

interference and provide continuous measurements. 171 

Visibility has been used as a proxy for PM2.5 concentration (Huang et al., 2009) and to estimate 172 

PM2.5 concentration (Liu et al., 2017; Li et al., 2020; Singh et al., 2020). Singh et al. (2020) has 173 

analyzed the air quality in East Africa from 1974 to 2018 using visibility data. Liu et al. (2017) has 174 

developed a statistical model and utilized ground-level visibility data to estimate long-term PM2.5 175 

concentrations in China from 1957 to 1964 and 1973 to 2014. Gui et al. (2020) has proposed a 176 

method to establish a virtual ground observation network for PM2.5 concentration in China using 177 

extreme gradient boosting modeling in 2018. Zeng et al. (2021) has used LightGBM to establish a 178 

virtual network for hourly PM2.5 concentrations in China in 2017. Zhong et al. (2021; 2022) has  179 

used LightGBM to predict 6-hour PM2.5 concentrations based on visibility, temperature, and relative 180 

humidity in China from 1960 to 2020. Meng et al. (2018) has utilized a random forest model to 181 

estimate the daily PM2.5 components in the United States from 2005 to 2015. These studies have 182 

provided various methods for estimating PM2.5 using visibility data. However, some have focused 183 

on only methodological innovations without providing long-term trends in PM2.5 concentration. 184 

Other studies offer long-term trends, but the primary focus was is at urban and ore national scales. 185 

There are few studies on long-term and high-temporal-resolution PM2.5 concentration at the global 186 

scale or across different countries. 187 

This study uses a convenient, accurate, and easily understandable machine learning approach to 188 

estimate daily PM2.5 concentrations based on visibility at 4,0115023 land-based sites from 1959 to 189 

2022. We also provide the long-term trends and characteristics of PM2.5 in different regions. The 190 

PM2.5 dataset provides support for climate change, human health, and pollution control research. 191 

First, we build a machine learning model and then analyze the importance of the variables. Second, 192 

we evaluate the model's performance and predictive ability. Third, we discuss the errors and 193 

limitations of the dataset. Fourth, we compare the estimated PM2.5 concentration with the other 194 

datasets. Finally, we analyze the spatial-temporal distributions of PM2.5.the long-term trends and 195 

spatial patterns of PM2.5 concentration in different regions. We hope Tthe PM2.5 dataset will provides 196 

support for the atmospheric environment, human health, and climate change studiesclimate change, 197 

human health, and pollution control research. 198 

2 Data and methods 199 

2.1 Study Area 200 

The study area is the Northern Hemisphere. includes Canada, the United States, Europe, China, and 201 

India in the Northern Hemisphere. Figure 1 shows the The distributions of visibility stations (a) and 202 

the PM2.5 monitoring sites (b) (b) in each region are shown in Figure 1. Table 1 lists information of 203 

stations such as the number and time span in each region. The number of visibility stations is and 204 

PM2.5 monitoring sites is 50233177, and a total of 4011 PM2.5 monitoring sites are selected for this 205 

study., with 1110 sites in the United States, 304 sites in Canada, 834 sites in Europe, 1557 sites in 206 

China, and 206 sites in India. Due to its relevance to national or regional development, the record 207 

length and distribution of PM2.5 observation are uneven. In this study, the site-scale PM2.5 208 



observations are met at least three years. These sites are densely populated in North America, East 209 

and South Asia, and Europe, and are very sparse in regions such as Africa and South America, and 210 

West Asia. 211 

 212 

 213 

Figure 1. Study area and the distributions of visibility stations from 1959 to 2022 (a) and PM2.5 214 

monitoring sites from 1995 to 2022 (b). The color of marker (circle) represents that the length year 215 

number of the observation record of visibility observations and PM2.5 concentration observations. 216 

The bar chart shows the number of visibility stations and PM2.5 monitoring sites per year. The 217 

number of visibility stations is 3177.The number of PM2.5 sites is 4011 in this study (1110 in the 218 

United States, 304 in Canada, 834 in Europe, 1557 in China, and 206 in India). 219 

Table 1. Data summary. 220 

 Region Sites 

Number 

Time Span Temporal/Spatial 

Resolution 

Data Source 



Visibility Global land 5023 1959-2022 Hourly/- https://www.weather.gov/asos 

PM2.5 

observations 

the United States 1111 1998-2022 Hourly/- https://www.epa.gov/aqs 

Canada 311 1995-2022 Hourly/- https://www.canada.ca 

Europe 1073 1998-2022 Hourly/- 
https://european-

union.europa.eu;https://www.eea.europa.eu 

China 1887 2014-2022 Hourly/- https://www.cnemc.cn 

India 270 2010-2022 Hourly/- https://app.cpcbccr.com 

Other regions 371 2016-2022 Hourly/- https://openaq.org 

LGHAP Land (-58~62°N) -- 2000-2021 Daily/1km https://zenodo.org/communities/ecnu_lghap 

 221 

2.2 PM2.5 Data 222 

2.2.1 PM2.5 Data in the United States 223 

The hourly PM2.5 concentration data for the United States from 1998 to 2022 are sourced from the 224 

Air Data System (AQS), which are available at https://www.epa.gov/aqs. The AQS provides PM2.5 225 

mass monitoring and routine chemical speciation data and contains other ambient air pollution data 226 

collected by the Environmental Protection Agency (EPA), state, local, and tribal air pollution control 227 

agencies from thousands of monitors, comprising the Federal Reference Method (FRM) and Federal 228 

Equivalent Method (FEM). The primary purpose of both methods is to assess compliance with the 229 

PM2.5 National Ambient Air Quality Standards (NAAQS). FRMs include in-stack particulate 230 

filtration, and FEMs include beta-attenuation monitoring, very sharp cut cyclones, and tapered 231 

element oscillating microbalances (TOEMs). The measurement precision is ± (1~2) µg/m3 (hour) 232 

(Hall and Gilliam, 2016). The TEOM and beta-attenuation are automatic and near real-time 233 

monitoring methods. The TEOM, which is based on gravity, measures the mass of particles collected 234 

on filters by monitoring the frequency changes in tapered elements. The beta-attenuation method 235 

uses beta-ray attenuation and particle mass to measure the PM2.5 concentration. In this study, we use 236 

two PM2.5 measurement methods, FRM/FEM (88101) and non-FRM/FEM (88502). The 88502 237 

monitors are “FRM-like” but are not used for regulatory purposes. Both the 88101 and 88502 238 

monitors are used for reporting daily Air Quality Index values. 239 

We set the conditions that each PM2.5 monitoring event have a minimum of 3 years and more than 240 

1000 days of overlapping records with nearby visibility stations. A total of 1110 sites in the United 241 

States are selected for this study. 242 

2.2.2 PM2.5 Data in Canada 243 

The hourly PM2.5 concentration data for Canada from 1995 to 2022 are sourced from the National 244 

Air Pollution Surveillance (NAPS) program, which are available at https://www.canada.ca. The 245 

NAPS program is a collaborative effort between the Environment and Climate Change Canada and 246 

provincial, territorial, and regional governments and is the primary source of environmental air 247 

quality data. Since 1984, PM2.5 concentrations have been measured in Canada using a dichotomous 248 

sampler. Continuous or real-time particle monitoring began in the NAPS network in 1995 using 249 

TEOM and beta-attenuation monitoring (Demerjian, 2000). The samples are supplemented by EPA 250 

FRM samples obtained after 2009 (Dabek-Zlotorzynska et al., 2011). The number of instruments is 251 

growing rapidly, with 410 sites in 2022. A total of 304 PM2.5 monitoring sites in Canada are selected 252 

for this study. 253 

https://www.weather.gov/asos
https://www.epa.gov/aqs
https://www.canada.ca/
https://european-union.europa.eu;https/www.eea.europa.eu
https://european-union.europa.eu;https/www.eea.europa.eu
https://www.cnemc.cn/
https://app.cpcbccr.com/
https://www.epa.gov/aqs
https://www.canada.ca/


2.2.3 PM2.5 Data in Europe 254 

The hourly PM2.5 concentration data for Europe from 1998 to 2012 are obtained from the AirBase 255 

database, which is available at https://european-union.europa.eu. The hourly PM2.5 concentration 256 

verified data (E1a) from 2013 to 2022 are obtained from the AirQuality database, which is available 257 

at https://www.eea.europa.eu. AirBase is maintained by the European Environment Agency (EEA) 258 

through its European Topic Center on Air Pollution and Climate Change Mitigation. Airbase 259 

contains air quality monitoring data and information submitted by participating countries 260 

throughout Europe. After the Air Quality Directive 2008/50/EC was enforced, the PM2.5 261 

concentration data began to be stored in AirQuality database. The main monitoring methods for 262 

PM2.5 concentration include TEOM and beta attenuation (Green and Fuller, 2006; Chow et al., 2008). 263 

The sites are distributed across rural, rural-near city, rural-regional, rural-remote, suburban, and 264 

urban areas. We merge the two datasets with the same site identifiers, and 834 sites in Europe are 265 

selected for this study. 266 

2.2.4 PM2.5 Data in China 267 

The hourly PM2.5 concentration data for China from 2014 to 2022 are obtained from the China 268 

National Environmental Monitoring Center, which are available at https://www.cnemc.cn. China 269 

established air quality monitoring in 1980; The continuous monitoring of PM2.5 nationwide began 270 

in 2013 and PM2.5 concentration data are available to the public. 74 cities were the first to publicly 271 

release real-time PM2.5 in 2013(Su et al., 2022), and there were are more than 18about 2000 air 272 

quality observation sites as of 2000in 2022 (Su et al., 2022). PM2.5 concentrations are measured 273 

using the TEOM and beta-attenuation method (Zhao et al., 2016b; Miao and Liu, 2019). According 274 

to the China Environmental Protection Standards, instrument maintenance, data transmission, data 275 

assurance and quality control ensure the reliability of PM2.5 concentration measurements. The 276 

uncertainty in the PM2.5 mass concentration is < 5 μg/m-3 (Pui et al., 2014). In this study, a total of 277 

1110 PM2.5 monitoring sites are selected. 278 

2.2.5 PM2.5 Data in India 279 

The hourly PM2.5 concentration data for India from 2010 to 2022 are obtained from the Central 280 

Pollution Control Board (CPCB), which are available at https://app.cpcbccr.com. The Air 281 

(Prevention and Control of Pollution) Act of 1981 was is enacted by the Central Pollution Control 282 

Board (CPCB) of the Ministry of Environment, Forest and Climate Change (MoEFCC). A standard 283 

of 60 μg/m3 PM2.5 concentration over 24 hours was added in 2009. The methods used by the Indian 284 

National Ambient Air Quality Standards (NAAQS) for PM2.5 and related component measurements 285 

include the TEOM, FRM and FEM (Pant et al., 2019). The measurement precision is ± (1-2) µg/m3 286 

(hour). The National Air Quality Monitoring Programme (NQAMP) is a key air quality monitoring 287 

programme employed by the Government of India, which is managed by the CPCB in coordination 288 

with the State Pollution Control Boards (SPCBs) and UT (union territory) Pollution Control 289 

Committees (PCCs). A standard of 60 μg/m3 PM2.5 concentration over 24 hours is added in 2009. 290 

The methods used by the Indian National Ambient Air Quality Standards (NAAQS) for PM2.5 291 

concentration and related component measurements include the FRM and FEM (Pant et al., 2019). 292 

The measurement precision is ± (1-2) µg/m3 (hour).There were 703 PM2.5 monitoring stations as of 293 

2018. Most of these stations (residential and industrial) are located in urban areas, and others are 294 

located sparsely in rural areas. A total of 206 PM2.5 monitoring sites are selected for this study. 295 

https://european-union.europa.eu/
https://www.cnemc.cn/
https://app.cpcbccr.com/


2.2.6 PM2.5 data in other regions 296 

The hourly PM2.5 concentration data of other regions from 2016 to 2022 are from openAQ 297 

(https://openaq.org), which is a nonprofit organization providing air quality data. These air quality 298 

data are collected from environmental protection departments and other departments over the world 299 

without any processing, therefore they have good accuracy. The PM2.5 concentrations almost are 300 

measured by the TEOM and beta-attenuation method, and have been used for scientific research 301 

(Jin et al., 2022; Tan et al., 2022). 302 

 303 

2.3 Visibility and Meteorological Data 304 

The hourly meteorological data from 1959 to 2022 are collected from airport weather observations, 305 

which are available at . Automated observation minimizes the errors associated with human 306 

involvement in data collection, processing, and transmission. The data are extracted from the 307 

Meteorological Terminal Aviation Routine Weather Report (METAR). The World Meteorological 308 

Organization (WMO) sets guidelines for METAR reports, including report format, encoding, 309 

observation instruments and methods, data accuracy, and consistency. These requirements ensure 310 

the consistency and comparability of METAR reports globally. Visibility is a quantity that describes 311 

the atmospheric transparency, usually observed by automated sensors (scattering and transmission). 312 

More than 1000 stations are from the Automated Surface Observing System (ASOS) in the United 313 

States, and other data are sourced from airport reports worldwide. The forward-scatter visibility 314 

sensors at a wavelength of 550 nm for ASOS are consistent with the National Weather Service of 315 

the United States standard transmissometer, with more than 80% of the data within the limit of ±0.4 316 

km when visibility is less than 2 km (Noaa et al., 1998). 317 

The hourly visibility and meteorological data are from the Integrated Surface Database (ISD) (Smith 318 

et al., 2011), which is a global database consisted of hourly and synoptic surface observations and 319 

archived at the NOAA's National Centers for Environmental Information (NCEI), available at 320 

https://www.ncei.noaa.gov/products/land-based-station/integrated-surface-database. The ISD 321 

database integrates data from more than 100 original data sources and incorporates data from over 322 

35000 stations around the world and includes observations data dating back to 1901. The strict 323 

quality control algorithms are used to ensure data quality by checking data format, extreme values 324 

and limits, consistency between parameters, and continuity between observations. Detailed 325 

information about the quality control are in http://www.ncei.noaa.gov/pub/data/inventories/ish-326 

qc.pdf. The best spatial coverage of stations is evident in North America, Europe, Australia, and 327 

parts of Asia, and the coverage in the Northern Hemisphere is better than the Southern Hemisphere.  328 

Visibility and meteorological records are filtered by the geophysical report type code. The codes of 329 

FM-12 and FM-15 are selected. FM-12 code represents the report is from Surface Synoptic 330 

Observations (SYNOP) report, which is a coding system developed by the World Meteorological 331 

Organization (WMO) for reporting observation data from ground meteorological stations. FM-15 332 

code represents the report is from Meteorological Terminal Aviation Routine Weather Report 333 

(METAR), providing weather information at the airport and its surrounding areas. The format and 334 

content of the METAR report are consistent globally and comply with WMO's international 335 

meteorological observation and reporting standards. The frequency of SYNOP report is generally 336 

https://www.ncei.noaa.gov/products/land-based-station/integrated-surface-database
http://www.ncei.noaa.gov/pub/data/inventories/ish-qc.pdf
http://www.ncei.noaa.gov/pub/data/inventories/ish-qc.pdf


every three or six hours, and the frequency of METAR report is usually once per hour. 337 

In this study, vVisibility is an essential variable for PM2.5 concentration. employed in this study, as 338 

research has shown that its The reciprocal of visibility is directly proportional to the aerosol 339 

extinction coefficient (Wang et al., 2009), which is closely related to the PM2.5 concentration (Wang 340 

et al., 2009; Wang et al., 2012). Considering that temperature, wind speed, wind direction, humidity, 341 

and precipitation are factors that impact particle dispersion, particle growth, and secondary 342 

generation influenced by humidity, as well as the cleansing effect of precipitation (Zhang et al., 343 

2020), temperature, dew point temperature,  temperature-dew point difference, relative humidity, 344 

sea-level pressure, wind speed and direction, and precipitation are selected, and sky conditions are 345 

also employed in this study. 346 

2.4 Data Preprocessing 347 

When processing the visibility and meteorological variables, we use some screening conditions from 348 

previous studies (Husar et al., 2000; Wang et al., 2009; Li et al., 2016; Zhong et al., 2021). The 349 

following data preprocessing steps are performed: We remove the records with missing visibility, 350 

temperature, dew point temperature, temperature-dew point difference, relative humidity, sea-level 351 

pressure, wind speed, and wind direction data and remove records with and hourly precipitation 352 

greater than 0.1 mm, sky conditions marked as 'VV', and . rRelative humidity is calculated using 353 

the Goff-Gratch formula (Goff, 1957). When relative humidity is greater than 90%, the record is 354 

removed to reduce the influence of fog, even precipitation. In high latitude regions, the low visibility 355 

records caused by ice fog and snow are removed, when the temperature is less than -29 ℃ and the 356 

wind speed is greater than 16 km/h. Since PM2.5 exhibits hygroscopic growth, we calculated the dry 357 

visibility is calculated, for when relative humidity values is between 30% and 90% (Yang et al., 358 

2021). 359 

𝑽𝑰𝑺𝑫 = 𝑽𝑰𝑺/(𝟎. 𝟐𝟔 + 𝟎. 𝟒𝟐𝟖𝟓 ∗ 𝒍𝒐𝒈(𝟏𝟎𝟎 − 𝑹𝑯))         (1) 360 

where VIS is the visibility, RH is the relative humidity, and VISD is the dry visibility. 361 

For a single visibility site, there should be at least 5 non-repetitive visibility values and at least three 362 

valid records per day. The upper limit of visibility is set to the 99% percentile of visibility (Li et al., 363 

2016). The harmonic mean is used to calculate the daily VIS and daily VISD because it can better 364 

capture rapid weather changes and enhance daily representativeness (Noaa et al., 1998). The 365 

arithmetic averagemean is used for other variables. 366 

The maximum hourly PM2.5 concentration is set to 1000 μg/m3. The daily PM2.5 concentration needs 367 

at least 3 hourly records. We select the PM2.5 monitoring sites with a condition of at least 3-year 368 

continuous monitoring. The distribution of PM2.5 sites is shown in Figure 1, and the details are 369 

shown in Table 1. 370 

The spatial matching between PM2.5 site and visibility station adopts the nearest principle, and the 371 

upper limit of distance is set to 100 km. Through experiments that the upper limit of distance has 372 

little effect on model training and prediction, but when the upper limit is small, the number of site 373 

pairs significantly decreases, especially in Asia. Matched visibility stations are not be used again. 374 

To match more PM2.5 monitoring sites, we construct a 'virtual' visibility station, whose variables are 375 

established by the average of variables of the two nearest visibility stations.  376 



We merge daily PM2.5 concentration and visibility and other meteorological variables. We have 377 

adopted two matching methods: (1) merge at the hourly scale first and then calculate the daily mean 378 

(2) and calculate the daily mean first and then match. The results of two methods have no impact 379 

on the training of the model, but there are differences in the predicted results. Since SNOPY's 380 

visibility is not continuously observed hourly, we select the second method to merge PM2.5 381 

concentration and visibility data on the daily scale to improve the daily representativeness of 382 

estimated PM2.5 concentration.  383 

At least three hourly daily records are needed. The harmonic mean is used to calculate the daily VIS 384 

and daily VISD because it can better capture rapid weather changes and enhance daily 385 

representativeness (Noaa et al., 1998). The arithmetic average is used for other variables. 386 

2.5 PM2.5 Data for Comparison 387 

In this study, our data are compared with other datasets, including two PM2.5 datasets based on 388 

satellite AOD data and two reanalysis datasets.The long-term gap-free high-resolution air pollutants 389 

(LGHAP) dataset provides daily PM2.5 concentrations from 2000 to 2021 over global land, with a 1 390 

km grid resolution, which is available at https://zenodo.org/communities/ecnu_lghap. The PM2.5 391 

concentration is estimated using aerosol optical depth and other factors such as geographic location, 392 

land cover type, climate zone, and population density, based on a deep-learning approach, termed 393 

the scene-aware ensemble learning graph attention network. The correlation coefficient with 394 

ground-based measurements is 0.95 and the RMSE is 5.7 µg/m3 (Bai et al., 2024). This dataset 395 

provides global PM2.5 concentration with a high spatiotemporal resolution. 396 

For most regions in the Northern Hemisphere, except for North America and Europe, the duration 397 

of continuous monitoring PM2.5 concentration data is relatively short, making it difficult to evaluate 398 

historical PM2.5 concentration. For example, PM2.5 monitoring network in China was implemented 399 

from the end of 2012, resulting in the inability to verify the PM2.5 concentrations before 2012. 400 

Therefore, we compare our data with the LGHAP PM2.5 concentration to evaluate the predictive 401 

ability of the model and the consistency of our data on the temporal scale.  402 

 403 

2.5.1 ACAG Dataset 404 

The monthly global PM2.5 dataset (version V5.GL.04) from 1980 to 2022, with a spatial resolution 405 

of 0.1°, is available from the Atmospheric Composition Analysis Group (ACAG) of Washington 406 

University in St. Louis (https://sites.wustl.edu/acag/datasets/surface-pm2-5/) (Van Donkelaar et al., 407 

2021). The ACAG PM2.5 concentrations are estimated based on satellite (MODIS, VIIRS, MISR 408 

and SeaWiFS) AOD and global vertical aerosol profiles from the Cloud-Aerosol Lidar and Infrared 409 

Pathfinder Satellite Observation (CALIPSO) satellites. The AOD of GEOS-Chem is used to 410 

simulate the spatiotemporally varying geophysical relationship with PM2.5. Ground-based PM2.5 411 

values are incorporated at a monthly timescale using geographically weighted regression (Van 412 

Donkelaar et al., 2016; Hammer et al., 2020; Van Donkelaar et al., 2021). The coefficients of 413 

determination (R2) for the monthly mean and monitor-based PM2.5 concentrations are 0.86 (January), 414 

0.81 (April), 0.72 (July), and 0.78 (October). The R2 with WHO-collocated monitors is between 415 

0.88 and 0.93. The EMSE is between 8 and 13.3 μg/m3. 416 



2.5.2 CHAP Dataset 417 

The monthly PM2.5 dataset of China High Air Pollutants (CHAP) from 2000 to 2021 is a product 418 

with coverage over China, with a spatial resolution of 1 km, which is available at 419 

https://zenodo.org/records/6398971. The CHAP PM2.5 concentration is estimated based on the 420 

MODIS Collection 6 MAIAC AOD product and meteorological variables, surface conditions, 421 

pollutant emissions, and population distributions using a space-time extra-trees model. The R2 and 422 

RMSE of the monthly PM2.5 concentration are 0.92-0.94 and ~5.1-10.0 μg/m3, respectively, from 423 

2013 to 2018 (Wei et al., 2020b; Wei et al., 2021). 424 

2.5.3 MERRA-2 Dataset 425 

The monthly PM2.5 dataset of Modern-Era Retrospective Analysis for Research and Applications 426 

version 2 (MERRA-2) from 1980 to 2022 is a NASA reanalysis dataset with a spatial resolution of 427 

0.5×0.625° and uses the Goddard Earth Observing System version 5 (GEOS-5) coupled to the 428 

Goddard Chemistry Aerosol Radiation and Transport (GOCART) model, which is available at 429 

https://gmao.gsfc.nasa.gov. The aerosol data of GOCART include dust, sea salt, sulfate, black 430 

carbon, and organic carbon, and there are 72 vertical layers from the surface to more than 80 km 431 

altitude. MERRA-2 PM2.5 is a dataset produced by the GEOS-5 atmospheric model and data 432 

assimilation system and the three-dimensional variational data analysis (3DVAR) Grid-point 433 

Statistical Interpolation (GSI) meteorological analysis scheme (Randles et al., 2017). In the aerosol 434 

model (GOCART), a SO2 emission database of volcanic material for secondary sources is included. 435 

Aerosol hygroscopic growth depends on the simulated relative humidity. The monthly scale biomass 436 

burning inventory is from RETROv2 from 1980 to 1996; the monthly SO2, SO4, POM, and BC 437 

emissions are from GFEDv3.1 from 1997 to 2009; and the daily scale data are from QFED 2.4-r6 438 

after 2010. The annual anthropogenic SO2 is from EDGARv4.2 between 100 and 500 m above the 439 

surface from 1980 to 2008. The annual Anthropogenic SO4, BC, and POM concentrations are 440 

obtained from AeroCom Phase II from 1980 to 2006. In assimilation systems, satellite AOD 441 

retrievals are used, including AVHRR (over the oceans) from 1998 to 2002, MISR from 2000 to 442 

2014, MODIS Aqua since 2002, and MODIS Terra since 2000 (Buchard et al., 2017; Randles et al., 443 

2017). The direct observations of the AOD AERONET station from 1999 to 2014 are also 444 

assimilated. 445 

The surface PM2.5 concentration in MERRA-2 can be computed using the concentrations of black 446 

carbon [BC], organic carbon [OC], dust [DUST2.5], sea salt [SS2.5], and sulfate [SO4] (Provençal et 447 

al., 2017) and is expressed as follows (please refer to 448 

https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/FAQ/#Q4): 449 

[PM2.5] = [DUST2.5] +[SS2.5] +[BC] +1.6×[OC] +1.375×[SO4]. 450 

In this study, we conduct spatiotemporal matching between MERRA-2 PM2.5 and the estimated 451 

PM2.5. 452 

2.5.4 CAMS Dataset 453 

The Copernicus Atmosphere Monitoring Service (CAMS) reanalysis is the latest global reanalysis 454 

dataset of atmospheric composition produced by the European Centre for Medium-Range Weather 455 

Forecasts (ECMWF). We use the single-level monthly PM2.5 product from the CAMS reanalysis 456 



from 2003 to 2022, which is available at 457 

https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-reanalysis-eac4. The resolution 458 

is 0.75°. The CAMS reanalysis builds on the experience gained during the earlier Monitoring 459 

Atmospheric Composition and Climate (MACC) reanalysis and CAMS interim reanalysis (Inness 460 

et al., 2019). The ECMWF’s Integrated Forecast System (IFS) aerosol and chemistry modules are 461 

applied, and more details on the modules are provided in (2015). The data at 60 model levels are 462 

interpolated to 25 pressure levels. Anthropogenic emissions are from the MACCity inventory from 463 

1960 to 2010 (Granier et al., 2011). The emissions of anthropogenic SOAs are estimated from 464 

MACCity CO emissions. The monthly biogenic emissions of the chemical species are from 465 

MEGAN2.1 (Guenther et al., 2006). The natural NO2 emissions from soils and oceans are obtained 466 

from the Precursors of Ozone and Their Effects in the Troposphere (POET) database for 2000. Daily 467 

biomass burning emissions are from the Global Fire Assimilation System version 1.2 (GFASv1.2) 468 

(Kaiser et al., 2012). More details regarding emissions are provided in Granier (2011). The 469 

incremental 4D-Var data assimilation system is used for the CAMS reanalysis, and the total aerosol 470 

mixing ratio of the single species is derived from the assimilation of satellite retrievals (Benedetti 471 

et al., 2009). The AODs from satellite retrievals are assimilated, including those from AATSR 472 

Envisat from 2002 to 2012 and those from MODIS Terra and Aqua since 2002. For additional 473 

information, please refer to Inness et al. (2019). 474 

The surface PM2.5 concentration is estimated by the air density [ρ], sea salt [SS1,2], dust [DD1,2,3], 475 

nitrate [NI1,2], organic matter [OM], black carbon [BC], ammonium [AM], and sulfate [SO4] and is 476 

expressed as follows (Inness et al., 2019): 477 

[PM2.5] = ρ ×([DD1] + [DD2] + [SS1/4.3] + [0.5 ×SS2/4.3] + [0.7 × (AM + OM + 0.7NI1 + SO4)] + 478 

[BC] + 0.25 ×[NI2]). 479 

2.6 Decision Tree Regression 480 

We employ decision tree regression using the CART algorithm (Teixeira, 2004) to estimate daily 481 

PM2.5 concentrations. The key to decision tree regression is to find the optimal split variable and 482 

optimal split point. The optimal split point of the predictor is determined by the minimum mean 483 

squared error, which determines the optimal tree structure. Decision tree regression is a commonly 484 

used nonlinear machine learning method that partitions the feature space based on the mapping 485 

between feature attributes and response values, with each leaf node representing a specific output 486 

for each feature space region. It'’s ability to handle complex relationships with relatively few model 487 

parameters is advantageous, minimizing the risk of overfitting and enabling the prediction of 488 

continuous and categorical predictive variables. 489 

The sample data includes predictor and response. The predictor is composed of 9 variablesincludes 490 

11 variables: the reciprocal of dry visibility (Vis_Dry_In), the reciprocal of visibility (Vis_In), 491 

temperature (Temp), dew point temperature (Td), temperature-dew point difference (Temp-Td), 492 

relative humidity (RH), sea-level pressure (SLP), wind speed (WS), wind direction (WD), numerical 493 

time (DateTime) and daily record number (DailyObsNum). Both visibility and meteorological 494 

variables are daily means. The response variable is the daily observed monitored PM2.5 495 

concentration. 496 

For each site, we sort the sample data by time, with the first 80% being the training set and the last 497 



20% being the test set. Due to the inconsistent sample length among different sites, this approach is 498 

friendly for sites with small sample sizes (such as only 3-year observations).We randomly select 80% 499 

of the sample data to establish the decision tree regression model, and the remaining 20% of the 500 

sample data are used to test the model's predictive ability. To obtain a stable model, a use10-fold 501 

cross-validation method (Browne, 2000) is used to train the model. The test set is used to evaluate 502 

the predictive ability of the model. 503 

2.7 Evaluation Metrics 504 

2.7.1 Statistical Metrics 505 

We use the root mean squared error (RMSE), mean absolute error (MAE), and correlation 506 

coefficient (ρ) as evaluation metrics to evaluate the model's performance and predictive ability. The 507 

formulas are given as follows: 508 

𝑴𝑺𝑬 = √
𝟏

𝒏
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             (4) 511 

where 𝑦𝑖 and �̅� are the predicted value and the average of the predicted values. �̂�𝑖 and �̅̂� are 512 

the target and the average of the target. 𝑖 =  1,2, . . . , 𝑛. 𝑛 is the length of sample. 513 

2.7.2 Partial Dependence 514 

The importance of predictor variables is assessed via partial dependence. Partial dependence 515 

represents the relationship between the individual predictive variable and the predicted response 516 

(Friedman, 2001). By marginalizing the other variables, the expected response of the predicted 517 

variable is calculated. All the partial dependences of the predicted response on the subset of 518 

predicted variables are calculated. The calculation process of the partial dependency method is 519 

described as follows: 520 

The dataset of the predictor is X, X =  [𝑋1, 𝑋2, . . . , 𝑋𝑛], and n represents the number of predictive 521 

factors. The complement of subset 𝑋𝑠 is 𝑋𝑐, where 𝑋𝑠 is a single variable in X and 𝑋𝑐 is all 522 

other variables in X. The predicted response f(x) depends on all variables in X, and it is expressed 523 

as follows: 524 

𝒇(𝒙)  =  𝒇(𝑿𝒔, 𝑿𝒄)                (5) 525 

The partial dependence of the predicted response to 𝑋𝑠 is expressed as follows: 526 

𝒇𝒔(𝑿𝒔) = ∫ 𝒇(𝑿𝒔, 𝑿𝒄)𝒑𝑪(𝑿𝒄)𝒅𝑿𝒄              (6) 527 

where pC(Xc) is the marginal probability of 𝑋𝑐, that is, pC(Xc) ≈  ∫ 𝑓(𝑋𝑠, 𝑋𝑐)𝑑𝑋𝑠. Assuming  528 

that the likelihood for each observation is equal, the dependence between 𝑋𝑠  and 𝑋𝑐  and the 529 

interactions of 𝑋𝑠 and 𝑋𝑐 in response are not strong. The partial dependence is shown below: 530 



𝒇𝒔(𝑿𝒔) ≈
𝟏

𝑵
∑ 𝒇(𝑿𝒔, 𝑿𝒊

𝒔)𝑵
𝒊=𝟏               (7) 531 

where N is the number of observations and 𝒊 represents the ith observation. 532 

2.7.3 Mean Center Generalized Additive Mixed Model 533 

Generalized Additive Mixed Model (GAMM) originates from two independent yet complementary 534 

statistical methods: Generalized Additive Model (GAM) and Mixed Effects Models. GAM is 535 

introduced by Trevor Hastie and Robert Tibshirani in the 1980s (Hastie and Tibshirani, 1987). GAM 536 

employs smooth functions (such as splines) to replace linear terms in traditional regression, 537 

capturing nonlinear relationships between response and explanatory variables. The primary aim of 538 

GAM is to enhance model flexibility, allowing the data to determine the form of the nonlinear 539 

relationships rather than pre-specifying them. Mixed Effects Model includes both fixed and random 540 

effects, enabling the analysis of hierarchical and correlated data (Verbeke and Lesaffre, 1996). Fixed 541 

effects apply to the entire sample, whereas random effects account for variations within individuals 542 

or groups, explaining data correlation and variability. GAMM represents the evolution of statistical 543 

models from linear to nonlinear, from simple to complex, and from single effects to mixed effects. 544 

GAMM has been widely applied in various fields such as ecology and climate, air pollution 545 

becoming essential tools for studying complex nonlinear relationships and hierarchical data (Park 546 

et al., 2013; Polansky and Robbins, 2013; Chang et al., 2017; Ravindra et al., 2019). 547 

The relationship between PM2.5 concentrations and time (e.g., months, seasons) is typically 548 

nonlinear and exhibits seasonal variation. GAMM model uses smooth functions (such as splines) to 549 

capture the nonlinear variations and model the periodic features with cyclical smooth functions. 550 

Interannual variations in PM2.5 concentrations can also be captured using smooth functions. Due to 551 

the inherent autocorrelation in time series, GAMM model effectively handles the autocorrelation by 552 

incorporating time-related smooth functions or random effects, thereby enhancing the model 553 

accuracy. PM2.5 concentrations from neighboring locations often exhibit spatial correlation. GAMM 554 

model can address this spatial correlation by introducing spatially correlated smooth functions or 555 

random effects. Therefore, it is also suitable for spatial variations, especially when the spatial 556 

distribution of sites observations is uneven. 557 

Based on the GAMM, the PM2.5 concentration 𝑦(𝑖, 𝑡) at site 𝑖 and time 𝑡 can be expressed as: 558 

𝒚(𝒊, 𝒕) = 𝒙𝜷 + 𝒇(∙) + 𝒃(𝒊, 𝒕) + 𝜺(𝒊, 𝒕)            (8) 559 

The following is an explanation of the expression and parameter settings. 560 

Linear terms 𝑥𝛽: 𝑥 is the vector of explanatory variables, including site elevation and the overall 561 

mean PM2.5 concentration. 𝛽 is a coefficient vector. 562 

Smooth terms 𝑓(∙) can be decomposed into three individual smooth terms: seasonal smooth term, 563 

interannual smooth term, and spatial smooth term, as shown in equation (9).  564 

𝒇(∙) = 𝒇(𝒎𝒐𝒏𝒕𝒉) + 𝒇(𝒚𝒆𝒂𝒓) + 𝒇(𝐬𝐩𝐚𝐭𝐢𝐚𝐥 )          (9) 565 

They are composed of linear combinations using spline basis functions. For seasonal smooth term, 566 

it is a function of the month, smooth function is the penalized regression cyclic cubic splines 567 

(assumed with periodic nature) (Wood et al., 2016) and the knot number is 12. For interannual 568 



smooth term, it is a function of the year, smooth function is the penalized regression cubic splines 569 

(Wood et al., 2016) and the knot number is 64. For spatial smooth term, it is a function for longitude 570 

and latitude, smooth function is the gaussian process penalized regression splines (Kammann and 571 

Wand, 2003) and the knot number is 80. In this study, they are used to describe the regional long-572 

term PM2.5 concentration annual cycle, interannual trends and spatial distribution, respectively. 573 

Station-specific effects term 𝑏(𝑖, 𝑡) is a random effect term to describe the differences between 574 

observation sites, based on the assumption that observations are independent. 575 

The residual noise term 𝜀(𝑖, 𝑡) 1-order autoregressive term. 576 

More explanations about GAMM model are detailed in the package mgcv of R. Some studies also 577 

provide an introduction and selection of parameters (Polansky and Robbins, 2013; Chang et al., 578 

2017; Ravindra et al., 2019). (2017) 579 

The mean center is a geostatistical method used to describe the average position of a set of 580 

geographical coordinates. It represents the central tendency of a set of geographical data and aids in 581 

understanding the overall distribution and trends in the dataset. The mean center of the PM2.5 582 

concentration shows the overall trend and variability in PM2.5. If the mean center is located at the 583 

edge of the dataset, the data distribution is dispersed. Conversely, if the mean center is located at 584 

the center of the dataset, the data distribution is concentrated. This may be relevant for aspects, such 585 

as population distribution, urban development, and economic activities. It is particularly helpful in 586 

understanding the spatial patterns of PM2.5. The expression is given as follows: 587 

𝒙𝒄𝒕 = ∑ 𝒄𝒊 ∗ 𝒙𝒊/
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where 𝒙𝒄𝒕 and 𝒚𝒄𝒕 represent the longitude and latitude of the mean center, respectively, and 𝒄𝒊 590 

represents the PM2.5 concentration at the i-th site (𝒙𝒊, 𝒚𝒊). 591 

2.7.4 Standard Deviation Ellipse 592 

The standard deviation ellipse (SDE) is used in statistics and geography to describe the variability 593 

and correlation of multivariate data. The SDE is calculated based on the mean and covariance matrix 594 

of the data (Gong, 2002). This variable shows the dispersion and correlation of the data across 595 

different dimensions. The center of the ellipse corresponds to the mean of the data, while the shape 596 

and size of the ellipse reflect the variability in the data in different directions. 597 

We calculate the SDE using the locations and concentration measurements associated with the PM2.5 598 

points. The major axis of the ellipse indicates the primary direction of data variation. The shape and 599 

size of the ellipse reflect the spatial dispersion of the PM2.5 concentration. A larger ellipse indicates 600 

greater variability in the PM2.5 concentration distribution, while a smaller ellipse denotes a more 601 

concentrated distribution. A circular ellipse indicates little or weak spatial correlation among PM2.5 602 

concentrations. A flattened ellipse indicates a spatial correlation between PM2.5 concentrations. 603 



3. Results and Discussion 604 

3.1 Evaluation of Variable Importance 605 

We analyze evaluate the contribution influence of predictive each variables over to the predicted 606 

response by partial dependence. The predictive variable with the highest partial dependence value 607 

is the most important predictive variable in the model. The partial dependence of the predicted 608 

response on each predictive variable is calculated for every model. Figure 2 (a) shows the proportion 609 

of the most important variables for all sites and Figure 2 (b) shows the ranking of the importance of 610 

all variables. Reciprocal of dry visibility is the most important variable at 65.8% of sites, and 611 

Reciprocal of visibility is the second most important variable at 14.9% of sites. The contribution of 612 

meteorological variables ranges from 2.1% to 6.6%. The time variable contributes 1.7%. The lowest 613 

contribution is daily number of visibility record at only 0.9%, because it is only a variable that 614 

describes the daily representativeness of visibility. It also indicates that daily visibility has high daily 615 

representativeness (under the conditions of at least three hourly records) 616 

The PM2.5 concentration level varies spatially, which are related to regional geographical 617 

environment, climate, and air quality laws and regulations. Therefore, we analyze the importance 618 

of variables in different regions, as shown in Figure 2 (c-h). The two most important variables are 619 

still reciprocal of dry visibility and reciprocal of visibility, with a proportion of 73.1% in the United 620 

States, 77.5% in Canada, 80.8% in Europe, 98.8% in China, and 60.2% in India. It indicates that 621 

PM2.5 concentration is the most significantly correlated with visibility in China. The contribution of 622 

meteorological variables is significantly higher in the United States and India than in other regions. 623 

It indicates that meteorological conditions have a significant contribution to PM2.5 concentration in 624 

these regions, which may be related to the formation mechanism and transport of particulate matter. 625 

the ranking results of the importance of all the predictive variables. The variable with the highest 626 

dependence on the predicted response is Vis_Dry_In, and the second highest dependence is Vis_In. 627 

The dependence of the predicted response on Temp, Td, Temp-Td, RH, WS, and wind WD is 628 

moderate. The predictive variables with lower dependence include SLP, DateTime and 629 

DailyObsNum. 630 

We count the frequency and proportion of the most important variables in all the models, as shown 631 

in Figure 2 (b). Vis_Dry_In is the most important variable at 2600 sites, contributing 64.8%. Vis_In 632 

was the second most important variable at 575 sites, accounting for 14.3%. This finding indicates 633 

that visibility is the most crucial variable, with a percentage of 79.1%. Temp and Td contribute 6.7% 634 

and 3.5%, respectively. The contribution of other variables combined is 10.7%. The percentages of 635 

the second most important predictive variable are 25.4% for Vis_In, 39.6% for Vis_Dry_In, 14.6% 636 

for Temp, 7.1% for Td and 3.4% for Temp-Td. Among the three most important variables, the 637 

proportions of Temp and Td are 15.7% and 14.3%, respectively. 638 

The above results indicate a strong correlation between the PM2.5 concentration and visibility, as 639 

visibility can be considered an indicator of air quality without fog or precipitation. Meteorological 640 

factors Temperature and dew play secondary roles, and other meteorological predictive variables 641 

play lesser roles in the model, .Meteorological factorswhich influence the formation, dispersion and 642 

deposition of PM2.5 (Gui et al., 2020; Zhong et al., 2022). Temperature and dew play secondary 643 

roles, and other meteorological predictive variables play lesser roles in the model. Although the 644 



number of daily records and time have the most negligible impacts on the PM2.5 concentration in 645 

the model, they have significant impacts on the cyclical changes and daily representativeness of 646 

PM2.5 concentration (Wang et al., 2012; Zhang et al., 2020).  647 

 648 

 649 

Figure 2. The most importantce of predictive variables (a) and the ranking (b) at all sites. The most 650 



important variable in each region (c-h).. The stacked bar (a) shows the importance rankings of the 651 

predictive variables ('‘rank=1'’ represents the most important variable). The bar (b) shows the 652 

percentage proportion of the most important predictive variable. The predictive variables are the 653 

reciprocal of dry visibility (Vis_Dry_In), reciprocal of visibility (Vis_In), temperature (Temp), dew 654 

point temperature (Td), temperature-dew point difference (Temp-Td), relative humidity (RH), sea 655 

level pressure (SLP), wind speed (WS), wind direction (WD), numerical time (DateTime) and daily 656 

record number of visibility record (DailyObsNum). The total number of PM2.5 sites is 4011. 657 

3.2 Evaluation of Model Performance 658 

3.2.1 For All Data 659 

We analyze the linear regression fitting relationship between all estimated and corresponding 660 

response values to evaluate the model's performance. Figure 3 shows is the density scatter plot of 661 

the monitored PM2.5 concentration (response values) and the estimated PM2.5 concentration 662 

(estimated values). There is a total of 8,680,7968031473 data pairs for all the sites. The linear 663 

regression coefficient slope (95% confidence interval) is 0.946 ±0.0002 within the 95% confidence 664 

interval55 [0.955, 0.955], the R2 is 0.95, the RMSE is 7.20 μg/m3, and the MAE is 3.21 μg/m3. 665 

 666 



 667 

Figure 3. Density scatter plot (a) between estimated values (estimated PM2.5) concentration and the 668 

corresponding response values (monitored PdmoniPM2.5) concentrationat the daily scale. The dashed 669 

black line is the linear regression line. N is the length of the data pairs, and Slope is the linear 670 

regression coefficient within a 95% confidence interval (CI). R2 is the coefficient of determination, 671 

RMSE is the root mean square error, and MAE is the mean absolute error. 672 

3.2.2 For the Site and Region Scales 673 

We evaluate the model's performance using the RMSE, MAE, and ρ of the estimated and response 674 

values at the site and region scales. Figure 4 (a-c) shows the spatial distribution (a-c) and frequency 675 

distribution (d-f) of the model'sof training of  RMSE, MAE, and ρ at all sites. Table 21 lists the 676 

model's performance metrics for all sites and sites in the United States, Canada, Europe, China, and 677 

India.  678 

For all sites, the average RMSE is 6.97.42 μg/m3, with a median of 4.7697 μg/m3. The RMSE of 679 

80% of the sites is less than 101.0195 μg/m3. The ratio of the RRMSE (the percentage of RMSE to 680 

mean of PM2.5 concentration) to the average PM2.5 concentration is 29.228.7%. The average MAE 681 

is 4.013.77 μg/m3, with a median of 2.66 72 μg/m3. The MAE is less than 6.625.66 μg/m3 for 80% 682 

of the sites. The RMAE-to-mean ratio (the percentage of MAE to mean of PM2.5 concentration) is 683 

15.48%. The average ρ is 0.910, and the median is 0.921. The ρ of 80% of the sites is greater than 684 

0.87. Previous studies have shown that for PM2.5 concentration retrieved from daily visibility or 685 

satellite AOD aerosol optical depthdata, the R2 range of the model is from 0.42 to 0.89, and the 686 



RMSE range is from 9.59 μg/m3 to 32.09 μg/m3 (Shen et al., 2016; Liu et al., 2017; Wei et al., 2019b; 687 

Gui et al., 2020; Li et al., 2021; Zhong et al., 2021). This finding indicates that our model performs 688 

well at the daily scale. 689 

At On the regional scale, the average RMSE values for the United States, Canada, Europe, China, 690 

and India are 78, 2.863.10 μg/m3, 4.632.78 μg/m3, 11.624.92 μg/m3, 9.65 μg/m3 and 18.737.46 691 

μg/m3, respectively., and the mean RRMSE values PM2.5 concentrations are 31.24.9%, 40.94%, 692 

33.029.8%, 28.03.1%, and 27.98.8%, respectively. The average MAEs for the United States, Canada, 693 

Europe, China, and India are 1.6142 μg/m3, 1.365 μg/m3, 2.5445 μg/m3, 6.485.47 μg/m3, and 9.1356 694 

μg/m3, respectively.; The RMAEs are these values correspond to 1517.9%, 19.45%, 1716.53%, 695 

1513.61%, and 14.24%, respectively., of the mean PM2.5 concentration. The ρ values average 696 

correlation coefficients for the United States, Canada, Europe, China, and India are 0.878, 0.88, 697 

0.8991, 0.9294, and 0.92, respectively. The correlation coefficients are higher in China and India, 698 

low in the United States and Canada. 699 

The largestvalues of RMSE and MAE are the largest in India, .and  the smallest are in Canada. The 700 

RMSE is the smallest in the United States, and the MAE is the smallest in Canada. The ratios of the 701 

RRMSE and RMAE to the mean are larger in the United States, Canada and Europe than in other 702 

regions and smaller in China and India than inand other regions. Although the PM2.5 concentration 703 

varies among regions, the MAE-to-mean concentration ratio remains at approximately 16%. This 704 

finding demonstrates the stability and reliability of the model. 705 

Table 2.1 The results of the model's performance  metrics for all sites and sites in the United States 706 

(the US), Canada, Europe, China and India. RRMSE is the percentage of RMSE to mean of PM2.5 707 

concentration. RMAE is the percentage of MAE to mean of PM2.5 concentration. 708 

Region RMSE 

(μg/m3) 

MAE 

(μg/m3) 

ρ Mean 

(μg/m3) 

RRMSE 

(%) 

RMAE 

(%) 

All 6.92  3.77  0.91  26.7  28.7  15.4  

the US 3.10  1.61  0.87  9.1  34.9  17.9  

Canada 2.78  1.35  0.88  6.9  40.4  19.5  

Europe 4.92  2.54  0.91  15.7  29.8  16.3  

China 9.65  5.47  0.94  42.1  23.1  13.1  

India 17.46  9.13  0.92  63.1  28.8  14.4  

Other 6.11  3.32  0.91  23.4  24.8  14.1  

 709 



710 

 711 

Figure 4. Statistical Metrics Spatial distribution of training (a-cleft) and test (right). ofThe bar is the 712 

frequency of sites. RMSE is the root mean square error, MAE is the mean absolute error, and ρ is 713 

the correlation coefficient. the root mean squared error (RMSE), mean absolute error (MAE), and 714 

correlation coefficient (ρ) between the model's estimated values and response values. Number of 715 

sites (bar) and cumulative frequency (curve) (d-e) of the RMSE, MAE, and ρ. 716 

 717 

3.2.3 Dependence on the Distance between the PM2.5 Site and the Visibility Station 718 



Although the previous analysis elucidates the stability and predictive capability of the model, it is 719 

necessary to understand the potential impact of the distance between PM2.5 monitoring sites and 720 

visibility stations on the model. Most PM2.5 monitoring sites are in urban areas, resulting in a 721 

relatively concentrated spatial distribution. Visibility stations are strategically placed to capture the 722 

characteristics of meteorological factors and have relatively uniform spatial distributions. 723 

Consequently, visibility stations and PM2.5 monitoring sites are often not collocated, resulting in a 724 

certain spatial distance between them. Therefore, we consider the impact of the distance between 725 

sites on the model's performance. 726 

Figure 5 shows the relationship between the model performance (ρ and RMSE) and the distance 727 

between the visibility stations and the PM2.5 monitoring sites. The average distance between all sites 728 

is 0.964°, and the correlation coefficient between the model's RMSE and distance is 0.44, which is 729 

a moderate correlation. The average ρ of 3786 sites (within a distance of 3°) is 0.90, and the average 730 

RMSE is 7.13 μg/m3. The RMSE values of 471 sites are greater than twice the average RMSE of 731 

all sites; however, their average ρ (0.91) is greater than the average of all sites. This finding indicates 732 

that the model's performance decreases as the distance increases. 733 

For the United States, the average distance is 0.29°. The distance between the 919 (82.8%) sites was 734 

less than 0.5°, with ρ and RMSE values of 0.88 and 2.7 μg/m3, respectively. The ρ and RMSE of 735 

the 191 sites (more than 0.5°) are 0.88 and 3.1 μg/m3, respectively. The performance of the model 736 

is not significantly related to distance. 737 

For Canada, 212 (69.7%) sites have distances of less than 0.5°, with ρ and RMSE values of 0.89 738 

and 2.6 μg/m3, respectively. The ρ and RMSE for 92 sites (more than 0.5°) are 0.87 and 3.3 μg/m3, 739 

respectively. The correlation coefficient between the RMSE and the distance is 0.33, and the 740 

correlation coefficient between the ρ and the distance is -0.17. The performance of the model 741 

decreases as the distance increases. 742 

For Europe, 541 (64.8%) sites have distances of less than 0.5°, with ρ and RMSE values of 0.90 and 743 

4.0 μg/m3, respectively. The ρ and RMSE of the 293 sites (more than 0.5°) are 0.88 and 5.7 μg/m3, 744 

respectively. The correlation coefficient between the RMSE and the distance is 0.19. 745 

For China, 303 (19.5%) sites have a distance of less than 0.5°, with ρ and RMSE values of 0.95 and 746 

9.5 μg/m3, respectively. The ρ and RMSE for 1254 sites (more than 0.5°) are 0.91 and 12.1 μg/m3, 747 

respectively. The correlation coefficient between the RMSE and the distance is 0.23. The correlation 748 

coefficient between ρ and distance is -0.71. As the distance increases, the correlation coefficient 749 

significantly decreases. 750 

For India, the ρ and RMSE of 117 (56.8%) sites with a distance of less than 0.5° are 0.94 and 18.7 751 

μg/m3, respectively. The ρ and RMSE of 89 sites (more than 0.5°) are 0.89 and 18.8 μg/m3, 752 

respectively. The correlation coefficient between ρ and distance is -0.36. 753 

The above results indicate no significant correlation between model performance and distance in 754 

the United States and Europe, as these regions have adequate visibility stations. However, in China, 755 

India, and Canada, the performance of models is influenced by distance. Particularly in China, due 756 

to the limited number of visibility stations, although the correlation coefficient decreases with 757 

distance, there is no significant change in the RMSE. The correlation coefficient for visibility 758 

remains near 0.4. Even when the distance between two visibility stations reaches 1000 km, the 759 



maximum correlation coefficient for visibility remains near 0.4 (Fei et al., 2023). To acquire more 760 

PM2.5 sample data, we do not disregard these distant sites since the models still shows a good 761 

performance for these sites. Nevertheless, more sufficient visibility stations in the same locations 762 

can enhance the model's performance. 763 

 764 

Figure 5 Scatter plots of the distance between the PM2.5 site and visibility station and the model's 765 

correlation coefficient (ρ) for all sites and sites in the United States, Canada, Europe, China, and 766 

India. The color bar represents the root mean square error (RMSE) of the model. N is the number 767 

of sites. 768 

3.3 Evaluation of Model's Predictive Ability 769 

3.3.1 For All Data 770 

A total of 1,149,1521911183 pairs of test data is employed to evaluate the model's predictive ability. 771 

Figure 56 shows is the density scatter plot between the predicted PM2.5 concentration and the test 772 

PM2.5 concentration. The results indicate that tThe linear regression coefficient slope (95% CI) is 773 

0.8642 [0.863, 0.865], ± 0.001 within a 95% confidence interval, R2 is 0.7980, RMSE is 13.54.8 774 

μg/m3, and MAE is 6.97.6 μg/m3. Previous studies have shown that the R2 range of the model's 775 

predictive results at the daily scale is 0.3142 - 0.849, and the RMSE range is 9.5913.8-32.0929.0 776 

μg/m3 (Gui et al., 2020; Zhong et al., 2021). The test results exhibit excellent predictive capability. 777 



 778 



 779 

Figure 5.6 Density scatter plot (a) between the predicted PM2.5 concentration and monitored PM2.5 780 

concentration of the test results at the daily scale. The dashed black line is the linear regression line. 781 

N is the length of the data pairs, and Slope is the linear regression coefficient within a 95% 782 

confidence interval (CI). R2 is the coefficient of determination, RMSE is the root mean square error, 783 

and MAE is the mean absolute error. 784 

3.3.2 For the Site and Region Scales 785 

We analyze the test results for Canada, the United States, Europe, China, and India to assess the 786 

predictive ability of the model in different regions. Figure 7 4 (d - f) shows the spatial distributions 787 

of the test RMSE, MAE, and ρ and their frequency and cumulative frequency distributions. Table 788 

32 lists the test results of the metrics.  789 

For all sites, the average RMSE is 12.6011.50 μg/m3. The RRMSE-to-mean ratio is 48.66.0%. The 790 

average MAE is 8.527.72 μg/m3. The RMAE-to-mean ratio is 302.79%. The  average ρ is 0.8177.  791 

For the United States, the RMSE, MAE, and ρ are 4.905.06 μg/m3, 3.153.25 μg/m3, and 0.721, 792 

respectively. For Canada, the RMSE, MAE, and ρ are 4.7389 μg/m3, 3.012.88 μg/m3, and 0.774, 793 

respectively. The results in the United States and Canada are better in the west than in the east. The 794 

RMSE, MAE, and ρ for Europe are 7.54 79 μg/m3, 4.915.10 μg/m3, and 0.8077, respectively. For 795 

China, the RMSE, MAE, and ρ are 20.1616.83 μg/m3, 13.811.50 μg/m3, and 0.851, respectively. 796 

For India, the RMSE, MAE, and ρ are 28.847.05 μg/m3, 19.577.89 μg/m3, and 0.853, respectively. 797 

The results show that in developing regions (China and India), ρ is better than that in developed 798 



regions (the United States, Canada, and Europe), which means that the predictive ability of the 799 

model is better for severely polluted regions. 800 

 801 

Figure 7 Spatial distribution (a-c) of the root mean squared error (RMSE), mean absolute error 802 

(MAE), and correlation coefficient (ρ) between the model's predicted values and test values. 803 

Number of sites (bar) and cumulative frequency (curve) (d-e) of the RMSE, MAE, and ρ. 804 

Table 3.2 The test results of the model's performance metrics for all sites and sites in the United 805 

States, Canada, Europe, China and India. RRMSE is the percentage of RMSE to mean of PM2.5 806 

concentration. RMAE is the percentage of MAE to mean of PM2.5 concentration. 807 

Region RMSE 

(μg/m3) 

MAE 

(μg/m3) 

ρ Mean 

(μg/m3) 

RRMSE 

(%) 

RMAE 

(%) 

All 11.50  7.72  0.81  27.1  46.0  30.7  

the US 5.06  3.25  0.72  9.4  54.3  35.0  

Canada 4.73  2.88  0.77  7.2  65.6  40.0  

Europe 7.79  5.10  0.80  15.9  47.0  32.0  

China 16.83  11.50  0.85  42.6  39.6  27.1  

India 27.05  17.89  0.85  63.7  42.9  27.8  

Other 8.86  6.16  0.81  23.4  36.7  26.1  

Test RMSE 

(μg/m3) 

MAE 

(μg/m3) 

ρ(Pearson's 

correlation) 
Mean 

(μg/m3) 

RMSE/Mean 

(%) 

MAE/Mean 

(%) 

All 12.60 8.52 0.77 25.9 48.6 32.9 

America 4.90 3.15 0.71 9.1 53.8 34.6 

Canada 4.89 3.01 0.74 7.2 67.9 41.1 

Europe 7.54 4.91 0.77 14.4 52.3 34.1 



China 20.16 13.81 0.81 42.2 47.7 32.7 

India 28.94 19.62 0.83 67.6 42.8 29.0 

3.4 Uncertainties and Limitations 808 

3.4.1 Uncertainty in the Pollution Level 809 

Figure 8 6 shows the uncertainty in the predicted PM2.5 concentration with respect to the pollution 810 

level of the monitored PM2.5 concentration. For all sites, the uncertainty in the bias increases as the 811 

pollution level increases. The mean bias and the median of the bias shift from positive to negative 812 

with increasing pollution levels. 83.6% of PM2.5 concentration data is less than 45 μg/m3, and The 813 

the mean bias (< 0.8 μg/m3)  is positive.of 88.4% of the data is less than 2 μg/m3. 36.8% is less 814 

than 10 μg/m3, and the median (< 0.4 μg/m3) of the bias is positive.A mean bias of 86.9% (<40 815 

μg/m3) is positive, and a median bias of 38.9% (<8 μg/m3) is positive. 16.4% of PM2.5 concentration 816 

is great than 45 μg/m3, and the mean bias is negative. 63.2% of PM2.5 concentration is great than 10 817 

μg/m3, and the median is negative. This resultIt indicates that the model overestimates at low 818 

pollution level concentrationsand underestimates at high pollution level. 819 

The bias for each region also increases with pollution level. For sites in the United States, the mean 820 

bias of 92.169.4% is positive and less than 0.82 μg/m3, and the PM2.5 concentration is less than 10 821 

μg/m3. When the PM2.5 concentration is greater than 10 μg/m3, the mean bias is negative. . A total 822 

of 69.1% (<10 μg/m3) are positive. For sites in Canada, the mean bias of 82.574.1% is positive and 823 

less than 2 0.7 μg/m3. When the PM2.5 concentration is greater than 8 μg/m3, the mean bias is 824 

negative. A total of 73.3% are positive (<8 μg/m3). Among the data (<8 μg/m3), 57.9% of the median 825 

is positive. For sites in Europe, the mean bias of 64.87.1% is positive and is less than 2 0.9 μg/m3, 826 

and 69.8% is positive. When the PM2.5 concentration is greater than 15 μg/m3, the mean bias is 827 

negative.A total of 49.0% of the median is positive. For sites in China, 81.867.7% of the bias is 828 

positive and less than 2.75 μg/m3
, .and 68.9% (<45 μg/m3) is positive. When the PM2.5 concentration 829 

is greater than 45 μg/m3, the mean bias is negative.A total of 48.0% (<30 μg/m3) of the median is 830 

positive. For sites in India, 80.51% of the bias is positive and less than 84.2 μg/m3, and when the 831 

PM2.5 concentration is greater than 100 μg/m3, the mean bias is negative.73.5% (<80 μg/m3) is 832 

positive. When the PM2.5 concentration is greater than 60 μg/m3, the bias median is negative, with 833 

a percentage of 40.3%. A total of 52.6% (<60 μg/m3) of the median values are positive.The 834 

uncertainty in each region is similar, and the uncertainty increases as the pollution level increases. 835 



 836 

 837 

Figure 6.8 Boxplots of the pollution level and bias (predicted PM2.5 concentration - monitored PM2.5 838 

concentration) for all sites (a), sites in the United States (b), Canada (c), Europe (d), China (e), and 839 

India (f). The box's upper and lower limits represent ± 1 standard deviation, the whiskers represent 840 

2 times the standard deviation, the red circle represents the median, and the short line represents the 841 

mean bias. The frequency (%) on the right y-axis represents the percentage of data with different 842 

pollution levels (dashed line). 843 



3.4.2 Uncertainty in the Station Elevation 844 

With the spatial variability in PM2.5 concentration, we analyze the mean bias at different visibility 845 

station elevations. Figure 9 7 shows the relationships between the elevations of the visibility stations 846 

and the bias. The bias exhibits variations across different elevations for all sitesstations. The mean 847 

bias of all sites ranges from -0.04 to 0.02 μg/m3. A total of 88.590.1% of the datastations have has 848 

positive mean biases. The median of the bias is almost positive, with a positive bias of 99.5% 849 

stations, except for the elevation at 4 km. TheA elevations total of 8986.5% of the data stations are 850 

at an elevation ofless than 1 km, with a positive median of the bias. The mean bias ranges from -0.1 851 

to 0.5 μg/m3. High uncertainties in bias occur at elevations below of 0.052 km, 0.4-0.52 km, and 1-852 

30.3 km. A total of 88.5% of the data have positive mean biases. Negative biases are observed at 853 

elevations of 0.6-0.80.4 km, 3 0.9-1 km, and 54 km. A total of 57.7% of the data have a positive 854 

median. This finding indicates a nonsignificant overestimation of the predicted PM2.5 concentration 855 

due to the various elevations. 856 

The bias patterns vary across regions. For the United States, a total of 88.8% of the stations have 857 

negative biases. The median of the bias is negative with a percentage of 63.4%. High uncertainties 858 

in bias occur at elevations of 0.05 km, 2 km, and 0.3 km92.8% of the data correspond to elevations 859 

below 1 km. The mean bias ranges from -0.1 to 0.5 μg/m3. A total of 88.8% of the mean biases are 860 

positive, and the median of 99% is positive. For Canada, 52.3% of the stations have positive biases. 861 

The median of the bias is negative with a percentage of 33.8%. High uncertainties in bias occur at 862 

elevations of 0.05 km and 1 km90.1% of the data correspond to elevations below 1 km. The mean 863 

bias ranges from -0.1 to 0.2. A total of 46.5% of the mean bias is positive, and the median is positive 864 

except at elevations of 0.7 km and 4 km. A higher uncertainty in the bias occurs at elevations ranging 865 

from 0.5-0.8 km. For Europe, 58.9% of the stations have positive biases. The median of the bias is 866 

negative with a percentage of 40.2%. High uncertainties in bias occur at elevations of 0.05 km and 867 

0.9 km92.9% of the data correspond to elevations below 1 km. The bias ranges from -0.2 to 0.2 868 

μg/m3. A total of 62.7% of the mean bias is negative, and the median is positive. High standard 869 

deviations are observed at elevations of 0.2 km, 0.05 km, and 0.5-0.6 km. A significant bias occurs 870 

at 0.6 km. For China, 76.7% of the stations have negative biases. The median of the bias is negative 871 

with a percentage of 54.1%. High uncertainties in bias occur at elevations of 0.05 km, 0.5 km and 3 872 

km.81.9% of the data correspond to elevations below 0.5 km. The median is positive, and the mean 873 

bias is positive except at 0.1 km. The lowest standard deviation occurs at an elevation of 0.3 km. 874 

For India, 68.1% of the stations have positive biases. The median of the bias is negative with a 875 

percentage of 63.8%. The elevation of most stations with a high uncertainty is at 0.05 km. High 876 

uncertainties in bias occur at elevations of 0.1 km and 3 km.the mean bias ranges from -0.3 to 0.9 877 

μg/m3. The highest bias occurs at an elevation of 0.3 km. There is a negative mean bias in the range 878 

of 0.1-0.4 km. The medians are positive except at an elevation of 0.4 km. More stations with 879 

negative bias are in the United States and China. More stations with positive bias are in Canada, 880 

Europe and India.  881 
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 883 

Figure 7.9 Boxplots of the bias (predicted PM2.5 concentration - monitored PM2.5 concentration) 884 

and the elevation of the visibility station and bias (predicted PM2.5 - monitored PM2.5) for all sites 885 

(a), sites in the United States (b), Canada (c), Europe (d), China (e), and India (f). The box's upper 886 

and lower limits represent ± 1 standard deviation, the whiskers represent 2 times the standard 887 

deviation, the red circle represents the median, and the short line represents the mean bias. The 888 

station number frequency (%) on the right y-axis represents the percentage of data station number 889 

at different elevations pollution levels (dashed line). 890 

3.4.3 Uncertainty in the Station Distance 891 



As the visibility stations and PM2.5 sites are not collocated, we analyze the PM2.5  mean bias of 892 

PM2.5 concentration at different distances, as shown in. Figure 108. shows the distance between the 893 

visibility of the station and the PM2.5 site and bias. For all sites, 86.1% of the stations have negative 894 

biases. The median of the bias is negative with a percentage of 70.8%. More stations have a negative 895 

bias caused by the distance. Tthe uncertainty has no signification with the distance. The distances 896 

with low uncertainties are at 1 km and 20-40 km. The distances with high uncertainties are at 5 km 897 

and 60 km.standard deviation gradually increases with distance, indicating an increase in 898 

uncertainty with increasing distance. Except at distances of 0.05° and 1°, the mean bias is positive. 899 

The median is positive.  900 

For the United States, 63.1% of the stations have negative biases. The median of the bias is negative 901 

with a percentage of 69.2%. The distance with the lowest uncertainty is at 1 km. The distances with 902 

high uncertainties are at 5 km and 60 km. For Canada, 60.0% of the stations have positive biases. 903 

The median of the bias is positive with a percentage of 80.0%. The uncertainty shows an increase 904 

with the distance increasing. For Europe,72.7% of the stations have negative biases. The median of 905 

the bias is positive with a percentage of 67.1%. When the distance is less than 10 km, the uncertainty 906 

increases with the distance. The distances with low uncertainties are at 1 km and 30-40 km. The 907 

distances with high uncertainties are at 10 km and 75 km. For China, 64.3% of the stations have 908 

negative biases. The median of the bias is negative with a percentage of 72.7%. The distance with a 909 

low uncertainty is at 30 km. The distance with a high uncertainty is at 60 km. For India, 62.3% of 910 

the stations have negative biases. The median of the bias is positive with a percentage of 59.1%. 911 

The distance with the lowest uncertainty is at 30 km. The distance with the highest uncertainty is at 912 

20 km. 913 

More visibility stations have negative biases, except for the stations in Canada. For the stations in 914 

the United States, Canada and Europe, the lowest uncertainty is at 1 km. For the stations in China 915 

and India, the uncertainty has no significant relationship with distance, though the distance has 916 

caused a negative bias.For each region, the distance of the largest average bias is 3° in the United 917 

States, 3° in Canada, 0.8° in Europe, 10° in China, and 0.4° in India. The distances are below 1° in 918 

the United States, Canada, Europe, and India, while they are 1-3° in China. This finding is due to 919 

the limited number of visibility sites in China. The mean bias exhibits greater uncertainties in China 920 

and India. 921 



 922 

 923 

Figure 10 8. Boxplots of the mean bias (predicted PM2.5 concentration - monitored PM2.5 924 

concentration) and the distance between the visibility station and the PM2.5 site and bias (predicted 925 

PM2.5 - monitored PM2.5) for all sites (a), sites in the United States (b), Canada (c), Europe (d), 926 

China (e), and India (f). The box's upper and lower limits represent ±1 standard deviation, the 927 

whiskers represent 2 times the standard deviation, the red circle represents the median, and the short 928 

line represents the mean bias. The frequency station number (%) on the right y-axis represents the 929 

percentage of data station number under different distancespollution levels (dashed line). 930 



3.4.4 Discussion on the Uncertainties and Limitations 931 

There are some uncertainties and limitations in this study. The upper limit of visibility and (PM2.5 932 

concentration) is 10 km (1000 μg/m3), which can cause some uncertainties in model traininging. 933 

The maximum distance for spatial matching between the visibility stations and PM2.5 monitoring 934 

sites is 100 km0° due to the spatial variability in aerosols, which may increase the uncertainty in the 935 

estimated PM2.5 concentration. The boundary layer height is closely related to the vertical structure 936 

of PM2.5, and reanalysis data may introduce uncertainty to the model. Because of the nonuniform 937 

vertical distribution of aerosols, the different elevations of the visibility stations and the PM2.5 938 

monitoring sites further increase the uncertainty in estimating PM2.5 concentration. In addition, the 939 

spatial coverage of visibility stations, especially in China and India, is still limited, which may 940 

increase the uncertainty in the representativeness of regional PM2.5 concentration trends and 941 

pollution levels. With the increasing human concern about of air pollution and the implementation 942 

of air pollution control measures, the types of major atmospheric pollutants may have changed at 943 

regional scale, the composition of particulate matter has also evolved, the scattering and absorption 944 

characteristics may have changed, and the relationship between visibility and PM2.5 concentration 945 

may change. These changes may lead to uncertaintiesy in estimating historical PM2.5 concentration,. 946 

It is challenging to validate by especially before 2000 (ground observations and satellite-based 947 

observations estimation prior to 2000are limited). Despite these limitations and challenges, we 948 

establish a long-term PM2.5 concentration dataset based on visibility from 1959 to 2022, which has 949 

been carefully validated and evaluated, providing insights into the long-term spatiotemporal 950 

characteristics of concentration PM2.5 in the Northern Hemisphere. 951 

4 Comparisons with Other PM2.5 Concentration Datasets 952 

We compare the daily and monthly estimated PM2.5 concentration with the LGHAP PM2.5 953 

concentration from 2000 to 2021 to further demonstrate the reliability the estimated PM2.5 954 

concentration. When comparing on the regional scale, we split the time range into 2000-2010 and 955 

2011-2021, to further validate the accuracy and consistency of estimated PM2.5 concentrations, as 956 

in some regions such as India and China, there are almost no continuous PM2.5 monitoring data 957 

before 2010. 958 

of those derived from a satellite AOD and two reanalysis datasets, including (1) ACAG, the monthly 959 

satellite-derived PM2.5 from 1998 to 2022 (Van Donkelaar et al., 2019; Hammer et al., 2020); (2) 960 

MERRA-2, the monthly PM2.5 from 1980 to 2022 (Buchard et al., 2016; Buchard et al., 2017; Gelaro 961 

et al., 2017); and (3) CAMS, the monthly PM2.5 from 2003 to 2022 (Inness et al., 2019). The time 962 

ranges for comparing the estimated PM2.5 with the ACAG, MERRA-2, and CAMS data are 1998-963 

2022, 1980-2022, and 2003-2022, respectively. The monthly average should meet a minimum 964 

requirement of at least ten days per month. 965 

4.1 Comparisons on the Daily ScaleMonthly Frequency and Annual Cycle of PM2.5 966 

We spatiotemporally match the LGHAP PM2.5 concentration with the estimated PM2.5 concentration. 967 

Figure 9 shows the density scatter plot between the estimated PM2.5 concentration and LGHAP 968 

PM2.5 concentration. There is a total of 96188682 pairs during the period of 2000 and 2021, 969 

46846389 pairs during the period from 2000 to 2010, and 49342302 during the period of 2011 and 970 

2021, with slopes of 0.817, 0.758 and 0.867. The intercepts are 6.928 μg/m3, 8.933 μg/m3, and 5.377 971 



μg/m3, respectively. The slope decreases before 2010, which may be related to the upper limit of 972 

LGHAP PM2.5 concentration with a significantly decreasing quantity of the concentration (> 300 973 

μg/m3). 974 

We further compare the PM2.5 concentrations of the annual calendar cycles on the regional scale in 975 

Figure 10. The PM2.5 concentration of each day is the mean of the PM2.5 concentrations at all sites 976 

in the region. The correlation coefficients of the PM2.5 concentrations are greater than 0.89 from 977 

2011 to 2021 and greater than 0.92 from 2000 to 2010. The correlation is greater in Europe, China, 978 

and India than in the United States and Canada. There is no significant difference in the variation of 979 

annual calendar cycles between two periods on the regional scale. In the United States, PM2.5 980 

concentration between 2000 and 2010 is more similar than the concentration between 2011 and 981 

2021, and the bias decreases. In Canada, the correlation coefficient increases, although the bias 982 

increases. In Europe, the correlation coefficient and bias increase. There are similar changes in 983 

China and India. The bias increases on days 1 to 60 and 300 to 366, but the correlation remains 984 

significant. The difference of PM2.5 concentration during the two periods is mainly reflected in the 985 

increasing bias in Canada and Europe, which is a non-seasonal bias and the increasing bias in winter 986 

in China and India, which is a seasonal bias. Overall, PM2.5 concentrations show a good consistency 987 

before and after 2010 on the daily scale. 988 

 989 

Figure 9. Density scatter plot between the estimated PM2.5 concentration (this study) and LGHAP 990 

PM2.5 concentration on the daily scale from 2000 to 2021 (a), from 2000 to 2010 (b) from 2011 to 991 

2021. The dashed black line is the linear regression line. N is the length of the data pairs, and Slope 992 

is the linear regression coefficient. Intercept represents the y-intercept. 993 



 994 

Figure 10. Comparison of annual calendar cycle of PM2.5 concentration on the regional scale from 995 

2011 to 2021 (left) and from 2000 to 2010 (right) between the estimated PM2.5 concentration (this 996 

study) and LGHAP PM2.5 concentration on the daily scale. ρ is the correlation coefficient. 997 

We compare the frequency of the estimated PM2.5 concentration at different pollution levels, with 998 

an interval of 1 μg/m3, with three other datasets. Figure 11 shows the monthly PM2.5 frequencies of 999 

the estimated, ACAG, MERRA-2, and CAMS datasets for all sites and regional sites. 1000 

Compared with the ACAG data, they exhibit similar frequency distributions. However, the 1001 

frequency of estimated PM2.5 concentrations is greater at high pollution levels at all sites. Regionally, 1002 

the frequency distributions are similar at different pollution levels in the United States and Canada. 1003 

In Europe, China, and India, the frequency of high concentrations is greater than that of the ACAG. 1004 



Compared with the MERRA-2 data, the frequency distribution of the estimated data is similar to 1005 

that of the ACAG for all the sites. Regionally, the frequency distributions of the estimates are 1006 

comparable in the United States and Canada. However, in Europe, China, and India, the differences 1007 

in the frequency of high pollution levels are greater than those in the ACAG. 1008 

Compared with the CAMS data, the frequency distributions at high pollution levels are similar, but 1009 

the frequency at high pollution levels is lower. Regionally, Europe differs from other regions, as the 1010 

frequency of high pollution levels is higher. 1011 

 1012 

Figure 11 Frequency (left axis) and cumulative frequency (right axis) of monthly PM2.5. The time 1013 

range of the estimated PM2.5 corresponds to the time range of the three datasets (ACAG from 1998 1014 

to 2022, MERRA-2 from 1980 to 2022, and CAMS from 2003 to 2022). The bins range from 0 to 1015 

500 μg/m3 with an interval of 1 μg/m3. 1016 

In Figure 12, we compare the multiyear monthly average PM2.5 concentration with that of the three 1017 

datasets. For all sites, the correlation coefficients between the estimated and ACAG, MERRA-2, 1018 

and CAMS data are 0.99, 0.42, and 0.93, respectively, and the average biases (average relative biases) 1019 

are 6.6 μg/m3 (26%), 14.1 μg/m3 (76%), and -19.1 μg/m3 (-37%), respectively. The estimated 1020 

multiyear average monthly PM2.5 concentrations are higher for ACAG and MERRA-2 and lower 1021 

for CAMS. The correlation coefficient is highest for ACAG and lowest for MERRA-2. 1022 

Compared with the ACAG data, the correlation coefficients are 0.97, 0.96, 0.98, 0.99, and 0.99, with 1023 



average biases (average relative biases) of 0.8 μg/m3 (9%), 0.5 μg/m3 (7%), 2.2 μg/m3 (16%), 10.8 1024 

μg/m3 (26%), and 31.4 μg/m3 (62%) in the United States, Canada, Europe, China, and India, 1025 

respectively. The annual variations in the two datasets are nearly consistent across all regions. The 1026 

bias is less than 10% for the United States and Canada, while India exhibits the largest bias. 1027 

Compared with the MERRA-2 data, the correlation coefficients are 0.30, 0.61, -0.25, 0.80, and 0.45, 1028 

with average biases (average relative biases) of 1.1 μg/m3 (16%), 0.2 μg/m3 (5%), 7.5 μg/m3 (67%), 1029 

24.1 μg/m3 (83%), and 56.1 μg/m3 (169%) in the United States, Canada, Europe, China, and India, 1030 

respectively. There are differences in the annual variations between the two datasets, particularly 1031 

during winter (November to January) and spring (February to March), in all regions. The largest 1032 

difference occurs in March and September to December in Europe, showing the opposite trend. The 1033 

highest correlation coefficient is observed in China, which has the second largest bias. The largest 1034 

bias is in India. 1035 

Compared with the CAMS data, the correlation coefficients are 0.29, 0.22, 0.02, 0.91, and 0.98, 1036 

with average biases (average relative biases) of -5.4 μg/m3 (-34%), -5.0 μg/m3 (-38%), 2.7 μg/m3 1037 

(21%), -38.7 μg/m3 (-42%), and -52.7 μg/m3 (-36%) in the United States, Canada, Europe, China, 1038 

and India, respectively. The annual variations between the CAMS and ACAG data are similar in 1039 

China and India but have more significant biases. The smallest differences in the United States and 1040 

Canada occur in January and December. In Europe, the months with more significant biases are 1041 

January to March and September to December, while biases are smaller in other months. 1042 

 1043 



Figure 12 Multiyear monthly average PM2.5 of our data and the three datasets. The time range of 1044 

the estimated PM2.5 corresponds to the time range of the three datasets (ACAG data from 1998 to 1045 

2022, MERRA-2 data from 1980 to 2022, and CAMS data from 2003 to 2022). 1046 

4.2 Comparisons on the Monthly ScaleTime Series at the Annual Scale 1047 

Figure 11 shows the density scatter plot between the estimated PM2.5 concentration and LGHAP 1048 

PM2.5 concentration on the monthly scale. The monthly PM2.5 concentration is calculated by the 1049 

matched daily concentrations. There is a total of 3296739 pairs during the period from 2000 to 2021, 1050 

1582161 pairs during the period from 2000 to 2010, and 1714578 during the period from 2011 to 1051 

2021, with slopes of 0.857, 0.821 and 0.879. The intercepts are 6.774 μg/m3, 8.716 μg/m3, and 5.272 1052 

μg/m3, respectively. The slope of monthly concentration significantly improves before 2010, and 1053 

slightly increases after 2010 compared to the daily scale. 1054 

We also compare the PM2.5 concentrations of the annual cycles on the regional scale in Figure 12. 1055 

The PM2.5 concentration of each month is the mean of the PM2.5 concentrations at all sites in the 1056 

region. The correlation coefficients of the PM2.5 concentrations are greater than 0.92 from 2011 to 1057 

2021 and greater than 0.87 from 2000 to 2010. In the United States, the PM2.5 concentrations before 1058 

2010 are closer compared to those after 2010, except in April and August, and the biases in other 1059 

months has significantly decreased. In Europe and Canada, the biases have increased. In China, the 1060 

result is similar with the result on the daily scale. In India, the performance of the two is almost 1061 

consistent, with a correlation coefficient of 0.99 and 0.96. The two datasets have a very high 1062 

similarity in annual cycles, indicating that the estimated PM2.5 concentration in this study is accurate 1063 

and consistent before and after 2010. 1064 

 1065 

Figure 11. Density scatter plot between the estimated PM2.5 concentration (this study) and LGHAP 1066 

PM2.5 concentration on the monthly scale from 2000 to 2021 (a), from 2000 to 2010 (b) from 2011 1067 

to 2021. The dashed black line is the linear regression line. N is the length of the data pairs, and 1068 

Slope is the linear regression coefficient. Intercept represents the y-intercept. 1069 



 1070 

Figure 12. Comparison of annual cycle of monthly PM2.5 concentration on the regional scale from 1071 

2011 to 2021 (left) and from 2000 to 2010 (right) between the estimated PM2.5 concentration (this 1072 

study) and LGHAP PM2.5 concentration on the daily scale. ρ is the correlation coefficient. 1073 

Figure 13 shows the annual average PM2.5 concentration from 1959 to 2022 in different regions, 1074 

along with a comparison to the PM2.5 concentrations derived from other datasets. Another dataset is 1075 

used for comparison in China: the monthly PM2.5 of the CHAP from 2000 to 2021 (Wei et al., 2020b; 1076 

Wei et al., 2021). We use correlation coefficients, mean bias and mean relative bias to compare the 1077 

relationships and differences among the PM2.5 datasets. 1078 

In the United States, the estimated PM2.5 concentrations exhibit correlation coefficients of 0.96, 0.88, 1079 

and -0.38 with the ACAG, CAMS, and MERRA-2 data, respectively; the mean bias (mean relative 1080 

bias) is 0.8 (10%), -5.4 (-35%), and 1.1 (13%) for each dataset, respectively. 1081 

In Canada, the estimated PM2.5 concentrations exhibit correlation coefficients of 0.84, 0.62, and -1082 

0.46 with the ACAG, CAMS, and MERRA-2 data, respectively; the mean bias (mean relative bias) 1083 

is 0.5 μg/m3 (7%), -5.1 μg/m3 (-40%), and 0.2 μg/m3 (6%) for each dataset, respectively. 1084 



In Europe, the estimated PM2.5 concentrations exhibit correlation coefficients of 0.96, 0.96, and 0.76 1085 

with the ACAG, CAMS, and MERRA-2 data, respectively; the mean bias (mean relative bias) is 2.3 1086 

μg/m3 (15%), 2.6 μg/m3 (20%), and 7.5 μg/m3 (66%) for each dataset, respectively. 1087 

In China, the estimated PM2.5 concentrations exhibit correlation coefficients of 0.78, 0.98, 0.81, and 1088 

0.51 with the ACAG, CHAP, CAMS, and MERRA-2 data, respectively; the mean bias (mean 1089 

relative bias) is 10.7 μg/m3 (24%), 2.5 μg/m3 (4%), -39.1 μg/m3 (-42%), and 24 μg/m3 (90%) for 1090 

each dataset, respectively. 1091 

In India, the estimated PM2.5 concentrations exhibit correlation coefficients of -0.3, -0.02, and -0.09 1092 

with the ACAG, CAMS, and MERRA-2 data, respectively; the mean bias (mean relative bias) is 1093 

29.9 μg/m3 (53%), -58.9 μg/m3 (-40%), and 56.1 μg/m3 (203%) for each dataset, respectively. From 1094 

2013 to 2022, the correlation coefficients with the ACAG and CAMS data are 0.71 and 0.70, 1095 

respectively. The trend of visibility declines from 1961 to 2008. The frequency of visibility 1096 

(exceeding 10 km) in the afternoon decreases by 46%, and the frequency of visibility (below 4 km) 1097 

in the morning increases by 21% (Jaswal et al., 2013), particularly in the central and northern regions. 1098 

The low cloud cover significantly increases from 1960 to 2010 in the Indo-Gangetic Plain and the 1099 

northwestern and eastern coasts of India (Jaswal et al., 2017). The average total cloud cover is 3.4 1100 

okta from 1960 to 2007, with a decrease of 0.07 okta/decade (Jaswal, 2010). However, the indirect 1101 

impact of aerosols on cloud formation do not influence cloud cover (Ramanathan et al., 2005). The 1102 

prevalence of clouds poses challenges for satellite retrievals in these areas, potentially contributing 1103 

to substantial disparities between PM2.5 concentrations estimated based on visibility and satellite 1104 

retrievals. The CAMS reanalysis data are calibrated using satellite data  and thus show consistency 1105 

with the trend in AOD retrievals from satellites; the anthropogenic emission data are from the 1106 

MACCity inventory (Inness et al., 2019), and there are significant variations among different 1107 

anthropogenic emission inventories, particularly before 2010, which leads to substantial 1108 

uncertainties in India (Granier et al., 2011; Liu et al., 2022). These issues exist to a greater or lesser 1109 

extent in other regions, which may contribute to the increased disparities between estimated PM2.5 1110 

and reanalysis data before 2012. 1111 



 1112 

Figure 13 Annual mean PM2.5 concentration from 1959 to 2022 in the United States (US) (a), 1113 

Canada (b), Europe (c), China (d), and India (e). The other four datasets are ACAG from 1998 to 1114 

2022, CHAP from 2000 to 2021, MERRA-2 from 1980 to 2022, and CAMS from 2003 to 2022. 1115 

4.3 Discussion on the Differences among the of PM2.5 ConcentrationDatasets from Visibility 1116 

and Aerosol Optical Depth 1117 

Both visibility and aerosol optical depth are excellent alternatives for estimating PM2.5 concentration, 1118 

with its own advantages. However, they have differences in principle, which may be the reason for 1119 

the difference between the two datasets in comparison. 1120 

Fine particulate matter near the ground surface affects atmospheric visibility through scattering. 1121 

Studies have shown PM2.5 is considered a pollutant that decreases visibility. There is visibility has 1122 

a negative correlation between visibility andwith PM2.5 concentration, and the reciprocal of visibility 1123 

has a positive correlation withis proportional to the extinction coefficient and has a negative 1124 

correlation, which is closely related to with the concentration of particulate matter concentration 1125 

(Wang et al., 2012; Zhang et al., 2017; Zhang et al., 2020). Therefore, Prior to the widespread 1126 

implementation of PM2.5 measurements or lack of measurement of particulate matter, visibility is 1127 

often used as a proxy for particulate matter pollution (Huang et al., 2009; Singh et al., 2020) and i. 1128 

It is the basis for using visibility to estimate PM2.5 concentration. In addition, sStudies have shown 1129 

that meteorological observations such as temperature and humidity also play an important role in 1130 

estimating PM2.5 concentration using visibility (Shen et al., 2016; Xue et al., 2019; Zhong et al., 1131 

2021). Therefore, when estimating PM2.5 concentration based on visibility data, only conventional 1132 

meteorological variables need to be added, which is convenient and accurate observational data. 1133 



Besides, the The long-term, complete and high-temporal advantages of ground-based visibility and 1134 

other meteorological variables observations are the advantage of historical estimation of PM2.5 1135 

concentration. include long-term records, high temporal resolution, and good data completeness, 1136 

and the visibility observations from airports can be traced back to 1959 in this study. The daily mean 1137 

from continuous or equidistant hourly observations greatly increases the daily 1138 

representativeness.Therefore, we employ a machine learning approach to establish the relationship 1139 

between PM2.5 and visibility and other meteorological variables, and estimate the long-term 1140 

historical PM2.5 concentration from 1959 to 2022, and discuss the limitations and uncertainties. It 1141 

should be noted that not all sites of PM2.5 have the time range from 1959 to 2022, which depends 1142 

on the record length of matched visibility station. 1143 

There are differences between PM2.5 based on visibility, PM2.5 based on satellite retrievals, and 1144 

PM2.5 of reanalysis. The aerosol optical depth is a physical quantity that describes aerosol column 1145 

properties, which is the integration of the extinction coefficient in the vertical direction. When 1146 

establishing a connection between aerosol optical depth and near-ground PM2.5 concentration, it is 1147 

essential to consider the vertical structure of aerosols. Studies have shown that PM2.5 based on 1148 

satellite retrievals typically requires consideration ofthe aerosol vertical profiles usually are 1149 

provided by observations, assumptions, or chemical transport models to obtain the aerosol 1150 

properties near the surface (Van Donkelaar et al., 2010; Wei et al., 2019b; Van Donkelaar et al., 1151 

2021). Van Donkelaar et al. (2006; 2010) (!!! INVALID CITATION !!! (2006; 2010)) have 1152 

demonstrated that aerosol vertical profile errors in chemical transport models and aerosol optical 1153 

depth AOD retrieval and sampling result in an approximately 25% uncertainty of one standard 1154 

deviation. Sensitivity testing shows that a 1% estimation error in the aerosol optical depth AOD can 1155 

lead to a 0.27% estimation error in the PM2.5 concentration (Wei et al., 2021). Besides, the retrieval 1156 

of aerosol optical depth Visibility is a near-surface observation that is not affected by clouds or 1157 

surface types and a finite number of daily observations (usually 1-2 times), though it has the 1158 

advantage of high spatial coverage has high temporal resolution (Liu et al., 2017; Singh et al., 2020; 1159 

Zhong et al., 2021). PM2.5 from reanalysis usually requires accurate meteorological fields and 1160 

emission inventories. Although ERA5 has provided meteorological reanalysis since 1940, the 1161 

historical emission inventories and physical-chemical mechanisms in the chemical transport model 1162 

still have significant uncertainties, which increase the uncertainty in particulate matter concentration. 1163 

Additionally, the assimilated data in reanalysis mainly consist of satellite AOD and ground-based 1164 

AOD, aiming to improve column aerosol properties, without considering near-surface PM2.5 1165 

(Buchard et al., 2017; Gelaro et al., 2017; Provençal et al., 2017; Huijnen et al., 2019; Inness et al., 1166 

2019; Ali et al., 2022). These factors contribute to the differences in estimating PM2.5 concentration 1167 

among the three methods. 1168 

Another difference is the upper limit of PM2.5 concentration. In this study, the upper limit of the 1169 

estimated daily PM2.5 concentration is set to 1000 μg/m3 (the same for input data). because When 1170 

the PM2.5 concentration is greater than 500 μg/m3 during heavy pollution weather, which may 1171 

contribute to the higher frequency at high pollution levels than in the other LGHAP dataset,s.  1172 

especially before 2010. Visibility is a near-surface observation that is not affected by clouds or 1173 

surface types and has high temporal resolution (Liu et al., 2017; Singh et al., 2020; Zhong et al., 1174 

2021). In section 3.4, the uncertainty analysis provides an explanation for the overestimation.We do 1175 

not delete remove visibility records during sand and dust weather when preprocessing the data, 1176 



which may lead to an overestimation of PM2.5 concentration in dusty areas, such as northern China 1177 

and northwestern India. Visibility is a near-surface observation that is not affected by clouds or 1178 

surface types and has high temporal resolution (Liu et al., 2017; Singh et al., 2020; Zhong et al., 1179 

2021). In section 3.4, the uncertainty analysis has provided an explanation for the overestimation.  1180 

The frequency and monthly/annual variations in our data are consistent with those of PM2.5 based 1181 

on satellite retrievals (ACAG and CHAP). The concentration level is higher than in those datasets 1182 

because their upper limits are lower. The AOD is a physical quantity that describes the properties of 1183 

aerosol columns. It is important to consider the vertical structure of aerosols when establishing a 1184 

connection between AOD and near-ground PM2.5. Van Donkelaar et al. (2006; 2010) demonstrated 1185 

that aerosol vertical profile errors in chemical transport models and AOD retrieval and sampling 1186 

result in an approximately 25% uncertainty of one standard deviation. Sensitivity testing shows that 1187 

a 1% estimation error in the AOD can lead to a 0.27% estimation error in the PM2.5 concentration 1188 

(Wei et al., 2021). Visibility is a near-surface observation that is not affected by clouds or surface 1189 

types and has high temporal resolution (Liu et al., 2017; Singh et al., 2020; Zhong et al., 2021). In 1190 

section 3.4, the uncertainty analysis provides an explanation for the overestimation. 1191 

In section 2.6.3, we introduce the chemical model, emission, and assimilation of MERRA-2. The 1192 

PM2.5 concentration from MERRA-2 does not include nitrates, and the assimilation of AOD mainly 1193 

provides constraints on aerosols after 2000 (Buchard et al., 2016; Randles et al., 2017; Ali et al., 1194 

2022). The lack of nitrate is a limitation in areas with high nitrate concentrations. For example, an 1195 

extreme pollution event over China in January 2013 is not captured well (Buchard et al., 2017). Ali 1196 

et al. (2022) used 1.4 × [SO4
2-] to represent nitrate concentration, and the results showed a 1197 

correlation coefficient of 0.55 with the observed PM2.5. Compared to the ACAG over the United 1198 

States, which has a low nitrate concentration, the MERRA-2 surface PM2.5 concentration is greater 1199 

in rural areas than in urban and suburban areas, with high and localized emissions reducing the 1200 

representation of the grid mean PM2.5 (Buchard et al., 2017). Therefore, the lack of nitrate and 1201 

insufficient assimilation data are the key factors leading to the significant differences between the 1202 

two datasets. 1203 

In section 2.6.4, we introduce the CAMS PM2.5. The PM2.5 concentration from CAMS is 1204 

significantly greater than the estimated PM2.5 concentration and follows a similar annual cycle, 1205 

except in Europe. In Europe, the CO and NO2 concentrations in CAMS are lower than those in 1206 

winter (Flemming et al., 2015), which may lead to the underestimation of nitrate emissions and its 1207 

precursors, resulting in the underestimation of PM2.5 concentrations. Some studies have reported 1208 

similar results (Kong et al., 2021; Ryu and Min, 2021; Ali et al., 2022; Jin et al., 2022). This finding 1209 

may be related to the vertical section structure, composition, and microphysical properties of 1210 

aerosols (Ali et al., 2022). Because NO2 emissions are obtained by multiplying CO emissions by a 1211 

factor of 0.2, the uncertainty in nitrate increases. Studies have shown that the uncertainties in 1212 

MACCity (Huijnen et al., 2019) and dust (Ukhov et al., 2020) also cause overestimation in CAMS 1213 

PM2.5. 1214 

Overall, our PM2.5 concentration dataset has a good consistency with PM2.5 concentration based on 1215 

aerosol optical depthsatellite AOD data. There are some differences in the reanalysis PM2.5 1216 

concentrations. We also hope that our dataset can provide auxiliary support for reanalysis datasets. 1217 

5 PM2.5 Variability from 1959 to 2022Regional Trends and Spatial Patterns 1218 



We use the estimated PM2.5 concentrations (at least 10-day records in a site) to calculate monthly 1219 

PM2.5 concentrations, and analyze the annual cycles, interannual trends, and spatial patterns of PM2.5 1220 

concentrations in different regions based on the GAMM model. The annual variation comes from 1221 

the monthly smooth term of GAMM, the interannual variation comes from the annual smooth term, 1222 

and the spatial pattern comes from the spatial smooth term. The regions include Canada, the United 1223 

States, Europe, China, and India. The results are shown in Figure 13. The trend from 1959 to 2022 1224 

in each region is the slope of the Sen-Theil (ST Slope) estimators (Sen, 1968; Theil, 1992), and 1225 

Mann-Kendall test (Mann, 1945; Kendall, 1948) is used to calculate the significance of the trend. 1226 

The test results show the p-values are all less than 0.01 in all regions. 1227 

5.1 Monthly PM2.5 and Trend 1228 

In the United States, the annual cycle curve shows that the PM2.5 concentration is a 'double peaks 1229 

and double valleys' shape. The peaks occur in July and December, respectively, with the highest 1230 

PM2.5 concentration in July throughout the year. The valley values are in April and October, and the 1231 

PM2.5 concentration levels are equivalent. The trend is -0.40 μg/m3/decade, and PM2.5 concentration 1232 

decreases significantly after 1992, with a trend of -1.39 μg/m3/decade. The high PM2.5 concentration 1233 

areas are in the east and west. The areas with low PM2.5 concentrations are mainly located in the 1234 

central and northern regions. The high concentration in the eastern and western regions is related to 1235 

extensive industrial activities and densely populated cities. The low concentration in the central and 1236 

northern regions is relatively to high vegetation coverage, low industrial activity and low population 1237 

density. 1238 

In Canada, the annual cycle curve also shows that the PM2.5 concentration is a 'double peaks and 1239 

double valleys' shape. The peak values occur in August and February, with the highest PM2.5 1240 

concentration in August. The valley values are in April and October. The trend is -0.10 μg/m3/decade, 1241 

and PM2.5 concentration increases after 2010. The PM2.5 concentration exhibits an east-high to west-1242 

low pattern. The eastern regions, such as Ontario and Quebec, are characterized by high population 1243 

density and significant industrial and transportation activities. 1244 

In Europe, the annual cycle of PM2.5 concentration shows that the PM2.5 concentration is the highest 1245 

in February, and is low from May to September. The valley values are in April and October. The 1246 

trend is -1.55 μg/m3/decade. High concentration areas are distributed in eastern Europe, while low 1247 

concentration areas are in northern and western Europe. Eastern Europe exhibits more 1248 

industrialization, particularly with a prevalence of traditional heavy industries and the use of coal 1249 

and other high-pollution energy sources. In contrast, the energy structure in western Europe tends 1250 

to favor cleaner energy sources. 1251 

In China, the annual cycle curve of PM2.5 concentration presents a V-liked shape. It indicates that 1252 

high concentrations are in winter, while low concentrations are in summer. The trend is 2.09 1253 

μg/m3/decade. The trend is 2.65 μg/m3/decade from 1959 to 2011 and -22.23 μg/m3/decade from 1254 

2012 to 2022. High concentration areas are distributed in northern China, such as North China Plain, 1255 

Northeast China, Sichuan Basin, Taklimakan Desert, and Badain Jaran Desert. Low concentration 1256 

areas are in southern China and Northern Tianshan Mountains. Besides dust, industrial activities 1257 

and coal combustion for heating during winter are significant contributors to the PM2.5 concentration 1258 

in northern regions. 1259 



In India, the annual cycle curve of PM2.5 concentration also presents a V-liked shape. High 1260 

concentrations are in winter, and low concentrations are in summer. The trend is 0.92 μg/m3/decade. 1261 

The trend is 1.41 μg/m3/decade from 1959 to 2013 and -23.36 μg/m3/decade from 2014 to 2022. 1262 

Some studies have shown that the PM2.5 concentration in India has decreased since 2014, especially 1263 

in northern cities. Singh et al. (2021) have found that five major cities in India show a downward 1264 

trend from 2014 to 2019, with the largest decline of approximately -4.2 μg/m3 per year in New Delhi. 1265 

Ravindra et al. (2024) also finds that the trend in New Delhi is about -5 μg/m3 per year from 2014 1266 

to 2020. These studies have shown a faster downward trend than our study, as these PM2.5 1267 

monitoring sites are mainly concentrated in urban areas. The PM2.5 concentration exhibits a north-1268 

high to south-low pattern. High concentration areas are distributed in northern India, such as Ganges 1269 

Plain and Thar Desert, because there are more industrial and densely populated areas and the terrain 1270 

leads to the retention of air pollutants. Low concentration areas are in Deccan Plateau.  1271 

Figure 14 (a) shows the frequency of the estimated monthly PM2.5 from 1959 to 2022, and Table 3 1272 

lists the maximum frequency for each region. The order of the concentrations with the greatest 1273 

frequency was Canada (8 μg/m3), the United States (12 μg/m3), Europe (18 μg/m3), China (42 μg/m3) 1274 

and India (64 μg/m3). Canada and the United States are areas with less frequent PM2.5 pollution. 1275 

PM2.5 pollution occurs frequently in China and India. Above all, The results indicate that the PM2.5 1276 

concentrations in developed countries and regions are significantly lower than those in developing 1277 

countries in the Northern Hemisphere.  1278 

Figure 14 (b-f) shows the anomalies of the estimated monthly PM2.5 concentration from 1959 to 1279 

2022, and Table 3 lists the trends for each region. The trends in each region from 1959 to 2022 are 1280 

all negative; however, the trend in India does not pass the significance test (p>0.05). The fastest 1281 

downward trend is in Europe, at -1.93 μg/m3/decade. The trends in different regions vary at different 1282 

times. Positive trends are detected in the United States from 1959 to 1990, in Canada from 1959 to 1283 

1993, and in China and India from 1959 to 2012. The most rapid upward trend is observed in India, 1284 

at 3.35 μg/m3/decade from 1959 to 2012. Negative trends are detected in the United States from 1285 

1991 to 2022, in Europe from 1959 to 1972 and from 1973 to 2022, and in China and India from 1286 

2013 to 2022. The most significant downward trend is observed in India, at -42.84 μg/m3/decade. 1287 

These Rregional trends are similar to with those of previous studies in different periods (Van 1288 

Donkelaar et al., 2010; Wang et al., 2012; Boys et al., 2014; Ma et al., 2016; Li et al., 2017; Hammer 1289 

et al., 2020).  1290 

The trends in PM2.5 concentration changes in different regions are closely associated with the 1291 

implementation of relevant policies. The earlier pollution control measures are taken, the earlier the 1292 

decreasing trend in the PM2.5 concentration occurs, and the lower the threat of particulate matter 1293 

pollution is to humans. In 1997, the United States  EPA classified PM2.5 as a hazardous substance 1294 

in the National Ambient Air Quality Standard, and subsequent regulations in 2006 further 1295 

strengthened the source control and management of fine particulate matter (Hall and Gilliam, 2016). 1296 

In 1988, the Canadian federal government enacted the Canadian Environmental Protection Act, 1297 

which enhanced the regulation of PM2.5 (Davies, 1988). The European Union introduced the Air 1298 

Quality Directive in 1996, followed by multiple revisions and updateds to regulate and restrict air 1299 

pollutants, including PM2.5 (Kuklinska et al., 2015). However, Europe stands out due to its early 1300 

adoption of clean production practices in heavy industries since the 1970s. Since 2012, China has 1301 

implemented numerous regulations and standards for PM2.5. For instance, the Monitoring Method 1302 



for Atmospheric Particulate Matter (PM2.5) was issued in 2012, and the Chinese Ministry of 1303 

Environmental Protection released the Ambient Air Quality Standards in 2013, which includinge 1304 

emission standards for PM2.5 (Zhao et al., 2016a). In 2009, the Indian Ministry of Environment and 1305 

Forests issued the National Ambient Air Quality Standards, which include control standards for air 1306 

pollutants, including PM2.5. Since 2015, the Indian government has launched the National Clean Air 1307 

Programme (NCAP) to improve air quality in India by implementing a series of measures to reduce 1308 

the emissions of PM2.5 and other pollutants (Ganguly et al., 2020). These environmental regulations 1309 

have contributed significantly to the decline in of PM2.5 concentrations. Some studies have shown 1310 

that the variation of PM2.5 concentrations is also related to several factors, such as the energy 1311 

structure, urbanization process, population distribution and vegetation coverage (Shi et al., 2018; 1312 

Wu et al., 2018; Li et al., 2019; Wang et al., 2019; Lim et al., 2020; Qi et al., 2023).(2021; 2024) 1313 

 1314 

Figure 13. Annual cycles, interannual trends and spatial patterns of PM2.5 concentrations in the 1315 

United States (a1-a3), Canada (b1-b3), Europe (c1-c3), China (d1-d3), and India (e1-e3). The left 1316 

column 'f(month)' is the annual cycle, the middle column 'f(year)' is the interannual trend, and the 1317 

right column 'f(spatial)' is the spatial distribution from Generalized Additive Mixed Model 1318 

(GAMM). The blue dashed lines represent ± 1 standard error of the month and annual mean of PM2.5 1319 

concentrations. The red or black dashed lines represent the trends of the Sen-Theil estimators (ST 1320 

Slope). Mann-Kendall test of trends shows that the p-values are less than 0.01 in all regions. The 1321 

scatter points in right column are the locations of PM2.5 monitoring sites. 1322 

 1323 



 1324 

Figure 14 Frequency (a) and anomalies (b-f) of monthly PM2.5 from 1959 to 2022 in the United 1325 

States (the US), Canada, Europe, China, and India. The right Y-axis (b-f) is the monthly number of 1326 

sites. 1327 

Table 3 The frequency and trend of the monthly PM2.5 concentration from 1959 to 2022 in the 1328 

United States (the US), Canada, Europe, China and India. 1329 
 

Concentration Mode (μg/m3) 
and maximum frequency (%) 

Trend 
(μg/m3/decade) 

the US 12 (24.3%) 
-0.52* 

(1959-2022) 

0.38* 

(1959-1990) 

-1.32*  

(1991-2022) 

Canada 8 (33.5%) 
-0.28* 

(1959-2022) 

-0.11* 

(1959-1993) 

-6.48 * 

(1994-2022） 

Europe 18 (19.4%) 
-1.93 * 

(1959-2022) 

5.69 * 

(1959-1972) 

-1.91* 

(1973-2022) 

China 42 (11.9%) 
-0.89*  

(1959-2022) 

3.04 * 

(1959-2012) 

-38.82*  

(2013-2022) 

India 64 (9.1%) 
-0.31 

(1959-2022) 

3.35* 

(1959-2012) 

-42.84* 

(2013-2022) 

The symbol * indicates passing the significance test, p<0.01; otherwise, not passing the significance 1330 

test, p>0.05. 1331 

5.2 Annual PM2.5 and Distribution 1332 

We analyze the spatial distribution of the multiyear average PM2.5 concentration in each region, and 1333 

we investigate the yearly variations in the spatial distribution based on the SDE and the average 1334 

center, as shown in Figure 15. The mean center and SDE describe the periodic changes in the spatial 1335 

distribution and dispersion of the PM2.5 concentration in each region. The larger the ellipse area is, 1336 

the more dispersed the spatial distribution of PM2.5 is. The flatter the ellipse is, the stronger the 1337 



spatial correlation of PM2.5, and the direction of the major axis indicates the direction of the 1338 

concentration. 1339 

The multiyear average PM2.5 concentrations from 1959 to 2022 are 11.2 μg/m3 in the United States, 1340 

8.2 μg/m3 in Canada, 20.1 μg/m3 in Europe, 51.3 μg/m in China, and 88.6 μg/m3 in India. PM2.5 1341 

concentrations in developed regions (North America and Europe) are significantly lower than those 1342 

in developing regions (China and India). 1343 

For the United States, the concentration in the eastern region is greater than that in the western 1344 

region. The PM2.5 concentration at most sites in the eastern region is greater than 10 μg/m3. Based 1345 

on the area of the SDE, the spatial distribution is divided into three stages: 1959-1972, 1973-1976, 1346 

and 1977-2022. The area decreases and then increases, indicating a changing trend in the spatial 1347 

extent of the PM2.5 concentration. The concentration distribution direction is east‒west and rotates 1348 

northward, and the mean center gradually moves northwest after 1977, indicating an increase in the 1349 

PM2.5 contribution in the western region. 1350 

For Canada, the concentrations in the eastern and western regions are greater than those in the 1351 

central region. The area of the ellipse increases and then decreases. The concentration distribution 1352 

direction is northwest-to-southeast, and the concentration rotates southward after 1977, indicating 1353 

an increase in weight in the western region. The mean center gradually moves northwestward and 1354 

then southeastward. 1355 

For Europe, high-concentration areas are mainly located in the central and eastern regions. The 1356 

ellipse's area can be divided into three stages: 1959-1967, 1968-1972, and 1973-2022. The spatial 1357 

variability decreases and then increases, corresponding to the mean centers moving north, south, 1358 

and north. The concentration direction is northwest‒southeast, and the major axis shortens after 1359 

1993, indicating that the directionality of the concentration weakens. 1360 

For China, high-concentration areas are in the central and eastern regions. The center of the SDE is 1361 

located in the northeast region from 1965 to 1971, which may be related to Northeast China being 1362 

the center of heavy industry during that period. After 1988, the area of the SDE increases 1363 

significantly, and the center moves significantly southwestward and gradually northward after 2008. 1364 

This finding indicates that the spatial distribution of PM2.5 increases in a discrete pattern after 1988, 1365 

and the concentration weight in the eastern region gradually increases. After 2008, the weight in the 1366 

western region decreases again. 1367 

For India, the highest concentration is in the northern region, and the lowest concentration is in the 1368 

southern region. The area, shape, and mean center of the SDE show significant changes and can be 1369 

divided into three stages. The SDE flattens between 1959 and 1962. The flattening weakens, and 1370 

the area increases from 1963 to 1995. The spatial variability in PM2.5 increases, and the mean center 1371 

moves southward. From 1996 to 2022, the flattening further weakens, the area decreases, the spatial 1372 

variability in PM2.5 decreases, and the mean center shifts northward. 1373 

Above all, the concentration distributions in the United States and India exhibit an east‒west pattern. 1374 

The concentration distribution in Canada and Europe shows a northwest-to-southeast concentration 1375 

gradient. In China, the PM2.5 concentration distribution ranges from northeast to southwest. There 1376 

are strong correlations between the PM2.5 concentration and the location of the sites in Europe and 1377 

Canada. However, the spatial correlation in India is gradually weakening, and the spatial dispersion 1378 



of PM2.5 in China is increasing. Studies have shown that the variation in PM2.5 based on the mean 1379 

center and the SDE is related to several factors, such as the energy structure, urbanization process, 1380 

population distribution and vegetation coverage (Shi et al., 2018; Wu et al., 2018; Li et al., 2019; 1381 

Wang et al., 2019; Lim et al., 2020; Qi et al., 2023). 1382 

 1383 

Figure 15 The spatial distribution of the multiyear average and standard deviation ellipse (SDE) (a-1384 

e) and the mean center (f-j) of the PM2.5 concentration from 1959 to 2022 in the United States (the 1385 

US), Canada, Europe, China, and India. The mean center and SDE describe the changes in the spatial 1386 

distribution. The larger the ellipse area is, the more dispersed the spatial distribution of PM2.5 is. The 1387 

flatter the ellipse is, the stronger the spatial correlation of PM2.5 is. The direction of the major axis 1388 

indicates the direction of the concentration. 1389 

6 Conclusions 1390 

In tThis study, we uses a machine learning method to estimate daily PM2.5 concentration for 4011 1391 

5023 terrestrial sites in the Northern Hemisphere from 1959 to 2022 based on hourly daily visibility 1392 



and related meteorological variables. The first 80% of PM2.5 concentration data in each site Eighty 1393 

percent of the sample data are used to train the model, and the last 20% are used for to testing. The 1394 

model'’s performance and predictive ability are evaluated and a dataset of daily PM2.5 concentration 1395 

based on aerosol optical depth is used to compare and evaluate the estimated PM2.5 concentration. 1396 

We analyze the uncertainty and discuss the limitations of the our dataset. We compare the estimated 1397 

PM2.5 with the PM2.5 based on the satellite AOD and PM2.5 of the reanalysis datasets. Finally, the 1398 

PM2.5 concentration variability variation (annual calendar cycle, interannual cycle and spatial 1399 

distribution) in each 5 regions over the past 64 years is analyzed based on GAMM. We hope our 1400 

dataset will be useful for studying the atmospheric environment, human health, and climate change 1401 

and provide auxiliary support for assimilation. Several key results of this study are described as 1402 

follows: 1403 

The most important variable. Visibility is the most important variable at 79.180.7% of the PM2.5 1404 

sites, as visibility can also be considered an indicator of PM2.5 concentration without fog or 1405 

precipitation. Other meteorological variables play a secondary role in the model, especially 1406 

temperature and dew point temperature. Visibility can serve as a good indicator of PM2.5. 1407 

Model performance and predictive ability. The training results show that the slope between the 1408 

estimated PM2.5 concentration and the monitored PM2.5 concentration within the 95% confidence 1409 

interval is 0.946955, the R2 is 0.95, the RMSE is 7.0 2 μg/m3, and the MAE is 3.21 μg/m3. The test 1410 

results show that the slope between the predicted PM2.5 concentration and the monitored PM2.5 1411 

concentration is 0.862 864 ± 0.0010 within a 95% confidence interval, R2 is 0.8079, RMSE is 1412 

13.54.8 μg/m3, and MAE is 6.97.6 μg/m3. The model shows good stability and predictive ability. 1413 

Compared with a global PM2.5 concentration dataset based on satellite retrieval, the slopes of linear 1414 

regression on the daily (monthly) scale are 0.817 (0.854) from 2000 to 2021, 0.758 (0.821) from 1415 

2000 to 2010, and 0.867 (0.879) from 2011 to 2022. The result indicates the accuracy of the model 1416 

and the consistency of the estimated PM2.5 concentration on the temporal scale. 1417 

Regional trends and spatial patternsComparison with other datasets. The estimated PM2.5 1418 

concentration is consistent with the PM2.5 concentration based on satellite AOD data at the monthly 1419 

scale. The correlation coefficient of the annual cycles in each region is greater than 0.96. Compared 1420 

with the reanalysis data, there are some differences among regions, which are closely related to the 1421 

accuracy of emission inventories and the vertical structures of aerosols. 1422 

Monthly PM2.5. The interannual trends and spatial patterns of PM2.5 concentration on the regional 1423 

scale from 1959 to 2022 are analyzed based on GAMM. In Canada, the trend is -0.10 μg/m3/decade 1424 

in Canada and the PM2.5 concentration exhibits an east-high to west-low pattern. In the United States, 1425 

the trend is -0.40 μg/m3/decade, and PM2.5 concentration decreases significantly after 1992, with a 1426 

trend of -1.39 μg/m3/decade. The high PM2.5 concentration areas are in the east and west and the 1427 

low are in the central and northern regions. In Europe, the trend is -1.55 μg/m3/decade. High 1428 

concentration areas are distributed in eastern Europe, while the low is in northern and western 1429 

Europe. In China, the trend is 2.09 μg/m3/decade. High concentration areas are distributed in 1430 

northern China and the low are distributed in southern China and Northern Tianshan Mountains. 1431 

The trend is 2.65μg/m3/decade from 1959 to 2011 and -22.23 μg/m3/decade from 2012 to 2022. In 1432 

India, the trend is 0.92 μg/m3/decade. The concentration exhibits a north-high to south-low pattern, 1433 

with high concentration areas distributed in northern India, such as Ganges Plain and Thar Desert 1434 



and the low in Deccan Plateau. The trend is 1.41 μg/m3/decade from 1959 to 2013 and -23.36 1435 

μg/m3/decade from 2014 to 2012. The variation of PM2.5 concentration is inseparable with the 1436 

implementation of pollution control laws and regulations, the energy structure, industrialization, 1437 

population and vegetation coverage.From 1959 to 2022, the PM2.5 concentration at the highest 1438 

frequency is 12 μg/m3, 8 μg/m3, 17 μg/m3, 40 μg/m3 and 63 μg/m3, and the trends are -0.52 1439 

μg/m3/decade, -0.28 μg/m3/decade, -1.93 μg/m3/decade, -0.89 μg/m3/decade, and -0.31 1440 

μg/m3/decade, respectively, for the United States, Canada, Europe, China, and India. PM2.5 1441 

concentrations in all regions show a periodic increase and decrease from 1959 to 2022. The 1442 

decreasing trends are -1.32 μg/m3/decade from 1991 to 2022 in the United States, -6.48 1443 

μg/m3/decade from 1994 to 2022 in Canada, -1.91 μg/m3/decade from 1973 to 2022 in Europe, and 1444 

-38.82 μg/m3/decade and -42.84 μg/m3/decade from 2013 to 2022 in China and India, respectively. 1445 

Although the PM2.5 concentrations in developing countries are significantly greater than those in 1446 

developed countries, they have declined more quickly in recent years. 1447 

 1448 

Annual PM2.5. The multiyear average PM2.5 concentrations from 1959 to 2022 in the United States, 1449 

Canada, Europe, China, and India are 11.2 μg/m3, 8.2 μg/m3, 20.1 μg/m3, 51.3 μg/m3 and 88.6 μg/m3, 1450 

respectively. Based on the features of the SDE and mean center, the spatial distribution of PM2.5 has 1451 

more spatial variability in the United States, Canada, and Europe and less variability in China and 1452 

India. The changes in the mean center of the PM2.5 concentration exhibit various patterns in each 1453 

region. 1454 

7 Data Availability 1455 

Daily PM2.5 concentration data at 4011 sites in the Northern Hemisphere from 1959 to 2022 are 1456 

available at https://cstr.cn/18406.11.Atmos.tpdc.301127 (Hao et al., 2024). 1457 

All site-scale PM2.5 data files are in "PM25-Daily_1959_2022. zip". The file name includes a region 1458 

name and a site number. For example, the file name, 'China_1001. txt', means that the site is in 1459 

China, and the site number is 1001, which describes the daily PM2.5 concentration at a single site 1460 

and can be directly opened using a text program (such as Notepad), separated by commas. The data 1461 

includes four variables: Date, PM25(μg/m3), Longitude(degree_east), and Latitude(degree_north). 1462 

Date is UTC time, PM25(μg/m3) is the daily PM2.5 concentration (unit: μg/m3), Longitude range is 1463 

[-180 °E, 180 °E] and Latitude range is [0 °N, 90 °N]. 1464 
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