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Abstract. The Southeast Asia region has a vast expanse with diverse tropical climates, making it a prominent centre of rice 

cultivation, contributing to about 20% of the world’s rice production and contributes 29% of global rice methane emissions. 20 

As a staple food for many countries, accurate and up-to-date information on the rice harvested area is crucial for addressing 

food security issues, predicting rice yield and methane emissions, and formulating effective government policies. This paper 

presents the first detailed study of rice cropping intensity and harvested areas throughout Southeast Asia. Current remote 

sensing products have not been able to produce up-to-date cropping intensity information due to the variability of local 

cultivation practices. To address this problem, we integrated Sentinel-1A and Sentinel-2A/B time series data from 2020 to 25 

2021 and developed a local unsupervised classification with phenological labelling (LUCK-PALM) method. We implemented 

the system on the Google Earth Engine (GEE) cloud-based platform to produce geospatial products of rice cropping intensity 

and harvested area at a spatial resolution of 10 m called SEA-Rice-Ci10s. The results show that Southeast Asia's total rice 

growing area in 2020-2021 was 28.5 Mha, with 51% single cropping, 47% double cropping, and 2% triple cropping. These 

were equivalent to 42.9 Mha of annual harvested area, consisting of Thailand (11.2 Mha), Indonesia (8.4 Mha), Myanmar (8.4 30 

Mha), Vietnam (6.3 Mha), Cambodia (3.9 Mha), the Philippines (3.3 Mha), Laos (0.8 Mha), Malaysia (< 0.5 Mha), and Timor-

Leste (0.01 Mha). We compared our rice maps to agricultural statistics data at the district and province levels and existing rice 

maps for some Southeast Asian countries. The results demonstrate that our map agreed well with countries’ statistics with a 

linear coefficient of determination (R2) from 0.85 to 0.97. Compared to existing products, our map can resolve small paddy 
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fields of about 0.2 ha in the hilly areas. This information will be useful in addressing food security challenges and improving 35 

estimates of methane emissions from rice cultivation. The 10 m paddy rice cropping intensity map for Southeast Asia, SEA-

Rice-Ci10, is available on the GEE App (https://rudiyanto.users.earthengine.app/view/seariceci2021), the Climate TRACE 

platform (https://climatetrace.org/) and the Zenodo repository (https://doi.org/10.5281/zenodo.10707621) (Frisa Irawan et al., 

2024).  

 40 

1 Introduction 

Accurate and up-to-date information on the harvested area of rice is crucial for addressing food security issues, identifying and 

predicting rice yield, managing water resources, calculating methane emissions (CH4) released into the atmosphere, and 

formulating effective government policies (IPCC, 2019; Chandra Paul et al., 2020; Karthikeyan et al., 2020). However, the 

data on harvested rice area, typically obtained from agricultural statistics, can be notably outdated, often reflecting figures 45 

from several years prior. Additionally, this information is usually aggregated at broader levels: either at the national level for 

The Food and Agriculture Organization Corporate Statistical Database (FAOSTAT) or at administrative levels one (province 

or state) and two (district) for national agricultural statistics. While informative, neither of these sources provide the detailed 

spatial information required to tackle the issues mentioned effectively. As an alternative, over the past decade, remote sensing 

technologies have extensively advanced in mapping the extent of rice fields. These technologies focus primarily on mapping 50 

rice extent or growing areas (i.e., areas cultivated with paddy at any point during a given year) (Xiao et al., 2006; Chen et al., 

2020; Sun et al., 2023). However, they fall short of accurately mapping the total rice harvested area, which includes multiple 

seasons in a year.  

In the Southeast Asia region, temperature and water availability do not limit the rice growing period, and thus, rice 

can be grown throughout the year with one, two, or even three harvests (Rudiyanto et al., 2019; Fatchurrachman et al., 2022). 55 

Summing individual rice fields in Southeast Asia does not equate to the total harvested area, unlike in temperate regions such 

as China, India, the USA, Italy, and Japan where rice paddies typically produce one harvest a season. This presents a challenge 

for current remote sensing methods as the rice cropping calendar varies throughout Southeast Asia. 

Mapping rice areas nationally and globally usually employs remote sensing data from medium to high-spatial 

resolution optical and radar sensors. It includes optical (e.g., MODIS, Landsat, Sentinel-2, and SPOT) and Synthetic Aperture 60 

Radar (SAR) (e.g., RADARSAT, ALOS PALSAR, and Sentinel-1) to identify and map rice areas extent (Clauss et al., 2018; 

Bazzi et al., 2019; Rudiyanto et al., 2019). Sentinel-1 SAR is particularly effective in tropical regions due to its cloud 

penetrating capabilities and ability to detect rice growth due to SAR’s unique backscatter response caused by initial rice stem 

growth in a flooded field (Nelson et al., 2014; Singha et al., 2019; Davitt et al., 2020). However, the data contains speckle 

noise, which can reduce the accuracy. Conversely, the optical Sentinel-2 sensor excels in identifying unique spectral 65 

characteristics of a crop at different growth stages (Zhao et al., 2021), however, its effectiveness is limited by cloud cover. The 
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integration of Sentinel-1 and 2 data has proven to be beneficial in improving rice mapping accuracy, offering high spatial and 

temporal resolution (10 m over 5-12 days) (Ramadhani et al., 2020; Han et al., 2021; Fatchurrachman et al., 2022). These 

sensors are crucial for more frequent mapping of small and hilly rice fields in Southeast Asia, which help identify the varying 

rice cropping calendars in Southeast Asia (Ramadhani et al., 2020; Han et al., 2021; Fatchurrachman et al., 2022). 70 

Methods for mapping rice fields using remote sensing include machine learning classifiers (e.g., random forest and 

support vector machines) (Onojeghuo et al., 2018; Lakshmanaprabu et al., 2019; Ramadhani et al., 2020; Zhang et al., 2020b; 

Thorp and Drajat, 2021), expert phenology-based classifiers (He et al., 2018; Ding et al., 2020; dela Torre et al., 2021; 

Fatchurrachman et al., 2022; Huang et al., 2023). Supervised machine learning classification methods require extensive 

training data, creating challenges in collecting representative samples, particularly throughout Southeast Asia. Conversely, 75 

expert phenology-based classifiers are straightforward, albeit requiring in-depth expertise for labelling time series of vegetation 

indices for rice growth stages (Rudiyanto et al., 2019; Han et al., 2021; Fatchurrachman et al., 2022).  

Studies on mapping rice cropping areas have employed various resolutions, ranging from 250 m to 500 m globally, 

and finer resolutions at 10 m in regional studies (Laborte et al., 2017; Rudiyanto et al., 2019; Mishra et al., 2021; 

Fatchurrachman et al., 2022; Zhao et al., 2023). Despite these advancements, the variable local cultivation practices in 80 

Southeast Asia present a significant challenge. For the Southeast Asia region, annual paddy rice planting area and cropping 

intensity maps are only available at a coarser resolution (500 m) for Asia, such as Han et al. 2022. At finer resolution (10-20 

m), only maps of rice-growing areas are available, e.g., Han et al. 2021. Supervised classification methods do not have 

sufficient training data to cover the variability of rice practices across the region. Similarly, phenological methods are 

challenged by vegetation indices and other indicators that vary throughout the regions. Thus, mapping rice cropping intensity 85 

and harvested areas across Southeast Asia at a fine spatial resolution remains an unmet need. 

This study aims to generate a geospatial product of rice cropping intensity at a 10 m spatial resolution and harvested 

area by integrating Sentinel-1 and Sentinel-2 time series data from 2020 to 2021 across Southeast Asia countries. To address 

the challenges of varying local practices, we introduce the local unsupervised classification with phenological labelling 

(LUCK-PALM) approach, integrating unsupervised k-means clustering and expert phenological labelling within local areas. 90 

The algorithm was implemented in Google Earth Engine (GEE) platform. This study is the first to report on a high-spatial 

resolution map (10 m) of rice cropping intensity and harvested area across Southeast Asia for 2020 to 2021. The outcome of 

this product is anticipated to be instrumental in addressing food security challenges and addressing environmental concerns, 

particularly in estimating methane gas emissions associated with rice cultivation. 

2 Materials and methods 95 

2.1 Study area 

Southeast Asia comprises 11 countries located between latitude −10°–30°N and longitude 90°–141°E with a total area of 450 

Mha (Fig. 1a). The study area focused on nine countries in Southeast Asia, comprised of Indonesia, Timor-Leste, Malaysia, 
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Thailand, Cambodia, Vietnam, Laos, the Philippines, and Myanmar (Fig. 1). Brunei and Singapore are not included because 

of their relatively small rice growing area.  100 

Southeast Asia countries produce approximately 20% of the world's rice production (Food and Agriculture 

Organization, 2024). It is a tropical climate region with abundant rainfall (Singh and Qin, 2020), with an average annual rainfall 

of 2,241 mm, and an average range of 1,622 to 2,875 mm (Precipitation-Country rankings, 2024). It has an annual average 

temperature of 25 ⁰C, varying between 20 to 33 ⁰C (Raghavan et al., 2018). The climate according to the Koppen-Geiger 

climate classification is tropical rainforest (Af) for Indonesia, Malaysia and south and east regions of the Philippines; tropical 105 

monsoon (Am) for north and west of the Philippines, northern central and south regions of Vietnam; and tropical savannah 

(Aw) for Thailand, Myanmar, Cambodia, Laos, the southern central region of Vietnam and Timor-Leste (Carver et al., 2002).  

Rainfed lowland rice and irrigated lowland rice are the two main types of agriculture in Southeast Asia (Silva et al., 2022). 

Two rice harvests per year are common, and in some areas with adequate irrigation, it is possible to harvest three times a year 

(Fig. 1). 110 

(a)   

     

https://doi.org/10.5194/essd-2024-90
Preprint. Discussion started: 25 March 2024
c© Author(s) 2024. CC BY 4.0 License.



5 

 

(b)  

      

Figure 1: (a) The study area location comprised 9 countries in Southeast Asia. Included in this figure are the grids (red squares) 

utilised in the local adaptive modelling and the total country area in km2. (b) Distribution and cropping intensity of paddy rice for 

the period of 2020-2021 based on this study. Colored areas are the following: blue = single rice planting, green = double rice planting, 

and red = triple rice planting.  

2.2 Datasets 115 

2.2.1 Sentinel-1 and Sentinel-2 time-series data 

Sentinel-1 and Sentinel-2 time series data were obtained from January 2020 to December 2021 using the Google Earth Engine 

(GEE) data catalogue (https://developers.google.com/earth-engine/datasets/). A total of 31,711 scenes from Sentinel-1 and 

208,197 scenes from Sentinel-2A and B were retrieved from the GEE platform. The characteristic parameters of the Sentinel-

1 and Sentinel-2 data used in this study are shown in Table 1. 120 

Sentinel-1 ground-range-detected (S1_GRD) images with instrument mode Interferometric Wide (IW) and Vertical-

transmit/Horizontal-receive (VH) band that are available on the GEE were utilised as the primary data source for our paddy 

field mapping method because the C-band SAR can obtain data through cloud cover (e.g., Davitt et al., 2020). This study only 

used VH-polarized backscatter data because VV backscatter is less responsive to rice fields (Rudiyanto et al., 2019; 

Fatchurrachman et al., 2022; Xu et al., 2023). GEE pre-processed the data with the Sentinel-1 Toolbox to remove thermal 125 

noise, radiometric calibration, orbital correction, and terrain correction (https://developers.google.com/earth-

engine/guides/sentinel1). 
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Sentinel-2 (referred to Sentinel 2A/B) Level-2A (Surface Reflectance, SR) images have many artefacts and overcorrected and 

therefore were substituted with Sentinel-2 Level-1C (Top-of-Atmosphere Reflectance, TOA) (Brinkhoff et al., 2022; 

Fatchurchman et al., 2022). More information on the Sentinel-2 MSI product can be found in the User Guides on the ESA 130 

website (https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi, accessed on 7 September 2023). This study used four 

bands of Sentinel-2: band 4 (Red) and band 8 (Near-infrared or NIR) which were used to calculate Normalised Difference 

Vegetation Index (NDVI); and band 3 (Green) and band 11 (Shortwave infrared 1 or SWIR), which were used to generate 

Modified Normalized Difference Water Index (MNDWI). The application of Sentinel-1 and -2A/B measurements is discussed 

in section 2.3 Methodology. 135 

 

Table 1. Specifics of the Sentinel-1 and Sentinel-2 data obtained from GEE 

Sentinel-1 Sentinel-2 

(12 Days Revisit Time) (5 Days Revisit Time) 

Band 

Resolution 

(m) Sensor Polarization Band 

Wavelength 

(nm) 

Resolution 

(m) Sensor 

VH 10 C-band 

SAR 

VH (IW 

Mode) 

B3 - Green 560 10 

MSI 

B4 - Red 665 10 

B8 - Near-infrared 842 10 

B11 - Shortwave 

infrared 1 
1610 20 

 

2.2.2 Agricultural statistics 

Our remote sensing-derived rice intensity and mapping data were compared to the agricultural statistics yearbooks of each 140 

nation were collected to compile annual census data of rice growing areas (i.e., parcel areas) and rice harvested areas at various 

administrative levels in these countries (Table 2). The administrative levels include national and subnational levels (state, 

province, or regions, uniformly represented by province in this study). The unit of area in the statistical yearbook was converted 

to ha. 

2.2.3 Existing Paddy Rice Maps 145 

Two rice field maps with the same area coverage and similar spatial resolution were compared with our results (Table 2). The 

first map was produced by Han et al. (2021) using a combination of MODIS and Sentinel-1 images collected from 2017 to 

2019, downloaded from https://doi.org/10.5281/zenodo.5645344. This map, referred to as the "NESEA-Rice10", covers 

monsoon Asia, including Southeast Asia and Northeast Asia, with a spatial resolution of 10 meters. The second map was 

created using Sentinel-1 data collected in 2019 by Sun et al. (2023) for mainland Southeast Asia, and the data was downloaded 150 

from https://doi.org/10.5281/zenodo.7315076 and is referred as "20mRice-MSEAsia". Both maps present rice-growing areas 

rather than rice cropping intensity or harvest areas. 
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Table 2. Specifics of the data used in this study. The year column representants year of data acquisition or collection and the resolution or 

administrator level represents the spatial scale where Level 0 = nation or country level of administration, Level 1 = province or state level 

of administration and Level 2 = regency or district level of administration  155 

Data 

type 

Data 

product or 

country 

name 

Year 

Resolution 

or 

Administrat

or Level 

Data specification Data access 
Last 

access 

Satellites 

Imagery 

Sentinel-1A 
2020-

2021 
10 m 

SAR GRD: C-band 

Synthetic Aperture 

Radar Ground 

Range Detected 

https://developers.google.co

m/earth-

engine/datasets/catalog/COP

ERNICUS_S1_GRD  

2023-09-07 

Sentinel-2A 

and B 

2020-

2021 
10 m 

Level-1C, Top-of-

Atmosphere 

Reflectance 

https://developers.google.co

m/earth-

engine/datasets/catalog/COP

ERNICUS_S2  

2023-09-07 

Crop 

land 

ESA 

WorldCover 

10m v100 

2020 10 m 

v100  https://developers.google.co

m/earth-

engine/datasets/catalog/ESA

_WorldCover_v100  

2023-09-07 

 Statistics 

Indonesia 
2021-

2022 
Level 2 

Growing area http://scs1.litbang.pertanian.

go.id/  
2023-06-09 

Philippines 
2021-

2022 
Level 2 

Growing area https://prism.philrice.gov.ph/

dataproducts/  
2023-06-09 

Malaysia 2022 Level 1 

Growing and 

harvested area 

http://www.doa.gov.my/inde

x.php/pages/view/622?mid=

239  

2023-06-09 

Vietnam 2022 Level 1 

Harvested area https://www.gso.gov.vn/en/d

ata-and-

statistics/2023/06/statistical-

yearbook-of-2022/  

2023-06-09 

Thailand 2021 Level 1 

Harvested area http://statbbi.nso.go.th/static

report/page/sector/en/11.asp

x  

2023-06-09 

Cambodia 2019 Level 1 

Harvested area http://nis.gov.kh/index.php/k

m/12-publications/15-

agriculture-census-in-

cambodia-2013-final-result  

2023-06-09 

Laos 2021 Level 1 
Harvested area https://laosis.lsb.gov.la/tblIn

fo/TblInfoList.do  
2023-06-09 

Myanmar 2020 Level 1 Harvested area 

https://www.csostat.gov.mm

/Content/PublicationAndRel

ease/2021/9.htm  

2023-06-09 

Timor-Leste 2019 Level 0 

Growing area http://timor-

leste.gov.tl/?p=26100&lang

=en 
2024-01-24 
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Data 

type 

Data 

product or 

country 

name 

Year 

Resolution 

or 

Administrat

or Level 

Data specification Data access 
Last 

access 

Southeast 

Asia 

countries 

2021 Level 0 

Harvested area 

https://www.fao.org/faostat/

en/#data/GCE 

2024-01-28 

Existing 

rice maps 

NESEA-

Rice10 
2019 10 m 

Growing area https://doi.org/10.5194/essd-

13-5969-2021  
2023-06-09 

MSEAsia20 2019 20 m 
Growing area https://doi.org/10.5194/essd-

15-1501-2023  
2023-06-09 

 

2.3 Methodology 

We introduce the local unsupervised classification with phenological labelling (LUCK-PALM) method to produce a map of 

rice growing intensity (SEA-Rice-Ci10). The flowchart is illustrated in Fig. 2, and each step is explained in the sections below: 

 160 

Figure 2: Workflow of LUCK-PALM for mapping rice extent and cropping intensity using combined Sentinel-1 and Sentinel-2 time-

series data. 
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2.3.1 Monthly composite Sentinel-1 and Sentinel-2 data  

LUCK-PALM uses monthly composite imagery time series data as the input dataset. The aggregated monthly data is necessary 

because the two satellites, Sentinel-1 and Sentinel-2, acquired images at different times, and it also helps in reducing speckle 165 

noise and lack of observations  due to clouds. We calculated the monthly composite of Sentinel-1 VH backscatter coefficients 

to obtain representative time series data of rice growth dynamics. The Median Value Composite (MedVCs) was calculated to 

obtain the monthly composite of VH data because it can reduce the speckle noise, which is a random granular disturbance 

present in SAR images, resulting in abrupt spikes or drops in pixel-based time series in the VH backscatter, especially in areas 

with overlapping data scenes (Rudiyanto et al., 2019; Fatchurrachman et al., 2022). Numerous studies have reported that the 170 

monthly median composite is also very effective in detecting the presence of water during transplanting, a method practically 

used in rice cultivation in Southeast Asian countries, as well as in rice phenology identification (Rudiyanto et al., 2019; 

Fatchurrachman et al., 2022). A total of 24 monthly median composite imagery data (for 2020-2021) were obtained.  

To capture rice phenology, NDVI from Sentinel-2 was used in identifying rice growth stages and differentiating rice 

plants from other land covers, while MNDWI from Sentinel-2 identified flooded areas during rice transplanting (Sakamoto et 175 

al., 2018; de Lima et al., 2021). MNDWI was used to improve the detection of flooded areas while reducing the prominence 

of built-up features, which often exhibit similar reflectance characteristics to water or wet surfaces (Mansaray et al., 2019). 

NDVI was computed based on TOA reflectance band 4 (red) and band 8 (NIR) and MNDWI from the TOA reflectance band 

3 (green) and band 11 (SWIR) of Sentinel-2 as follows: 

𝑁𝐷𝑉𝐼 =
NIR (band 8) − 𝑅𝑒𝑑 (𝑏𝑎𝑛𝑑 4)

NIR (band 8) + 𝑅𝑒𝑑 (𝑏𝑎𝑛𝑑 4)
         (1) 180 

𝑀𝑁𝐷𝑊𝐼 =
Green (band 3)− 𝑆𝑊𝐼𝑅 (𝑏𝑎𝑛𝑑 11)

Green (band 3) + 𝑆𝑊𝐼𝑅 (𝑏𝑎𝑛𝑑 11)
        (2) 

Monthly composites for NDVI and MNDWI time series data were generated using the monthly maximum value 

composites (MaxVCs). MaxVCs effectively reduce image exposure, cloud cover, and variations in atmospheric constituents, 

particularly deviations in water vapour and aerosol concentrations (Holben, 1986). Several studies have effectively used 

MaxVCs with MODIS, Landsat, Sentinel and SPOT data (Gumma, 2011; de Bie et al., 2012; Nguyen et al., 2012; Coulter et 185 

al., 2016; Fatchurrachman et al., 2022). In total, 24 monthly composites for NDVI and 24 monthly composites for MNDWI 

were generated from this Sentinel-2 data processing for the years 2021 to 2022. 

2.3.2 Masking non-cropland areas 

To filter out non-cropland areas in Sentinel-1 and -2 composite imagery, the European Space Agency (ESA) WorldCover 10 

m 2020 product was employed. This product provides a global land cover map for 2020 at a 10 m resolution, derived from 190 

Sentinel-1 and Sentinel-2 data (Zanaga et al., 2021). The WorldCover 2020 v100 dataset, accessible on Google Earth Engine 

(GEE) with Asset ID ESA/WorldCover/v100, comprises 11 land cover categories, with an overall accuracy of 80.7% in Asia. 
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Land categories 10, 20, 30, 50, 60, 70, 80, 90, 95, and 100 were utilized to filter out non-croplands in each Sentinel-1 and -2 

composite imagery. Waterbody, tree, and build-up layers from the WorldCover dataset were employed to mask non-cropland 

areas in Southeast Asia. This masking operation not only reduced computational memory and processing time but also 195 

minimized the false classification rate of rice fields. Consequently, only the Sentinel-1 and -2 composite imagery 

corresponding to crop areas were classified into rice and non-rice classes, enabling the assessment of rice cropping intensity. 

2.3.3 Grid based clustering 

Classifying large-scale or global land cover could be achieved through two modelling options, i.e., global classification 

(Teluguntla et al., 2018; Brown et al., 2022) and local classification models (Singha et al., 2016; Zhang et al., 2020c; Phalke 200 

et al., 2020). Global or whole-area classification modelling involves using all training samples to train a single classifier, which 

was applicable for land-cover mapping in the whole area (e.g., Buchhorn et al. (2020)). This contrasts with local classification 

modelling, which divides the whole area into regions, trains local classifiers with local samples, and creates a global or whole-

area land-cover map by spatial mosaicking all local classification results. For instance, Zhang et al. (2021) split the world into 

grids of 5⁰ x 5⁰ and then developed corresponding local models for each grid to produce the regional land-cover results.  Some 205 

advantages of local adaptive classification modelling are that the local adaptive models achieved higher accuracy performance 

than the single global model (Zhang and Roy, 2017), facilitated the regional adjustment of classification parameters, 

incorporated regional characteristics and enhanced the sensitivity of the training samples (Radoux et al., 2014). Additionally, 

it tackles the issues of computational capacity and memory limitations, which are common challenges in global models.  

Here, we devised a sampling method with a 2° by 2° grid, segmenting Southeast Asia into 215 grids. This approach 210 

was designed to optimise computational efficiency, accuracy, and the quantity of training samples (Fig. 1a). This method also 

accommodates the diverse local rice cultivation calendars and their varying satellite indices response. 

LUCK-PALM uses the unsupervised K-Means classification method to group stacked imagery of 72 monthly 

composite indices (monthly layers from January 2020 to December 2021) of VH backscatter (24 bands) from Sentinel-1 data, 

NDVI (24 bands), and MNDWI (24 bands) from Sentinel-2 data into rice and non-rice groups. LUCK-PALM employed K-215 

Means classification due to its relative simplicity in implementation, capability to handle large datasets, assurance of 

convergence, ease of adaptation to new examples, and effective generalisation to clusters of various shapes and sizes (Philip 

Wong et al., 2023). This classification was implemented in the GEE platform using the “ee.Clusterer.wekaKMeans” function. 

In this implementation, 2,000 random points were sampled at each grid and used as training data in the K-Means model with 

25 to 30 clusters output. The chosen number of clusters is assumed to represent the spectral data variations adequately. The 220 

algorithm automatically normalised numerical input attributes and used the Euclidean distance to measure distances between 

clusters, to minimise within-cluster variation (distances) (Rudiyanto et al., 2019; Sitokonstantinou et al., 2021). 
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2.3.4 Extracting representative spectra profiles 

To identify rice or non-rice groups, it is necessary to obtain the representative spectra of VH backscatter, NDVI, and MNDWI 

for each cluster generated by the K-means. To achieve this, we extracted the respective spectra from 2,000 random samples 225 

from the defined area. Subsequently, we applied the spatial median for each cluster to obtain the representative spectra profiles 

(Rudiyanto et al., 2019; Fatchurrachman et al., 2022). The representative spectra profiles of VH backscatter, NDVI, and 

MNDWI for clusters of rice field, water body, tree, and built-up are illustrated in Fig. 3. 

2.3.5 Expert labelling and identifying paddy rice fields 

Rice fields have a unique time series profile in which the VH backscatter and NDVI values fluctuate seasonally and differ 230 

from other land uses (e.g., water, trees, other crops) as shown in the representative cluster spectra profiles in Fig. 3. Spectral 

time series of non-cropping areas were relatively constant. The NDVI and VH backscatter coefficients of paddy rice change 

as it grows and matures. During rice transplanting or flooding phase, NDVI and VH backscatter coefficients have the lowest 

value while MNDWI reaches a maximum peak. The NDVI and VH backscatter coefficients rise after transplanting as the 

paddy rice grows and develops a peak at the heading stage (Davitt et al. 2020; Zhang et al., 2020b; Huang et al., 2023). After 235 

the rice harvest, the NDVI and VH backscatter coefficients decrease (Ramadhani et al., 2020; Fatchurrachman et al., 2022). 

These three spectral characteristics were used in LUCK-PALM to distinguish rice fields from other types of land cover 

(Rudiyanto et al., 2019; Zhang et al., 2020; Fatchurrachman et al., 2022). Representative spectra profiles for each cluster 

derived from k-means clustering were labelled based on their phenology. 

 240 
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Figure 3. Temporal signature profiles. (a) NDVI, (b) VH backscatter, and (c) MNDWI of four land cover classes; rice field, water 

body, tree, and built-up; (d) T = tillage and planting, (e) V = vegetative, (f) G = generative, (g) M = maturity, MS = main season, SS 

= second season, F = flooding. 

2.3.6 Accuracy Assessment 245 

The accuracy of our produced maps was evaluated using two types of assessment: (1) comparison with statistical data and 

other rice maps at the national, provincial, and regency levels (Table 2), and (2) comparison with existing rice maps by NESEA-

Rice10 (Han et al., 2021) and 20mRice-MSEAsia (Sun et al., 2023). We used the coefficient of determination (R2) to measure 

the correlation between our paddy rice maps, agricultural statistics, and existing products using the following equation. We 

used Root mean square error (RMSE) to measure the deviation between identified and statistical areas, which was calculated 250 

as: 
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𝑅2 =  
(∑ (𝑥𝑖− �̅�𝑖) 𝑥 (𝑘𝑖− �̅�𝑖))²𝑛

𝑖=1

∑ (𝑥𝑖− �̅�𝑖)²𝑛
𝑖=1  𝑥 ∑ (𝑥𝑖− �̅�𝑖)²𝑛

𝑖=1

         (1) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝐼𝐴𝑡 −  𝑆𝐴𝑡

𝑛

𝑡=1
)²         (2) 

where n is the total number of administrative units, xi represents the mapped paddy rice areas, �̅�𝑖 is the corresponding 

mean value, kis represents the agricultural statistics or areas from existing rice maps,  �̅�𝑖 is the corresponding mean value, SAt 255 

and IAt are the statistical area and identified area of the i-th province or district, respectively. The unit of RMSE referred to in 

this study is a thousand hectares (103 ha), and to simplify the description, only the values of RMSE are explained below. 

3 Results 

3.1 Spatial distribution of paddy rice in Southeast Asia 

Figure 1b shows the spatial distribution of paddy rice growing area, rice harvested area, and rice cropping intensity for nine 260 

main rice-producing nations in Southeast Asia in 2020–2021, with a spatial resolution of 10 m. The data (Table 3 and 4) reveals 

a diverse pattern of cultivation practices across different countries. Thailand had the largest paddy field harvested area, 

followed by Indonesia, Myanmar, Vietnam, Cambodia, the Philippines, Laos, Malaysia and Timor-Leste. Paddy rice fields 

were widely distributed and predominantly found in the valleys and deltas of major regional rivers, including the Mekong 

River in Vietnam and the Ayeyarwady River in Myanmar (Schneider and Asch, 2020). We estimated that the total rice growing 265 

area across nine Southeast Asian countries amounted to 28.52 Mha (million ha), which is more than twice the NESEA-Rice 

map product (12.90 Mha) (Table 3). The harvested area reached 42.91 Mha, slightly lower than FAOSTAT data (45.08 Mha) 

(Table 4). 

Southeast Asia is characterised by a tropical climate, which enables rice cultivation throughout the year. Annual rice 

cultivation in Southeast Asia is dominated by single-intensity (51%) and double-intensity (47%), but in some locations with 270 

suitable irrigation, harvesting three times a year is possible (2%). The annual single rice crop was dominant and can be found 

in dry regions like Thailand, Myanmar, Laos, Cambodia and Timor-Leste. Annual double rice cropping was common in 

Indonesia, Vietnam, Malaysia, and the Philippines. Annual triple rice cropping could only be found in the Mekong Delta in 

Vietnam and East Java in Indonesia (Fig. 1b). Further information regarding regional variations in rice is described below. Our 

results confirm the report from the Monsoon Rice Calendar and RICA (Mishra et al., 2021; Zhao et al., 2023). 275 

 

 

 

 

 280 
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Table 3. Growing rice area in this study, other rice area maps, and statistics for nine Southeast Asian countries. 

Country 

This Study Existing map products 

Statistics rice 

growing area  

(10³ ha) 

Growing 

area with 

single 

season  

(10³ ha) 

Growing 

area with 

double 

season  

(10³ ha) 

Growing 

area with 

triple 

season  

(10³ ha) 

Total rice 

growing 

area  

(10³ ha)* 

NESEA-

Rice10m 

growing area 

(10³ ha) 

20mRice-

MSEAsia 

growing area 

(10³ ha) 

Indonesia 506.07 3,611.44 241.03 4,358.53 3,032.23 NA 7,060.27 

Timor-Leste 10.95 0.00 0.00 10.95 4.36 NA 38.70 

Malaysia 0.57 242.45 0.00 243.01 250.89 NA 281.62 

Philippines 0.00 1,644.57 0.00 1,644.57 1,111.92 NA 2,039.55 

Vietnam 152.40 2,814.55 155.49 3,122.44 2,295.10 3,313.21 NA 

Cambodia 2,375.47 774.26 0.00 3,149.73 1,198.39 2,819.98 NA 

Laos 735.53 51.31 0.00 786.84 161.16 853.31 NA 

Thailand 7,084.97 2,074.12 0.00 9,159.09 1,453.85 12,811.95 NA 

Myanmar 3,671.02 2,381.61 0.00 6,052.64 3,398.96 5,354.20 NA 

Total 14,536.98 13,594.30 396.51 28,527.79 12,906.86     

NA : data not available 

*Total rice growing area = growing area with single season + growing area with double season + growing area with triple 

season 285 

 

Table 4. Harvested rice area in this study and statistics for nine Southeast Asian countries. 

Country 

This study Statistical data 

Total harvested area  

(10³ ha)** 

National statistics 

rice harvested area  

(10³ ha) 

FOASTAT harvested area 2021  

(10³ ha) 

Indonesia 8,452.02 NA  10,411.80  

Timor-Leste 10.95 NA 26.79 

Malaysia 485.46 NA  645.67  

Philippines 3,289.13 NA  4,805.08  

Vietnam 6,247.96 7,108.90  7,219.80  

Cambodia 3,923.99 3,264.00  3,252.99  

Laos 838.14 939.66  943.19  

Thailand 11,233.21 10,849.58  11,244.00  

Myanmar 8,434.25 6,909.14  6,536.69  

Total 42,915.11    45,086.01  

NA : data not available 

**Total harvested area = growing area with single season + (2 x growing area with double season ) + (3 x growing area with 

triple season) 290 
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3.1.1 Indonesia and Timor-Leste 

The paddy rice distribution map for Indonesia from 2020 to 2021 reveals a total rice-growing area of 4,358,528 ha and a total 

harvested area of 8,452,017 ha (Fig. 4a, Table 3 and Table 4). Of this total area, the dominant one was double-intensity with a 

harvested area of 7,222,870 ha (85.4%), followed by triple-intensity with 723,081 ha (8.6%), then single-intensity with 506,066 295 

ha (6.0%). The five main islands in Indonesia, including Sumatra, Kalimantan, Sulawesi, Java, and Papua, constituted 20% of 

rice production in Southeast Asia (Supplementary Table S1). However, the densely populated island of Java was the most 

productive region, mainly in East Java (1,530,864 ha), Central Java (1,308,475 ha), and West Java (1,122,657 ha). The triple 

rice crop intensity dominant area could be found in East Java, and a few in Central Java, and Lombok (Fig. 4b). 

The cropping patterns generated in this study offer detailed information on rice intensity and planting schedule. Figure 300 

4c, d, and e show the representative spectra cluster profiles of the paddy rice NDVI, VH backscatter, and MNDWI for single, 

double, and triple intensities in East Java, Indonesia. The time series profile of NDVI and VH backscatter can be divided into 

four periods: T: tillage and transplanting (30 days); V: vegetative (30 days); R: reproductive (30 days); and M: maturity (30 

days) (Sianturi et al., 2018; Fatchurrachman et al., 2022) as shown in Fig. 3. Thus, a rice cultivation season lasts three to four 

months. The lowest NDVI and VH backscatter values for rice during the transplanting phase are 0.12 and -24.89, while the 305 

highest values during the generative phase are 0.74 and -15.45, respectively. The peak MNDWI can identify flooding occurring 

during the tillage and transplanting phases, with values ranging from 0.078 to 0.4. We note that the range of values for this 

peak may vary depending on locations. Based on this information, the paddy rice cultivation season for single planting is 

typically from May to September. In wetland areas, paddy rice was planted during the transition between the rainy and dry 

seasons. Areas with double cropping typically had their first season from January to May during the rainy season and the 310 

second from June to September during the transition between the rainy and dry seasons. In regions with triple cropping 

intensity, the first season spanned from March to July, the second from July to November, and the third from November to 

March. During the third season, commonly in the dry season, farmers used groundwater for irrigation through pumps. Using 

NDVI and VH backscatter phenology, the mean duration of a rice growing season (for single, double, and triple) was calculated 

to be about 120 days. 315 

The spatial distribution map and cropping intensity of paddy rice in Timor-Leste during the growing season of 2020 

to 2021 are depicted in Fig. 5a. Timor-Leste has a comparatively smaller area of rice fields compared to other Southeast Asian 

countries. The rice fields in Timor-Leste were distributed mostly in the riverbank and river delta along the north and south 

coastlines, covering 10,592 ha of harvested area (Table 3). In Timor-Leste, rice fields were mostly planted once a year. This 

pattern is attributed to the relatively low rainfall in the country. Lowlands rice fields were dominant in regions along the 320 

southern coast, including Viqueque, Covalima, and parts of Lautém Municipality, as well as the north coast encompassing 

Lautém, Manatuto, and much of Bobonaro Municipality (Fig. 5b). Paddy fields in this region were irrigated (Kumashiro 

Teruyoshi, 2013). 
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(a) Indonesia 

 

(b) Java Island 
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(c) Single Paddy Rice 

 

 

 

(d) Double Paddy Rice 

 

 

 

(e) Triple Paddy Rice 

 

 

 
 

Figure 4. Map and cropping intensity of paddy rice in (a) Indonesia, (b) East Java, and representative spectra cluster profiles of the 325 
paddy rice NDVI, VH backscatter, and MNDWI in the East Java province, Indonesia: (c) Single paddy rice, (d) Double paddy rice, 

and (e) Triple paddy rice.  Grey bars refer to the initial season (i.e., transplanting period). 

 

The representative spectra cluster profiles of the paddy rice NDVI, VH backscatter, and MNDWI patterns for single 

rice cultivation in the North Coast of Timor-Leste are illustrated in Fig. 5c. The paddy rice planting season occurred between 330 

April to August during rainy season. High precipitation is observed in northern and southern areas from January to April. The 

average annual precipitation in Timor-Leste was less than 2000 mm, with a monthly average ranging from 30 to 370 mm 

(Kumashiro Teruyoshi, 2013). During the transplanting phase, rice areas displayed lowest NDVI and VH values at 0.15 and -

24.87, respectively. Conversely, in the generative phase, the highest values observed were 0.71 for NDVI and -16.15 for VH. 

The high MNDWI pattern identified flooding during the tillage and transplanting phases, with values ranging from 0.11 to 335 

0.16. The average duration of a single season of paddy rice, as determined by NDVI and VH phenology, ranged from 120 to 

150 days. 

 

 

 340 
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(a) Timor-Leste 

 

(c) Single Paddy Rice 

 

 

 (b) North Coast of Timor-Leste 

 

Figure 5. Map and cropping intensity of paddy rice in (a) Timor-Leste, (b) North Coast of Timor-Leste, and (c) representative 345 
spectra cluster profiles of the paddy rice NDVI, VH backscatter, and MNDWI in the North Coast of Timor-Leste. Grey bars refer 

to the initial season (i.e., transplanting period). 
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3.1.2 Malaysia 

Figure 6a displays the spatial distribution map and cropping intensity of paddy rice in Malaysia during the growing season 350 

from 2020 to 2021. Malaysia had the second smallest rice field area among Southeast Asian nations. The total area of rice 

fields was approximately 243,014 ha (Table 3), and the harvested area was doubled at 485,460 ha (Table 4). Double intensity 

paddy fields dominated across Peninsular Malaysia (harvested area of 484,896 ha or 99.8%, especially in the granary areas 

equipped with irrigation infrastructure, and only a few areas with a single crop (566 ha or 0.2%) in East Malaysia/Borneo 

States (Sabah). Figure 6b shows that the northern region of Peninsular Malaysia, including the states of Kedah, Perak, and 355 

Perlis, the largest rice field area with double cropping (Fatchurrachman et al., 2022). 

Figure 6c and 6d present the representative spectra cluster profiles of the paddy rice NDVI, VH backscatter, and 

MNDWI patterns for single and double rice cultivation intensities in Malaysia. Peninsular Malaysia had double-intensity rice 

cultivation: the first season from January to May or June, and the second from July to November or December. Meanwhile, 

Sarawak and Sabah States at Borneo had mainly single-intensity paddy rice planting seasons, with the single planting typically 360 

taking place from October to March. Peninsular Malaysia had two cropping seasons, the main off-season, with no cash crops 

in between seasons (Fatchurrachman et al., 2022). Using NDVI and VH phenology, the mean duration of a season was 

calculated to be about 120 days. During the transplanting phase, rice areas exhibited the lowest NDVI and VH values at 0.13 

and -25.13, respectively. Conversely, in the generative phase, the highest values observed were 0.73 for NDVI and -16.48 for 

VH backscatter. The high MNDWI pattern identified flooding during the tillage and transplanting phases, with values spanning 365 

from -0.05 to 0.15. 
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(a) Malaysia 

 

(c) Single Paddy Rice 

 

 

 

(d) Double Paddy Rice 

 

 

 

(b) Kedah and Perlis States of Malaysia 

 

Figure 6. Map and cropping intensity of paddy rice in (a) Malaysia, (b) Kedah and Perlis States of Malaysia, and representative 

spectra cluster profiles of the paddy rice NDVI, VH backscatter, and MNDWI in Kedah and Perlis, Malaysia: (c) Single paddy rice, 

and (d) Double paddy rice. Grey bars refer to the initial season (i.e., transplanting period). 

 385 
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3.1.3 The Philippines 

Figure 7a shows the spatial distribution map of paddy fields and cropping intensity in the Philippines during the cropping 

season from 2020 to 2021. The Philippines had the sixth-largest area of rice fields among Southeast Asian nations. Rice fields 

were all planted twice annually with a total harvested area of 3,289,130 ha (Table 4). Double rice cropping are mostly practiced 390 

in the Philippines, as reported Laborte et al., 2012. Largest rice fields area could be found in Nueva Ecija, Isabela, and Cigayan 

provinces in the Luzon Islands (Fig. 7b).  

The representative spectra cluster profiles of the paddy rice NDVI, VH backscatter, and MNDWI patterns in the 

Northern Luzon of Philippines is presented in Fig. 7c. The figures show the typical characteristics with the first season from 

July to October/November and the second season from January to May. The average duration of a season, as determined by 395 

NDVI and VH phenology, ranged from 120 to 150 days. During the transplanting phase, the lowest recorded values for NDVI 

and VH were 0.28 and -22.71, respectively. In contrast, the highest values during the generative phase were 0.76 for NDVI 

and -16.26 for VH. The peak MNDWI profile demonstrates the effectiveness in detecting flooding during tillage and 

transplanting phases, with values ranging from -0.09 to 0.07. 

3.1.4 Vietnam 400 

Figure 8a shows the spatial distribution map and cultivation intensity of paddy rice in Vietnam during the 2020 to 2021 growing 

seasons. The total rice growing area was 3,122,438 ha (Table 3), with a total rice harvested area that was more than double at 

6,247,962 ha (Table 4). This study indicates that Vietnam had the fifth-largest expanse of rice fields within the Southeast Asian 

region. The total harvested area was dominated by double-intensity paddy rice with an area of 5,629,108 ha (90%), followed 

by triple-intensity with 466,455 ha (8%) and single-intensity with 152,399 ha (2%). The rice-producing central areas in 405 

Vietnam were concentrated in the Mekong River Delta (Kein Giang, An Giang, and Long An provinces) and the Red River 

Delta (Nam Dinh and Thai Binh provinces). The Mekong River Delta was the primary location of the triple rice crop intensity 

(Fig. 8b) (Han et al., 2022). 

The representative spectra cluster profiles of the paddy rice NDVI, VH backscatter, and MNDWI patterns for single, 

double, and triple rice cultivation intensities in Mekong Delta, Vietnam are shown in Fig. 8c, d, and e. The paddy rice 410 

cultivation for the single season typically spanned from October to February. In the case of double-intensity cropping, the first 

season occurred from May/June to September/October, while the second was from November to March/April. The triple 

intensity involved: the first season from April to August, the second from August to December, and the third from December 

to April. The typical length of a season, as identified through the analysis of NDVI and VH phenology, varied from 90 to 120 

days. The triple-intensity paddy rice fields in the Mekong River Delta have advanced dike and canal systems (Guan et al., 415 

2016). The minimum NDVI and VH values for rice in the transplanting phase were 0.08 and -23.69, respectively, whereas the 

maximum values in the generative phase were 0.79 for NDVI and -15.03 for VH. The peak MNDWI profile effectively detects 

flooding during the tillage and transplanting phases, with values ranging from -0.11 to 0.33 in Vietnam. 
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(a) Philippines 

 

(c) Double Paddy Rice 

 

 

 

(b) Northern Luzon of Philippines 

 
Figure 7. Map and cropping intensity of paddy rice in (a) Philippines, (b) Northern Luzon of Philippines, and representative spectra 

cluster profiles of the paddy rice NDVI, VH backscatter, and MNDWI in the Northern Luzon of Philippines: (c) Double paddy rice. 420 
Grey bars refer to the initial season (i.e., transplanting period). 
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(a) Vietnam 

 

(c) Single Paddy Rice 

 

 

 
(d) Double Paddy Rice 

 

 

 
(E) Triple Paddy Rice 

 

 

 

(b) Mekong River Delta 

 
Figure 8. Maps and cropping intensity of paddy rice in (a) Vietnam, (b) Mekong Delta in Vietnam, and representative spectra cluster 

profiles of the paddy rice NDVI, VH backscatter, and MNDWI in Mekong Delta, Vietnam: (c) Single paddy rice, (d) Double paddy 

rice, and (e) Triple paddy rice. Grey bars refer to the initial season (i.e., transplanting period). 
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3.1.5 Cambodia and Laos 425 

The spatial distribution map and cultivation intensity of rice fields in Cambodia for the year 2020 to 2021 are shown in Fig. 

9a. The rice field in Cambodia was around 3,149,731 ha (Table 3), with a harvested area of 3,923,990 ha (Table 4). The 

dominant rice cultivation in Cambodia was a single intensity, with a total harvested area of 2,375,473 ha (61%) and double 

intensity covering 1,548,516 ha (39%). Rice fields in Cambodia were concentrated in the lowlands surrounding Lake Tonle 

Sap and the lower reaches of the Mekong River in the southern part of the country. The areas of Cambodia where paddy fields 430 

were primarily found in the northwestern (Siem Reap, Banteay Meanchey, and Battambang provinces), central (Kampong 

Cham), and southern regions (Prey Veng). The paddy planting areas were small and dispersed in the east and northeast, which 

is strongly related to the topography and water resources in the study area (Kang et al., 2022). Most paddy fields in Fig. 9b 

were near Tonle Sap Lake and the Mekong River in low-altitude areas. 

Figures 9c and 9d display the representative spectra cluster profiles of the paddy rice NDVI, VH backscatter, and 435 

MNDWI patterns for single and double rice cropping intensities in the Northwestern region of Cambodia. Single paddy rice 

cultivation typically commenced in May/June and concluded in November/December. The double-intensity season included 

the first season from May/June to October/November and the second from October to May. During the transplanting stage, the 

NDVI and VH values for paddy rice were estimated to be 0.01 and -28.42. Conversely, the values reached their highest point 

during the generative stage, with NDVI peaking at 0.69 and VH reaching -14.57. The harvesting period for rice at a single 440 

planting intensity, as observed through spectral NDVI, was relatively extended, lasting approximately 5 to 6 months. The 

annual Cambodia rainfall regime includes a five-month dry season (December to April) and a longer wet season (May to 

November) (Chhinh and Millington, 2015). The MNDWI values peaked from -0.17 to 0.48 during the stages of tillage and 

transplanting. 

 445 
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(a) Cambodia 

 

(c) Single Paddy Rice 

 

 

 
(d) Double Paddy Rice 

 

 

 

(b) The northwestern region of Cambodia 

 
Figure 9. Map and cropping intensity of paddy rice in (a) Cambodia, (b) Northwestern region of Cambodia, and representative 

spectra cluster profiles of the paddy rice NDVI, VH backscatter, and MNDWI in the Northwestern region of Cambodia: (c) Single 

paddy rice, and (d) Double paddy rice. Grey bars refer to the initial season (i.e., transplanting period). 460 
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Figure 10a presents the spatial distribution and cultivation intensity of paddy rice in Laos during 2020 and 2021, with a rice 

growing area of 786,835 ha (Table 3) and a harvested area of 838,144 ha (Table 4). The main crop in Laos was paddy rice, 

which covers a harvested area of 735,526 ha (87.8%) for single-intensity cultivation and 102,618 ha (12.2%) for double-

intensity cultivation. Paddy rice areas were primarily spread across the Central regions of Laos (Savannakhet and Khammouan 

provinces) and Southern regions of Laos (Champasak and Salavan provinces). The paddy planting areas were small and 465 

dispersed in the north, which is strongly related to the landscape and supply of water in the study area (Xiao et al., 2006). As 

shown in Fig. 10b, most paddy fields in central Laos were located on hillside terrain and adjacent to streams. 

The spectra cluster profiles of the paddy rice NDVI, VH backscatter, and MNDWI patterns for single and double rice 

cultivation intensities per year in the central region of Laos are shown in Fig. 10c and d. Single planting typically from 

June/July to November/December, and double intensity consisted of the first season (July to December/January) and the second 470 

season (January to June/July). The peak monthly rainfall was observed between July and September in Laos (Tsubo et al., 

2006). Total rainfall in the Northern, Central, and Southern regions range from 1284 to 1580 mm/year, 1131 to 1791 mm/year, 

and 2105 to 3359 mm/year, respectively (Basnayake et al., 2006). In the transplanting stage, the estimated NDVI and VH 

values for paddy rice were 0.25 and -22.55, respectively. On the other hand, the values reach their maximum during the 

generative stage of rice, with NDVI peaking at 0.67 and VH reaching -13.92. The MNDWI values reached their highest points 475 

from 0.02 to 0.11 during the tillage and transplanting stages. 
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(a) Laos 

 

(c) Single Paddy Rice 

 

 

 
(d) Double Paddy Rice 

 

 

 

(b) Central of Laos 

 
Figure 10. Map and cropping intensity of paddy rice in (a) Laos, (b) Central region of Laos, and representative spectra cluster 495 
profiles of the paddy rice NDVI, VH backscatter, and MNDWI in the Central region of Laos: (c) Single paddy rice, and (d) Double 

paddy rice. Grey bars refer to the initial season (i.e., transplanting period). 
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3.1.6 Thailand and Myanmar 

Figure 11a show the paddy rice distribution map in Thailand from 2020 to 2021, with an estimated 9,159,089 ha of rice fields 

and an annual harvested area of 11,233,205 ha (Tabel 3). This made Thailand the largest rice producer in Southeast Asia. The 500 

dominant rice cropping in Thailand was single-intensity with an area of 7,084,973 ha (i.e., 63.2% of total harvested area) and 

double-intensity with 4,148,232 ha (36.8%). The largest paddy rice cultivation area in Thailand is the region of Northeast 

Thailand, like Ubon Ratchathani, Surin, Buriram, Nakhon Ratchasima, Si Saket, and Roi Et, all have distinct dry and wet 

seasons. Rain-fed single-season rice is the primary crop in this region due to its primary water source problem (Xu et al., 2021), 

where its mean annual rainfall is only about 1400 mm (Gale and Saunders, 2013). Figure 11b demonstrates an extensive total 505 

paddy rice cultivation area in Northeast Thailand, but individual plots were small and irregular. Meanwhile, the central plain 

had a higher urbanization rate and advanced irrigation infrastructure, offering a more suitable location for a rice double 

cropping system. In northern regions such as Chiang Rai and Chiang Mai, rice fields were concentrated in the valleys. The 

distribution of paddy rice in Southern Thailand was relatively small compared to other regions. Nevertheless, the map produced 

in this study can effectively extract small, discrete rice paddy plots (e.g. Fig. 17). 510 

Figures 11c and 11d show the representative spectra cluster profiles of the paddy rice NDVI, VH backscatter, and 

MNDWI for single and double rice cropping intensities in the Northeast region of Thailand. In Thailand, paddy rice was grown 

in two cropping periods, including the wet and dry seasons. Paddy rice cultivation season for single planting was mainly sown 

from May/June and harvested in November/December (Fig. 11c). This single-planting cultivation period is commonly referred 

to as off-season rice. Off-season rice can be planted at various times of the year outside the wet and dry seasons, depending on 515 

the region and water availability (Sanwong et al., 2023). The age at harvest for off-season rice can vary, but it is often around 

4 to 6 months. Meanwhile, rice with double intensity is sown both during the wet season (May to July) and dry season (August 

to December/January) (Fig. 11d). The NDVI and VH values for paddy rice during the transplanting stage were approximately 

0.21 and -23.67. In contrast, the values peak during the generative stage of rice, reaching 0.71 for NDVI and 14.53 for VH. 

MNDWI values peaked between -0.08 and -0.02 during tillage and transplanting. 520 

 

 

 

 

 525 

 

 

 

 

 530 

https://doi.org/10.5194/essd-2024-90
Preprint. Discussion started: 25 March 2024
c© Author(s) 2024. CC BY 4.0 License.



29 

 

(a) Thailand 

 

(c) Single Paddy Rice 

 

 

 
(d) Double Paddy Rice 

 

 

 

(b) Northeast Region of Thailand  

 
Figure 11. Map and cropping intensity of paddy rice in (a) Thailand, (b) Northeast region of Thailand, and representative spectra 

cluster profiles of the paddy rice NDVI, VH, and MNDWI in the Northeast region of Thailand: (c) Single paddy rice, and (d) Double 

paddy rice. Grey bars refer to the initial season (i.e., transplanting period). 
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The spatial distribution map and cultivation intensity of paddy fields in Myanmar for the 2020 to 2021 cropping 

seasons are shown in Fig. 12a. The rice field parcel in Myanmar covered an approximate area of 6,052,636 ha (Table 3), with 535 

a harvested area of 8,434,250 ha (Table 4). The rice-harvested area within single intensity is 3,671,024 ha (43.5%), while 

4,763,224 ha (56.5%) on double intensity. Paddy rice with single intensity was dominated in the North of Myanmar, 

particularly in the central highland regions (i.e. Mandalay, Sagaing, and Magway) and few with double intensity. In general, 

single-cropped rice was invariably practised during the rainy season, and irrigation was a major constraint for double-cropped 

rice production during the dry season in the central highland areas (Son et al., 2017). In contrast, the double intensity of paddy 540 

rice was more widely distributed throughout coastal regions (such as Ayeyarwady, Yangon, and Bago) (Fig. 12b). The double-

intensity paddy rice was concentrated along the main rivers, especially in the Ayeyarwady river basin, due to water availability 

for crop irrigation in both cropping seasons (Son et al., 2017). 

Figures 12c and d depict the representative spectra cluster profiles of the paddy rice NDVI, VH backscatter, and 

MNDWI patterns for single and double rice cultivation intensities in the Mandalay region of Myanmar. The single planting 545 

was typically from July/August to December and double intensity consisted of the first season (July/August to December) and 

the second (May to July). Research by (Torbick et al., 2017) shows a high correlation between the wet season rice calendar 

dates for March and November and the dry season from November to March. During the transplanting stage, the estimated 

NDVI and VH values for paddy rice were 0.15 and -20.45, respectively. In contrast, the generative stage of rice has its peak 

values, with NDVI reaching a maximum of 0.73 and VH reaching -14.85. The MNDWI values peaked from -0.04 to 0.07 550 

during the tillage and transplanting stages. 
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(a) Myanmar 

 

(c) Single Paddy Rice 

 

 

 
(d) Double Paddy Rice 

 

 

 

(b) Mandalay region of Myanmar 

 
Figure 12. Map and cropping intensity of paddy rice in (a) Myanmar, (b) Mandalay region of Myanmar, and representative spectra 

cluster profiles of the paddy rice NDVI, VH backscatter, and MNDWI in the Mandalay region of Myanmar: (c) Single paddy rice, 

and (d) Double paddy rice. Grey bars refer to the initial season (i.e., transplanting period). 570 
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3.2 Comparison with national agricultural statistics 

We compared our results with agricultural statistics for the nine countries of Southeast Asia at the district and provincial level 

(Table 2). The agricultural statistical data utilised in this study includes Indonesia, the Philippines, and Malaysia (Fig. 13). In 

contrast, the annual total harvested area is available for Thailand, Cambodia, Laos, Myanmar, and Vietnam (Fig. 14). The 

results indicate a strong agreement between our estimated rice areas and the statistical data.  575 

Figure 13 illustrates the comparison results between our results and agricultural statistics concerning the paddy field 

parcels at both the district and provincial levels in Indonesia, Malaysia, and the Philippines. The distribution of paddy field 

parcels in classification and agricultural statistics showed a relatively high correlation in Indonesia (R2 = 0.85) (Fig. 13a). 

Figure 14a also shows that our predicted data of Indonesia were consistently lower than the statistical data, with a mean error 

of  6.46 x 103 ha and RMSE = 11.44 × 103 ha. The reason may be that statistical data from Indonesia include rice areas 580 

intermingled with maize, sugar cane, tobacco, and other seasonal crops, leading to the overestimation of these crops as rice 

fields. Our estimated paddy field growing areas in Malaysia and the Philippines were strongly correlated with district and 

provincial agricultural statistics, with R2 value of 0.97 (Fig. 13b and 13c).  

A comparison between the harvested area in Southeast Asia, derived from this study and FAOSTAT 2021 at the 

national level is presented in Table 4. The total harvested area from this study is 42,915,110 ha, which closely corresponds to 585 

FAOSTAT's data (45,086,008 ha harvested area). The relative discrepancy is approximately 4.3% with R2 value of 0.92 and 

RMSE value of 1,114 x 103 ha (Supplementary Fig. S1). 

 

(a) Indonesia 

 

(b) Malaysia 

 

(c) Philippines 

 
Figure 13. The comparison of paddy rice growing areas from our map and the statistical data at district and province levels for (a) 

Indonesia (2021-2022), (b) Malaysia (2021), and (c) Philippines (2022). 590 
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Figure 14 compares our estimate with agricultural statistics for the total annual harvested rice area at the provincial 

level in Vietnam, Cambodia, Laos, Thailand, and Myanmar. Overall, our estimates were consistent with the statistical data of 

the countries. The results show a high correlation in Cambodia (R2 = 0.9) (Fig. 14b), with RMSE = 63.45 x 103 ha. The 595 

estimated harvested areas for paddy fields in Myanmar, Thailand, Laos, and Vietnam were also strongly correlated with 

agricultural statistics (R2 values ranging from 0.93 to 0.97) (Fig. 14a, c, d, and e). 

(a) Vietnam 

 

(b) Cambodia 

 

(c) Laos 

 
(d) Thailand 

 

(e) Myanmar 

 

 

Figure 14. The comparison of harvested paddy rice areas from our map and statistical data at the province levels for (a) Vietnam 

(statistical data from 2021), (b) Cambodia (2019), (c) Laos (2021), (d) Thailand (2021), and (e) Myanmar (2020). 

 600 

3.3 Comparison with existing rice area maps 

We further compared the rice maps obtained in this study with existing maps available at the district levels. The datasets 

include the combined MODIS and Sentinel-1 rice paddy map with a resolution of 10 m in Northeast and Southeast Asia from 

2017 to 2019 (NESEA-Rice10 product). Additionally, there was a Sentinel-1 rice paddy map with a resolution of 20 m 
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specifically for mainland Southeast Asia in 2019 (20mRice-MSEAsia) (see Section 2.2.3 for details). Figure 15 demonstrates 605 

the correlation between the paddy rice area obtained from our maps and existing products in Southeast Asia. The correlation 

coefficients ranged from R2=0.28 (for Thailand) to R2=0.98 (for Malaysia), indicating varying degrees of correlation between 

all datasets. 

Figures 15a, f, g, and h show the correlations between the paddy rice area from our estimates and the NESEA-Rice10 

products for Indonesia, Cambodia, Laos, and Thailand with R2 values of 0.63, 0.50, 0.59, and 0.28. The NESEA-Rice 10 610 

product estimated that the rice acreage across Southeast Asia is underestimated. The NESEA-Rice10 m products exhibit the 

lowest significant underestimation in the rice-growing areas, particularly in Thailand (Northeastern region), Laos (Southern 

region), and Indonesia (Java Island) (Fig. 16a, c, d, f, g and h). The total growing paddy rice area from NESEA-Rice10 m data 

accounts for only 16% (Thailand), 20% (Laos), and 70% (Indonesia) compared to our results.  

While our map demonstrates a strong correlation in paddy rice area with NESEA-Rice10, with R2 values of 0.86, 615 

0.98, 0.84, 0.94, and 0.86 in Timor-Leste, Malaysia, Philippines, Vietnam, and Myanmar (as illustrated in Fig. 15b, c, d, e, 

and i), it is worth noting that our results were notably (55%) larger compared to those obtained from NESEA-Rice10  

(Supplementary material Table S3). 

The correlation between the paddy rice parcel area reported in agricultural statistics with the NESEA-Rice10 product 

is R2 values of 0.77, 0.96, and 0.86, respectively, and is only available for Indonesia, Malaysia, and the Philippines (Table 5). 620 

No statistical data is available on the paddy rice growing area in the other five nations. 

 

Table 5. The paddy rice parcel and harvested area correlations between this study, and NESEA-Rice10 with agricultural statistics 

Country 
This study NESEA-Rice10 

RMSE (x 103 ha) R² RMSE (x 103 ha) R² 

Indonesia 11.4a 0.85a 236.3a 0.77 a 

Timor-Leste 0.18a 0.86a NA NA 

Malaysia 
7.5a 0.94a 7.34a 0.96 a 

25.7b 0.84b NA NA 

Philippines 8.7a 0.96a 18.4a 0.86 a 

Vietnam 37.3b 0.96b NA NA 

Cambodia 63.4 b 0.90b NA NA 

Laos 11.8b 0.98b NA NA 

Thailand 27.2b 0.97b NA NA 

Myanmar 240.9b 0.93b NA NA 

NA : The paddy rice growing or parcel area in agricultural statistical data is not available. 
a
 : Paddy rice growing or parcel area 625 

b
 : Paddy rice harvested area 
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(a) Indonesia 

 

(b) Timor-Leste 

 

(c) Malaysia 

 

(d) Philippines 

 

(e) Vietnam 

  

(f) Cambodia 

 

 
(g) Laos 

 

(h) Thailand 

 

 

(i) Myanmar 

 

Figure 15. Comparisons of the paddy rice parcels area between our study and existing datasets at the district level in (a) Indonesia, 

(b) Timor-Leste, (c) Malaysia, (d) Philippines, (e) Vietnam, (f) Cambodia, (g) Laos, (h) Thailand, and (i) Myanmar. 

 630 
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Figures 15e, f, g, h, and I illustrate a high correlation between the paddy rice area from our map and 20mRice-MSEAsia for 

Vietnam, Cambodia, Laos, Thailand, and Myanmar with R2 values of 0.91, 0.76, 0.78, 0.73, and 0.79, respectively. The 

20mRice-MSEAsia overestimates paddy area by approximately 40% (Thailand) and 8% (Laos) compared to our study. The 

discrepancy is notable, particularly in the Central and Northeast regions of Thailand and South of Laos (Fig. 16 a, b, d, and e). 

(a) This study (Northeast of 

Thailand) 

 

(b) 20mRice-MSEAsia (Northeast of 

Thailand) 

 

(c) NESEA-Rice10 (Northeast of 

Thailand) 

 

(d) This study (Southern of Laos) 

 

(e) 20mRice-MSEAsia (Southern of 

Laos) 

 

(f) NESEA-Rice10 (Southern of 

Laos) 

 
(g) This study (Java Island) 

 

No available data (h) NESEA-Rice10 (Java Island) 

 

Figure 16. Visual comparison between our paddy rice maps and existing products in typical regions: (a, d, and g) classification our 635 
study with the location within each country (inset); (b and e) 20mRice-MSEAsia product; (c, f, and h) NESEA-Rice10 product. 
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4 Discussion 640 

4.1 Advantages of the local unsupervised classification with phenological labelling (LUCK-PALM) method 

This study optimised a local unsupervised and penological mapping method with a combination of Sentinel-1 and Sentinel-2 

time series data to capture paddy rice distribution and rice cropping intensity, namely the LUCK-PALM method. The 

phenology-based classification method for mapping rice cropping intensity requires dense time series imagery data. MODIS 

imagery data with excellent temporal resolution (i.e., 1 to 2 days if clouds do not impact observations) have been used for 645 

mapping of rice cropping intensity for a larger extent. However, the coarse spatial resolution leads to high uncertainty (Laborte 

et al., 2017; Mishra et al., 2021; Zhao et al., 2023). In this study, we successfully produced a more detailed map across 

Southeast Asia (Fig. 1b) by using a combination of Sentinel-1 and 2 time series data. Although Sentinel-2A and 2B have a 

temporal resolution of 5 days, we used monthly composite image data of NDVI and MNDWI to reduce noise and the effect of 

cloud cover. These data can capture rice phenological growth stages, including transplanting, vegetative, generative, and 650 

ripening stages, excellently, as each stage lasts about 30 days (Rudiyanto et al., 2019; Fatchurrachman et al., 2022). 

The median of the VH polarisation can distinguish more pronounced values of VH backscatter at various rice growth 

stages (Minh et al., 2019; Rudiyanto et al., 2019). The enhanced temporal frequency of Sentinel-1 images significantly 

improved the precision of rice growth stage determination, as it allowed for more accurate backscattering profile assessments. 

Nevertheless, the VH backscatter in arid regions could not detect water effectively. Therefore, integrating Sentinel-1 and 655 

Sentinel-2 data can mitigate the limitations of a single data source, improving the overall results of mapping paddy rice. SAR 

data may penetrate cloud cover and supplement optical data in continuous Earth surface monitoring to correct for missed 

phenological phenomena. The accuracy of rice identification with integrated Sentinel-1 and Sentinel-2 images is greater than 

with Sentinel-1 or Sentinel-2 images alone (Jiang et al., 2023). 

Advanced supervised classification methods always require substantial training data, which is a challenge. Southeast 660 

Asia has varying rice cropping intensity and calendar, and collecting this data can be tedious and time-consuming. In this 

study, we employed a local unsupervised and phenological mapping method. This allowed us to generate representative cluster 

profiles of paddy NDVI, VH backscatter, and MNDWI, which can efficiently identify varying rice cropping intensity with 

different cropping calendars. Thus, the proposed LUCK-PALM method stands as a cost-effective approach for mapping rice 

cropping intensity on a large area with varying climate conditions. 665 

In this study, we not only mapped the distribution of rice growing area but also cropping intensity at the pixel level. 

This information can be used to predict rice yields (Pan et al., 2021; Cao et al., 2021), estimate CH4 emissions (Sun et al., 

2020; Zhang et al., 2020a), optimise water use (Liu et al., 2021; Li et al., 2022), and assess the effects of climate change 

(Mahajan et al., 2012; Ye et al., 2015). 

 670 
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4.2 Comparison of rice growing area with other rice paddy map products  

The map produced in this study shows high agreement with countries’ agricultural statistics data (Table 5) and was verified 

manually using Google Images’ Street view (Results in Supplementary Fig. S2 and Table S2). Compared with existing rice 

maps, our study presents higher correlations with ground data (Table 5). 

Sentinel-1 data is widely used to map rice extents, especially in tropical regions because the C-band SAR sensor can 675 

obtain data through cloud cover (Clauss et al., 2018; Rudiyanto et al., 2019; Singha et al., 2019; Vuong et al., 2019; Phan et 

al., 2021; Xu et al., 2021; Phung et al., 2022; Sun et al., 2023). In an earlier study, the 20mRice-MSEAsia using Sentinel-1 

data calculated the total area of rice fields in mainland Southeast Asia is 25,150 x 103 ha (Sun et al., 2023). This value is greater 

than the rice growing area estimated in this study (22,496 x 103 ha). In contrast, the integration of the phenological rule-based 

method with MODIS and Sentinel-1 data by (Han et al., 2021) or NESEA-Rice10 product indicates that the rice growing areas 680 

in Southeast Asia were 12,902 x 103 ha, which was considerably lower compared to our product. The significant difference 

between our product and those two existing products is particularly notable in Thailand (Fig. 16a, b, c, Table 3 and 

Supplementary Table S3). As shown in Fig. 17a, our method can identify the distribution of small rice fields (average 0.2 ha) 

located in narrow valleys (i.e., streamlines) in mountainous areas of the dry region in Northeast Thailand. Both existing 

products failed to detect these fields. The 20mRice-MSEAsia product considered non-rice as rice areas (Fig. 17b), which 685 

indicates it has a high commission error of rice groups, while NESEA-Rice10 classified rice as non-rice areas (Fig 17c), which 

suggests it results in a high omission error of rice groups. The overestimation of 20mRice-MSEAsia product (especially for 

Thailand, Table 3) suggests that the use of Sentinel-1 data alone with the semantic segmentation model could not effectively 

discriminate between rice and other crops, such as sugar cane, maize, and cassava (Fig. 17b, d, and e). In contrast, the 

underestimation of NESEA-Rice10 product (Table 3) indicates the phenological rule-based method with MODIS and Sentinel-690 

1 data of (Han et al., 2021) could not effectively identify rice growing areas, especially in the regions with relatively low 

rainfall intensity like the mainland Southeast Asia. The main factor contributing to this discrepancy was that the regions lack 

strong flooding signals that can be detected by the radar (Zhang et al., 2020a). In addition, the coarser MODIS data missed 

many small rice fields located in narrow valleys between the mountains (Fig. 17c). Most paddy rice is grown annually as a 

rainfed system due to low precipitation and lack of irrigation water in Northeast Thailand (Arunrat et al., 2020), Cambodia 695 

(Fukai and Ouk, 2012), and Laos (Xiao et al., 2006). These comparisons (Fig. 17a, b, and c), suggest that our results are more 

accurate compared to the two existing products. 

Other studies using MODIS data at a coarser resolution of 250 and 500 m suggested a total rice growing area in 

Southeast Asia of 33,939 x 103 ha (Xiao et al., 2006) and 42,335 x 103 ha (Bridhikitti and Overcamp, 2012). These estimates 

are twice as extensive as the data estimated from our study. These results indicate that using low-resolution MODIS data tends 700 

to lead to an overestimation of rice areas, particularly in the border regions where rice and non-rice fields intermingle, creating 

mixed pixels. 
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 705 

 

(a)  

 

(b)  

 

(c)  

 

(d) 

 

(e)  

 

Figure 17. Visual comparison between rice area maps in the Northeast Thailand superimposed on © Google Earth. (a) Results from 

this study. (b) 20mRice-MSEAsia product. (c) NESEA-Rice10 product, which does not identify rice fields in the same area. (d) Image 

from © Street View imagery, which indicates the red point (non-rice area), and (e) which indicates the blue point (rice field). 

4.3 Uncertainty of our results 710 

While the outcomes of this study's paddy rice map demonstrate great accuracy, it is essential to acknowledge certain 

limitations. There are errors in mixed pixels at the intersection of rice and other landscape classes that could be easily 

overlooked or misclassified (Fig. 18a, b, c, d, e, and f). For example, wetlands with non-rice crops could be mistaken for rice, 

especially single-cropping rice.  Mixed pixels are also present in non-rice fields (such as small roads, levees, and bunds) near 

rice fields classified as rice fields. Other errors can be found in rice farming in mountainous and hilly terrains, which are 715 

typically small-scale, dispersed, and, in most cases, contain multiple land types mixed with agricultural vegetation 

(horticulture), creating mixed pixels. Moreover, thick cloud layers, frequent rains, and foggy weather in these areas make it  

difficult to map rice field areas accurately. The occurrence of mixed pixels is also attributed to the conversion of paddy rice 

from rice fields to horticultural crops, resulting in water detection during the rainy season on the previously designated rice 

plantations. In rice mapping, the mixed pixel effects have previously been reported and have become a source of spatial 720 
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uncertainty (Xiao et al., 2006; Clauss et al., 2016; Singha et al., 2019; Rudiyanto et al., 2019; Fatchurrachman et al., 2022). 

Future studies could incorporate water proxies derived from more precise land cover data. This would help minimise the 

presence of mixed pixels in areas where rice fields and water bodies intersect. 

Employing unsupervised classification with the grid in the LUCK-PALM method could result in artifacts along the 

boundaries of the grids (Amatulli et al., 2020).  It is strongly influenced by the local spatial properties of the data (Tan et al., 725 

2006) which may be disjointed with the neighbouring grid pattern. A grid cell in a moving window approach (Radoux et al., 

2014) may be able to reduce this limitation, although it increases computation substantially. 

 

(a) 

 

(b) 

 

(c) 

 

Figure 18. Sources of classification error in paddy fields superimposed on © Google Earth. (a) Pond bunds or border areas 

mistakenly detected as rice fields. (b) Mixed pixels resulting from the conversion of rice fields to horticultural crops. (c) Mixed pixels 730 
occurring at the intersection of rice and other crop classes. The green colour shows miss classification which is non-rice regions 

classified as rice. 

https://doi.org/10.5194/essd-2024-90
Preprint. Discussion started: 25 March 2024
c© Author(s) 2024. CC BY 4.0 License.



41 

 

5 Conclusions 

This study is the first to map and report rice cropping intensity and the harvested area across Southeast Asia at a spatial 

resolution of 10 m (SEA-Rice-Ci10). We have developed a geospatial inventory of paddy rice parcels and rice cropping 735 

intensity by integrating Sentinel-1 and 2 time-series data in a framework called namely LUCK-PALM, based on local 

phenological expert interpretation. The spatial resolution of this database is 10 meters, which is, to our knowledge, the finest-

resolution and most accurate database of paddy rice in Southeast Asia. The distribution of paddy rice in our database was 

highly correlated with government statistics, with an R2 of 0.85 to 0.98. The paddy fields map from our study is more accurate 

and has a higher level of detail than the existing products. Our method reduced the effects of mixed pixels and provided more 740 

detailed spatial information than maps solely relying on optical and radar data. The method is effective in detecting rice 

cropping intensity in diverse and complex regions like Southeast Asian countries. The data can be used for water security 

management, greenhouse gas accounting, and forming government policies to address national food security and reduce 

poverty.  

Rice fields are also a significant source of methane, making the spatial data distribution of harvested rice in Southeast 745 

Asia be used for greenhouse gas accounting valuable for these goals. As such, the results from this study have been used to 

estimate methane emissions from rice cultivation in Southeast Asia as part of the Climate TRACE initiative 

(https://climatetrace.org/). This data is freely downloadable to the public and can be used for greenhouse gas accounting in 

regions that lack detailed rice cultivation and spatial resolution information needed for a country’s emission inventory.   

Data availability 750 

The 10m paddy rice cropping intensity map for Southeast Asia, SEA-Rice-Ci10, is accessible on a public repository at the 

following link: https://doi.org/10.5281/zenodo.10707621 (Frisa Irawan et al., 2024). The datasets utilize the EPSG:4326 spatial 

reference system. The SEA-Rice-Ci10 map can be viewed from the Google Earth Engine App 

(https://rudiyanto.users.earthengine.app/view/seariceci2021). The derived rice cultivation methane emissions estimates can be 

accessed and downloaded from the Climate TRACE platform (https://climatetrace.org/).  755 
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