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Abstract.  

Long-term, reliable datasets of satellite-based vegetation condition are essential for understanding 

terrestrial ecosystem responses to global environmental change, particularly in Australia which is 15 

characterised by diverse ecosystems and strong interannual climate variability. We comprehensively 

evaluate several existing global AVHRR NDVI products for their suitability for long-term vegetation 

monitoring in Australia. Comparisons with MODIS NDVI highlight significant deficiencies, 

particularly over densely vegetated regions.  Moreover, all the assessed products failed to adequately 

reproduce inter-annual variability in the pre-MODIS era as indicated by Landsat NDVI anomalies. To 20 

address these limitations, we propose a new approach to calibrating and harmonising NOAA’s Climate 

Data Record AVHRR NDVI to MODIS MCD43A4 NDVI for Australia using a gradient-boosting 

decision tree ensemble method. Two versions of the datasets are developed, one incorporating climate 

data in the predictors (‘AusENDVI-clim’: Australian Empirical NDVI-climate) and another 

independent of climate data (‘AusENDVI-noclim’). These datasets, spanning 1982-2013 at a spatial 25 

resolution of 0.05°, exhibit strong correlation and low relative errors compared to MODIS NDVI, 

accurately reproducing seasonal cycles over densely vegetated regions. Furthermore, they closely 

replicate the interannual variability in vegetation condition in the pre-MODIS era.  A reliable method 
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for gap-filling the AusENDVI record is also developed that leverages climate, atmospheric CO2 

concentration, and woody cover fraction predictors. The resulting synthetic NDVI dataset shows 30 

excellent agreement with observations.  Finally, we provide a complete 41-year dataset where gap filled 

AusENDVI from January 1982 to February 2000 is seamlessly joined with MODIS NDVI from March 

2000 to December 2022.  Analysing 40-year per-pixel trends in Australia’s annual maximum NDVI 

revealed increasing values across most of the continent. Moreover, shifts in the timing of annual peak 

NDVI are identified, underscoring the dataset's potential to address crucial questions regarding 35 

changing vegetation phenology and its drivers.  The AusENDVI dataset can be used for studying 

Australia's changing vegetation dynamics and downstream impacts on terrestrial carbon and water 

cycles, and provides a reliable foundation for further research into the drivers of vegetation change. 

AusENDVI is open access and available at https://doi.org/10.5281/zenodo.10802704 (Burton, 2024).  

1 Introduction 40 

Australia is undergoing long-term changes to its climate that are impacting terrestrial vegetation, with 

attendant serious implications for ecosystem functioning, carbon and water cycles, and agriculture 

(Hoffmann et al., 2019; Canadell et al., 2021; Head et al., 2014; Hughes, 2011; Steffen et al., 2011; 

Rifai et al., 2022; Ukkola et al., 2016; Donohue et al., 2009).  Long-term, reliable datasets that chart the 

land surface response to climate change are crucial if we are to identify, understand, and respond to 45 

ongoing terrestrial ecosystem change (Giglio and Roy, 2020; Piao et al., 2019). One of the primary 

means Earth System Science has to trace long-term vegetation change is the Normalised Difference 

Vegetation Index (NDVI), a widely used satellite-derived indicator of vegetation condition owing to its 

close relation to vegetation productivity. NDVI provides an efficient means for mapping and monitoring 

vegetation condition at continental scales. In Australia, the need for very long records of NDVI to 50 

understand change is amplified by strong variability at both interannual and interdecadal time scales, 

and ecosystems that are often driven by periodic, but non-seasonal phenological drivers (Moore et al., 

2016; Chambers et al., 2013; Ma et al., 2013; Beringer et al., 2022). 
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The MODerate resolution Imaging Spectroradiometer (MODIS) NDVI record (NDVIMODIS) is 

generally considered the most reliable global scale dataset due to its high quality radiometrics and 55 

accurate georeferencing. Unfortunately, the MODIS record only begins in March 2000 (Vermote et al., 

2002).  The Advanced Very High-Resolution Radiometer (AVHRR) NDVI record (NDVIAVHRR) is the 

longest contiguous series of satellite data, starting in July 1981, but has several well-known problems 

owing to a lack of on-board calibration for visible wavelengths, sensor orbital drift, and sensor 

degradation, making it unreliable for detecting relatively subtle trends over multiple decades (Tucker et 60 

al., 2005; Privette et al., 1995; Gorman and Mcgregor, 1994). Several exemplary global NDVIAVHRR 

products attempt to ameliorate these issues. For example, the Global Inventory Modelling and Mapping 

Studies version 3 (NDVIGIMMS3g) applies Bayesian analysis with  Sea-Viewing Wide Field-of-View 

Sensor NDVI as evidence information to reduce sensor transition discontinuities and increase the 

dynamic range of NDVIAVHRR (Pinzon and Tucker, 2014), while the NOAA Climate Data Record 65 

(NDVICDR) applies a suite of corrections to create a consistent surface reflectance product (Franch et al., 

2017), among others (Table 1).  However, despite substantial progress, errors and biases in these NDVI 

products have led to inconsistent findings on global greening (Wang et al., 2022; Wang et al., 2021; 

Cortés et al., 2021; Frankenberg et al., 2021; Fensholt and Proud, 2012), discrepancies in vegetation 

seasonality between datasets (Ye et al., 2021), and persistent temporal inconsistencies (Tian et al., 2015; 70 

Giglio and Roy, 2020).  Recently, Li et al. (2023) developed a new global NDVIAVHRR product, 

‘GIMMS-PKU’ (NDVIGIMMS-PKU), which effectively calibrates the NDVIGIMMS3g archive to the Landsat 

record using machine learning techniques, and ‘GIMMS-PKU-consolidated’ (NDVIPKU-consolidated) which 

harmonises NDVIGIMMS-PKU to NDVIMODIS (Table 1), but which has yet to be extensively assessed in the 

literature (Li et al., 2023).  75 

As much as possible, any NDVI product that exploits the AVHRR and MODIS record to acquire 

an accurate >40-year record of vegetation condition should attempt to integrate the two seamlessly 

while also performing well in the pre-MODIS AVHRR era (1982-2000).  Performance should be judged 

on how well seasonal cycles are represented along with interannual and interdecadal variability, as both 

seasonal and longer-term fluctuations in vegetation conditions have important ramifications for carbon 80 

and water cycles (Ma et al., 2015). An effectively calibrated, harmonised, and gap-filled dataset can 
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form the basis for studying the biogeophysical impacts of global change and meteorological variability 

on Australia’s terrestrial vegetation. With that in mind, the objectives of this study are as follows: 

• To investigate existing NDVIAVHRR datasets to determine their suitability for long-term 

vegetation monitoring in Australia by both comparing their consistency with NDVIMODIS during 85 

the 2000-2013 overlap period, and with Landsat NDVI (NDVILandsat) anomalies from 1988-

2000.   

• Having established limitations with the existing datasets, calibrate and harmonise NDVIAVHRR to 

NDVIMODIS solely over Australia at the highest spatial resolution possible. The final dataset 

should contain the harmonised NDVIAVHRR from January 1982 to February 2000, where it 90 

seamlessly joins with the superior NDVIMODIS timeseries, resulting in a reliable 40-year record 

of vegetation condition for Australia. We will call this time series “AusENDVI” (for Australian 

Empirical NDVI; NDVIAusE) 

• To develop a reliable method for gap filling the NDVIAusE record caused by sensor transitions 

issues and long periods of missing or suspect data acquisition. 95 

• To demonstrate the utility of this new dataset by exploring NDVI phenology trend analysis, 

including long-term trends in the value and timing of annual maximum NDVI across the 

Australian continent. 

2 Materials and Methods 

2.1 Datasets 100 

Features of all datasets used for either the intercomparison of NDVI products or in the modelling 

framework are listed in Table 1.  For comparisons between NDVI datasets, finer resolution datasets 

were resampled to match the coarsest grid (i.e., GIMMS, 1/12⁰ or ~8 km over Australia) using 

averaging or nearest-neighbour techniques. Wherever datasets are compared, data gaps are matched 

between all participating datasets. We chose Landsat's TM and ETM+ (Table 1) as the sensor for 105 

comparison in the pre-MODIS era owing to the international efforts to produce a relatively high 

geometric and radiometric accuracy for its generation, and its lack of sensor transitions (Beck et al., 
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2011). The chosen surface reflectance Landsat product, Digital Earth Australia’s Landsat NBAR 

(Nadir-corrected BRDF Adjusted Reflectance, where BRDF stands for Bidirectional reflectance 

distribution function) product is calibrated to Australia’s environment using the MODTRAN 4 radiative 110 

transfer model and BRDF shape functions derived from MODIS (Li et al., 2010). 

For the development of the Australian NDVI dataset, we relied on the NOAA NDVICDR product 

(Franch et al., 2017) as the input dataset. This was principally because of its higher spatial resolution 

than the other datasets (~5 km), its lack of gap filling, extensive atmospheric corrections, and its BRDF-

based correction of view-angle effects (Ma et al., 2019).  As the target dataset, we derived NDVI from 115 

the MODIS MCD43A4 surface reflectance NBAR product (NDVIMCD43A4). This reflectance product 

was chosen because of its similar set of atmospheric corrections when compared with NDVICDR and 

Landsat NBAR, and its use of both the Terra and Aqua instruments which extends its temporal extent 

back to March 2000 (Schaaf and Wang, 2015). 

All additional input data used in NDVI estimation were temporally aggregated to monthly 120 

values by calculating medians and spatially reprojected onto a common 0.05⁰ geographic grid. In 

addition to filtering based on the quality assurance band additional criteria were applied to minimise the 

impact of temporal discontinuities in the NDVICDR record that may arise from orbital decay or sensor 

degradation.  Monthly NDVICDR values based on fewer than two observations per month were 

discarded, along with any values for which the coefficient of variation in daily retrievals for a given 125 

month was greater than 50 %.  Anomalies in NDVI, solar-zenith-angle, and time-of-acquisition that 

were greater than 3.5 standard deviations were also discarded (based on a 1982-2013 climatology).  

Following the advice of Tian et al. (2015), data for several problematic sensor transition periods were 

discarded (September 1984 - April 1985, July 1988 - September 1989, and July 1993 - December 1994).  

After filtering, the continental average fraction of available data is 0.79, meaning on average 79 % of 130 

the monthly time-steps between 1982-2013 are preserved (Figure A1). 

 

Table 1: Details of the datasets used in, and produced by, this study. 

Dataset & Abbreviation Native spatial resolution, temporal range, and details Data Source & Reference 
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AVHRR Climate Data Record 

NDVI and Surface Reflectance; 

NDVICDR 

0.05⁰, January 1982 to December 2013. Surface reflectance 

product used for the time-of-day and solar zenith angle. 

Version 5, downloaded from 

Google Earth Engine, (Franch et al., 

2017) 

MODIS MCD43A4 NDVI; 

NDVIMCD43A4 

~500m, March 2000 to December 2022. Calculate from the 

combined Terra and Aqua MCD43A4 surface reflectance 

NBAR product. 

Version 6 downloaded from Google 

Earth Engine (Schaaf and Wang, 

2015) 

AVHRR GIMMS3g NDVI; 

NDVIGIMMS3g 

1/12⁰, 1982-2013. AVHRR NDVI with sensor transition 

discontinuities reduced with Bayesian analysis. 

Version 1.0 downloaded from 

Google Earth Engine (Pinzon and 

Tucker, 2014) 

AVHRR GIMMS PKU NDVI; 

NDVIPKU, NDVIPKU-consolidated 

1/12⁰, 1982-2022.  Two variations, ‘GIMMS-PKU-solely’ 

and ‘GIMMS-PKU-consolidated’, the latter is harmonised 

with MODIS. 

Version 1.2 downloaded from 

https://zenodo.org/records/8253971 

(Li et al., 2023) 

Digital Earth Australia’s Landsat 

NDVI (NBAR); 

NDVILandsat 

30m, 1987-2012, NDVI calculated from an Australian-

specific Landsat 5 & 7 surface reflectance NBAR product.  

Collection 3, 

https://docs.dea.ga.gov.au/data/prod

uct/dea-surface-reflectance-nbar-

landsat-5-tm/ (Li et al., 2010) 

AusENDVI-clim and  

AusENDVI-noclim; 

NDVIAusE-clim, NDVIAusE-noclim   

0.05⁰, 1982-2013. Calibrated and harmonised NDVI for 

Australia using machine-learning techniques. The ‘clim’ 

version of the dataset includes climate variables in the 

feature set, the ‘noclim’ version does not. 

This study 

Synthetic NDVI; 

NDVISYN 

0.05⁰, 1982-2022. A machine-learning derived synthetic 

NDVI built using climate, CO2, and landscape features, and 

trained on NDVIAusE-clim and NDVIMCD43A4. 

This study 

ANU Climate: 

• Average Air Temp; Tavg 

• Vapour Pressure Deficit; VPD 

• Incoming Shortwave 

Radiation; srad 

• Total Precipitation; rain 

~1 km, 1982-2022.  Gridded climate products based on 

topographically conditional spatial interpolation of weather 

stations. 

ANUClimate, 

https://dapds00.nci.org.au/thredds/c

atalogs/gh70/catalog.html 

 (Hutchison et al., 2014) 

Atmospheric CO2 concentration N/A., 1982-2022. Extracted from the Cape Grim Baseline 

Air Pollution Station in Tasmania, Australia. De-

seasonalised using a 12-month running mean. 

CSIRO Environment and the 

Australian Bureau of Meteorology 

(Kennaook / Cape Grim Baseline 

Air Pollution Station). 

https://capegrim.csiro.au/ 

Woody Cover Fraction; WCF 25m, 1982-2022. A per-pixel estimate of woody cover 

fraction across Australia. Annual product for 1990-2022. A 

five-year average from 1990-1995 was used to extend the 

https://dapds00.nci.org.au/thredds/c

atalog/ub8/au/LandCover/DEA_AL

C/catalog.html 
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product back to 1982.  (Liao et al., 2020) 

 

 135 

2.2 Assessment of existing NDVI products 

We compared NDVIAVHRR datasets with NDVIMCD43A4 for the overlapping period from March 2000 to 

December 2013.  Per-pixel Pearson correlation (r) and coefficient of variation (CV; root mean square 

error divided by the long-term mean NDVIMCD43A4) describe the agreement between datasets, in 

addition to comparison of the long-term seasonal cycle. Next, NDVIAVHRR datasets were compared to 140 

annual rolling mean standardised anomalies of NDVILandsat for 1988-2000 to assess how well each 

product reproduces inter-annual variability in vegetation condition in the pre-MODIS era. 

2.3 Calibration and harmonisation 

During extensive preliminary testing gradient-boosting decision tree ensembles (GBM), random forest, 

and generalised additive models were assessed for their ability to calibrate and harmonise NDVICDR 145 

with NDVIMCD43A4. The GBM outperformed the other approaches.  Two classes of models and datasets 

were built: one that utilises climate data (hereafter referred to as ‘clim’ models) in the feature set to 

achieve the best possible agreement between NDVICDR and NDVIMCD43A4. The second excludes climate 

features (hereafter, ‘noclim’ model) while still achieving satisfactory results.  When examining drivers 

of change, users of these datasets may prefer to use the no-climate model to limit potential circularities 150 

in attribution of the drivers of change.  During testing, climate variables were identified as useful 

features for both improving predictions in the heavily forested regions where there was little to no 

agreement between NDVIMCD43A4 and NDVIAVHRR, and for capturing interannual variability.  The 

‘noclim’ models used the following features: solar-zenith-angle (SZEN), time-of-acquisition (TOD), 

month-of-year, latitude, and NDVIMCD43A4 summary percentiles (0.05, 0.5, and 0.95). The ‘clim’ models 155 

used the same variables, plus incoming solar radiation, rainfall, temperature, and vapour pressure 

deficit. Fractional anomalies of the climate features are also included, along with cumulative three- and 

six-month rainfall. Testing revealed the best results were obtained by generating three separate models 
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for areas with high and low woody cover fraction (WCF), and for the desert bioclimatic region (Figure 

1a). The long-term mean of WCF was extracted from Liao et al. (2020) and a threshold of WCF=0.25 160 

was used to separate regions with a high woody canopy cover. This threshold was chosen as it 

approximately delineated those regions with the poorest correspondence between NDVICDR and 

NDVIMCD43A4 (Figure 2e-h).  

In the high and low WCF regions, training and testing samples were drawn using an equalised 

random sampling stratification where a total of 30,000 samples were extracted in equal measure from 165 

the five remaining bioclimatic regions after excluding the desert (i.e., 6,000 samples per region). 

Bioclimatic regions were identical to those defined by Haverd et al. (2013) (Figure 1b).  In the desert 

region, samples were drawn using a simple random approach.  In all modelling domains, samples were 

drawn from any point in time across the overlap period, and 5,000 samples were randomly separated as 

an independent validation set, leaving 25,000 samples for training. 170 

 

 

Figure 1: a) Regions delineating the spatial extent of the three modelling domains: desert, low woody cover fraction (WCF) and 

high WCF. b) The distribution of all independent validation points used to assess the model fits across the three modelling 

domains in (a); points are coloured by the year they are drawn from.  Figure is overlaid with outlines of the six bioclimatic regions 175 
used to both stratify training points and for aggregating trends in later analysis. 

 

Cross validation for model hyperparameter optimization was conducted using a nested cross-

validation approach with five outer splits and three inner splits (Cawley and Talbot, 2010).  Mean 

absolute error (MAE) and the coefficient of determination (R2) are reported as indicators of the 180 

goodness of fits.  To understand which explanatory variables most impacted predictions, feature 
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importance plots were produced using the Shapley Additive Explanations (SHAP) Python library 

(Lundberg and Lee, 2017). 

2.3 Gap-filling 

At times there are long gaps in AVHRR data acquisition over Australia. For example, 1994 is entirely 185 

missing, and during sensor transition periods the data becomes unreliable for several months before and 

after the transitions (Tian et al., 2015).  Furthermore, owing to the nature of Australia’s prevailing 

weather systems such as the tropical monsoon, it is not uncommon to have whole geographic regions 

missing for a given month.  This undermines the typical approaches to gap filling that work well when 

either the temporal gap is short (e.g., temporal interpolation methods using linear or polynomial fits), or 190 

the spatial pattern of gaps are quasi-random such as from scattered cloud cover (spatial interpolation 

methods such as nearest neighbour, kriging etc.) (Bessenbacher et al., 2022; Shen et al., 2015). Gap-

filling with a climatology can often mask important interannual variability at key times – such as 

anomalously high rainfall periods associated with La Niñas when enhanced cloud cover masks large-

scale greening events across Australia’s northern tropical savanna. To avoid this we used well 195 

established machine learning approaches that have been developed to fill gaps in univariate data 

(Gerber et al., 2018; Zeng et al., 2014).  Here, we develop a two-stage process for gap-filling.  Firstly, to 

fill short temporal gaps, the time series is split into a climatology and anomaly series and linear 

temporal interpolation is applied to the anomalies for a maximum of one time-step (i.e., one month). 

Longer temporal gaps are replaced with a synthetic NDVI dataset generated using a similar GBM 200 

machine learning method as the harmonisation and is described further below. 

2.3.1 Synthetic NDVI 

Training samples were extracted from NDVIAusE-clim for 1982-2000 and NDVIMCD43A4 for 2000-2022, 

using a similar sampling approach as used for harmonisation only in this instance two models are built, 

a ‘desert’ model and ‘non-desert’ model. The non-desert model covers the same region as the high and 205 

low WCF models previously described (the inclusion of WCF in the features reduces the need to define 

a low and high WCF modelling region).  GBM models were then fit using all the features previously 

https://doi.org/10.5194/essd-2024-89
Preprint. Discussion started: 9 April 2024
c© Author(s) 2024. CC BY 4.0 License.



10 

 

listed for the ‘clim’ model, plus de-seasonalised CO2 concentration and annual WCF. Otherwise, the 

modelling framework was the same as the harmonisation approach.  The synthetic NDVI datasets 

(NDVISYN) are used to gap fill the NDVIAusE-clim record from January 1982 to February 2000. The final 210 

gap-filled, calibrated, and harmonised NDVIAusE-clim dataset is joined with NDVIMCD43A4.  Only the 

NDVIAusE-clim dataset is gap filled, the NDVIAusE-noclim dataset is simply joined with the NDVIMCD43A4 

record. This ensures the ‘noclim’ dataset does not contain any climate information in the reconstructed 

time series.  

2.4 Trends in peak-of-season phenology 215 

Annual, per-pixel NDVI land surface phenology statistics were extracted using the “xr_phenology” 

Python function from the “dea-tools” package (Krause et al., 2021).  This analysis focused on two 

metrics, the NDVI value at the peak of the season (vPOS), and the day-of-year the peak occurs (POS). 

The input time-series was the gap-filled ‘clim’ dataset, and the time-series was first linearly up-sampled 

from monthly to two-week intervals to increase the temporal resolution of the datasets before the time-220 

series was smoothed using a Savitsky-Golay filter with a window length of 11 and a polynomial order 

of three. Though we report day-of-year as the unit for POS, the actual POS could have occurred anytime 

withing a given bi-monthly time step, so DOY values should be considered an approximation.  

To avoid applying phenology trend analysis on regions that do not experience regular seasonal 

variation, we created a mask that removes regions identified as ‘non-seasonal’ using the definitions and 225 

methods defined by Moore et al. (2016).  Broadly, the mask is created using three inputs: the standard 

deviation in NDVI anomalies, long-term mean NDVI, and the standard deviation in the mean seasonal 

cycle.  These three inputs are used to identify regions that experience either low seasonal variability and 

low NDVI, or low seasonal variability and high interannual variability, which largely coincide with the 

desert bioclimatic region. 230 

Per-pixel linear trends in these phenology metrics were extracted using the Theil-Sen robust 

regression approach, and significance was determined using a Mann Kendall test (significance defined α 

= 0.05.  Trends summarised over bioclimatic regions were extracted by first calculating per-pixel robust 
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regression on the phenology statistics, and then summarising the trends within a bioclimatic region with 

kernel density estimation (KDE) plots.  235 

3 Results 

3.1 Quality of existing datasets. 

The quality of the NDVIAVHRR products were compared against NDVIMCD43A4 for the overlapping years 

2000-2013. All datasets except NDVIPKU-consolidated perform poorly over regions with perennially high 

vegetation cover including wet coastal and highland forest ecosystems, where correlations between 240 

NDVIAVHRR and NDVIMCD43A4 are close to zero in some regions (Figure 2e-g). NDVICDR and 

NDVIGIMMS3g also poorly represent the desert region with R2 scores are as low as ~0.4 - 0.5.  NDVIPKU-

consolidated correlates very well with NDVIMCD43A4 over most of the continent, with the exception of 

western Tasmania (Figure 2h). Coefficients of variation are also high for the NDVIGIMMS3g and 

NDVIPKU datasets across much of the continent (Figure 2b-c) with average values of 0.33 and 0.18, 245 

respectively (Figure 2b-c).   

To demonstrate how the discrepancies over densely vegetated ecosystems would impact, Figure 

2j-k presents a zonal timeseries of the woodlands of south-west Western Australia. These woodlands 

have been identified as a region of high endemic biodiversity (Myers et al., 2000; Hopper and Gioia, 

2004), are vulnerable to the effects of long-term climate change and are undergoing long-term shifts in 250 

climate (O'donnell et al., 2012; Hughes, 2011; Pitman et al., 2004; Hope et al., 2006).  The MODIS-era 

interannual variability of these forests through a rolling twelve-month mean timeseries (Figure 2j) and 

reveal that all products capture interannual variability of the MODIS era reasonably well, though the 

long-term mean NDVI value varies substantially between products.  The mean seasonal cycle, shown in 

Figure 2(k) (calculated from 2001-2013), reveals that the seasonal cycle of the forest ecosystem is very 255 

poorly represented in three of the four products, while NDVIPKU-consolidated tracks the overall shape of the 

seasonal cycle well, but predicts a longer growing season.  Discrepancies in seasonality are further 

highlighted in the per-pixel climatological ‘month-of-maximum’ NDVI plots (Figure A2 in the 

appendix).  Estimates of even this relatively straightforward metric of seasonality are greatly impacted 
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by the choice of dataset, with desert, savanna, and forested regions varying substantially between 260 

datasets, sometimes by as much as several months in the case of forested regions in Tasmania and 

south-east Australia. The Australian-wide seasonal cycles likewise reveal substantial variation between 

products (Figure A2g).  

To assess the quality of NDVIAVHRR products in the pre-MODIS era, Figure 3a compares the 

twelve-month rolling mean standardised anomalies of NDVILandsat in the 1988-2000 period (based on a 265 

1988-2012 climatology) with NDVIAVHRR anomalies.  No product accurately tracks NDVILandsat 

anomalies across the whole 1988-2000 period.  Only the NDVIPKU product captures the amplitude of 

the La Niña driven positive anomaly of NDVI in 2000 (but recall that NDVIPKU is trained on the 

NDVILandsat archive). In Australia, vegetation growth across the continent is strongly water-limited 

(Peters et al., 2021; Poulter et al., 2014; Broich et al., 2014), so it is our expectation that similarly 270 
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Figure 2: Comparisons between NDVIMCD43A4 and four versions of NDVIAVHRR. a-d) The coefficient of variation (CV) between 

NDVI MCD43A4 and NDVIAVHRR where RMSE is divided by the 2001-2013 mean of NDVIMCD43A4. e-h) Pearson correlation (r) 

between NDVIMCD43A4 and NDVIAVHRR. i) Woody cover fraction (WCF) of the forests in south-west Western Australia indicating 275 
the location of the zonal time-series of (j) and (k). j) Twelve-month rolling mean NDVI timeseries of the forests of south-west 

Western Australia. k) Mean seasonal cycle of the forests of south-west Western Australia calculated over the 2001-2013 period. 

 

large negative and positive rainfall anomalies should result in similar NDVI anomalies in the pre-

MODIS and MODIS eras. Taking the best of the products identified in the comparison with 280 

NDVIMODIS, Figure 3b shows the three-month rolling mean standardised anomalies of NDVIPKU-

consolidated from 1982-2022. In the MODIS era, NDVIPKU-consolidated responds strongly to anomalies in 

rainfall (background shading shows the continental average standardised rainfall anomalies), while in 

the pre-MODIS era significant droughts (e.g., 1982-83) and widespread rainfall events (e.g., 2000) 

produce comparatively little effect in NDVI, suggesting a lack of rainfall-driven variability over Austra-285 

lia in the pre-MODIS era. Thus, we argue that no current NDVIAVHRR product currently satisfies our 

criteria of a product that both agrees well with NDVIMCD43A4 while also producing satisfactory results in 

the pre-MODIS era. 
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 290 

Figure 3: a) Twelve-month rolling mean standardised anomalies of Landsat, CDR, GIMMS3g, GIMMS-PKU, and GIMMS-PKU-

consolidated NDVI, based on a common 1988-2012 climatology. Background shading represents twelve-month rolling mean 

standardised rainfall anomalies. All datasets, besides rainfall, have matching data gaps. b) Three-month rolling mean standardised 

anomalies of the NDVIPKU-consolidated product (1982-2022 climatology). Background shading represents three-month rolling mean 

standardised rainfall anomalies.  295 

3.2 Calibration and harmonisation performance 

Independent validation statistics for all six model varieties (‘clim’ and ‘noclim’; desert, high and low 

WCF) reveal a high degree of agreement in all model types with R2 >=0.91 for the ‘clim’ models, and 

MAE <=0.028. The ‘clim’ model types (Figure 4a-c) tended to have errors ~15 % smaller than their 

‘noclim’ counterparts (Figure 4d-f).  SHAP feature importance plots indicate NDVICDR as the most 300 

important variable (Figure A3), but in the high WCF regions the relative importance of NDVICDR 

diminished and NDVIMCD43A4 summary statistics, solar radiation, and cumulative rainfall substantially 

impacting predictions (Figure A3b,c).  Orbital parameters (SZEN, TOD) tended to have little effect on 

predictions regardless of model type.  

 305 
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Figure 4: Validation scatter plots for the calibration and harmonisation between NDVICDR and NDVIMCD43A4. (a-c) show the results 

for the ‘clim’ model. (d-f) shows the same but for the ‘noclim’ model type. 

Per pixel agreements between NDVIAusE and NDVIMCD43A4 for both the ‘clim’ and ‘noclim’ 

model types reveal a very high degree of correlation across the continent (note that pixels with a long-310 

term average NDVI ≤ 0.11 are masked for this analysis). Correlations between NDVIMCD43A4 and 

NDVIAusE in Australia’s forested ecosystems have been greatly improved, averaging R2 = 0.90 in the 

‘clim’ model (average R2 in the CDR product is 0.58).  Areas of lower correlation persist in places that 

experience ephemeral or periodic water inundation such as mangroves and inland lake systems.  

Relative error has been reduced universally across the continent, with a continental average CV of <10 315 

% (figure 5b). Areas of greatest relative error occur in the channel country in Australia’s arid interior, 

and the irrigated regions of the northern Murray Darling Basin.  The ‘noclim’ model performs similarly, 

though correlations and relative error are universally worse than the ‘clim’ model (figure 5c-d).  

Residual NDVI values after subtracting NDVIAVHRR from NDVIMCD43A4 before and after the calibration 

and harmonisation show the GBM model has entirely removed the residual seasonal signal present in 320 

the CDR product, resulting in residuals that closely track the zero line.  Some small bias remains in the 

2011-2012 period (especially for the ‘noclim’ model) when anomalously large rainfall related to a 
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major La Nina event resulted in anomalous greening in the savanna and desert biomes.  This is further 

illustrated in figure A4 where NDVI timeseries before and after the adjustment have been summarised 

over six bioclimatic regions (extents in Figure 1b).  Differences in the Australia-wide time-series 325 

between NDVIMCD43A4 and NDVIAusE are largely attributable to NDVIAusE underestimating peak NDVI 

during 2011-2012 in the desert and savanna biomes (figure A4f-g). 

 

 

Figure 5: Results of the calibration and harmonization between NDVICDR and NDVIMCD43A4. a) shows the per pixel Pearson 330 
correlation, between NDVIMCD43A4 and ‘clim’ NDVIAusE. b) shows the same as (a) but for the coefficient of variation.  c-d) the same 

as (a-b) but for the ‘noclim’ model type. e) The residual NDVI value when subtracting NDVIAVHRR from NDVIMCD43A4 before and 

after the calibration and harmonization. Residuals are calculated per pixel and then averaged over Australia. Shading indicates 

the standard deviation in residuals across the continent for the NDVICDR product. 
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Improvements in the alignment between NDVIAVHRR and NDVIMCD43A4 from this regional 335 

calibration and harmonisation are further demonstrated in Figure 6 where timeseries are summarised 

over two challenging forest ecosystems in southwest Western Australia and Tasmania.  Mean seasonal 

cycles between the two NDVI datasets are now in very close agreement (figure 6c, f) and the NDVIAusE 

time-series from 1982-2000 (‘clim’ is shown) can effectively integrate with the NDVIMCD43A4 time-

series without introducing major discontinuities (figure 6b, e). 340 

 

 

Figure 6: Results before and after the calibration and harmonisation of NDVICDR for two example high woody canopy cover 

regions previously identified as having the worst agreement with NDVIMCD43A4. b-c) Three-month rolling mean 1982-2022 NDVI 

time series, and the mean seasonal cycle (averaged over the 2001-2013 period), respectively, for the forests of south-west Western 345 
Australia. e-f) Same as (b-c) but for Tasmanian forests. Time series are the spatial average of the regions to their left.  

3.2 Gap-filling with Synthetic NDVI 

The NDVISYN dataset record agrees exceptionally well with the joined NDVIAusE-clim and NDVIMCD43A4 

series when aggregated across Australia (Figure 7e). At the pixel level, the long-term mean NDVI of 

both datasets is virtually identical (Figure 7a-b). Per-pixel Pearson correlation averages 0.85 across the 350 

continent (figure 7d). Areas of poorer correlation occur in western Tasmania, the highlands forests of 

south-east Australia – all areas that experience seasonal snow fall – and regions of either anthropogenic 

water application (irrigation) or ephemeral, delayed water inundation (inland rivers in the arid interior). 
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Mean relative error was also low, averaging 11 %, but with hotspots of greater error again occurring in 

the regions where water inundation is not dependent on direct rainfall (Figure 7c).  355 

We present validation scatter plots and feature importance plots for the desert and non-desert 

GBM models in the appendix (figure A5). In the non-desert region, three-month cumulative rainfall and 

VPD are the key climate drivers of predictions, while in the desert region, six-month cumulative 

rainfall, VPD, and incoming solar radiation are the key climate drivers. 

 360 

 

Figure 7: Evaluation of the synthetic NDVI built to gap-fill the NDVIAusE-clim record a-b) show the observed and synthetic long-

term mean NDVI, respectively. c) per pixel coefficient of variation (CV) between observed NDVI and synthetic NDVI. d) Same as 

(c) but Pearson correlation. e) Continentally averaged observed and synthetic NDVI timeseries, where data gaps have been 

matched. 365 
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3.3 Comparison with Landsat and MODIS NDVI annual time series 

Comparing the calibrated, harmonised, and gap-filled NDVIAusE-clim dataset with rolling annual mean 

NDVILandsat anomalies reveals a good level of agreement in both the timing and magnitude of inter-

annual variability throughout the 1988-2012 period (figure 8a).  NDVIPKU-consolidated is also shown for 

comparison and gaps in the NDVIPKU-consolidated dataset have been filled using the same synthetic data 370 

and procedure as NDVIAusE-clim to facilitate a more straightforward comparison and continuous time-

series. NDVIAusE-clim consistently outperforms NDVIPKU-consolidated. A comparison with NDVIMCD43A4 is 

shown in Figure 8b where all three time series are plotted as a simple rolling annual mean. NDVIAusE-

clim aligns well with NDVIMCD43A4 at the annual timescale and records greater rainfall driven inter-

annual variability in the pre-MODIS era. The historic 1982-2000 archive can clearly join with the 375 

NDVIMCD43A4 series without introducing major discontinuities. 

 

Figure 8: a) Twelve-month rolling mean standardised NDVI anomalies of the gap-filled NDVIAusE-clim plotted alongside Landsat 

anomalies and NDVIPKU-consolidated anomalies. Gaps in the NDVIPKU-consolidated dataset have been filled using the same synthetic data 

and procedure as NDVIAusE-clim. All datasets are matched to Landsat data gaps. b) Twelve-month rolling mean NDVI time-series of 380 
the gap-filled, calibrated, and harmonised NDVIAusE-clim over Australia from 1982-2013, plotted alongside NDVIPKU-consolidated (gap-

filled in the same manner as (a)), and NDVIMCD43A4.  Background shading on both a) and b) represents twelve-month rolling mean 
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standardised rainfall anomalies across Australia where (a) is based on 1988-2012 climatology and (b) is based on a 1982-2012 

climatology. 

3.4 Trends in peak-of-season phenology 385 

Per-pixel trends in vPOS, POS and the 40-year median values for these statistics are shown in Figure 9. 

Trends in vPOS are almost universally positive across the continent (hatching indicates a significant 

trend), with the exceptions of inland northern Murray-Darling Basin, the eastern periphery of the wheat 

belt in Western Australia, and the region north of Adelaide (figure 9b). Positive trends observed in the 

major agricultural region of the Murray-Darling Basin and the northern half of the West Australian 390 

wheat belt and are non-significant.  Distributions of trends in vPOS, stratified by bioclimatic region, 

reveal the highest median trends are recorded in the tropics and savanna regions at 0.0013 and 0.0014 

NDVI yr-1, respectively (figure A6a-e). The Mediterranean region has the lowest median trend at 0.0009 

NDVI yr-1.   

 Trends in the day-of-year that peak NDVI occurs (POS) are negative across much of the 395 

continent, suggesting there is a general tendency for NDVI to peak earlier in the year across Australia. 

Significant negative trends occur in the agricultural zones of the Mediterranean bioclimatic region, the 

greater western woodlands that border the eastern margin of the WA wheatbelt, the western half of the 

Nullabor plain, parts of the Riverina agricultural region of south-western New South Wales and 

extending into Victoria, and western parts of the northern tropical savanna. These significant negative 400 

trends are reflected in the POS trend distributions in figure A6f-j where the median trend in the warm 

temperate and Mediterranean regions are highest at 3.4 and 2.3 days per decade, respectively.  

Significant positive trends (peak NDVI occurring later in the year) are observed in tropical northern 

Queensland and western Tasmania and can be as high as 5-10 days per decade. 

 405 
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Figure 9: a) The median annual peak NDVI value (vPOS) from 1982-2022. b) Theil-Sen robust regression trends in vPOS. c) 

Median day-of-year that peak NDVI occurs (POS), 1982-2022. d) Theil-Sen robust regression trends in POS.  Hatching on trend 

plots indicates significance at alpha=0.05 using a Man-Kendall test. All plots are derived from the gap-filled ‘clim’ NDVIAusE 

dataset.  Non-seasonal areas have been masked using the method described in section 2.4. 410 

4 Discussion 

We expected to identify differences between NDVIAVHRR datasets given their different pre-processing 

and atmospheric corrections methods, different spatial resolutions, and differing temporal compositing 

techniques. Likewise, lower correlations in the densely vegetated regions were also expected due to the 

total variance in evergeen forests being smaller than for seasonal vegetation (grassland, croplands), and 415 

therefore, assuming a similar unexplained variance (noise), correlations should necessarily be weaker.  
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Nonetheless, we were surprised by the poor performance of global NDVIAVHRR products in representing 

the seasonal dynamics of Australia’s densely vegetated regions. Why this is the case deserves a greater 

focus of study than we devote here but is likely related to some combination of the presence/absence of 

BRDF and water-vapour corrections, varying contamination by clouds, any gap-filling procedures 420 

applied, and the saturation effect of NDVI in higher canopy cover regions such as forests. Regardless of 

the reasons why, the intercomparison between NDVIAVHRR products highlights that global datasets, 

while often performing adequately when statistics are aggregated at the global or continental scale, can 

mask disparities that are important at the regional to local scale (Meyer and Pebesma, 2022).  We 

advocate closely examining regional and local contexts to assess how suitable a given NDVI dataset is 425 

for a particular use case.  For example, in Australia seasonal cycles in NDVICDR are highly suspect and 

thus should not be relied upon for phenology studies. However, unlike GIMMS3g, NDVICDR has a 

comparatively low relative error when compared with MODIS and displays reasonable inter-annual 

variability so would likely be more suited to long-term studies of agricultural drought frequency or the 

impacts of CO2 fertilisation on maximum canopy cover (assuming sensor transitions are filtered). In 430 

Australia, the best use of NDVIPKU-consolidated is likely the reverse, its representation of seasonal cycles is 

good, while IAV is subdued in the pre-MODIS era.  In general, we urge caution in using existing global 

NDVIAVHRR products for studying vegetation trends and seasonality in Australia.  AusENDVI shows 

significant improvement over existing global datasets in this respect. The improved correspondence in 

seasonal cycles between NDVIAusE and NDVIMCD43A4 provides evidence that AusENDVI is more 435 

suitable for exploring longer-term changes to Australia’s vegetation phenology. The addition of climate 

features to the calibration and harmonisation also appears to have improved the representation of long-

term interannual variability, thus AusENDVI-clim should likewise offer a better basis for studying the 

shifting frequency of extreme climate events and their impact on the terrestrial biosphere. 

The creation of a synthetic NDVI using only climate, CO2 concentration, and woody cover 440 

fraction as predictors revealed a high degree of predictability in NDVI over much of Australia. Regions 

of lower predictability were located where water supply is either from elsewhere or delayed (ephemeral 

inland rivers) or from irrigation. In the absence of features that could describe water supply without 

rainfall, NDVI patterns in these zones will continue to be difficult to estimate if direct satellite 
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observations are unavailable. Notwithstanding some spatial variability in per-pixel predictability, in 445 

general the high degree of agreement between observed and synthetic NDVI presents the prospect of 

extending the synthetic NDVI further back in time through the observational climate record, which in 

Australia is reliable throughout much of the 20th century.  In land surface models, a dynamic phenology 

algorithm is an important sub-model which influences the overall carbon cycle, evapotranspiration, and 

energy balance of the model (Chen, 2022).  The long-term record of synthetic NDVI developed here 450 

could, therefore, prove useful for validating the development of process-based phenology models for 

Australia's diverse range of vegetation and climate. Or, with empirically validated NDVI-LAI 

relationships, AusENDVI could be used as a phenology forcing during the pre-satellite era for the many 

LSMs that do not dynamically simulate LAI. 

There are several sources of uncertainty in AusENDVI. Firstly, the climate and landscape 455 

features used are subject to their own uncertainties which will undoubtedly propagate into both the 

calibration and harmonisation, as well as the gap-filling with synthetic NDVI.  For example, rainfall 

station observations in the arid interior of Australia are relatively sparse so errors in the spatial 

interpolation of rainfall are highly likely. Uncertainties in the NDVICDR product are also likely to be 

transmitted to our dataset. Future work may include a greater treatment of uncertainty through ensemble 460 

modelling where climate features (e.g., different rainfall and solar radiation datasets), and model types 

used for fitting are iterated to generate an uncertainty envelope.  We also aim to assess how well NDVI 

from the Visible Infrared Imaging Radiometer Suite (VIIRS) agrees with NDVIAusE and NDVIMCD43A4 

over Australia.  Should there be a substantial discrepancy, the methods described here could be applied 

to VIIRS to create an ongoing, updated NDVI dataset for Australia than can continue to form the 465 

foundation for continental-scale studies of terrestrial ecosystem change.  Irrespective, we argue our 

AusENDVI estimates are based on the best available data, while the gradient boosting models have 

gone through extensive cross-validation. Therefore, we contend that the resulting trends should be more 

accurate than any alternative NDVI dataset. 

We identified advances in the timing of POS across much of Australia’s land mass (though not 470 

all). Over the Mediterranean, warm temperate, and cool temperate bioclimatic regions the median peak 

phenology trends were -2 to -3 days/decade.  Advances in plant maturity in the southern hemisphere 

https://doi.org/10.5194/essd-2024-89
Preprint. Discussion started: 9 April 2024
c© Author(s) 2024. CC BY 4.0 License.



24 

 

from field data are also reported by Chambers et al. (2013) where the mean rate of change in plant 

maturity was 14 days/decade, mostly from temperate regions (63 % of their data are from grape-vines). 

This rate of change is comparable to the per-pixel rates of change in POS that are seen in parts of the 475 

Mediterranean and warm temperate regions where it is not uncommon to see negative trends ranging 

from 10-15 days/decade (figure 9d).  However, the magnitude of a trend is influenced by the length of 

the time series so comparisons with variable length field data is difficult and shorter records are more 

likely to report a larger rate (Chambers et al., 2013).  Advances in the timing of POS could be due to a 

combination of climate drivers.  In the northern hemisphere, warming has led to earlier peak greening 480 

(Huang et al., 2023; Liu et al., 2021; Park et al., 2019).  Warming can accelerate metabolism, so where 

water is non-limiting, leaf development can be faster.  However, temperature increases also increase 

vapour pressure deficits which decrease water-use efficiency and can reduce plant productivity, though 

this effect may be compensated for by enhanced CO2 (Rifai et al., 2022; Dusenge et al., 2019).  Changes 

in the timing of peak rainfall may also contribute to shifts in the timing of peak NDVI.  The timing of 485 

peak climatological rainfall has shifted since 1960 (Figure A7a-c), and there is some coincidence 

between trends in POS and shifts in rainfall POS (e.g., advancement around Adelaide).  The goal of this 

study is not to draw conclusions on the likely drivers of seasonality change in Australia, but to argue 

that our dataset provides a more reliable means for tackling these questions.  Future work will delve into 

a greater suite of phenology metrics (e.g., start-of-season, end-of-season, growing season length (Xie et 490 

al., 2023)), and explore the drivers of phenological change.   

The pervasive positive trends in vPOS are consistent with results elsewhere and are likely due to 

the impacts of CO2 fertilisation, which allows a given amount of precipitation to sustain a greater 

maximum level of plant production over time (Donohue et al., 2009; Donohue et al., 2013; Rifai et al., 

2022; Ukkola et al., 2016). Increases in the magnitude of Austral spring and summer rainfall in northern 495 

Australia are also likely to have contributed to the widespread increase in vPOS in tropical Australia 

(Figure A7d).  It is also likely that improving agricultural practices has increased maximum NDVI in 

the rain-fed cropping regions, especially in South Australia and Victoria where positive vPOS trends are 

significant. Trends in maximum NDVI in the WA wheatbelt are also positive, but contrast with the fact 
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that WA has seen a widespread autumn drying trend (Figure A7d). We speculate that agricultural 500 

innovation here has counteracted a drying trend that would otherwise have reduced foliage cover. 

5 Data and Code Availability 

AusENDVI is openly available at https://doi.org/10.5281/zenodo.10802704 (Burton, 2024) and consists 

of several datasets. Each dataset has a description in the attributes of the NetCDF file that defines its 

provenance. A short description of each dataset is provided below as an additional reference. All 505 

datasets are in "EPSG:4326" projection, have a spatial resolution of 0.05°, and monthly temporal 

resolution. A Jupyter notebook is also provided at the above link demonstrating how to load, plot, mask, 

reproject, and gap-fill AusENDVI datasets.  

 

• AusENDVI-clim_1982_2013. Calibrated and harmonised NOAA's Climate Data Record 510 

AVHRR NDVI data from January 1982 to December 2013. This version of the dataset used 

climate data in the calibration and harmonisation process. The dataset has not been gap filled, 

and extra data has been filtered/removed beyond the typical QA filtering using methods 

described in this publication. 

• AusENDVI-noclim_1982_2013. Calibrated and harmonised NOAA's Climate Data Record 515 

AVHRR NDVI data from January 1982 to December 2013. This version of the dataset did not 

use climate data in the calibration and harmonisation process. The dataset has not been gap 

filled, and extra data has been filtered/removed beyond the typical QA filtering using methods 

described in this publication.  

• AusENDVI-synthetic_1982_2022. This dataset consists of synthetic NDVI data that was built by 520 

training a model on the joined ‘AusENDVI-clim’ and ‘MODIS-MCD43A4 NDVI’ timeseries 

using climate, woody-cover-fraction, and atmospheric CO2 as predictors. 

• AusENDVI-clim_gapfilled_MCD43A4_1982_2022. This dataset consists of calibrated and 

harmonised NOAA's Climate Data Record AVHRR NDVI data from January 1982 to February 

2000, joined with MODIS-MCD43A4 NDVI data from March 2000 to December 2022. This 525 
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version of the dataset used climate data in the calibration and harmonisation process. The dataset 

has been gap filled using AusENDVI-synthetic, 

• AusENDVI-noclim_MCD43A4_1982_2022. This dataset consists of calibrated and harmonised 

NOAA's Climate Data Record AVHRR NDVI data from January 1982 to February 2000, and 

MODIS-MCD43A4 NDVI data from Mar. 2000 to Dec. 2022. This version of the dataset did 530 

not use climate data in the calibration and harmonisation process. The dataset has not been gap 

filled. 

 

The code to conduct all analysis described here is available on the open-source repository: 

https://github.com/cbur24/AusENDVI 535 

6 Conclusion 

We calibrated and harmonised NDVICDR to NDVIMCD43A4 for Australia using a well cross-validated 

gradient-boosting ensemble decision tree method. We developed two versions of the datasets, one that 

utilises climate data in the feature set to achieve the best possible agreement between NDVICDR and 

NDVIMCD43A4 (‘AusENDVI-clim’); and a second dataset that does not rely on climate data 540 

(‘AusENDVI-noclim’).  The resulting datasets have a spatial resolution of 0.05° and extend from 1982-

2013 and showed strong correlation and low relative errors with respect to NDVIMCD43A4. They also 

closely reproduced the seasonal cycles of NDVIMCD43A4 over Australia’s densely vegetated regions and 

can provide the basis for studies on Australia’s changing vegetation phenology and downstream impacts 

on terrestrial carbon and water cycles. Moreover, they also closely replicate the interannual variability 545 

in vegetation condition in the pre-MODIS era as indicated by Landsat NDVI anomalies. Additionally, 

we developed a reliable method for gap filling the AusENDVI record by creating a synthetic NDVI 

dataset using only climate, CO2 concentration, and woody cover fraction as predictors. The resulting 

dataset showed excellent agreement with the observations, providing confidence in its use for gap 

filling.   Lastly, we provide a complete 41-year long dataset where gap filled AusENDVI from January 550 

1982 to February 2000 is seamlessly joined with NDVIMCD43A4 from March 2000 to December 2022.  
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AusENDVI estimates are based on the best available data, and we contend it is highly suitable for 

studying the impact of global environmental change on Australia’s terrestrial vegetation.  

 

Appendix 555 

 

Figure A1: Available fractions of data before and after additional filtering of NDVICDR data. A value of one means all monthly 

time-steps between 1982-2013 are preserved. 
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Figure A2: a-f) Month that maximum NDVI occurs, averaged from 2001-2013, for all NDVI datasets included in the 560 
intercomparison between NDVI products, along with the AusENDVI-clim dataset of this study. g) The climatological mean 

seasonal cycle of NDVI summarised over Australia. 
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Figure A3: Feature importance plots for the calibration and harmonisation between NDVICDR and NDVIMCD43A4. a-c) show the 

results for the ‘clim’ model. d-f) shows the same but for the ‘noclim’ model type. 565 
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Figure A4: Per bioregion (a-f) and Australia-wide (g) NDVI time-series before and after the calibration and harmonisation of 

NDVICDR.  Bioregions are defined in Figure 1b. Time series have been smoothed with a three-month rolling mean. 
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 570 

Figure A5: Validation scatter plots and feature importance plots for the gap-filling synthetic NDVI models. a-b) is for the 

‘nondesert’ model region which covers the high and low woody cover regions shown in figure 1a,  (c-d) is for the ‘desert’ region. 

 

 

Figure A6: Distributions of pixel level trends in vPOS (a-e) and POS (f-j), summarised by bioclimatic region (excluding the desert 575 
region as most of this region is masked as non-seasonal). ‘M’ refers to the median slope value of the distribution and is indicated 

by the orange dashed line.  Units for vPOS are NDVI per year and units for POS are days per decade. 
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Figure A7: Changes to the timing and magnitude of rainfall in Australia. a) The typical month that rainfall achieves its maximum 

value, averaged from 1960-1990. b) Same as (a) but for a 1991-2022 climatology. c) The difference between (a) and (b) where the 580 
1991-2022 climatology is subtracted from 1960-1990. Orange colours indicate earlier peak rainfall in the more recent climatology 

(in number of months).  If peak rainfall shifts from January in 1960-1990 to December in 1991-2022, this is recorded as ‘earlier’ 

by one month.  Purple colours indicate peak rainfall occurs later in 1991-2022 compared with 1960-1990.  If peak rainfall shifts 

from December in 1960-1990 to January in 1991-2022, this is recorded as ‘later’ by one month. d) Theil-Sen trends in the total 

seasonal rainfall from 1960-2022. Hatching indicates significance at 95 % confidence using a Mann-Kendall test.  585 
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