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Abstract.  

Long-term, reliable datasets of satellite-based vegetation condition are essential for understanding 

terrestrial ecosystem responses to global environmental change, particularly in Australia which is 15 

characterised by diverse ecosystems and strong interannual climate variability. We comprehensively 

evaluate several existing global AVHRR NDVI products for their suitability for long-term vegetation 

monitoring in Australia. Comparisons with MODIS NDVI highlight significant deficiencies, particularly 

over densely vegetated regions.  Moreover, all the assessed products failed to adequately reproduce inter-

annual variability in the pre-MODIS era as indicated by Landsat NDVI anomalies. To address these 20 

limitations, we propose a new approach to calibrating and harmonising NOAA’s Climate Data Record 

AVHRR NDVI to MODIS MCD43A4 NDVI for Australia using a gradient-boosting decision tree 

ensemble method. Two versions of the datasets are developed, one incorporating climate data in the 

predictors (‘AusENDVI-clim’: Australian Empirical NDVI-climate) and another independent of climate 

data (‘AusENDVI-noclim’). These datasets, spanning 1982-2013 at a spatial resolution of 0.05° and 25 

monthly time step, exhibit strong correlation (r2 = 0.89-0.94) and low mean errors compared to MODIS 

MCD43A4 NDVI (MAE = 0.014-0.028, RMSE = 0.021-0.046), accurately reproducing seasonal cycles 

over densely vegetated regions. Furthermore, they closely replicate the interannual variability in 
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vegetation condition in the pre-MODIS era.  A reliable method for gap-filling the AusENDVI record is 

also developed that leverages climate, atmospheric CO2 concentration, and woody cover fraction 30 

predictors. The resulting synthetic NDVI dataset shows excellent agreement with observations (r2 = 0.82-

0.95, MAE = 0.016-0.029, RMSE = 0.039-0.041).  Finally, we provide a complete 41-year dataset where 

gap filled AusENDVI from January 1982 to February 2000 is seamlessly joined with MODIS MCD43A4 

NDVI from March 2000 to December 2022.  Analysing 40-year per-pixel trends in Australia’s annual 

maximum NDVI revealed increasing values across most of the continent.  Shifts in the timing of annual 35 

peak NDVI are also identified, underscoring the dataset's potential to address crucial questions regarding 

changing vegetation phenology and its drivers.  The AusENDVI dataset can be used for studying 

Australia's changing vegetation dynamics and downstream impacts on terrestrial carbon and water cycles, 

and provides a reliable foundation for further research into the drivers of vegetation change. AusENDVI 

is open access and available at https://doi.org/10.5281/zenodo.10802704 (Burton, 2024)  40 

1 Introduction 

Australia is undergoing long-term changes to its climate that are impacting terrestrial vegetation, with 

attendant serious implications for ecosystem functioning, carbon and water cycles, and agriculture 

(Hoffmann et al., 2019; Canadell et al., 2021; Head et al., 2014; Hughes, 2011; Steffen et al., 2011; Rifai 

et al., 2022; Ukkola et al., 2016; Donohue et al., 2009).  Long-term, reliable datasets that chart the land 45 

surface response to climate change are crucial if we are to identify, understand, and respond to ongoing 

terrestrial ecosystem change (Giglio and Roy, 2020; Piao et al., 2019). One of the primary means Earth 

System Science has to trace long-term vegetation change is the Normalised Difference Vegetation Index 

(NDVI), a widely used satellite-derived indicator of vegetation condition owing to its close relation to 

vegetation productivity. NDVI provides an efficient means for mapping and monitoring vegetation 50 

condition at continental scales. In Australia, the need for very long records of NDVI to understand change 

is amplified by strong variability at both interannual and interdecadal time scales, and ecosystems that are 

often driven by periodic, but non-seasonal phenological drivers (Moore et al., 2016; Chambers et al., 

2013; Ma et al., 2013; Beringer et al., 2022). 

https://doi.org/10.5281/zenodo.10802704
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The MODerate resolution Imaging Spectroradiometer (MODIS) NDVI record (NDVIMODIS) is 55 

generally considered the most reliable global scale dataset due to its high quality radiometrics and accurate 

georeferencing. Unfortunately, the MODIS record only begins in March 2000 (Vermote et al., 2002).  The 

Advanced Very High-Resolution Radiometer (AVHRR) NDVI record (NDVIAVHRR) is the longest 

contiguous series of satellite data, starting in July 1981, but has several well-known problems owing to a 

lack of on-board calibration for visible wavelengths, sensor orbital drift, and sensor degradation, making 60 

it unreliable for detecting relatively subtle trends over multiple decades (Tucker et al., 2005; Privette et 

al., 1995; Gorman and Mcgregor, 1994). Several prominent global NDVIAVHRR products attempt to 

ameliorate these issues. For example, the Global Inventory Modelling and Mapping Studies version 3 

(NDVIGIMMS3g) applies Bayesian analysis with  Sea-Viewing Wide Field-of-View Sensor NDVI as 

evidence information to reduce sensor transition discontinuities and increase the dynamic range of 65 

NDVIAVHRR (Pinzon and Tucker, 2014), while the NOAA Climate Data Record (NDVICDR) applies a suite 

of corrections to create a consistent surface reflectance product (Franch et al., 2017), among others (Table 

1).  However, despite substantial progress, errors and biases in these NDVI products have led to 

inconsistent findings on global greening (Wang et al., 2022; Wang et al., 2021; Cortés et al., 2021; 

Frankenberg et al., 2021; Fensholt and Proud, 2012), discrepancies in vegetation seasonality between 70 

datasets (Ye et al., 2021), and persistent temporal inconsistencies (Tian et al., 2015; Giglio and Roy, 

2020).  Recently, Li et al. (2023) developed a new global NDVIAVHRR product, ‘GIMMS-PKU’ 

(NDVIGIMMS-PKU), which effectively calibrates the NDVIGIMMS3g archive to the Landsat record using 

machine learning techniques, and ‘GIMMS-PKU-consolidated’ (NDVIPKU-consolidated) which harmonises 

NDVIGIMMS-PKU to NDVIMODIS (Table 1), but which has yet to be extensively assessed in the literature (Li 75 

et al., 2023).  

As much as possible, any NDVI product that exploits the AVHRR and MODIS record to acquire 

an accurate >40-year record of vegetation condition should attempt to integrate the two seamlessly while 

also performing well in the pre-MODIS AVHRR era (1982-2000).  Performance should be judged on 

how well seasonal cycles are represented along with interannual and interdecadal variability, as both 80 

seasonal and longer-term fluctuations in vegetation conditions have important ramifications for carbon 

and water cycles (Ma et al., 2015). An effectively calibrated, harmonised, and gap-filled dataset can form 
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the basis for studying the biogeophysical impacts of global change and meteorological variability on 

Australia’s terrestrial vegetation. With that in mind, the objectives of this study are as follows: 

• To investigate existing NDVIAVHRR datasets to determine their suitability for long-term vegetation 85 

monitoring in Australia by both comparing their consistency with NDVIMODIS during the 2000-

2013 overlap period, and with Landsat NDVI (NDVILandsat) anomalies from 1988-2000.  

• Having established limitations with the existing datasets, calibrate and harmonise NDVIAVHRR to 

NDVIMODIS solely over Australia at the highest spatial resolution possible. The final dataset should 

contain the harmonised NDVIAVHRR from January 1982 to February 2000, where it seamlessly 90 

joins with the superior NDVIMODIS timeseries, resulting in a reliable 41-year record of vegetation 

condition for Australia. We will call this time series “AusENDVI” (for Australian Empirical 

NDVI; NDVIAusE) 

• To develop a reliable method for gap filling the NDVIAusE record caused by sensor transitions 

issues and long periods of missing or suspect data acquisition. 95 

• To demonstrate the utility of this new dataset by exploring NDVI phenology trend analysis, 

including long-term trends in the value and timing of annual maximum NDVI across the 

Australian continent. 

2 Materials and Methods 

2.1 Datasets 100 

Specifications of all datasets used for either the intercomparison of NDVI products or in the modelling 

framework are listed in Table 1.  For comparisons between NDVI datasets, finer resolution datasets were 

resampled to match the coarsest grid (i.e., GIMMS, 1/12⁰ or ~8 km over Australia).  Averaging resampling 

techniques were used for downsampling finer-resolution datasets, while nearest-neighbour techniques 

were used when datasets have a similar spatial resolution but either different projections or slightly 105 

different grid extents. Wherever datasets are compared, data gaps are matched between all datasets by 

creating a mask that identifies all missing pixels, and then that common mask is applied to every dataset. 

This ensures a fair and valid comparison. We chose Landsat's TM and ETM+ (Table 1) as the sensor for 
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comparison in the pre-MODIS era owing to the international efforts to produce a relatively high geometric 

and radiometric accuracy for its generation, and its lack of sensor transitions in the pre-MODIS era from 110 

1982-1999 (Beck et al., 2011). The chosen surface reflectance Landsat product, Digital Earth Australia’s 

(DEA) Landsat NBAR (Nadir-corrected BRDF Adjusted Reflectance, where BRDF stands for 

Bidirectional reflectance distribution function) product is calibrated to Australia’s environment using the 

MODTRAN 4 radiative transfer model and BRDF shape functions derived from MODIS (Li et al., 2010; 

Byrne et al., 2024).  115 

For the development of the Australian NDVI dataset, we relied on the NOAA NDVICDR product 

(Franch et al., 2017) as the input dataset. This was principally because of its higher spatial resolution than 

the other datasets (~5 km), its lack of gap filling, extensive atmospheric corrections, and its BRDF-based 

correction of view-angle effects (Ma et al., 2019).  As the target dataset, we derived NDVI from the 

MODIS MCD43A4 surface reflectance NBAR product (NDVIMCD43A4). This reflectance product was 120 

chosen because of its similar set of atmospheric corrections when compared with NDVICDR and DEA’s 

Landsat NBAR, and its use of both the Terra and Aqua instruments which extends its temporal extent 

back to March 2000 (Schaaf and Wang, 2015). 

All additional input data used in NDVI estimation were temporally aggregated to monthly values 

by calculating medians and spatially reprojected onto a common 0.05⁰ geographic grid. In addition to 125 

filtering based on the quality assurance band (we filtered for clouds, cloud shadows, and invalid BRDF 

and channel values) additional criteria were applied to minimise the impact of temporal discontinuities in 

the NDVICDR record that may arise from orbital decay or sensor degradation.  Monthly NDVICDR values 

based on fewer than two observations per month were discarded, along with any values for which the 

coefficient of variation in daily retrievals for a given month was greater than 50 %.  Anomalies in NDVI, 130 

solar-zenith-angle, and time-of-acquisition that were greater than 3.5 standard deviations were also 

discarded (based on a 1982-2013 climatology).  Following the advice of Tian et al. (2015), data for several 

problematic sensor transition periods were discarded (September 1984 - April 1985, July 1988 - 

September 1989, and July 1993 - December 1994).  After filtering, the continental average fraction of 

available data is 0.79, meaning on average 79 % of the monthly time-steps between 1982-2013 are 135 

preserved (Fig. A1). 
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Table 1: Details of the datasets used in, and produced by, this study. 

Dataset & Abbreviation Native spatial resolution; temporal resolution & range; 

additional details 

Data Source & Reference 

AVHRR Climate Data Record 

NDVI and Surface Reflectance; 

NDVICDR 

0.05⁰, Daily, January 1982 to December 2013. Surface 

reflectance product used for the time-of-day and solar 

zenith angle. 

Version 5, downloaded from 

Google Earth Engine, (Franch et al., 

2017) 

MODIS MCD43A4 NDVI; 

NDVIMCD43A4 

~500m, 16-day, March 2000 to December 2022. Calculated 

from the combined Terra and Aqua MCD43A4 surface 

reflectance NBAR product. 

Version 6.1 downloaded from 

Google Earth Engine (Schaaf and 

Wang, 2015) 

AVHRR GIMMS3g NDVI; 

NDVIGIMMS3g 

1/12⁰, Half-month, 1982-2013. AVHRR NDVI with sensor 

transition discontinuities reduced with Bayesian analysis. 

Version 1.0 downloaded from 

Google Earth Engine (Pinzon and 

Tucker, 2014) 

AVHRR GIMMS PKU NDVI; 

NDVIPKU, NDVIPKU-consolidated 

1/12⁰, Half-month, 1982-2022.  Two variations, ‘GIMMS-

PKU-solely’ and ‘GIMMS-PKU-consolidated’, the latter is 

harmonised with MODIS MOD13C1. For GIMMS-PKU-

solely we loaded pixels labelled as ‘good-quality AVHRR’. 

For GIMMS-PKU-consolidated we loaded pixels labelled 

as ‘good-quality AVHRR’ and ‘good-quality MODIS’ and 

where the harmonisation was run by the random-forest 

model 

Version 1.2 downloaded from 

https://zenodo.org/records/8253971 

(Li et al., 2023) 

Digital Earth Australia’s Landsat 

NDVI (NBAR); 

NDVILandsat 

30m, 8-day, 1987-2012, NDVI calculated from an 

Australian-specific Landsat 5 & 7 surface reflectance 

NBAR product.  

Collection 3, 

https://docs.dea.ga.gov.au/data/prod

uct/dea-surface-reflectance-nbar-

landsat-5-tm/ (Li et al., 2010) 

AusENDVI-clim and  

AusENDVI-noclim; 

NDVIAusE-clim, NDVIAusE-noclim   

0.05⁰, Monthly, 1982-2013. Calibrated and harmonised 

NDVI for Australia using machine-learning techniques. 

The ‘clim’ version of the dataset includes climate variables 

in the feature set, the ‘noclim’ version does not. 

This study 

Synthetic NDVI; 

NDVISYN 

0.05⁰, Monthly, 1982-2022. A machine-learning derived 

synthetic NDVI built using climate, CO2, and landscape 

features, and trained on NDVIAusE-clim and NDVIMCD43A4. 

This study 

https://zenodo.org/records/8253971
https://docs.dea.ga.gov.au/data/product/dea-surface-reflectance-nbar-landsat-5-tm/
https://docs.dea.ga.gov.au/data/product/dea-surface-reflectance-nbar-landsat-5-tm/
https://docs.dea.ga.gov.au/data/product/dea-surface-reflectance-nbar-landsat-5-tm/
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ANU Climate: 

• Average Air Temp; Tavg 

• Vapour Pressure Deficit; VPD 

• Incoming Shortwave 

Radiation; srad 

• Total Precipitation; rain 

~1 km, Monthly, 1982-2022.  Gridded climate products 

based on topographically conditional spatial interpolation 

of weather stations. 

ANUClimate, 

https://dapds00.nci.org.au/thredds/c

atalogs/gh70/catalog.html 

(Hutchison et al., 2014) 

Atmospheric CO2 concentration N/A., Monthly, 1982-2022. Extracted from the Cape Grim 

Baseline Air Pollution Station in Tasmania, Australia. De-

seasonalised using a 12-month running mean. 

CSIRO Environment and the 

Australian Bureau of Meteorology 

(Kennaook / Cape Grim Baseline 

Air Pollution Station). 

https://capegrim.csiro.au/ 

Woody Cover Fraction; WCF 25m, Annual, 1982-2022. A per-pixel estimate of woody 

cover fraction across Australia. Annual product for 1990-

2022. A five-year average from 1990-1995 was used to 

extend the product back to 1982. 

https://dapds00.nci.org.au/thredds/c

atalog/ub8/au/LandCover/DEA_AL

C/catalog.html 

(Liao et al., 2020) 

 

 140 

2.2 Assessment of existing NDVI products 

We compared NDVIAVHRR datasets with NDVIMCD43A4 for the overlapping period from March 2000 to 

December 2013.  Per-pixel Pearson correlation (r) and coefficient of variation (CV; root mean square 

error divided by the long-term mean NDVIMCD43A4) describe the agreement between datasets, in addition 

to comparison of the long-term seasonal cycle. Next, NDVIAVHRR datasets were compared to rolling 145 

annual mean ‘z-score’ standardised anomalies of NDVILandsat for 1988-2000 to assess how well each 

product reproduces inter-annual variability in vegetation condition in the pre-MODIS era. Z-score 

standardised anomalies are calculated as (x - µ) / σ where x is a monthly NDVI observation, µ is the long-

term mean NDVI for the given month, and σ is the long-term standard deviation in NDVI for the given 

month. Differences in spectral sampling between MODIS and Landsat result in differences in mean NDVI 150 

so we use Landsat only for validating inter-annual variability in the pre-MODIS era since mean 

differences in NDVI between sensors are removed by anomalies. We compared NDVI anomalies in 

NDVILandsat with NDVIMCD43A4 during an overlap period from 2000-2012 to ensure NDVILandsa could 

https://dapds00.nci.org.au/thredds/catalogs/gh70/catalog.html
https://dapds00.nci.org.au/thredds/catalogs/gh70/catalog.html
https://capegrim.csiro.au/
https://dapds00.nci.org.au/thredds/catalog/ub8/au/LandCover/DEA_ALC/catalog.html
https://dapds00.nci.org.au/thredds/catalog/ub8/au/LandCover/DEA_ALC/catalog.html
https://dapds00.nci.org.au/thredds/catalog/ub8/au/LandCover/DEA_ALC/catalog.html
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provide a consistent evaluation of interannual variability in the pre-MODIS era and found good agreement 

between the two products (Fig. A2). 155 

2.3 Calibration and harmonisation 

During extensive preliminary testing gradient-boosting decision tree ensembles (GBM), random forest, 

and generalised additive models were assessed for their ability to calibrate and harmonise NDVICDR with 

NDVIMCD43A4. The GBM outperformed the other approaches.  Two classes of models and datasets were 

built: one that utilises climate data (hereafter referred to as ‘clim’ models) in the feature set to achieve the 160 

best possible agreement between NDVICDR and NDVIMCD43A4. The second excludes climate features 

(hereafter, ‘noclim’ model) while still achieving satisfactory results.  When examining drivers of change, 

users of these datasets may prefer to use the no-climate model to limit potential circularities in attribution 

of the drivers of change.  During testing, climate variables were identified as useful features for both 

improving predictions in the heavily forested regions where there was little to no agreement between 165 

NDVIMCD43A4 and NDVIAVHRR, and for capturing interannual variability.  The ‘noclim’ models used the 

following features: solar-zenith-angle (SZEN), time-of-acquisition (TOD), month-of-year, latitude, and 

NDVIMCD43A4 summary percentiles (0.05, 0.5, and 0.95). NDVIMCD43A4 summary percentiles were 

calculated per pixel over the 2000-2022 period. The ‘clim’ models used the same variables, plus incoming 

solar radiation, rainfall, temperature, and vapour pressure deficit. Fractional anomalies of the climate 170 

features are also included, along with cumulative three- and six-month rainfall. Testing revealed the best 

results were obtained by generating three separate models for areas with high and low woody cover 

fraction (WCF), and for the desert bioclimatic region (Fig. 1a and Fig. 2a). The long-term mean of WCF 

was extracted from Liao et al. (2020) and a threshold of WCF=0.25 was used to separate regions with a 

high woody canopy cover. This threshold was chosen as it approximately delineated those regions with 175 

the poorest correspondence between NDVICDR and NDVIMCD43A4 (Figure 3e-h).  
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Figure 1: Flowchart describing the calibration and harmonisation methods (a), and the development of a synthetic NDVI (b) for gap 

filling (c). a) Shows the method for the ‘clim’ model type, the methods for ‘noclim’ are the same but climate variables are removed 180 
from the covariables and ‘noclim’ is not gap filled. Red coloured boxes denote datasets, blue boxes denote processing steps, and 

green boxes describe the response variables and covariables used for modelling. 
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Owing to the differing volumes of good quality data across the continent (Fig. A1) and the large 

difference in land area of each bioclimatic region, we implemented a stratified, equalised random 185 

sampling approach for the training and validation samples to reduce bias in the sample allocations. In the 

high and low WCF regions, 30,000 training and testing samples were extracted in equal measure from the 

five remaining bioclimatic regions after excluding the desert (i.e., 6,000 samples per region). Bioclimatic 

regions were identical to those defined by Haverd et al. (2013) (Fig. 2b).  In the desert region, samples 

were drawn using a simple random approach.  In all modelling domains, samples were drawn from any 190 

point in time across the overlap period, and 5,000 samples were randomly separated as an independent 

validation set, leaving 25,000 samples for training. The calibration and harmonisation process are 

summarised in the flow chart of Figure 1a. 

 

 195 

Figure 2: a) Regions delineating the spatial extent of the three modelling domains: desert, low woody cover fraction (WCF) and high 

WCF. b) The distribution of all independent validation points used to assess the model fits across the three modelling domains in 

(a); points are coloured by the year they are drawn from.  Figure is overlaid with outlines of the six bioclimatic regions used to both 

stratify training points and for aggregating trends in later analysis. 

 200 

Cross validation for model hyperparameter optimization was conducted using a nested cross-

validation approach with five outer splits and three inner splits (Cawley and Talbot, 2010), the 

hyperparameter grid search parameters are listed in Table A1.  Mean absolute error (MAE), root mean 

square error (RMSE), and the coefficient of determination (r2) are reported as indicators of the goodness 

of fits.  To understand which explanatory variables most impacted predictions, feature importance plots 205 
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were produced using the Shapley Additive Explanations (SHAP) Python library (Lundberg and Lee, 

2017). 

2.3 Gap-filling 

At times there are long gaps in AVHRR data acquisition over Australia. For example, 1994 is entirely 

missing, and during sensor transition periods the data becomes unreliable for several months before and 210 

after the transitions (Tian et al., 2015).  Furthermore, owing to the nature of Australia’s prevailing weather 

systems such as the tropical monsoon, it is not uncommon to have whole geographic regions missing for 

a given month.  This undermines the typical approaches to gap filling that work well when either the 

temporal gap is short (e.g., temporal interpolation methods using linear or polynomial fits), or the spatial 

pattern of gaps are quasi-random such as from scattered cloud cover (spatial interpolation methods such 215 

as nearest neighbour, kriging etc.) (Bessenbacher et al., 2022; Shen et al., 2015). Gap-filling with a 

climatology can often mask important interannual variability at key times – such as anomalously high 

rainfall periods associated with La Niñas when enhanced cloud cover masks large-scale greening events 

across Australia’s northern tropical savanna. To avoid this we used well established machine learning 

approaches that have been developed to fill gaps in univariate data (Gerber et al., 2018; Zeng et al., 2014).  220 

Here, we develop a two-stage process for gap-filling (summarised in Fig. 1b-c).  Firstly, to fill short 

temporal gaps, the time series is split into a climatology and anomaly series and linear temporal 

interpolation is applied to the anomalies for a maximum of one time-step (i.e., one month). Longer 

temporal gaps are replaced with a synthetic NDVI dataset generated using a similar GBM machine 

learning method as the harmonisation and is described further below. 225 

2.3.1 Synthetic NDVI 

Training samples were extracted from NDVIAusE-clim for 1982-2000 and NDVIMCD43A4 for 2000-2022, 

using a similar sampling approach as used for harmonisation only in this instance two models are built, a 

‘desert’ model and ‘non-desert’ model. The non-desert model covers the same region as the high and low 

WCF models previously described (the inclusion of WCF in the features reduces the need to define a low 230 

and high WCF modelling region).  GBM models were then fit using all the features previously listed for 
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the ‘clim’ model, plus de-seasonalised CO2 concentration and annual WCF. Otherwise, the modelling 

framework was the same as the harmonisation approach (Fig. 1b).  The synthetic NDVI datasets 

(NDVISYN) are used to gap fill the NDVIAusE-clim record from January 1982 to February 2000. The final 

gap-filled, calibrated, and harmonised NDVIAusE-clim dataset is joined with NDVIMCD43A4.  Only the 235 

NDVIAusE-clim dataset is gap filled, the NDVIAusE-noclim dataset is simply joined with the NDVIMCD43A4 

record. This ensures the ‘noclim’ dataset does not contain any climate information in the reconstructed 

time series.  

2.4 Trends in peak-of-season phenology 

Annual, per-pixel NDVI land surface phenology statistics were extracted using the “xr_phenology” 240 

Python function from the “dea-tools” package (Krause et al., 2021).  This analysis focused on two metrics, 

the NDVI value at the peak of the season (vPOS), and the day-of-year the peak occurs (POS). The input 

time-series was the gap-filled ‘clim’ dataset, and the time-series was first linearly up-sampled from 

monthly to two-week intervals to increase the temporal resolution of the datasets before the time-series 

was smoothed using a Savitsky-Golay filter with a window length of 11 and a polynomial order of three. 245 

Though we report day-of-year as the unit for POS, the actual POS could have occurred anytime withing 

a given bi-monthly time step, so DOY values should be considered an approximation.  

To avoid applying phenology trend analysis on regions that do not experience regular seasonal 

variation, we created a mask that removes regions identified as ‘non-seasonal’ using the definitions and 

methods defined by Moore et al. (2016).  Broadly, the mask is created using three inputs: the standard 250 

deviation in NDVI anomalies, long-term mean NDVI, and the standard deviation in the mean seasonal 

cycle.  These three inputs are used to identify regions that experience either low seasonal variability and 

low NDVI, or low seasonal variability and high interannual variability, which largely coincide with the 

desert bioclimatic region. 

Per-pixel linear trends in these phenology metrics were extracted using the Theil-Sen robust 255 

regression approach, and significance was determined using a Mann Kendall test (significance defined α 

= 0.05).  Trends summarised over bioclimatic regions were extracted by first calculating per-pixel robust 
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regression on the phenology statistics, and then summarising the trends within a bioclimatic region with 

kernel density estimation (KDE) plots.  

3 Results 260 

3.1 Quality of existing datasets. 

The quality of the NDVIAVHRR products were compared against NDVIMCD43A4 for the overlapping years 

2000-2013. All datasets except NDVIPKU-consolidated perform poorly over regions with perennially high 

vegetation cover including wet coastal and highland forest ecosystems, where correlations between 

NDVIAVHRR and NDVIMCD43A4 are close to zero in some regions (Fig. 3e-g). NDVICDR and NDVIGIMMS3g 265 

also poorly represent the desert region with R values are as low as ~0.4 - 0.5.  NDVIPKU-consolidated correlates 

very well with NDVIMCD43A4 over most of the continent, with the exception of western Tasmania (Fig. 

3h). Coefficients of variation are also high for the NDVIGIMMS3g and NDVIPKU datasets across much of 

the continent with average values of 0.33 and 0.18, respectively (Fig. 3b-c).   

To demonstrate how the discrepancies over densely vegetated ecosystems would impact, Figure 270 

3j-k presents a zonal timeseries of the woodlands of south-west Western Australia. These woodlands have 

been identified as a region of high endemic biodiversity (Myers et al., 2000; Hopper and Gioia, 2004), 

are vulnerable to the effects of long-term climate change, and are undergoing long-term shifts in climate 

(O'donnell et al., 2012; Hughes, 2011; Pitman et al., 2004; Hope et al., 2006).  The MODIS-era interannual 

variability of these forests are shown through a rolling twelve-month mean timeseries (Fig. 3j) and reveal 275 

that all products capture interannual variability of the MODIS era reasonably well, though the long-term 

mean NDVI value varies substantially between products.  The mean seasonal cycle, shown in Figure 3k 

(calculated from 2001-2013), reveals that the seasonal cycle of the forest ecosystem is very poorly 

represented in three of the four products, while NDVIPKU-consolidated tracks the overall shape of the seasonal 

cycle well. Discrepancies in seasonality are further highlighted in the per-pixel climatological ‘month-of-280 

maximum’ NDVI plots (Fig. A3).  Estimates of even this relatively straightforward metric of seasonality 

are impacted by the choice of dataset, with desert, savanna, and forested regions varying substantially 

between datasets, sometimes by as much as several months in the case of forested regions in Tasmania 
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and south-east Australia. The Australian-wide seasonal cycles likewise reveal substantial variation 

between products (Fig. A3g).  285 

To assess the quality of NDVIAVHRR products in the pre-MODIS era, Figure 4a compares the 

twelve-month rolling mean standardised anomalies of NDVILandsat in the 1988-2000 period (based on a 

1988-2012 climatology) with NDVIAVHRR anomalies.  No product accurately tracks NDVILandsat 

anomalies across the whole 1988-2000 period.  Only the NDVIPKU product captures the amplitude of the 

La Niña driven positive anomaly of NDVI in 2000 (but recall that NDVIPKU is trained on the NDVILandsat 290 

archive). In Australia, annual rainfall and NDVI anomalies are strongly correlated across the majority of 

Australia’s land mass (Fig. 4c), demonstrating that vegetation growth across the continent is strongly 

water-limited (Peters et al., 2021; Poulter et al., 2014; Broich et al., 2014). It is therefore our expectation 

that similarly large negative and positive rainfall anomalies should result in similar NDVI anomalies in 

the pre-MODIS and MODIS eras. Taking the best of the products identified in the comparison with 295 

NDVIMCD43A4, Figure 4b shows the twelve-month rolling mean standardised anomalies of NDVIPKU-

consolidated from 1982-2022. In the MODIS era, NDVIPKU-consolidated responds strongly to anomalies in 

rainfall (background shading shows the continental average standardised rainfall anomalies), while in the 

pre-MODIS era significant droughts (e.g., 1982-83) and widespread rainfall events (e.g., 2000) produce 

comparatively little effect in NDVI, suggesting a lack of rainfall-driven variability over Australia in the 300 

pre-MODIS era. We develop the statistical relationships between annual mean standardised rainfall and 

NDVI anomalies, averaged across Australia, for the NDVIMCD43A4 and NDVIPKU-consolidated products to 

quantify their sensitivity to water-supply. Considering the slope of the linear relationship between rainfall 

and NDVI to be an approximation of the sensitivity of NDVI to water supply, then NDVIPKU-consolidated in 

the 2000-2022 period displays a similar sensitivity (slope = 1.36, Fig. 4f) and correlation (r2=0.56) as 305 

NDVIMCD43A4 does in the same period (slope=1.13, r2=0.54, Fig. 4d). Contrast this with NDVIPKU-

consolidated in the 1982-2000 period where the apparent sensitivity is approximately half that of the 2000-

2022 period (slope=0.65, Fig. 4e). While we may expect some changes in water-supply sensitivity over 

the decades due to effects such as CO2  

 310 
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Figure 3: Comparisons between NDVIMCD43A4 and four versions of NDVIAVHRR. a-d) The coefficient of variation (CV) between NDVI 

MCD43A4 and NDVIAVHRR where RMSE is divided by the 2001-2013 mean of NDVIMCD43A4. e-h) Pearson correlation (r) between 

NDVIMCD43A4 and NDVIAVHRR. i) Woody cover fraction (WCF) of the forests in south-west Western Australia indicating the location 

of the zonal time-series of (j) and (k). j) Twelve-month rolling mean NDVI timeseries of the forests of south-west Western Australia. 315 
k) Mean seasonal cycle of the forests of south-west Western Australia calculated over the 2001-2013 period. 

 

fertilisation (Donohue et al., 2013; Ukkola et al., 2016), a doubling of water-supply sensitivity is highly 

unlikely.  Thus, we argue that no current NDVIAVHRR product currently satisfies our criteria of a product 

that both agrees well with NDVIMCD43A4 while also producing satisfactory results in the pre-MODIS era. 320 

3.2 Calibration and harmonisation performance 

Independent validation statistics for all six model varieties (‘clim’ and ‘noclim’; desert, high and low 

WCF) reveal a high degree of agreement in all model types with r2 ≥ 0.91 for the ‘clim’ models, RMSE 

≤ 0.039, and MAE ≤ 0.028 (Fig. 5a-c). The ‘clim’ model types tended to have errors ~15 % smaller 
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 325 

Figure 4: a) Twelve-month rolling mean standardised anomalies of Landsat, CDR, GIMMS3g, GIMMS-PKU, and GIMMS-PKU-

consolidated NDVI, based on a common 1988-2012 climatology. Background shading represents twelve-month rolling mean 

standardised rainfall anomalies. All datasets, besides rainfall, have matching data gaps. b) Twelve-month rolling mean standardised 

anomalies of the NDVIPKU-consolidated product (1982-2022 climatology). c) Pearson correlations between annual NDVIMCD43A4 

anomalies and annual rainfall anomalies, shown here to demonstrate the strongly water limited nature of Australia’s vegetation. d-330 
f) Relationships between twelve-month standardised rainfall and NDVI anomalies averaged across Australia for different periods 

and different products. In (d) NDVIMCD43A4 and rainfall anomalies have been calculated against a 2000-2022 baseline. In (e-f) rainfall 

and NDVIPKU-consolidated anomalies have been calculated against a 1982-2022 baseline. The relationships y=mx+c denotes the linear 

regression slope between rainfall and NDVI anomalies where y is NDVI anomalies, x is rainfall anomalies, and m is the slope 

coefficient. The slope coefficient can be considered an approximation of the sensitivity of NDVI to anomalous water supply 335 
aggregated over the continent.   

 

than their ‘noclim’ counterparts (Fig. 5d-f).  SHAP feature importance plots indicate NDVICDR as the 

most important variable (Figure A3), but in the high WCF regions the relative importance of NDVICDR 

diminished and NDVIMCD43A4 summary statistics, solar radiation, and cumulative rainfall substantially 340 

impacting predictions (Figure A4b,c).   
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Figure 5: Validation scatter plots for the calibration and harmonisation between NDVICDR and NDVIMCD43A4. (a-c) show the results 

for the ‘clim’ model. (d-f) shows the same but for the ‘noclim’ model type. 345 

Per pixel agreements between NDVIAusE and NDVIMCD43A4 for both the ‘clim’ and ‘noclim’ model 

types reveal a very high degree of correlation across the continent (note that pixels with a long-term 

average NDVI ≤ 0.11 are masked for this analysis). Correlations between NDVIMCD43A4 and NDVIAusE in 

Australia’s forested ecosystems have been greatly improved, averaging Pearson R = 0.85 (Fig. 6a) in the 

‘clim’ model (average Pearson R in the CDR = 0.48).  Areas of lower correlation persist in places that 350 

experience ephemeral or periodic water inundation such as mangroves and inland lake systems.  Relative 

error has been reduced universally across the continent, with a continental average CV of <10 % (Fig. 

6b). Areas of greatest relative error occur in the channel country in Australia’s arid interior, and the 

irrigated regions of the northern Murray Darling Basin.  The ‘noclim’ model performs similarly, though 

correlations and relative error are universally worse than the ‘clim’ model (Fig. 6c-d).  Residual NDVI 355 

values after subtracting NDVIAVHRR from NDVIMCD43A4 before and after the calibration and 

harmonisation show the GBM model has entirely removed the residual seasonal signal present in the CDR 

product, resulting in residuals that closely track the zero line.  Some small bias remains in the 2011-2012 

period (particularly for the ‘noclim’ model) when anomalously large rainfall related to a major La Nina 
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event resulted in anomalous greening in the savanna and desert biomes.  This is further illustrated in 360 

Figure A5 where NDVI timeseries before and after the adjustment have been summarised over six 

bioclimatic regions (extents in Fig. 2b).  Differences in the Australia-wide time-series between 

NDVIMCD43A4 and NDVIAusE are largely attributable to NDVIAusE underestimating peak NDVI during 

2011-2012 in the desert and savanna biomes (Fig. A5f-g). 

 365 

Figure 6: Results of the calibration and harmonization between NDVICDR and NDVIMCD43A4. a) shows the per pixel Pearson 

correlation, between NDVIMCD43A4 and ‘clim’ NDVIAusE. b) shows the same as (a) but for the coefficient of variation.  c-d) the same 

as (a-b) but for the ‘noclim’ model type. e) The residual NDVI value when subtracting NDVIAVHRR from NDVIMCD43A4 before and 

after the calibration and harmonization. Residuals are calculated per pixel and then averaged over Australia. Shading indicates the 

standard deviation in residuals across the continent for the NDVICDR product. 370 

Improvements in the alignment between NDVICDR and NDVIMCD43A4 from this regional calibration and 

harmonisation are further demonstrated in Figure 7 where timeseries are summarised over two 

challenging forest ecosystems in southwest Western Australia and Tasmania.  Mean seasonal cycles 
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between the two NDVI datasets are now in very close agreement (Fig. 7c, f) and the NDVIAusE-clim time-

series from 1982-2000 can effectively integrate with the NDVIMCD43A4 time-series without introducing 375 

major discontinuities (Fig. 7b, e). Note also that the GBM calibration has ameliorated the strong 

increasing trend in NDVICDR from 1982-2000 (Fig. 7b, e) that is almost certainly due to artificial step 

changes between sensor transitions and poor calibration over these regions. In the appendix, we replot 

Figure 7d-f with the inclusion of NDVIGIMMS3g to demonstrate that the trend in NDVICDR is an artefact of 

the CDR product (Fig. A6). 380 

 

Figure 7: Results before and after the calibration and harmonisation of NDVICDR for two example high woody canopy cover regions 

previously identified as having the worst agreement with NDVIMCD43A4. b-c) Three-month rolling mean 1982-2022 NDVI time series, 

and the mean seasonal cycle (averaged over the 2001-2013 period), respectively, for the forests of south-west Western Australia. e-

f) Same as (b-c) but for Tasmanian forests. Time series are the spatial average of the regions to their left.  385 

3.2 Gap-filling with Synthetic NDVI 

The NDVISYN dataset record agrees exceptionally well with the joined NDVIAusE-clim and NDVIMCD43A4 

series when aggregated across Australia (Fig. 8e). The time series of Figure 8e is further disaggregated 

into high and low WCF regions (as per Figure 2a) in Figure A7 and reveals that in densely wooded regions 

synthetic NDVI tends to underestimate peak seasonal growth, but otherwise captures seasonal timings 390 

and inter-annual variability (Fig. A7b). In the low WCF regions (Fig. A7a), synthetic NDVI closely 

matches observations.  At the pixel level, the long-term mean NDVI of both datasets is virtually identical 
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(Fig. 8a-b). Per-pixel Pearson correlation averages 0.85 across the continent (Fig. 8d). Areas of poorer 

correlation occur in western Tasmania, the highlands forests of south-east Australia – all areas that 

experience seasonal snow fall – and regions of either anthropogenic water application (irrigation) or 395 

ephemeral, delayed water inundation (inland rivers in the arid interior). Mean relative error was also low, 

averaging 11 %, but with hotspots of greater error again occurring in the regions where water inundation 

is not dependent on direct rainfall (Fig. 8c) The results before and after gap filling NDVIAusE-clim are 

presented in Figure 8f.  As missing data tends to be in the higher NDVI regions (wetter, cloudier, forested 

regions), gap filling has the tendency of increasing NDVI when averaged over the continent. 400 

We present validation scatter plots and feature importance plots for the desert and non-desert 

GBM models in the appendix (Fig. A8). In the non-desert region, three-month cumulative rainfall and 

VPD are the key climate drivers of predictions, while in the desert region, six-month cumulative rainfall, 

VPD, and incoming solar radiation are the key climate drivers. 

 405 
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Figure 8: Evaluation of the synthetic NDVI built to gap-fill the NDVIAusE-clim record a-b) show the observed and synthetic long-term 

mean NDVI, respectively. c) per pixel coefficient of variation (CV) between observed NDVI and synthetic NDVI. d) Same as (c) but 

Pearson correlation. e) Continentally averaged observed and synthetic NDVI timeseries, where data gaps have been matched. f) The 410 
results of gap filling the merged NDVIAusE-clim and NDVIMCD43A4 time series. 

 



22 

 

 

3.3 Assessing interannual variability 

Comparing the calibrated, harmonised, and gap-filled NDVIAusE-clim dataset with rolling annual mean 415 

NDVILandsat anomalies reveals a good level of agreement in both the timing and magnitude of inter-annual 

variability throughout the 1988-2012 period (Fig. 9a).  NDVIPKU-consolidated is also shown for comparison 

and gaps in the NDVIPKU-consolidated dataset have been filled using the same synthetic data and procedure 

as NDVIAusE-clim to facilitate a more straightforward comparison and continuous time-series. NDVIAusE-

clim consistently outperforms NDVIPKU-consolidated throughout the Landsat series. IAV in NDVIAusE-clim is 420 

further assessed in Figure 9b where the full time series (1982-2022, joined with NDVIMCD43A4) and 

NDVIPKU-consolidated are plotted together as rolling annual mean standardised anomalies against the same 

1982-2022 climatology.  NDVIAusE-clim clearly displays greater IAV in the pre-MODIS era.  We repeat 

the same analysis as in Figure 3d-f but this time including NDVIAusE-clim. The NDVI-rainfall relationships 

show that NDVIAusE-clim reports a similar water-supply sensitivity and correlation in the 1982-2000 period 425 

(slope=1.28, r2=0.51, Fig. 8d) as MODIS does in 2000-2022 period (slope=1.13, r2=0.54, Fig. 9c). Again, 

while we may expect some changes in water-supply sensitivity over the decades due to effects such as 

CO2 fertilisation, water supply sensitivity ought to remain relatively stationary, and we take the 

correspondence between NDVIMCD43A4 sensitivity and NDVIAusE-clim sensitivity as an indication that 

NDVIAusE-clim is responding realistically to interannual variations in rainfall. 430 
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Figure 9: a) Twelve-month rolling mean standardised NDVI anomalies of the gap-filled NDVIAusE-clim plotted alongside Landsat 

anomalies and NDVIPKU-consolidated anomalies. Gaps in the NDVIPKU-consolidated dataset have been filled using the same synthetic data 

and procedure as NDVIAusE-clim. All datasets are matched to Landsat data gaps. b) Twelve-month rolling mean standardised 435 
anomalies of the NDVIPKU-consolidated (gap-filled in the same manner as (a)), and NDVIAusE-clim joined with NDVIMCD43A4 (1982-2022 

climatology). c-f) Relationships between twelve-month standardised rainfall and NDVI anomalies averaged across Australia for 

different periods and different products. Rainfall, NDVIAusE-clim and NDVIPKU-consolidated anomalies have been calculated against a 

1982-2022 baseline. NDVIMCD43A4 anomalies have been calculated against a 2000-2022 baseline. The slope coefficient can be 

considered an approximation of the sensitivity of NDVI to anomalous water supply aggregated over the continent.  Note that the 440 
slope and intercepts for GIMMS-PKU-consolidated are slightly different to Figure 3 owing to gap filling. 
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3.4 Annual average trends 

We also evaluated the annual-average NDVI trends across Australia to assess the performance of 

AusENDVI in reproducing greening trends observed in other products. Trends were calculated over the 445 

overlapping period of 1982-2013 using ordinary least squares regression after aggregating NDVI data to 

annual means.  AusENDVI closely reproduces the observable trends in NDVIGIMMS3g (coefficients: 

AusENDVI-clim=0.00056 NDVI yr-1, AusENDVI-noclim=0.00049 NDVI yr-1, GIMMS3g=0.00062 

NDVI yr-1; Fig. 10). Trends in NDVIMCD43A4 over the shorter interval from 2000-2013 displayed a similar 

slope to AusENDVI and GIMMS3g (0.00051 NDVI yr-1).  Trends in the two GIMMS-PKU products are 450 

approximately half those of the other products. 

 

 

Figure 10: Annual average NDVI trends summarised over Australia for the overlapping period of 1982-2013. All data gaps have 

been matched between datasets and datasets have been reprojected to match the resolution of GIMMS3g. Note that AusENDVI-455 
clim and noclim have both had data gaps filled to facilitate better annual averaging (i.e., so all years have values).  Trend lines have 

been fitted using ordinary least-squares regression and coefficients are expressed in terms of NDVI per year. 

 

3.5 Trends in peak-of-season phenology 

Per-pixel trends in vPOS, POS and the 40-year median values for these statistics are shown in Figure 11. 460 

Trends in vPOS are almost universally positive across the continent (hatching indicates a significant 

trend), with the exceptions of inland northern Murray-Darling Basin, the eastern periphery of the wheat 
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belt in Western Australia, and the region north of Adelaide (Fig. 11b). Positive trends observed in the 

major agricultural region of the Murray-Darling Basin and the northern half of the West Australian wheat 

belt and are non-significant.  Distributions of trends in vPOS, stratified by bioclimatic region, reveal the 465 

highest median trends are recorded in the tropics and savanna regions at 0.0013 and 0.0014 NDVI yr-1, 

respectively (Fig. A9a-e). The Mediterranean region has the lowest median trend at 0.0009 NDVI yr-1.   

 Trends in the day-of-year that peak NDVI occurs (POS) are negative across much of the continent, 

suggesting there is a general tendency for NDVI to peak earlier in the year across Australia. Significant 

negative trends occur in the agricultural zones of the Mediterranean bioclimatic region, the greater 470 

western woodlands that border the eastern margin of the WA wheatbelt, the western half of the Nullabor 

plain, parts of the Riverina agricultural region of south-western New South Wales and extending into 

Victoria, and western parts of the northern tropical savanna. These significant negative trends are reflected 

in the POS trend distributions in Figure A9f-j where the median trend in the warm temperate and 

Mediterranean regions are highest at 3.4 and 2.3 days per decade, respectively.  Significant positive trends 475 

(peak NDVI occurring later in the year) are observed in tropical northern Queensland and western 

Tasmania and can be as high as 5-10 days per decade. 
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Figure 11: a) The median annual peak NDVI value (vPOS) from 1982-2022. b) Theil-Sen robust regression trends in vPOS. c) Median 480 
day-of-year that peak NDVI occurs (POS), 1982-2022. d) Theil-Sen robust regression trends in POS.  Hatching on trend plots 

indicates significance at alpha=0.05 using a Man-Kendall test. All plots are derived from the gap-filled ‘clim’ NDVIAusE dataset.  

Non-seasonal areas have been masked using the method described in section 2.4. 

4 Discussion 

4.1 Limitations of existing global products and improvements by AusENDVI  485 

We expected to identify differences between NDVIAVHRR and NDVIMCD43A4 given differences in the 

spectral sampling between sensors, their different pre-processing and atmospheric corrections methods, 

spatial resolutions and temporal compositing techniques. Likewise, comparatively lower correlations in 

the densely vegetated regions were also expected due to the total variance in evergreen forests being 
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smaller than for seasonal vegetation (grassland, croplands), and therefore, assuming a similar unexplained 490 

variance (noise), correlations should necessarily be weaker.  Nonetheless, we were surprised by the fairly 

large inconsistencies between NDVIGIMMS3g, NDVICDR, and NDVIGIMMS-PKU in representing the seasonal 

dynamics of Australia’s densely vegetated regions (e.g. Fig. 3k). Why this is the case deserves a greater 

focus of study than we devote here but is likely related to some combination of the presence/absence of 

BRDF and water-vapour corrections, varying contamination by clouds, and any gap-filling procedures 495 

applied. Regardless of the reasons why, the intercomparison between NDVIAVHRR products highlights 

that global datasets, while often performing adequately when statistics are aggregated at the global or 

continental scale, can mask disparities that are important at the regional to local scale (Meyer and 

Pebesma, 2022).  We advocate closely examining regional and local contexts to assess how suitable a 

given NDVI dataset is for a particular use case.  For example, in Australia seasonal cycles in NDVICDR 500 

are highly suspect and thus should not be relied upon for phenology studies. However, NDVICDR has a 

comparatively low relative error when compared with NDVIMCD43A4 and displays reasonable inter-annual 

variability so would likely be more suited to long-term studies of agricultural drought frequency or the 

impacts of CO2 fertilisation on canopy cover (assuming sensor transitions are filtered). In Australia, the 

best use of NDVIPKU-consolidated is likely the reverse, its representation of seasonal cycles comports well 505 

with NDVIMCD43A4, while IAV is subdued in the pre-MODIS era which could lead to incorrect conclusions 

regarding shifting sensitivities to water supply in Australia’s water-limited ecosystems.  In general, we 

urge caution in using existing global NDVIAVHRR products for studying vegetation trends and seasonality 

in Australia.  AusENDVI shows significant improvement over existing global datasets in this respect. The 

improved correspondence in seasonal cycles between AusENDVI and NDVIMCD43A4 provides evidence 510 

that AusENDVI is more suitable for exploring longer-term changes to Australia’s vegetation phenology. 

Moreover, the addition of climate features to the calibration and harmonisation also appears to have 

improved the representation of long-term interannual variability and trends in annual average NDVI, thus 

AusENDVI-clim should likewise offer a better basis for studying the shifting frequency of extreme 

climate events and their impact on the terrestrial biosphere. 515 
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4.2 Synthetic NDVI 

The creation of a synthetic NDVI using only climate, CO2 concentration, and woody cover fraction as 

predictors revealed a high degree of predictability in NDVI over much of Australia. Regions of lower 

predictability were located where water supply is either from elsewhere or delayed (ephemeral inland 

rivers) or from irrigation. In the absence of features that could describe water supply without rainfall, 520 

NDVI patterns in these zones will continue to be difficult to estimate if direct satellite observations are 

unavailable. Notwithstanding some spatial variability in per-pixel predictability, in general the high 

degree of agreement between observed and synthetic NDVI presents the prospect of extending the 

synthetic NDVI further back in time through the observational climate record, which in Australia is 

reliable throughout much of the 20th century.  In land surface models, a dynamic phenology algorithm is 525 

an important sub-model which influences the overall carbon cycle, evapotranspiration, and energy 

balance of the model (Chen, 2022).  The long-term record of synthetic NDVI developed here could, 

therefore, prove useful for validating the development of process-based phenology models for Australia's 

diverse range of vegetation and climate. Or, with empirically validated NDVI-LAI relationships, 

AusENDVI could be used as a phenology forcing during the pre-satellite era for the many LSMs that do 530 

not dynamically simulate LAI. 

4.3 Sources of uncertainty and future work 

There are several sources of uncertainty in AusENDVI. Firstly, the climate and landscape features used 

are subject to their own uncertainties which will undoubtedly propagate into both the calibration and 

harmonisation, as well as the gap-filling with synthetic NDVI.  For example, rainfall station observations 535 

in the arid interior of Australia are relatively sparse so errors in the spatial interpolation of rainfall are 

highly likely. Uncertainties in the NDVICDR product are also likely to be transmitted to our dataset. Future 

work may include a greater treatment of uncertainty through ensemble modelling where climate features 

(e.g., different rainfall and solar radiation datasets), and model types used for fitting are iterated to 

generate an uncertainty envelope.  We also aim to assess how well NDVI from the Visible Infrared 540 

Imaging Radiometer Suite (VIIRS) agrees with NDVIAusE and NDVIMCD43A4 over Australia.  Should there 

be a substantial discrepancy, the methods described here could be applied to VIIRS to create an ongoing, 
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updated NDVI dataset for Australia than can continue to form the foundation for continental-scale studies 

of terrestrial ecosystem change.  Irrespective, we argue our AusENDVI estimates are based on the best 

available data, while the gradient boosting models have gone through extensive cross-validation. 545 

Therefore, we contend that the resulting trends should be more accurate than any alternative NDVI 

dataset. 

4.4 Trends in peak of season phenology 

We identified advances in the timing of POS across much of Australia’s land mass (though not all). Over 

the Mediterranean, warm temperate, and cool temperate bioclimatic regions the median peak phenology 550 

trends were -2 to -3 days/decade.  Advances in plant maturity in the southern hemisphere from field data 

are also reported by Chambers et al. (2013) where the mean rate of change in plant maturity was 14 

days/decade, mostly from temperate regions (63 % of their data are from grape-vines). This rate of change 

is comparable to the per-pixel rates of change in POS that are seen in parts of the Mediterranean and warm 

temperate regions where it is not uncommon to see negative trends ranging from 10-15 days/decade (Fig.  555 

11d).  However, the magnitude of a trend is influenced by the length of the time series so comparisons 

with variable length field data is difficult and shorter records are more likely to report a larger rate 

(Chambers et al., 2013).  Advances in the timing of POS could be due to a combination of climate drivers.  

In the northern hemisphere, warming has led to earlier peak greening (Huang et al., 2023; Liu et al., 2021; 

Park et al., 2019).  Warming can accelerate metabolism, so where water is non-limiting, leaf development 560 

can be faster.  However, temperature increases also increase vapour pressure deficits which decrease 

water-use efficiency and can reduce plant productivity, though this effect may be compensated for by 

enhanced CO2 (Rifai et al., 2022; Dusenge et al., 2019).  Changes in the timing of peak rainfall may also 

contribute to shifts in the timing of peak NDVI.  The timing of peak climatological rainfall has shifted 

since 1960 (Fig. A10a-c), and there is some coincidence between trends in POS and shifts in rainfall POS 565 

(e.g., advancement around Adelaide).  The goal of this study is not to draw conclusions on the likely 

drivers of seasonality change in Australia, but to argue that our dataset provides a more reliable means 

for tackling these questions.  Future work will delve into a greater suite of phenology metrics (e.g., start-
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of-season, end-of-season, growing season length (Xie et al., 2023)), and explore the drivers of 

phenological change.   570 

The pervasive positive trends in vPOS are consistent with results elsewhere and are likely due to 

the impacts of CO2 fertilisation, which allows a given amount of precipitation to sustain a greater 

maximum level of plant production over time (Donohue et al., 2009; Donohue et al., 2013; Rifai et al., 

2022; Ukkola et al., 2016). Increases in the magnitude of Austral spring and summer rainfall in northern 

Australia are also likely to have contributed to the widespread increase in vPOS in tropical Australia 575 

(Figure A10d).  It is also likely that improving agricultural practices has increased maximum NDVI in 

the rain-fed cropping regions, especially in South Australia and Victoria where positive vPOS trends are 

significant. Trends in maximum NDVI in the WA wheatbelt are also positive, but contrast with the fact 

that WA has seen a widespread autumn drying trend (Fig. A10d). We speculate that agricultural 

innovation here has counteracted a drying trend that would otherwise have reduced foliage cover. 580 

5 Data and Code Availability 

AusENDVI is openly available at https://doi.org/10.5281/zenodo.10802704 (Burton, 2024) and consists 

of several datasets. Each dataset has a description in the attributes of the NetCDF file that defines its 

provenance. A short description of each dataset is provided below as an additional reference. All datasets 

are in "EPSG:4326" projection, have a spatial resolution of 0.05°, and monthly temporal resolution. A 585 

Jupyter notebook is also provided at the above link demonstrating how to load, plot, mask, reproject, and 

gap-fill AusENDVI datasets.  

 

• AusENDVI-clim_1982_2013. Calibrated and harmonised NOAA's Climate Data Record AVHRR 

NDVI data from January 1982 to December 2013. This version of the dataset used climate data in 590 

the calibration and harmonisation process. The dataset has not been gap filled, and extra data has 

been filtered/removed beyond the typical QA filtering using methods described in this publication. 

• AusENDVI-noclim_1982_2013. Calibrated and harmonised NOAA's Climate Data Record 

AVHRR NDVI data from January 1982 to December 2013. This version of the dataset did not use 

https://doi.org/10.5281/zenodo.10802704
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climate data in the calibration and harmonisation process. The dataset has not been gap filled, and 595 

extra data has been filtered/removed beyond the typical QA filtering using methods described in 

this publication.  

• AusENDVI-synthetic_1982_2022. This dataset consists of synthetic NDVI data that was built by 

training a model on the joined ‘AusENDVI-clim’ and ‘MODIS-MCD43A4 NDVI’ timeseries 

using climate, woody-cover-fraction, and atmospheric CO2 as predictors. 600 

• AusENDVI-clim_gapfilled_MCD43A4_1982_2022. This dataset consists of calibrated and 

harmonised NOAA's Climate Data Record AVHRR NDVI data from January 1982 to February 

2000, joined with MODIS-MCD43A4 NDVI data from March 2000 to December 2022. This 

version of the dataset used climate data in the calibration and harmonisation process. The dataset 

has been gap filled using AusENDVI-synthetic, 605 

• AusENDVI-noclim_MCD43A4_1982_2022. This dataset consists of calibrated and harmonised 

NOAA's Climate Data Record AVHRR NDVI data from January 1982 to February 2000, and 

MODIS-MCD43A4 NDVI data from Mar. 2000 to Dec. 2022. This version of the dataset did not 

use climate data in the calibration and harmonisation process. The dataset has not been gap filled. 

 610 

The code to conduct all analysis described here is available on the open-source repository: 

https://github.com/cbur24/AusENDVI 

6 Conclusion 

We calibrated and harmonised NDVICDR to NDVIMCD43A4 for Australia using a well cross-validated 

gradient-boosting ensemble decision tree method. We developed two versions of the datasets, one that 615 

utilises climate data in the feature set to achieve the best possible agreement between NDVICDR and 

NDVIMCD43A4 (‘AusENDVI-clim’); and a second dataset that does not rely on climate data (‘AusENDVI-

noclim’).  The resulting datasets have a spatial resolution of 0.05°and extend from 1982-2013 with a 

monthly time step. We also provide a complete 41-year long dataset where gap filled AusENDVI-clim 

from January 1982 to February 2000 is seamlessly joined with NDVIMCD43A4 from March 2000 to 620 

https://github.com/cbur24/AusENDVI
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December 2022.  The advantages of AusENDVI are that: 1) It closely reproduces the NDVIMCD43A4 record 

in terms of seasonality, interannual variability, and trends in annual-average NDVI; 2) It reproduces 

annual anomalies in the Landsat NDVI record in the pre-MODIS era (back to 1988), and shows realistic 

rainfall-driven interannual variability back to 1982; 3) We developed a reliable method for gap filling the 

AusENDVI record by creating a synthetic NDVI dataset using only climate, CO2 concentration, and 625 

woody cover fraction as predictors. The resulting dataset showed excellent agreement with the 

observations, providing confidence in its use for gap filling. 4) AusENDVI has a higher spatial resolution 

than any of the GIMMS-based datasets and is built using inputs that apply the full suite of atmospheric 

and BRDF corrections; and 5) The methods and code for its development are entirely open-source. No 

other existing product can lay claim to all these attributes which is why we argue AusENDVI is an 630 

important addition to the suite of NDVI products available. We contend it is highly suitable for studying 

the impact of global environmental change on Australia’s terrestrial vegetation.  

 

Appendix 

 635 

Figure A1: Available fractions of data before and after additional filtering of NDVICDR data. A value of one means all monthly time-

steps between 1982-2013 are preserved. 

 



33 

 

 

Figure A2: Standardised anomalies of the overlapping period between MODIS MCD43A4 NDVI and DEA’s Landsat NDVI derived 640 
from the common baseline period of 2000-2012. Rainfall anomalies are derived from a longer baseline of 1982-2022. 

 

 

 

 645 

 

 

Table A1. The hyperparameter grids used during model optimization of the harmonisation model and the synthetic NDVI model. 

During model fitting, a random grid search was conducted with 250 iterations to identify the highest performing set of 

hyperparameters. 650 

Model Parameter Grid 

GBM ‘num_leaves’: stats.randint(5,50), 

‘min_child_samples’: stats.randint(10,30), 

‘boosting_type’: ['gbdt', 'dart'], 

‘max_depth’: stats.randint(5,25), 

‘n_estimators’: [300, 400, 500] 
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Figure A3: a-f) Month that maximum NDVI occurs, averaged from 2001-2013, for all NDVI datasets included in the intercomparison 

between NDVI products, along with the AusENDVI-clim dataset of this study. g) The climatological mean seasonal cycle of NDVI 

summarised over Australia. 655 
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Figure A4: Feature importance plots for the calibration and harmonisation between NDVICDR and NDVIMCD43A4. a-c) show the 

results for the ‘clim’ model. d-f) shows the same but for the ‘noclim’ model type. 

 660 
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Figure A5: Per bioregion (a-f) and Australia-wide (g) NDVI time-series before and after the calibration and harmonisation of 

NDVICDR.  Bioregions are defined in Figure 2b. Time series have been smoothed with a three-month rolling mean. 
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 665 

Figure A6: Same as Figure 6d-f but including NDVIGIMMS3g to demonstrate that the very strong increasing trend in NDVICDR is likely 

an artefact of sensor transitions and poor calibration. 

 

 

 670 

Figure A7: Evaluation of the synthetic NDVI built to gap fill NDVIAusE-clim, disaggregated by high and low WCF regions. a) Spatially 

averaged observed and synthetic NDVI timeseries over all continental areas where WCF is less than or equal to 0.25. b) Same as (a) 

but for regions where WCF is greater than 0.25. 
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Figure A8: Validation scatter plots and feature importance plots for the gap-filling synthetic NDVI models. a-b) is for the 675 
‘nondesert’ model region which covers the high and low woody cover regions shown in figure 1a,  (c-d) is for the ‘desert’ region. 

 

 

Figure A9: Distributions of pixel level trends in vPOS (a-e) and POS (f-j), summarised by bioclimatic region (excluding the desert 

region as most of this region is masked as non-seasonal). ‘M’ refers to the median slope value of the distribution and is indicated by 680 
the orange dashed line.  Units for vPOS are NDVI per year and units for POS are days per decade. 
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Figure A10: Changes to the timing and magnitude of rainfall in Australia. a) The typical month that rainfall achieves its maximum 

value, averaged from 1960-1990. b) Same as (a) but for a 1991-2022 climatology. c) The difference between (a) and (b) where the 

1991-2022 climatology is subtracted from 1960-1990. Orange colours indicate earlier peak rainfall in the more recent climatology 685 
(in number of months).  If peak rainfall shifts from January in 1960-1990 to December in 1991-2022, this is recorded as ‘earlier’ by 

one month.  Purple colours indicate peak rainfall occurs later in 1991-2022 compared with 1960-1990.  If peak rainfall shifts from 

December in 1960-1990 to January in 1991-2022, this is recorded as ‘later’ by one month. d) Theil-Sen trends in the total seasonal 

rainfall from 1960-2022. Hatching indicates significance at 95 % confidence using a Mann-Kendall test.  
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