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Supporting Materials 1 

Text 1. Existing ML-based wetland CH4 upscaling products 2 

(Peltola et al., 2019) upscaled monthly CH4 fluxes for the Arctic-boreal freshwater wetland in 3 
2013-3014 at 0.25°-0.5° spatial resolution with three temporal variables including MODIS LST at 4 
night, snow cover, and potential radiation, as well as a static binary permafrost map. The 5 
training data composed 488 monthly data records from 25 EC tower sites, spanning 2005-2016. 6 
 7 
(McNicol et al., 2023) upscaled monthly CH4 fluxes for global freshwater wetland in 2001-2018 8 
at 0.25° with air temperature (with and without a 2-week lag), MODIS EVI with a 3-week lag, 9 
mean temperature of the driest quarter, precipitation of the wettest month, and vegetation 10 
canopy height (Simard et al., 2011). Meteorological data was from WorldClim (Fick & Hijmans, 11 
2017). The training data consisted of 6,210 weekly observations between 2006 and 2018 12 
acquired from 43 EC sites. 13 
 14 

Text 2. Tower EC flux data 15 

The base of our EC data collection stems from a publicly available global synthesis coordination 16 
of FLUXNET-CH4, which includes 79 EC tower sites (42 are freshwater wetland sites) and 293 17 
site-years of data. We collected both daily and half-hourly data from 44 sites in the Arctic-boreal 18 
region (>45° N), accounting for 167 site years as our base dataset, to which we added data 19 
from 6 new sites (31 site-years) and added additional data to 9 existing sites (21 site-years) 20 
contributed by site PIs (Table S2). In total, we assembled data from 50 EC tower sites in 21 
northern latitudes (219 site-years), of which 33 are from wetlands (155 site-years), with 13 wet 22 
tundra sites, 11 fens, and 9 bogs. Data entries with missing data in gridded predictors were 23 
excluded, including 5 wetland sites (FI-LOM, DE-SFN, RU-SAM, RU-VRK, SE-ST1) where data 24 
was collected before SMAP data was available. Another 2 sites (CA-BOU, RU-COK) were 25 
excluded after quality control. After quality filtering, data from 26 wetland sites were used for 26 
analysis (Table S2). 27 
 28 
Half-hourly data obtained from FLUXNET-CH4 were gap-filled following the FLUXNET protocols 29 
(Pastorello et al., 2020). Specifically, for CH4 fluxes (FCH4), the FLUXNET-CH4 gap-filling 30 
procedure includes filling gaps in meteorological variables with ERA-Interim reanalysis data and 31 
then gap-filling FCH4 using artificial neural networks (ANN) (Knox et al., 2019). Variables used to 32 
gap-fill FCH4 included air temperature (TA), downward-incoming shortwave radiation (SWin), 33 
wind speed (WS), air pressure (PA), and sine and cosine functions to represent seasonality. For 34 
the sites with additional half-hourly data that we assembled in this study, we used the same 35 
predictors to fill gaps in FCH4 except for gap-filling meteorological variables with ERA5 data. We 36 
used RF algorithm as it can fill gaps within 12 days with low normalized MAE for fens and bogs 37 
(Irvin et al., 2021). The R2 of gap-filling models across sites ranged 0.35-0.89 (mean R2 = 0.68). 38 
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The 33 wetland sites accounted for 74% of the daily EC tower data after quality control. The 39 
remaining 26% data consisted of 17 non-wetland sites, including upland forests, meadows, dry 40 
tundra, pasture, and lakes (Table S2). 41 

Text 3. Bottom-up and top-down models 42 

The bottom-up estimates we used for comparison were from sixteen wetland CH4 models in the 43 
Global Carbon Project (GCP) Methane Budget (Z. Zhang et al., 2023). We calculated the mean 44 
annual and mean seasonal emissions and uncertainties for the study area from the model 45 
diagnostic simulations using a gridded climate data set from Climate Research Unit (CRU) as 46 
the inputs. The maximum and minimum estimations in each year were identified as the upper 47 
and lower bounds of the uncertainty range. Mean annual and mean seasonal emissions were 48 
also calculated from 18 extensive WetCHARTs models, with the maximum and minimum values 49 
representing the range of uncertainties. 50 
 51 
The top-down inversions were from the atmospheric methane assimilation system, 52 
CarbonTracker-CH4, which can simulate monthly CH4 emitted to the atmosphere attributed to 53 
microbial, fossil, and pyrogenic sources at 2° x 3° resolution (Bruhwiler et al., 2014). In the high 54 
latitudes, microbial emissions mainly consist of natural wetland and open water emissions, and 55 
ruminant and wild animal emissions. 56 
 57 

Text 4. ML algorithms comparison 58 

 59 
Many studies have endorsed random forest as outperforming other machine learning algorithms 60 
in gap-filling and upscaling CH4 fluxes (Irvin et al., 2021; Kim et al., 2020; C. Zhang et al., 2020). 61 
We tested ANN and SVM with the same dataset we used to build the ensemble random forest 62 
models. Results indicate that random forest models outperformed ANN and SVM in these 63 
wetlands with higher R2 and lower MAE and RMSE (Fig. S8). The ability of random forest to 64 
handle highly nonlinear problems supports upscaling the temporally highly varied and spatially 65 
heterogeneous CH4 fluxes. Random forest can incorporate continuous, discontinuous, and 66 
categorical variables. Properly tuned random forest models can avoid overfitting and may 67 
capture nonlinear and discontinuous signals in environmental variables (Kim et al., 2020), such 68 
as soil moisture, to better model daily variability in CH4 fluxes. 69 
 70 

Text 5. Model predictive performance at sites 71 

We examined 9 EC sites where model predictive performance was below median performance 72 
metrics (1 bog, 2 fen, and 6 wet tundra sites). The R2 between the upscaled fluxes and 73 
observations at a fen site (US-BZF) and 3 wet tundra sites (RU-CHE, US-ATQ, US-BEO) were 74 
significantly improved compared to the predictive performance at these sites when they were 75 
taken out of training, indicating the unique patterns in these sites. Drainage is observed in US-76 
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BZF and RU-CHE (Kwon et al., 2022). JJA and SON season fluxes at CA-PB1, US-ATQ, US-77 
NGC sites were overestimated, where US-ATQ contains sandy soils (Wang et al., 2022) and 78 
CA-PB1 is drier compared to a sedge-dominated peatland site CA-PB2 (Humphreys et al., 79 
2021). 80 
 81 
RU-CHE and RU-CH2 are two Chersky sites in East Siberian Russia about 600m apart from 82 
each other to form a paired disturbance experiment. RU-CH2 is a control tower over an 83 
undisturbed wetland, whereas RU-CHE is a tower affected by artificial drainage. The above-84 
ground conditions of the two sites are virtually identical, but soil temperature and moisture are 85 
different. Drainage caused lower CH4 fluxes at RU-CHE compared to those at RU-CH2 (Fig. 86 
S7). However, the grid-level input could not discern the soil conditions at both sites due to 87 
coarser spatial resolution, resulting in low model predictive performance at the RU-CHE site. 88 
 89 
US-Los is a small wetland where previous work has shown that water-table depth and 90 
shortwave radiation covary and are good predictors of methane fluxes (Burdun et al., 2023). 91 
Half-hourly air temperature is also correlated with diurnal methane fluxes, with some component 92 
of methanogenesis likely transported via lateral aquatic fluxes (Reed et al., 2018). The wetland 93 
is associated with the presence of glacial till affecting its elevation, and thus elevation is found to 94 
be a good predictor of methane emissions at local scales. 95 
 96 
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 176 

 177 
Fig. S1 The difference in daily mean fluxes between gap-filled data and original observations 178 
converged with the number of half-hourly observations in a day: On y-axis are gap-filled daily 179 
mean fluxs minus original observation daily means, on x-axis are half-hourly data counts of 180 
original observation in a day. 181 
 182 

 183 
Fig. S2 Percentages of daily EC data in each season. 184 
 185 
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 186 
Fig. S3 Site level modeling for predictor variable selection: full predictor importance rank (left) 187 
and prediction-observation comparison (right). 188 
 189 

 190 
Fig. S4 Different distributions of daily mean CH4 fluxes measured at EC sites between wetlands 191 
(fen 56±88 nmol m-2 s-1, bog 22±26 nmol m-2 s-1, wet tundra 13±14 nmol m-2 s-1) and non-192 
wetland land cover classes. 193 
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 194 
Fig. S5 Density distributions of prediction residuals of a) daily and b) monthly CH4 fluxes by 195 
wetland types: fen (daily -17 ± 63 nmol m-2 s-1, monthly -16 ± 61 nmol m-2 s-1), bog (daily 8 ± 26 196 
nmol m-2 s-1, monthly 8 ± 24 nmol m-2 s-1), wet tundra (daily 3 ± 9 nmol m-2 s-1, monthly 3 ± 14 197 
nmol m-2 s-1). 198 
 199 



Manuscript to be submitted to Earth System Science Data 

10 

 200 
Fig. S6 Boxplots of R2, MAE, and RMSE across validation sites by wetland types with mean 201 
values denoted in green triangles showing model predictive performance evaluation at a) 202 
weekly and b) monthly time steps.  203 
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 204 
Fig. S7 Scatter plots of grid-level modeling by validation site 205 
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 206 
Fig. S8 Compare modeling predictive performance of ANN, RF, and SVM algorithms on 207 
evaluation metrics. 208 
 209 

 210 
 211 
Fig. S9 Mean CH4 fluxes of three ML-based upscaling products: (a) WetCH4 and (b) UpCH4 212 
using WAD2M wetland area; (c) WetCH4 and (d) CH4 fluxes from Peltola et al. (2019) using 213 
GLWDv1 wetland area. WetCH4 were averaged daily means 2016 - 2022, whereas UpCH4 214 
(2016-2018, McNicol et al., 2023) and Peltola et al. (2013-2014) were averaged monthly means. 215 
 216 
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 217 
Fig. S10 Example of MERRA2 soil temperature at two different depths and modeled CH4 fluxes 218 
at USUAF site. The discontinuity in soil temperature in late autumn (shaded) may hinder the 219 
model to capture the patterns of high emissions during zero curtain periods observed in Alaskan 220 
tundra. 221 
 222 
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 223 
Fig. S11 Representativeness of 33 wetland EC sites to 15 environmental clusters: the clusters 224 
(5, 7, 8, 9, 10) in grayscale are underrepresented; the colored clusters (1, 2, 3, 4, 6, 11, 12, 13, 225 
14, 15) are represented by wetland EC sites. 226 
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 227 
Fig. S12 Subregional extents in northern high latitudes. 228 
 229 
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 230 
Fig. S13 WetCH4 estimated mean annual wetland CH4 emissions weighted with wetland areas 231 
from GLWD version 2. 232 
 233 
Table S1. Comparison of ML-based wetland CH4 upscaling products 234 

Product Peltola et al., 2019 McNicol et al., 2023 This study 

Type Freshwater wetland Freshwater wetland Freshwater wetland 

Extent Northern latitudes 
(>45° N) 

Global Northern latitudes 
(>45° N) 

Period 2013-2014 2001-2018 2016-2022 

Temporal resolution Monthly Weekly (modeled) 
Monthly (product) 

Daily 

Spatial resolution 0.25° - 0.5° 0.25° 0.098° 

235 
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Table S2. Metadata of site identification, latitude, longitude, elevation from MERIT DEM (m), data start year, data end year, biome, 236 
land cover or wetland class, and data collection source. The metadata of the sites included in Fluxnet_CH4 was collected from 237 
Delwiche et al. (2021) and the site websites. 238 

Num
ber ID 

LA
T LON 

ELEVAT
ION 

Mean_Air_Te
mp_C 

Mean_Precipitati
on_mm 

YR_ST
ART 

YR_E
ND 

BIOME_B
AMS 

WETLAN
D_CL 

Daily 
coun

ts 
after 
filteri

ng 
DJF_daily_c

ounts 
MAM_daily_c

ounts 
JJA_daily_c

ounts 
SON_daily_c

ounts 
Referen

ce 

1 

CA
-

AR
B 

52.
70 

-
83.9

5 

94 

5.5 719 2011 2019 
Temperat

e 

Bog 

861 0 237 368 256 

Todd, A. 
and 

Humphr
eys, E., 

2022 

2 

CA
-

AR
F 

52.
70 

-
83.9

6 

92 

5.5 719 2012 2019 
Temperat

e 

Fen 

1083 0 295 460 328 

Todd, A. 
and 

Humphr
eys, E., 

2022 

3 

CA
-

PB
1 

54.
94 

-
83.4

7 

31 

2.3 686 2016 2017 
Temperat

e 

Fen 
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Todd, A. 
and 

Humphr
eys, E., 
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4 
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-
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2 
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6 
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e 
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Todd, A. 
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5 
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-
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30 
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-2.8 388 2014 2018 
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e et al., 
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6 
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-
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e et al., 
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7 
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Temperat

e 
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e et al., 

2021 

8 
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9 
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8.7 584 2013 2018 
Temperat

e 
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457 26 158 144 129 

Delwich
e et al., 

2021 
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FI-
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61.
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3.5 701 2012 2016 

Boreal 
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e et al., 
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BZ
F 

21 
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6 
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 239 
 240 
Table S3. Annual emission budgets of northern wetlands (>45° N). 241 
 242 
Tg CH4 yr-1 Annual mean DJF mean MAM mean JJA mean SON mean 

WetCH4_WAD2M 20.8 ± 2.1 1.4 ± 0.2 2.5 ± 0.3 12.4 ± 1.3 4.4 ± 0.4 

UpCH4_WAD2M 23.5 ± 5.8 1.4 ± 0.4 1.6 ± 0.5 10.8 ± 2.7 9.7 ± 2.2 

WetCH4_GIEMS2* 13.7 ± 1.5 0.2 ± 0.02 0.5 ± 0.1 9.2 ± 1.0 3.8 ± 0.4 

WetCH4_GLWDv1** 41.0 ± 4.5 4.0 ± 0.5 4.5 ± 0.5 23.2 ± 2.5 9.2 ± 0.9 

WetCH4_GLWDv2** 44.1 ± 1.7 4.4 ± 1.2 4.9 ± 0.2 24.3 ± 1.1 9.8 ± 0.3 
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Peltola et al._GLWDv1 37.6 ± 6.1 2.6 ± 0.4 5 ± 0.9 21.2 ± 3.5 9.2 ± 1.3 

GCP ensemble mean 28.6 ± 21.6 1.3 ± 1.9 3.7 ± 3.0 17.1 ± 8.1 6.4 ± 4.4 

WetCHARTs 29.5 ± 30 1.5 ± 2.2 3.8 ± 4.3 17.7 ± 12.7 6.4 ± 6.7 

CarbonTracker-CH4*** 40.9 -1 2.7 34.1 5.2 
*GIEMS2 represents the minimum extents of northern wetlands. 243 
**GLWD provides a representation of the maximum extent of northern wetlands. 244 
***These numbers are derived from CT natural microbial emissions, which include emissions from wetlands, river/lake/pond systems, 245 
and possibly wild animals (despite the small amount). 246 
 247 


