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Abstract 42 

Wetlands are the largest natural source of methane (CH4) emissions globally. Northern wetlands 43 
(>45° N), accounting for 42% of global wetland area, are increasingly vulnerable to carbon loss, 44 
especially as CH4 emissions may accelerate under intensified high-latitude warming. However, 45 
the magnitude and spatial patterns of high-latitude CH4 emissions remain relatively uncertain. 46 
Here we present estimates of daily CH4 fluxes obtained using a new machine learning-based 47 
wetland CH4 upscaling framework (WetCH4) that combines the most complete database of eddy 48 
covariance (EC) observations available to date with satellite remote sensing informed 49 
observations of environmental conditions at 10-km resolution. The most important predictor 50 
variables included near-surface soil temperatures (top 40 cm), vegetation spectral reflectance, 51 
and soil moisture. Our results, modeled from 138 site-years across 26 sites, had relatively 52 
strong predictive skill with a mean R2 of 0.51 and 0.70 and a mean absolute error (MAE) of 30 53 
nmol m-2 s-1 and 27 nmol m-2 s-1 for daily and monthly fluxes, respectively. Based on the model 54 
results, we estimated an annual average of 22.8 ±2.4 Tg CH4 yr-1 for the northern wetland 55 
region (2016-2022) and total budgets ranged from 15.7 - 51.6 Tg CH4 yr-1, depending on 56 
wetland map extents. Although 88% of the estimated CH4 budget occurred during the May-57 
October period, a considerable amount (2.6 ±0.3 Tg CH4) occurred during winter. Regionally, 58 
the West Siberian wetlands accounted for a majority (51%) of the interannual variation in 59 
domain CH4 emissions. Overall, our results provide valuable new high spatiotemporal 60 
information on the wetland emissions in the high-latitude carbon cycle. However, many key 61 
uncertainties remain, including those driven by wetland extent maps and soil moisture products, 62 
incomplete spatial and temporal representativeness in the existing CH4 flux database – e.g., 63 
only 23% of the sites operate outside of summer months and flux towers do not exist or are 64 
greatly limited in many wetland regions. These uncertainties will need to be addressed by the 65 
science community to remove bottlenecks currently limiting progress in CH4 detection and 66 
monitoring. The dataset can be found at https://doi.org/10.5281/zenodo.10802153 (Ying et al., 67 
2024). 68 
 69 
Keywords 70 
Northern high latitudes; wetland; methane (CH4) flux; eddy covariance; remote sensing; 71 
machine learning; data-driven upscaling 72 

1. Introduction 73 

Methane (CH4) is the second most important greenhouse gas after carbon dioxide (CO2) and 74 
has contributed to around 1/3 of anthropogenic warming (IPCC AR6, 2023). Wetlands are the 75 
largest natural source of CH4 emissions. Northern freshwater wetlands (>45° N) account for 76 
roughly 40% of global wetland area (ranging 1.3 - 8.7 million km2; Z. Zhang et al., 2021), yet the 77 
amount of CH4 emissions from this region is highly uncertain – currently estimated to be 22 – 78 
49.5 Tg CH4 yr-1 (Aydin et al., 2011; Baray et al., 2021; Heimann, 2011; Kirschke et al., 2013; 79 

mailto:qying@umd.edu
https://doi.org/10.5281/zenodo.10802153


 3 

Peltola et al., 2019; Saunois et al., 2020; Treat et al., 2018; Watts et al., 2023). The 80 
uncertainties in the estimates of wetland CH4 emissions are primarily attributed to challenges in 81 
mapping vegetated wetlands versus open water leading to double counting (Thornton et al., 82 
2016), seasonal wetland dynamics and uncertainties in estimates on flux rates. 83 
 84 
Characterized by nutrient, moisture and hydrodynamic conditions, northern freshwater wetlands 85 
are classified as wet tundra in treeless permafrost areas, peat-forming bogs and fens in boreal 86 
and temperate biomes, and permafrost bogs (Olefeldt et al., 2021; Kuhn et al., 2021). Bogs 87 
were estimated to cover the largest area (1.38-2.41 million km2) in the northern high latitudes, 88 
followed by fens (0.76-1.14 million km2) and wet tundra (0.31-0.53 million km2) (Olefeldt et al. 89 
2021). Climate change poses significant threats to these wetlands, affecting their extent and the 90 
duration of conditions suitable for wetland formation in permafrost zones (Avis et al., 2011). The 91 
rates of CH4 emissions may increase quickly because of intensified warming at the northern 92 
high latitudes (Masson-Delmotte et al., 2021; Rawlins et al., 2010; Rößger et al., 2022; Walsh, 93 
2014; Z. Zhang, Poulter, et al., 2023). 94 
 95 
Reflecting CH4 response to warming, northern wetlands may account for a high portion 96 
(~78.5%) of the global surface emissions anomaly of CH4 in 2020 relative to 2019 (6.0 ± 2.3 Tg 97 
CH4 yr-1) (S. Peng et al., 2022; Z. Zhang, Poulter, et al., 2023). This is concerning as the 98 
responses of high latitude CH4 emissions to a warming and possibly wetting climate could 99 
produce  a positive carbon-climate feedback (McGuire et al., 2009; Natali et al., 2019). 100 
However, the ability of models to account for and predict the spatio-temporal variability of high 101 
latitude wetland CH4 emission rates remain very limited (Treat et al., 2024). 102 
 103 
Field observations of gas fluxes typically measure CH4 exchange between the land and 104 
atmosphere at sub-meter to ecosystem (100s of m to km) scales (Bansal et al., 2023; Chu et al., 105 
2021). Tower eddy covariance (EC) methods provide near-continuous measurements over 106 
ecosystem-scale footprints (5 – 100 x 103 m2), the size of which matches fine to medium 107 
resolution satellite remote sensing. Typical EC measurement system records include carbon, 108 
water and energy fluxes along with environmental conditions at half-hourly intervals. Long-term 109 
EC datasets can support the analysis of daily, monthly, seasonal, or interannual patterns and 110 
drivers of carbon fluxes (Baldocchi, 2003). Chambers can also measure CH4 fluxes, though at 111 
sub-meter resolution and small spatial coverage area (Kuhn et al., 2021; Bansal et al., 2023). 112 
Most chamber studies have a limited temporal sampling period. To avoid footprint disagreement 113 
between EC and chamber measurement techniques, we focused on EC-based CH4 upscaling in 114 
this study.  115 
  116 
Data-driven upscaling uses empirical models (Bodesheim et al., 2018; Jung et al., 2011), 117 
including machine learning (ML) approaches, to compute CH4 fluxes. It provides independent 118 
estimates to those from process-based models and atmospheric inversions (Bergamaschi et al., 119 
2013; Spahni et al., 2011). These approaches have been used to estimate CH4 fluxes from 120 
various ecosystems such as northern wetlands (Peltola et al., 2019; Virkkala et al., 2023; Yuan 121 
et al., 2024), global reservoirs (Johnson et al., 2021), and global aquatic ecosystems 122 
(Rosentreter et al., 2021). 123 
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  124 
Two types of methods are generally used for data-driven upscaling. The first uses a look-up 125 
table approach and applies emission rates or emission factors via data synthesis to the 126 
corresponding land surface areas, or activity data, over the study region. Emission rates from 127 
field observations are associated with environmental drivers that have been spatially 128 
characterized and are then applied to the land covers with the same environmental drivers. For 129 
example, Rosentreter et al. (2021) collected 2,601 CH4 flux records measured using various 130 
methods through a literature review and characterized emission rates over 15 aquatic 131 
ecosystem types to upscale global aquatic CH4 emissions. The study provided estimates of total 132 
and per ecosystem emissions but did not produce spatial distributions and was unable to 133 
estimate temporal changes. A similar method was applied for the northern permafrost region, 134 
where statistical CH4 flux rates from the Boreal-Arctic Wetland and Lake CH4 Dataset (BAWLD-135 
CH4) were analyzed for emission estimation by wetland type (Kuhn et al., 2021; Ramage et al., 136 
2024). This method favors homogeneous ecosystems and static environments, and the results 137 
may be biased for large-scale studies where spatial heterogeneity is prevalent. 138 
 139 
Another approach uses ML methods to upscale fluxes (Bodesheim et al., 2018; Tramontana et 140 
al., 2016; Yuan et al., 2024). ML models are developed with large training datasets. Generally, 141 
ML models can learn from high-dimensional data by optimizing many statistical parameters and 142 
identifying variables that are closely associated with spatio-temporally varied CH4 emissions. 143 
The efficient computation cost makes it easier to apply the models over large regions at higher 144 
spatial resolutions. Among ML methods, decision-tree-based algorithms have been widely used 145 
in upscaling for computation efficiency and prediction performance (Beaulieu et al., 2020; Jung 146 
et al., 2020; Virkkala et al., 2021; C. Zhang et al., 2020). Specifically, Random Forests (RF) 147 
were utilized in regional to global wetland CH4 upscaling (Davidson et al., 2017; Feron et al., 148 
2024; McNicol et al., 2023; Peltola et al., 2019) for the robustness and prevention of overfitting 149 
to noise in the input data. For example, Peltola et al. (2019) used RF and EC measurements to 150 
upscale monthly CH4 fluxes from the northern wetlands at 0.25°- 0.5° spatial resolution over the 151 
2013-2014 period. 152 
 153 
ML-based upscaling studies usually incorporate information from remote sensing to inform 154 
wetland extent, changes in vegetation and other surface biophysical properties (Davidson et al., 155 
2017; Virkkala et al., 2023; Watts et al., 2014, 2023). For example, recent ML-based large-scale 156 
upscaling approaches used MODIS land surface temperature at night (LST), enhanced 157 
vegetation index (EVI), vegetation canopy height, and ancillary environmental variables from 158 
remote sensing products (McNicol et al., 2023; Ouyang et al., 2023; Peltola et al., 2019) (See 159 
Supporting Materials Text 1 and Table S1 for detailed predicting variables used in existing ML-160 
based wetland CH4 upscaling products). However, soil moisture and soil temperature, two 161 
controlling factors of wetland CH4 fluxes (Knox et al., 2021; Yuan et al., 2022), were missing in 162 
previous ML-based regional to global upscaling studies. Soil moisture has been identified as 163 
one of the important controlling factors for freshwater wetland CH4 fluxes (Euskirchen et al., 164 
2024; Voigt et al., 2023). This is the first ML-based study that incorporates remote sensing 165 
constraints from Soil Moisture Active Passive (SMAP) microwave-sensed soil moisture and 166 
Moderate Resolution Imaging Spectroradiometer Nadir Bidirectional Reflectance Distribution 167 
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Function (BRDF) – Adjusted Reflectance (MODIS NBAR) data. Surface reflectance provides 168 
information of vegetation properties that affect the production and transport of CH4 to the 169 
atmosphere, and ecosystem wetness (Alonso et al., 2020; Chen et al., 2013; Houborg et al., 170 
2007; Murray-Hudson et al., 2015; Z. Wang et al., 2018; Entekhabi et al., 2010).  171 
 172 
The goal of this study is to develop a scalable framework to upscale daily CH4 fluxes from EC 173 
observations to northern latitude wetlands (>45° N) using the ensemble RF ML approach with a 174 
suite of reanalysis and remote sensing products representing spatiotemporal environmental 175 
conditions. Our specific objectives are to: 176 

1. compile an updated EC-based CH4 flux dataset that extends the temporal and spatial 177 
coverage of the Fluxnet-CH4 database (Delwiche et al., 2021) for the northern high 178 
latitudes.  179 

2. build ensemble RF models of CH4 fluxes at site-level based on in-situ measured 180 
variables and then at grid-level using gridded reanalysis inputs and constraints from 181 
satellite remote sensing. 182 

3. apply grid-level models to produce a 10-km gridded daily distribution of CH4 flux product 183 
for the northern high latitudes’ wetlands using bootstrapped models and their derived 184 
uncertainties (Table S1).  185 

2. Materials and methods 186 

2.1 Overview 187 

The scalable framework of upscaling CH4 fluxes from EC observations for wetlands (referred to 188 
as WetCH4 hereafter), which selects predictors at the site level and constructs upscaling models 189 
at a grid level, is illustrated in Fig. 1. In situ, reanalysis, and remote-sensing products were 190 
compiled as candidate predictors for modeling (Fig. 1, purple boxes; see section 2.2 for details). 191 
We first ran a feature selection, which uses ensemble RF models to choose important predictors 192 
from an extensive list of in situ variables available from the flux tower sites. Gridded versions of 193 
selected site variables were taken from Modern-Era Retrospective analysis for Research and 194 
Applications (MERRA2) reanalysis (Gelaro et al., 2017) to model with RF at grid level. We then 195 
added remote sensing-based products from MODIS NBAR and SMAP soil wetness, as well as 196 
topographic data, to strengthen the model and provide finer delineation of environment 197 
gradients based on literature and expert knowledge. The predictive performance of grid-level 198 
models with input variables at their native spatial resolution (except for MERRA2 that were 199 
interpolated to 10-km resolution) was then evaluated. We also compared model performance 200 
with those from two additional ML algorithms: support vector machines (SVM) and artificial 201 
neural network (ANN) (Fig. 1 pink boxes). The ML algorithm with the highest mean R2 and 202 
lowest daily mean errors in model predictive performance was selected for bootstrap modeling 203 
and upscaling the 0.098° (~10km along latitudinal length) gridded time series of daily CH4 fluxes 204 
and ensemble uncertainty estimation (Fig. 1 grey boxes). 205 
 206 
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 207 
Fig. 1 Workflow and experimental design: abstract methodological steps are integrated in the 208 
dashed box on the left, while a detailed experimental design is described on the right. Colors on 209 
the right match the associated step on the left. 210 
 211 
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 212 
Fig. 2 Eddy covariance tower sites: distribution (>45° N), class, and data size (site-years) used 213 
in WetCH4. Colored circles represent EC tower locations and land cover classes, with wetland 214 
sites in cyan (wet tundra), yellow (bog) and orange (fen). The circle sizes represent observation 215 
years(n) of available CH4 fluxes at the site (e.g. 1-3 stands for 1<=n<3). The background image 216 
shows the estimated maximum annual fractions of wetland cover in 2011-2020 from WAD2M (Z. 217 
Zhang et al., 2021). 218 
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2.2 Data 219 

2.2.1 Eddy covariance measurements 220 

The base of our EC data collection stems from a publicly available global synthesis coordination 221 
of FLUXNET-CH4 (Delwiche et al., 2021; Knox et al., 2019), which includes 79 EC tower sites 222 
(42 are freshwater wetland sites) and 293 site-years of data. Fluxnet-CH4 represents a first 223 
compilation of global CH4 fluxes measured by EC towers (Delwiche et al., 2021; Knox et al., 224 
2019), yet more EC data exists outside of the network. We collected both daily and half-hourly 225 
data from 44 sites in the northern high latitudes (>45° N), accounting for 167 site years as our 226 
base dataset, to which we added data from 6 new sites (31 site-years) and added additional 227 
data to 9 existing sites (21 site-years) contributed by principal investigators (Table S2). In total, 228 
we assembled data from 50 EC tower sites in northern latitudes (219 site-years), of which 33 229 
are from wetlands (155 site-years), with 13 wet tundra sites, 11 fens, and 9 bogs. Data entries 230 
with missing data in gridded predictors were excluded, including 5 wetland sites (FI-LOM, DE-231 
SFN, RU-SAM, RU-VRK, SE-ST1) where data was collected before SMAP data was available. 232 
Another 2 sites (CA-BOU, RU-COK) were excluded after quality control as described further 233 
down. As a result, daily and half-hourly EC data from the 26 wetland sites were compiled for 234 
analysis from 22 sites in FLUXNET-CH4 (among which 8 sites with updated data to recent years 235 
including US-ATQ, US-BEO, US-BES, US-BRW, US-IVO, US-NGB, US-NGC, US-UAF) and 4 236 
additional sites using information provided directly by principal investigators (including CA-ARB, 237 
CA-ARF, CA-PB1, CA-PB2), consisting of 138 site-years data in total and representing the 238 
largest high latitude EC-data compilation for CH4 to date (Table S2, see Supporting Materials 239 
Text 2). The sites were distributed among wetland types, including 9 fens, 7 bogs, and 10 wet 240 
tundra sites (Fig. 2). RU-CHE and RU-CH2 were two Chersky sites in East Siberian Russia 241 
about 600m apart from each other to form a paired disturbance experiment. RU-CH2 was a 242 
control tower over an undisturbed wetland, whereas RU-CHE was a tower affected by artificial 243 
drainage. The above-ground conditions of the two sites were virtually identical, but soil 244 
temperature and moisture were different. Drainage caused lower CH4 fluxes at RU-CHE 245 
compared to those at RU-CH2. However, the SMAP data could not discern the drainage impact 246 
on soil moisture at the RU-CHE site due to a coarser spatial resolution, thus it was excluded 247 
from grid-level modeling. 248 
 249 
Half-hourly fluxes acquired from FLUXNET-CH4 were already gap-filled (see Supporting 250 
Materials Text 2; Irvin et al., 2021). Additional half-hourly fluxes acquired from site PIs were not 251 
gap-filled, and as such we performed per site gap filling following the FLUXNET-CH4 approach 252 
(Irvin et al., 2021; Knox et al., 2019). Gap-filled fluxes were temporally consistent and agreed 253 
with validation data (mean R2 = 0.68 and mean RMSE = 6 nmol m-2 s-1, see Supporting 254 
Materials Text 2).  255 

 256 
The mean difference in daily mean fluxes between the gap-filled data and the original data 257 
converged to -0.2 nmol m-2 s-1 when there were more than 11 half-hourly EC tower observations 258 
in a day but showed substantial bias and larger differences when including days with less than 259 
11 half-hourly observations (Fig. S1). Therefore, daily data entries were only kept when the 260 
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number of half-hourly EC tower observations per day was greater than 11. All data were 261 
retained on four sites where only daily, quality-filtered, data were provided by site PIs (Table 262 
S2). As a result, we identified 12,784 daily data entries for upscaling models (Table S2), 263 
spanning 2015-2021 with seasonal observation distributions of 44.0% in June-July-August 264 
(JJA), 29.0% in March-April-May (MAM), 24.5% in September-October-November (SON), and 265 
2.5% in December-January-February (DJF) (Fig. S2). 266 
 267 
Site-level candidate predictors were identified by their known influences on CH4 fluxes at multi-268 
day to seasonal scales from field control experiments, in situ flux synthesis, and process-based 269 
modeling (Bloom et al., 2010, 2017; Knox et al., 2021; Olefeldt et al., 2013, 2017). In situ 270 
candidate predictors that were gap-filled and available in FLUXNET-CH4 included daily 271 
averages of air temperature, soil temperature, air pressure, vapor pressure deficit, relative 272 
humidity, latent heat flux, sensible heat flux, longwave incoming radiation, shortwave incoming 273 
radiation, net radiation, wind speed, and daily total precipitation (Fig. 1 site-level model solid 274 
blue box). We were unable to include water-table depth (WTD) or soil water content (SWC) in 275 
our site-level model as they were not available at many sites. However, we explored ML results 276 
that included WTD or SWC for a subset of individual sites (36% of total) where these variables 277 
were available (see Supporting Materials Text 2 for more details).  278 
 279 

2.2.2 Reanalysis data and satellite data products 280 

Reanalysis data were used as the gridded input to replace selected predictors at the site level 281 
for training the grid-level models and upscaling. These data provided long-term continuous 282 
estimates of nearly all the candidate predictors of the in situ measured variables (Fig. 1). 283 
MERRA2 is an atmospheric reanalysis of the modern satellite era produced by NASA’s Global 284 
Modeling and Assimilation Office (Gelaro et al., 2017). We calculated daily means for air 285 
pressure, surface air temperature, latent heat flux, sensible heat flux, downward-incoming 286 
shortwave radiation, downward-incoming longwave radiation, and soil temperature at three 287 
depths (9.88 cm, 19.52 cm, 38.59 cm) (Jiao et al., 2023), and relative humidity using the hourly 288 
average of surface flux diagnostics, land surface diagnostics, and land surface forcings. The 289 
original 0.5° x 0.625° resolution data were resampled to 0.5° grids using a bilinear interpolation 290 
method in the NASA MERRA2 web service tool available on GES DISC. The MERRA2 data 291 
were further bilinearly interpolated from 0.5° to 0.098° grids weighted by the multiple-error-292 
removed improved-terrain digital elevation model (MERIT-DEM) at 90-m resolution that 293 
significantly improves elevation estimates in flat terrain over previous DEM products (Yamazaki 294 
et al., 2017). Daily time series of the nearest 0.098° grid to each EC location were extracted for 295 
grid-level modeling, whereas daily grids were input for the 10-km upscaling products. 296 
  297 
To improve the predictive performance of grid-level models, we added remotely sensed 298 
biophysical variables, including SMAP soil wetness, MODIS NBAR bands, and topographic data 299 
(Fig. 1, Table 1). All remote-sensing products were extracted in daily time steps and their native 300 
spatial resolutions at EC tower sites for modeling and aggregated to 0.098° grids over the study 301 
domain for upscaling using Google Earth Engine. We filtered out data gaps in SMAP and 302 
MODIS NBAR time series extracted at the native spatial resolution during model training and 303 
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validation. Gaps in MODIS NBAR were negligible when aggregated from 500-m to 0.098° grids. 304 
Gaps in winter SMAP data were filled with zero values to represent frozen soils for upscaling. 305 
 306 
The SMAP soil moisture product is generated using passive microwave radiometer-measured 307 
brightness temperature merged with estimates from the GEOS Catchment Land Surface and 308 
Microwave Radiative Transfer Model in a soil moisture data assimilation system, providing 309 
global products of surface and rootzone soil moisture (Reichle et al., 2017). For soil moisture, 310 
we employed Level 4 daily soil wetness products (SPL4SMGP.007) from the SMAP mission as 311 
proxies for water-table depth in the grid-level model (Reichle et al., 2017). Surface, rootzone, 312 
and soil profile wetness are dimensionless variables that indicate relative saturation for top layer 313 
soil (0-5 cm), root zone soil (0-100 cm), and total profile soil (0 cm to model bedrock depth), 314 
respectively. These three variables are originally 3-hourly data at 9-km resolution and were 315 
converted to daily means. 316 
 317 
Static topographic variables were added as additional attributes in the grid-level model. We 318 
used topographical slope and indices that represent the water flow from MERIT-DEM based on 319 
Geomorpho90m (Amatulli et al., 2020). Two topographic indices were applied: the compound 320 
topographic index (cti) is considered a proxy of the long-term soil moisture availability, and the 321 
stream power index (spi, https://gee-community-catalog.org/projects/geomorpho90/) reflects the 322 
erosive power of the flow and the tendency of gravitational forces to move water downstream. 323 
We tested the impact of elevation on model performance in explaining inter-site variability of 324 
CH4 upon the current locations of wetland EC sites (see Supporting Materials Text 6). 325 
Nevertheless, elevation was not considered an ecologically controlling factor for wetland CH4 326 
fluxes, and hence was excluded from the input variable importance analysis that ranked the 327 
importance of predictors to the prediction accuracy in RF models. 328 
 329 
We included MODIS NBAR (MCD43A4v061) products as predictor variables to represent the 330 
vegetation layer in the grid-level model in order to enhance our model predictive performance in 331 
vegetated wetlands. The 7 NBAR bands (including red/green/blue, 2 near infrared, and 2 332 
shortwave infrared) are developed daily at 500-m spatial resolution, using 16 days of Terra and 333 
Aqua data to remove view angle effects, and it is temporally weighted to the ninth day as the 334 
best local solar noon reflectance (Schaaf et al., 2002; Z. Wang et al., 2018). We did not 335 
explicitly include a vegetation productivity variable, because such information is retained in 336 
MODIS NBAR that is used to produce vegetation indices. Emergent aerenchymous vegetation 337 
is another important component in the plant-mediated pathway of CH4 transport yet was less 338 
represented in existing upscaling models (Table S1).  339 
 340 
 341 
Table 1. Description of input variables for grid-level upscaling model 342 
 343 

Variable type Name Description Unit Data source 
Native/Model Spatial 
resolution 

Native 
Temporal 
resolution 

Reanalysis tas 
surface air 
temperature °C MERRA2 0.625°×0.5°/10km 1 hourly 

about:blank
about:blank
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Reanalysis pa surface air pressure Kpa MERRA2 0.625°×0.5°/10km 1 hourly 

Reanalysis le latent heat W m-2 MERRA2 0.625°×0.5°/10km 1 hourly 

Reanalysis h sensible heat W m-2 MERRA2 0.625°×0.5°/10km 1 hourly 

Reanalysis rsdl 
downward-incoming 
longwave radiation W m-2 MERRA2 0.625°×0.5°/10km 1 hourly 

Reanalysis rsds 
downward-incoming 
shortwave radiation W m-2 MERRA2 0.625°×0.5°/10km 1 hourly 

Reanalysis spfh 
surface specific 
humidity unitless MERRA2 0.625°×0.5°/10km 1 hourly 

Reanalysis ts1 soil temperature ° C MERRA2 0.625°×0.5°/10km 1 hourly 

Reanalysis ts2 soil temperature ° C MERRA2 0.625°×0.5°/10km 1 hourly 

Reanalysis ts3 soil temperature ° C MERRA2 0.625°×0.5°/10km 1 hourly 

Remote Sensing sm_s_wetness surface soil wetness unitless SPL4SMGP.007 9 km 3 hourly 

Remote Sensing sm_r_wetness 
rootzone soil 
wetness unitless SPL4SMGP.007 9 km 3 hourly 

Remote Sensing sm_p_wetness profile soil wetness unitless SPL4SMGP.007 9 km 3 hourly 

Remote Sensing nbar1 red band unitless MCD43A4v061 500 m daily 

Remote Sensing nbar2 near infrared 1 band unitless MCD43A4v061 500 m daily 

Remote Sensing nbar3 blue unitless MCD43A4v061 500 m daily 

Remote Sensing nbar4 green unitless MCD43A4v061 500 m daily 

Remote Sensing nbar5 near infrared 2 band unitless MCD43A4v061 500 m daily 

Remote Sensing nbar6 
shortwave infrared 1 
band unitless MCD43A4v061 500m daily 

Remote Sensing nbar7 
shortwave infrared 2 
band unitless MCD43A4v061 500 m daily 

Remote Sensing slope terrain slope radian Geomorpho90m 90 m static 

Remote Sensing spi stream power index unitless Geomorpho90m 90 m static 

Remote Sensing cti 
compound 
topographic index unitless Geomorpho90m 90 m static 

 344 

2.3 Machine learning model 345 

2.3.1 General model design 346 

We used an RF regression algorithm to train site-level and grid-level ML models (Kim et al., 347 
2020). RF regression builds an assembly of independent trees, each of which is trained from a 348 
random subset of input data and tested against the rest of the data (Breiman, 2001). A tree 349 
grows two leaves when a random selection of subset features reduces the mean squared error 350 
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(MSE) of predictions after splitting at a leaf node. Each tree is trained on a bootstrap sample of 351 
input data. Trees constructed in this way are less correlated in the ensemble. The generalization 352 
error converges as the forest grows to a limit to avoid overfitting. Compared to other ML 353 
algorithms, RF has shown to have better accuracy and lower uncertainty (Irvin et al., 2021; Kim 354 
et al., 2020). This approach has been previously applied to upscaling CH4 fluxes in wetlands 355 
and rice paddies across multiple ecosystems (Davidson et al., 2017; Feron et al., 2024; McNicol 356 
et al., 2023; Ouyang et al., 2023; Peltola et al., 2019). 357 
 358 
A grid-search hyperparameter tuning for daily models was performed before predictor selection. 359 
We carried out analyses in Python version 3.6 with the ensemble RF regressor in package 360 
‘scikit-learn’ (Pedregosa et al., 2011). With all the predictors and data, hyper-parameters were 361 
set after tuning for optimized model performance, including the number of trees 362 
(n_estimators=100), number of variables to consider when looking for the best split 363 
(max_features=”sqrt”, meaning the square root of the total number of feature variables), the 364 
maximum depth of the tree (max_depth=10), the minimum number of samples required to split a 365 
node (min_sample_split=10), and the minimum number of samples at a leaf node 366 
(min_samples_leaf=4). 367 
 368 
For predictor selection and comparisons between the site-level model using in-situ variables 369 
and the grid-level model using gridded versions of in-situ variables, we built the model across all 370 
sites and adopted 5-fold cross-validation and ‘out-of-bag’ scores from ensemble trees to 371 
evaluate model performance, because, at this stage, we aimed to find physically reasonable 372 
variables from in-situ measurements and to compare how the differences in scales and 373 
measuring methods between in-situ predictors and gridded proxies affect model learned 374 
temporal variability in CH4 fluxes. A subset of data was bagged to train each tree in the RF 375 
model, with the rest out-of-bag data used as independent validation data to evaluate the 376 
prediction accuracy of each tree, resulting in the average out-of-bag scores of all the trees in the 377 
model. Cross-validation was applied to daily predictions to select variables that can best predict 378 
the daily variability of CH4 fluxes within sites. The changes in model performance after predictor 379 
selection and after switching from site-level variables (in-situ measurements) to grid-level 380 
proxies (reanalysis data) were assessed, which helped quantify differences in model 381 
performance when modeling on in-situ measured predictor variables versus modeling on 382 
substitute variables at grid level.  383 
 384 
A summary of input variables for grid-level modeling is provided in Table 1. Although RF can 385 
enhance model robustness when collinearity presents in input variables, the collinearity could 386 
affect the interpretation of feature importance measured by impurity decrease in RF models. 387 
Therefore, we first built a baseline grid-level model with independent variables after a pairwise 388 
Pearson correlation test (Fig. S14) to exclude covariates. The resulting baseline features 389 
included air pressure (pa), latent heat flux (le), sensible heat flux (h), soil temperature (ts2), 390 
rootzone soil wetness (sm_r_wetness), slope, spi, and cti. Then we designed four additional 391 
different model settings by changing predictor variables, including (1) baseline variables plus 392 
covariates, (2) only variables from MODIS NBAR, (3) baseline variables plus NBAR bands, and 393 
(4) all predictor variables. In this forward feature selection process, we evaluated the impacts of 394 
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adding constraint variables from remote sensing products on model performance. Model 395 
predictive performance evaluates the accuracy of a model to predict at a new site without any 396 
prior knowledge. For the spatial predictive performance evaluation of grid-level ML models, we 397 
used a nested leave-one-site-out cross-validation scheme (LOOCV, hereafter). Such a scheme 398 
selects one site to use as independent validation data to evaluate models trained and tested 399 
with data from the remaining sites, repeating the process for all sites. Without any prior 400 
knowledge of the validation site added to a model, the LOOCV scheme can assess the 401 
predictive ability of the model in a new place as well as evaluate the uniqueness of a site in the 402 
dataset. Similar forms of spatial LOOCV have been used to evaluate upscaling models for 403 
global or regional CO2 and CH4 (McNicol et al., 2023; Peltola et al., 2019; Virkkala et al., 2021). 404 
The validation of the upscaling model was not only performed with respect to daily predictions, 405 
but also on monthly means. The predictive performance of the upscaling model on monthly 406 
variability of CH4 fluxes and spatial variability across sites is important for studies that vary in 407 
temporal and spatial scales. 408 
 409 
Model predictive performance was assessed using three evaluation metrics: mean absolute 410 
error (MAE), root mean squared error (RMSE), and R2 score. Daily modeled CH4 fluxes were 411 
compared to EC observations at each validation site. The evaluation metrics were calculated at 412 
daily and monthly scales for each site separately to examine the model performance by general 413 
wetland types and for all sites pooled together to evaluate the overall performance and compare 414 
with existing studies. Squared error metrics are more sensitive to outliers and highly skewed 415 
data, which is often the case with CH4 fluxes. Therefore, we selected both MAE and RMSE to 416 
quantify the errors. The mean error (ME) between model predictions and validation data was 417 
calculated, representing systematic bias in predicted fluxes. The standard deviation of model 418 
residuals was also included to measure the spread of the residuals. This matches RMSE when 419 
ME equals zero. 420 
 421 
Two additional ML algorithms were compared with RF: SVM and ANN. SVM is efficient with 422 
sparse data where the dimension of the input space is greater than the number of training 423 
samples (Kuter, 2021). While the training process of ANN is expensive and time-consuming, it 424 
can develop deep networks with growing training data which may increase predictive 425 
performance (Saikia et al., 2020). We used support vector regression to model CH4 fluxes with 426 
the same predictor variables and dataset as used in ensemble RF regressions. Multilayer 427 
perceptron regressor is an implementation of an ANN model that adjusts the weights of neurons 428 
using backpropagation to improve prediction accuracy. It uses the square error as the loss 429 
function and a stochastic gradient-based optimizer ‘adam’ for weight optimization. We used two 430 
hidden layers in the ANN model, each with 50 neurons. Data from all variables were normalized 431 
to achieve the best model performance of SVM and ANN. 432 

2.3.2 CH4 flux upscaling 433 

We trained 500 ensemble RF models with predictors of grid-level models from the general 434 
model design and with data from all sites for upscaling daily CH4 fluxes. Each RF model was 435 
trained with the same optimized hyper-parameters and different bootstrap samples. Ensemble 436 
models were then applied to 0.098° gridded predictors to produce the upscaling CH4 flux 437 
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intensities from the means of the 500 predictions and the prediction uncertainty from the 438 
standard deviations. Given that the CH4 fluxes were modeled with data from the wetland EC 439 
sites, a wetland extent map was also needed to constrain the areas when scaling grid emissions 440 
(see section 2.4). Final CH4 emission and uncertainty maps associated with wetland extents 441 
were the results of multiplying the predicted means and standard deviations of flux intensities 442 
with wetland areas. All wetland maps were resampled to 0.098° x 0.098° resolution with a 443 
conservative remapping method for producing the emission products. 444 

2.4 Wetland extent maps and benchmark estimates of wetland 445 

CH4 emissions 446 

Wetland extent maps were applied to scale the modeled CH4 flux intensities to the region. The 447 
Wetland Area and Dynamics for CH4 Modeling (WAD2Mv2), representing spatiotemporal 448 
patterns of inundated vegetated wetlands at 0.25° resolution, was selected as the reference for 449 
dynamic wetland areas in this study (Z. Zhang et al., 2021). Active and passive microwave 450 
detected inundation combined with static wetlands were used to delineate the monthly dynamics 451 
of wetland inundation between 2000 and 2020. Open water bodies such as lakes, rivers, 452 
reservoirs, coastal wetlands, and rice paddies were excluded. We used monthly mean WAD2M 453 
fractions between 2010 and 2020 to represent seasonal wetland dynamics. Emission 454 
estimations are subject to differences in the wetland extent between maps (Saunois et al., 455 
2020). We used monthly means of the Global Inundation Extent from Multi-Satellites (GIEMS2) 456 
product (Prigent et al., 2020) to represent temporal patterns of the restricted wetland extents at 457 
0.25° resolution. The coarse resolution maps were resampled to 0.098° x 0.098° grids using the 458 
nearest neighbor method. The static Global Lakes and Wetlands Database version 1 (GLWDv1) 459 
Level 3 1-km resolution map excluding classes of lakes, rivers, and reservoirs (Lehner & Döll, 460 
2004) was included to quantify the upper limit of wetland cover. For all explicit GLWDv1 wetland 461 
classes, we assumed a 100% wetland coverage in the original pixels, except for ‘intermittent 462 
wetland/lake’ for which we assumed a 50% coverage; for GLWDv1 classes represented as 463 
extent ranges, we used the average value of the range (i.e., 75% for 50-100% wetland, 37% for 464 
25-50% wetland, and 12% for 0-25% wetland). To support domain emission comparisons, 465 
wetland cover was also extracted from the updated GLWD version 2 dataset (GLWDv2, Lehner 466 
et al., 2024) which provides the spatial extent of 33 waterbody and wetland classes at 500-m 467 
spatial resolution. All freshwater wetland classes that occur in our study area (classes 8-25) 468 
from GLWDv2 were included (i.e., excluding rivers, lakes, reservoirs and other permanent open 469 
water bodies, as well as coastal saline/brackish wetlands). The original wetland areas per 470 
GLWDv2 pixel were summed across all included classes to derive a total wetland area per pixel. 471 
Furthermore, a regional freshwater wetland distribution dataset was calculated from a 472 
permafrost region specific land cover map (CALU - circum-Arctic landcover units) which 473 
classified 23 land covers including 3 wetland classes and 10 moist to wet tundra classes at 10-474 
m resolution and aggregated to 1km with the majority class (Bartsch et al., 2024). This regional 475 
wetland map was applied for CH4 emission estimation in the North Slope region in Alaska to 476 
assess the impacts of different wetland maps on emission estimates in this area when 477 
compared against airborne measurements. Wetland areas from the finer resolution maps were 478 
aggregated to 0.098° x 0.098° grids for emission calculations.  479 
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 480 
We compared WetCH4 emissions with benchmark domain or regional estimates from bottom-up 481 
process models, top-down atmospheric observation-based inversions, and existing upscaling 482 
studies. We acquired data for the study domain from the ensemble mean of bottom-up process-483 
based models from the Global Carbon Project (GCP) (Z. Zhang, Bansal, et al., 2023) and the 484 
extended ensemble of wetland CH4 estimates that were priors for the top-down GEOS-Chem 485 
atmospheric chemical and transport model (WetCHARTs) (Bloom et al., 2017; Friedlingstein et 486 
al., 2022). We also included the atmospheric inversions of northern high latitudes from an 487 
assimilation CarbonTracker-CH4 system (Bruhwiler et al., 2014; update at 488 
https://gml.noaa.gov/ccgg/carbontracker-ch4/carbontracker-ch4-2023/). We compared WetCH4 489 
with existing upscaled products of monthly CH4 wetland fluxes based on Peltola et al. (2019) for 490 
the study domain. For regional wetland hotspots, CH4 flux estimates were obtained from Carbon 491 
in Arctic Reservoirs Vulnerability Experiment (CARVE), which measured total atmospheric 492 
columns of CO2, CH4, and carbon monoxide over North Alaska in spring, summer, and early fall 493 
between 2012 and 2014 (R. Y.-W. Chang et al., 2014; Miller et al., 2016). These were used to 494 
verify our seasonal emission estimates over the North Slope region (Zona et al., 2016).  495 

3. Results 496 

3.1 Model validation 497 

3.1.1 Site-level modeling 498 

Site-level modeling used all wetland sites to build a RF model and identified the 10 most 499 
important variables measured in situ that, if left out, decreased the valuation score of the model 500 
by more than 90% based on the mean decrease in impurity (Fig. S3). With bootstrap sampling 501 
and using all candidate predictors (Fig. 1) in the model, the out-of-bag RMSE of the site-level 502 
model was 30.22 nmol m-2 s-1, and the out-of-bag R2 between observed daily means of CH4 503 
fluxes and prediction was 0.73. Modeling with the 10 most important variables at site level 504 
resulted in similar model performance, with an out-of-bag RMSE of 30.43 nmol m-2 s-1 and an 505 
out-of-bag R2 of 0.73. We then tested building separate models according to wetland types 506 
because distinct CH4 fluxes have been observed from wet tundra (Fig. S4, mean ± standard 507 
deviation: 13 ±14 nmol m-2 s-1), bogs (22 ±26 nmol m-2 s-1) and fens (56 ±88 nmol m-2 s-1). The 508 
out-of-bag R2 (RMSE) was 0.85 (7.2 nmol m-2 s-1) for bog, 0.84 (27.7 nmol m-2 s-1) for fen, and 509 
0.57 (34.3 nmol m-2 s-1) for wet tundra. Modeling with the selected 10 predictors resulted in an 510 
out-of-bag R2 (RMSE) of 0.84 (7.6 nmol m-2 s-1) for bog, 0.84 (27.9 nmol m-2 s-1) for fen, and for 511 
0.53 (36.3 nmol m-2 s-1) wet tundra. Next, we tested whether the inclusion of non-wetland sites 512 
(upland and rice sites) would affect model performance. This resulted in an out-of-bag R2 513 
decrease to 0.56 and RMSE increase to 38.86 nmol m-2 s-1, which suggests that a generalized 514 
ML model over all land cover classes is not practical to reliably predict CH4 fluxes with the 515 
current set of predictors and available data. This is most likely due to the distinctive features of 516 
CH4 emissions between wetlands and non-wetland classes (Fig. S4). 517 
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3.1.2 Grid-level modeling and remote sensing constraints 518 

 519 
Substituting in-situ measurements of selected predictor variables with gridded MERRA2 520 
variables slightly reduced model accuracy. The out-of-bag R2 decreased by 9.6% to 0.65 and 521 
RMSE increased by 15% to 34.9 nmol m-2 s-1 compared to the site-level model. The coarse 522 
resolution MERRA2 reanalysis data captures less spatial variability of the selected physical 523 
variables and is less accurate at the grid-level compared to in situ EC measurements.  524 
 525 
Adding remote sensing constraints to the gridded variables can improve model predictive 526 
performance and reduce errors. Modeling on baseline features explained on average 46% of 527 
daily CH4 fluxes’ variability in validation sites with the largest range of errors (Fig. 3a). The 528 
medians in the baseline model of R2, MAE, RMSE, ME under the LOOCV scheme were 0.5, 529 
16.4 nmol m-2 s-1, 21.0 nmol m-2 s-1 and 6.4 nmol m-2 s-1, respectively. Adding NBAR or 530 
covariates from MERRA2 and SMAP input variables returned a higher mean R2 or slightly lower 531 
mean errors than the baseline model, whereas modeling with all gridded input variables (the ‘all’ 532 
model setting) achieved the highest mean R2 of 0.51 with the comparable mean MAE (23.6 533 
nmol m-2 s-1), RMSE (32.1 nmol m-2 s-1) and ME (0.9 nmol m-2 s-1) (Table S4). Our results 534 
suggest that including remote sensing constraints or covariates improved models’ ability to 535 
predict spatial variability in wetland CH4 fluxes and reduced prediction errors. These results 536 
confirm our selection of predictor variables for the upscaling model (Table 1). 537 
 538 
The average importance of the baseline features shows their influence on the grid-level model 539 
predictive performance (Fig. 3b). Importance of independent predictors under LOOCV scheme, 540 
though slightly varied between models, agreed in selecting MERRA2 soil temperature (ts2) as 541 
the primary driver in predicting daily CH4 fluxes in northern wetlands, followed by SMAP 542 
rootzone wetness (sm_r_wetness). The eight baseline features accounted for a 99% reduction 543 
in the mean validation score of the baseline models. Nevertheless, all variables contributed to 544 
predicting variability in CH4 fluxes, showing the complexity of environmental factors that would 545 
affect the rates of CH4 production and the process of gas exchange. 546 
 547 
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 548 
Fig. 3 Grid-level modeling: a) Distribution of R2, MAE, RMSE, and ME for all sites (size = 25) in 549 
a LOOCV scheme based on gridded data using five model settings: RF modeled using only 550 
MODIS NBAR bands, baseline features (MERRA2 air pressure, latent heat flux, sensible heat 551 
flux, soil temperature, SMAP rootzone soil wetness, topographic slope, spi, and cit), baseline 552 
features plus MODIS NBAR bands, baseline features plus correlated variables within the 553 
MERRA2 and SMAP dataset, and all gridded input variables together. The model settings are 554 
ranked by mean R2, from lowest (left) to highest (right); b) Mean variable importance of baseline 555 
models (last column) in the LOOCV scheme and at each site (columns labeled with validation 556 
site ID). The values in each column are the means of accumulation of the impurity decrease 557 
when a variable was taken out in the trees of a RF model, representing the importance of such 558 
variable to the model. The variable names and descriptions refer to Table 1. 559 
 560 
Daily mean CH4 fluxes exhibited great variability in wetlands across space and time (mean = 35 561 
nmol m-2 s-1, σ = 65 nmol m-2 s-1, Fig. S3). The model predictive performance (Fig. 4) was 562 
calculated for each site and the average performance on the daily variability in CH4 fluxes was 563 
best at wet tundra sites with a mean R2 of 0.56, followed by bog sites (0.51) and fen sites (0.45). 564 
Due to the large variability in fen daily fluxes, errors of daily predictions were highest in fen sites 565 
(mean RMSE = 54.2 nmol m-2 s-1  and mean MAE = 37.8 nmol m-2 s-1), followed by bog sites 566 
(mean RMSE = 27.6 nmol m-2 s-1 and mean MAE =22.5 nmol m-2 s-1),  and were lowest in wet 567 
tundra sites (mean RMSE = 13.5 nmol m-2 s-1 and mean MAE =10.3 nmol m-2 s-1). Our model 568 
slightly overestimated daily fluxes (mean ME = 0.9 nmol m-2 s-1) was driven by underestimation 569 
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of fen sites (mean ME = -12 nmol m-2 s-1) versus overestimation of bog (mean ME = 14 nmol m-2 570 
s-1) and wet tundra (mean ME = 3 nmol m-2 s-1) sites.  571 
 572 
Model predictive performance on aggregated monthly means of CH4 fluxes increased by 37% 573 
as compared to daily means (mean R2 = 0.70, Fig.4, Table S4). This improvement may be 574 
attributed to a better representation of the environmental conditions’ average state over a month 575 
by the input variables compared to the daily variability. Performance was higher in wet tundra 576 
(mean R2 = 0.73) and bogs (mean R2 = 0.73) and lower in fen sites (mean R2 = 0.64, Fig. 4). 577 
Mean errors in monthly mean predictions were: RMSE = 28.1 nmol m-2 s-1, MAE = 21.4 nmol m-2 578 
s-1, and ME = 0.37 nmol m-2 s-1 (Table S4). Prediction residuals of daily and monthly CH4 fluxes 579 
(Fig. S6) showed normal distributions for wet tundra sites, indicating the spread of residuals 580 
were random errors that increased with the flux magnitude. The residuals had a skewed normal 581 
distribution for bog sites indicating likely overestimation. The long-left tails in prediction residuals 582 
indicated that the intense emission fluxes from fens during summer peaks were underestimated 583 
(Fig. S6). 584 
 585 
Site-by-site validation of daily flux predictions varied greatly between individual sites (Fig. 5, S7). 586 
For example, US-UAF, an EC site in Interior Alaska with mature black spruce cover and full 587 
understory vegetation and mosses over permafrost (Ueyama, Iwata, et al., 2023), which is the 588 
only one of the five forest bog sites in our dataset that had low CH4 fluxes and weak seasonal 589 
cycles (less than 10 nmol m-2 s-1), was significantly overestimated by our model (RMSE = 58 590 
nmol m-2 s-1 and MAE = 53 nmol m-2 s-1). Permafrost presence and ground water below soil 591 
surface may explain the low fluxes at this site (Iwata et al., 2015; Ueyama, Knox, et al., 2023).  592 
 593 
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 594 
 595 
Fig. 4 Model predictive performance evaluation on RF modeled CH4 fluxes at grid level under 596 
LOOCV scheme: boxplots of R2, MAE, RMSE, and ME across validation sites by wetland types 597 
with mean values denoted in black squares at daily/weekly/monthly (top/middle/bottom panel) 598 
time steps.  599 
 600 
 601 
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 602 
 603 
Fig. 5 Example model predictive performance in seasonal cycles of daily FCH4 at the validation 604 
sites of CA-SCB, CA-ARF, and US-NGB, representing bog, fen, and wet tundra, respectively. 605 
 606 

3.2 Upscaled wetland CH4 emissions 607 

3.2.1 Wetland area weighted CH4 emissions 608 

Upscaled daily CH4 fluxes were weighted by wetland fraction to estimate gridded daily CH4 609 
fluxes from northern wetlands based on WAD2Mv2, GIEMS2, and GLWDv1 between 2016 and 610 
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2022 (Fig. 6), and GLWDv2 for comparison. The mean annual emissions and RF model 611 
associated uncertainties are summarized with different wetland maps in Table S3. The estimate 612 
from WetCH4 with WAD2Mv2 was 22.8 ±2.4 Tg CH4 yr-1, comparable to UpCH4 (23.5 ±5.8 Tg 613 
CH4 yr-1). With GIEMS2, WetCH4 estimated the minimum annual emission of 15.7 ±1.8 Tg CH4 614 
yr-1. With GLWDv1 and GLWDv2, WetCH4 estimated potential annual emissions of 46.0 ±5.1 Tg 615 
CH4 yr-1 and 51.6 ±2.2 Tg CH4 yr-1 for 2016-2022, respectively. The spatial patterns were similar 616 
to the post 2016 mean annual fluxes from the GCP process-model ensemble means (28.6 617 
±21.6 Tg CH4 yr-1 for 2016-2020), WetCHARTs (29.5 ±30.0 Tg CH4 yr-1 for 2016-2019), and 618 
atmospheric inversions of CarbonTracker-CH4 (40.9 Tg CH4 yr-1 for 2016-2022), highlighting the 619 
high emission areas in the Hudson Bay Lowlands and West Siberian Lowlands. The emissions 620 
from WetCH4-GIEMS2 were lower in these two hotspots than other estimates. Differences in the 621 
distribution of CH4 emissions between wetland products reflect the influence of wetland 622 
dynamics. Mean monthly wetland inundations are provided by WAD2Mv2 and GIEMS2, which 623 
set the dynamic limits for the wetland boundaries of the CH4-emitting surface. While emissions 624 
resulting from inundation were captured, it appeared that saturated or wet subsoil conditions 625 
were not well represented by WAD2M and GIEMS2, resulting in low emissions in wet yet non-626 
inundated tundra (i.e., Alaska North Slope). To address this, we incorporated wetland fractions 627 
from the CALU high-resolution wetland map (Bartsch et al., 2024) specifically produced for the 628 
permafrost region in order to estimate Alaska North Slope emissions. Wetland fractions from 629 
GLWD (both v1 and v2) represent a static maximum wetland distribution throughout time. Thus, 630 
estimates from GLWD may represent the upper bounds for all northern wetlands under 631 
contemporary conditions. 632 
 633 

 634 
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 635 
Fig. 6 Mean annual wetland CH4 fluxes: the top row contains WetCH4 upscaled fluxes between 636 
2016 and 2022 and weighted by wetland fractions for three wetland maps WAD2Mv2, GIEMS2, 637 
and GLWDv1; the bottom row contains bottom-up GCP ensemble mean, WetCHARTs, and top-638 
down estimates of CarbonTracker-CH4 natural microbial emissions. 639 
 640 
We compared spatial distributions of our upscaled fluxes (WetCH4) with two alternative 641 
upscaled datasets. Using the same wetland weights, our product showed similar spatial patterns 642 
to UpCH4 (McNicol et al., 2023) and the upscaled fluxes from Peltola et. al. (2019) (Fig. S9). 643 
Spatially, the maximum mean flux of 2016-2022 for WetCH4 with WAD2Mv2 was 69 mg CH4 m-2 644 
day-1, UpCH4 produced a maximum mean flux between 2016-2018 of 88 mg CH4 m-2 day-1. 645 
While all three products predicted concentrated CH4 exchange in the Hudson Bay Lowlands and 646 
West Siberian Lowlands, and low fluxes in West Canadian Arctic tundra, WetCH4 predicted 647 
lower fluxes in forested wetlands of West Canada than UpCH4 (Fig. S9 a,b). With GLWDv1, 648 
WetCH4 predicted similar fluxes to those of Peltola et al. (2019), with the exception of a number 649 
of potent emitting grids in the West Siberian Lowlands (Fig. S9 c,d) and a maximum mean flux 650 
of 132 mg CH4 m-2 day-1 from WetCH4. 651 

3.2.2 Seasonal cycles of wetland CH4 emissions 652 

Mean seasonal cycles of wetland CH4 emissions were consistent with bottom-up estimates in 653 
the domain and top-down inversions in high latitudes (Fig. 7). The amplitudes of two ML-based 654 
estimates agreed in the domain (WetCH4 and UpCH4 both within WAD2Mv2 wetland areas) and 655 
were lower than the ensemble means of GCP or WetCHARTs estimates during the growing 656 
season (Fig. 7a). In the northern high latitudes (60° - 90° N), the amplitudes of this study closely 657 
agree with WetCHARTs, and both were lower than the ensemble means of GCP in the growing 658 
season (Fig. 7b). Our emissions in June-July-August were lower than the emissions attributed 659 
by the atmospheric inversion of CarbonTracker-CH4, which does not discriminate between 660 
wetland and open water sources. We did not use comparisons with CarbonTracker-CH4 for 45°-661 
90° due to likely considerable contributions from aquatic systems and other non-wetland factors 662 
in the inversion estimates. Notably, uncertainties between ML-based approaches with the same 663 
wetland extents showed less variation than those between process-based models, especially 664 
during the growing season. The phase of our estimates (WetCH4) agreed with bottom-up and 665 
top-down models, peaking in July followed by August (Fig. 7a,b), whereas UpCH4 showed a 666 
month lag, probably due to the two- or three-week lag of predictor variables selected in UpCH4 667 
(McNicol et al., 2023). Peak fluxes in July and August were commonly seen in tower 668 
measurements. 669 
 670 
The seasonality in upscaled wetland CH4 emissions corresponded to the intensities of fluxes 671 
and dynamics of wetland areas. We compared mean seasonal cycles of upscaled products with 672 
different dynamic or static wetland maps to constrain the impacts of wetland areas (Fig. 7c). As 673 
observed in spatial distributions (Fig. 7a,c), emissions from the potential emitting surface 674 
(WetCH4_GLWDv1) were 95% higher than those from reference inundated wetlands 675 
(WetCH4_WAD2Mv2) during the growing season, and doubling in winter. Within the GLWDv1 676 
emitting surface, WetCH4 predicted higher emissions than Peltola et al. (2019) in July (43%), 677 
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August (43%), December (41%), and January (61%), but 15% lower in October. We decoupled 678 
the mean annual seasonal cycle for WAD2M from the emission seasonality by using a fixed 679 
maximum WAD2M extent. The resulting seasonal emissions primarily driven by soil 680 
temperatures and moisture manifested elevated emissions in all months and an intensified 681 
seasonal cycle. Reported emissions (Zona et al., 2016) and large bursts (Mastepanov et al., 682 
2008) from the freezing active layer at permafrost areas in October (zero-curtain period) may 683 
not be well captured by our ML model. The differences in wetland areas between the two 684 
dynamic products (WAD2Mv2 and GIEMS2) mostly affected emissions in May and June in 685 
WetCH4, but significantly affected emission magnitudes in UpCH4. Despite the differences in 686 
wetland areas, the phases of emissions cycles of WetCH4 were consistent with those from 687 
Peltola et al., whereas UpCH4 again lagged a month. 688 
 689 
We compared upscaled seasonal cycles with CH4 fluxes estimated from regional airborne 690 
measurements taken during CARVE campaigns over the Alaska North Slope (Fig. 7d). Given 691 
that the wetland area in this region is uncertain (Miller et al., 2016), we computed mean 692 
seasonal cycles over the land assuming all land in this area is water saturated in the soil, over 693 
freshwater wetlands of CALU, and over WAD2M and Hydrolakes, representing three different 694 
scenarios. In the lowland area of the North Slope (74295 km2 spanning between 69.8°N - 695 
71.4°N, 164.4°W - 152.7°W), the wetland area was estimated at 10611 km2 from CALU, 4800 696 
km2 from GLWDv2, and 4049 km2 from the maximum extent month in July of WAD2Mv2, 697 
respectively. The range of our upscaled estimates aligned with regional emissions derived from 698 
CARVE measurements. Chang et al. (2014) estimated 7 ±2 mg CH4 m-2 d-1 of mean CH4 fluxes 699 
during the growing season in the North Slope from the column analysis of CARVE data. The 700 
mean fluxes (May to September) of WetCH4 with CALU were estimated at 7.3 ±0.8 mg CH4 m-2 701 
d-1 (5.5 ±0.6 mgC CH4 m-2 d-1), which is within the range of various CARVE estimations (Miller et 702 
al., 2016). The landscape is in the biome of the Arctic coastal tundra and is covered by sedges, 703 
grasses, mosses, and dwarf shrubs. A large number of lakes and freshwater ponds are 704 
scattered across the area. Studies at the West Alaska lowland of Yukon–Kuskokwim Delta 705 
found aquatic fluxes that were about ten times higher than in wet tundra during September 706 
(Ludwig et al., 2023), suggesting that a major source of the airborne fluxes missing in WetCH4 in 707 
the late growing season, can be attributed to open water fluxes. Remarkable increases could be 708 
in summer and winter if we assume wetland over this region, as indicated by the range between 709 
the green and the black lines in Fig. 8d. Yet, future emissions due to permafrost thaw still 710 
depend on the hydrological changes of the landscape. 711 
 712 
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 713 
Fig. 7 Multi-year average seasonal cycles of wetland CH4 emissions: (a) comparison of ML 714 
upscaled mean seasonal cycles in reference wetland areas (WAD2Mv2) with the cycles from 715 
process-based models in the northern mid-high latitudes (45° - 90° N); (b) same comparison for 716 
northern high latitudes (60° - 90° N) and addition of atmospheric CarbonTracker-CH4 attributed 717 
microbial emissions (2016-2022); (c) comparison of three ML upscaled mean seasonal cycles of 718 
CH4 emissions with different wetland area maps (WAD2Mv2, WAD2Mv2 maximum extent, 719 
GIEMS2, GLWDv1); (d) comparison of WetCH4 mean seasonal cycles over the land (black line), 720 
weighted by wetland of the CALU map (olive line), or weighted by fractions of WAD2Mv2 (green 721 
line), with estimates of CH4 fluxes in growing seasons from CARVE retrievals in North Slope 722 
area of Alaska (Zona et al., 2016). 723 
 724 

3.2.3 Interannual variations in wetland CH4 emissions 725 

 726 
The mean annual emissions from ML-based estimates with WAD2M were lower than the GCP 727 
ensemble mean and WetCHARTs over different years from 2016 forward (Fig. 8a). All products 728 
demonstrated similar emission patterns for the domain in the interannual trends and variations, 729 
highest in 2016 and lower for three years from 2017 to 2019 (Fig. 8). The interannual variations 730 
in WetCH4 were driven by the interannual variability in the upscaled fluxes as only multi-year 731 
mean seasonal dynamics from WAD2Mv2 were used. All products identified intensified 732 
emissions in 2016 as indicated by the variations relative to period means (Fig. 8b). Higher than 733 
period average emissions in 2020 were also modeled by WetCH4 and ensemble GCP. The 734 
recent intensification from wetland emissions was discovered globally with an important 735 
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contribution from northern wetlands (S. Peng et al., 2022; Yuan et al., 2024; Z. Zhang, Poulter, 736 
et al., 2023). 737 

 738 
Fig. 8 Wetland CH4 a) annual emissions and associated uncertainties in colored shades and b) 739 
variations relative to multi-year means in the research domain (45° - 90° N). Wetland area data 740 
applied in WetCH4 and UpCH4 was WAD2Mv2. Time periods of multi-year means: WetCH4 741 
(2016-2022); UpCH4 (2016-2018); Ensemble GCP (2016-2020); WetCHARTs (2016-2019). 742 
 743 
Subregional annual emissions and interannual variability (Fig. 9) of WetCH4 were calculated for 744 
eight subregions in the northern high latitudes (Fig. S11): Siberian tundra, East Siberia, West 745 
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Siberia, Fennoscandia, Canadian tundra, East Canada, West Canada, and Alaska. The main 746 
differences in WetCH4 estimated emissions between WAD2Mv2 and GLWDv1 occurred in the 747 
East Siberia, East Canada, West Canada, and Alaska subregions. However, interannual 748 
variabilities were similar. Interannual variations from West Siberia accounted for 51% the 749 
variations in domain emissions (Fig. 9a). The positive change in East Canada canceled the 750 
negative change in West Siberia in 2021, resulting in low variability in the domain emission for 751 
that year (Fig. 8). The relative interannual variability, which was calculated as the percentage of 752 
a subregional variation to its period mean, was attributed to those from West Siberia, 753 
Fennoscandia, West Canada, and Alaska (Fig. 9b). 754 
 755 

 756 
Fig. 9 Interannual variations and variability in subregions predicted by WetCH4 with WAD2Mv2, 757 
GLWDv1, and GIEMS2, respectively: (a) interannual variations with respect to period means 758 
(2016-2022); (b) relative variability as the percentage of its period mean. Delta in the y axis 759 
denotes the annual emissions minus mean annual emissions in the period 2016-2022. The 760 
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boxplots show the first quartile, the median, and the third quartile of the data with the whiskers 761 
denoting the 1.5x interquartile range below/above the first/third quartile. 762 

4. Discussion 763 

This study provides new estimates of daily scale 10-km wetland CH4 fluxes for the northern 764 
terrestrial wetland region, upscaled from EC data. The upscaling framework was driven by 765 
MERRA2 meteorological variables and soil temperatures and constrained by satellite products 766 
from SMAP soil moisture and MODIS NBAR, resulting in a good prediction accuracy (mean R2 = 767 
0.70 and mean MAE =27 nmol m-2 s-1) in monthly mean fluxes. Model agreement worsened at 768 
daily and weekly timesteps due to higher variability in CH4 fluxes at finer temporal resolutions. In 769 
our framework, we applied a rigorous criterion on the counts of half-hourly observations to 770 
control the selection quality of daily gap-filled data, which may filter out errors introduced by the 771 
gap-filling process or lack of observations for calculating daily means. The improvement in 772 
model performance can be partly attributed to the inclusion of soil temperature, satellite 773 
assimilation of soil moisture, and MODIS vegetation reflectance in the framework that 774 
represents controlling factors or proxies of CH4 fluxes recognized in field experiments and 775 
synthesis studies (Fig. 3). 776 
 777 

4.1 Important drivers to improve RF model predictive performance 778 

Soil temperature plays an important role in microbial growth and dormancy (Chadburn et al., 779 
2020), and exponentially affects microbial CH4 emission rates although the temperature 780 
sensitivity varies across space and time (Knox et al., 2021; van Hulzen et al., 1999). In northern 781 
wetlands, soil temperature is often more spatially variable relative to air temperature due to 782 
snow insulation and active layer depth (Smith et al., 2022; W. Wang et al., 2016; Yuan et al., 783 
2022), and thus should be considered in upscaling models. Compared to air temperature or land 784 
surface temperature that were used in previous upscaling studies (Peltola et al., 2019; McNicol 785 
et al., 2023), the inclusion of MERRA2 soil temperatures in WetCH4 likely contributed to a higher 786 
model predictive performance, although the impact of scale mismatch between the native 787 
MERRA2 spatial resolution and the local footprints on the upscaled fluxes were not quantified. 788 
Independent validation studies found significant correlations in the temporal trend and seasonal 789 
cycles between MERRA2 soil temperatures and in situ observations (M. Li et al., 2020; Ma et 790 
al., 2021) in the U.S. and mid-latitude Eurasia. However, lower correlations and overestimated 791 
monthly variability were found in the cold season in Pan-Arctic (Herrington et al., 2022). This 792 
suggests the impact of the uncertainty in MERRA2 soil temperatures were concentrated in the 793 
cold season, when CH4 fluxes were low. The agreement between ensemble means of soil 794 
temperatures from eight reanalysis and land data assimilation system products and station 795 
measurements improved in the pan-Arctic region (Herrington et al., 2022), suggesting the 796 
potential to reduce upscaling uncertainty forced by the ensemble mean of reanalysis datasets.  797 
 798 
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Emergent vegetation with aerenchyma affects the recent substrate availability and the plant-799 
mediated transport of CH4 (Kyzivat et al., 2022; Melack & Hess, 2023). We used the full land 800 
bands of the MODIS NBAR product rather than derived vegetation indices used in previous 801 
upscaling studies, as signals indicating wetland vegetation functional characteristics may be lost 802 
when merging bands to derive simple vegetation indices (Chen et al., 2013). In our study, the 803 
near-infrared and shortwave infrared bands (NBAR bands 2, 5, and 7) presented relatively high 804 
importance in the RF model due to their associations with vegetation characteristics and water 805 
table dynamics in northern peatlands (Baskaran et al., 2022; Burdun et al., 2023). Satellite 806 
inputs provide high spatial resolution constraints on the environmental variability and help 807 
reduce model spatial predictive errors (Fig. 3), indicating the requirement of high spatial 808 
resolution driving input for accurately modeling wetland CH4 fluxes (Elder et al., 2021). 809 
 810 
Surface and rootzone soil moisture are important controls on ecosystem anaerobic metabolism. 811 
Low soil moisture implies oxic conditions and allows methanotrophic bacteria to consume CH4, 812 
whereas high soil moisture enables CH4 production and suppresses consumption (Liebner et 813 
al., 2011; Olefeldt et al., 2013; Spahni et al., 2011). Soil wetness estimated in the rootzone and 814 
the profile from SMAP measurements may be able to capture water table dynamics and hence 815 
ranked as important in WetCH4 model performance. Validation of the SMAP level 4 soil moisture 816 
data assimilation product has shown that it meets the performance requirement of unbiased 817 
root-mean-square error <0.04 m3/m3 (Colliander et al., 2022). However, the validation sites are 818 
mostly located in North American grassland, cropland and shrubland, requiring more in situ soil 819 
moisture observations in high latitude tundra and peatland. Regional validation studies 820 
suggested uncertainties of satellite derived soil moisture including SMAP at high latitudes were 821 
high (Högström et al., 2018; Wrona et al., 2017) and remained to be addressed. 822 
 823 
Underground processes of CH4 production and oxidation are difficult to model (Ueyama, Knox, 824 
et al., 2023), especially for seasonal cycles in the northern high latitudes. A hysteresis effect 825 
that manifests intra-seasonal variability in the dependence of CH4 fluxes on temperature has 826 
been observed at EC sites (K.-Y. Chang et al., 2021), but it was not reproduced in WetCH4. 827 
Positive hysteresis and the difference in frozen status from topsoil to deep soil during autumn 828 
freeze results in zero curtain periods that have been observed at high latitude tundra (Bao et al., 829 
2021; Zona et al., 2016), the occurrence of which was subsequently underestimated in our 830 
model.  831 
 832 
The amount of additional substrate available for methanogenesis due to soil freezing/thawing, 833 
missing in our framework, could be a controlling factor of the occurrence of this phenomenon. 834 
Higher substrate availability elevates methanogen abundance and activities during autumn 835 
freeze (Bao et al., 2021). However, spatially explicit substrate data are not available. Using 836 
proxies such as net primary production or EVI for substrate availability might be oversimplified 837 
(Larmola et al., 2010; T. Li et al., 2016; Peltola et al., 2019). In addition, the uncertainty of deep 838 
soil temperature of training inputs in late autumn may hinder the model’s ability to capture 839 
patterns of high emissions during zero curtain periods observed at Alaska tundra (Fig. S10). 840 
More temporally accurate soil temperature data is needed to delineate the soil freezing progress 841 
and properly constrain predictions of CH4 emission during the cold season (Arndt et al., 2019). 842 
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The UpCH4 results (McNicol et al., 2023) also suggest that simply imposing lags to temporal 843 
predictors in RF cannot capture complex intra-seasonal variability due to the complicated lag 844 
effects interacting with the water table depth (Turner et al., 2021). Without timestamps in 845 
predictors, RF treats time series fluxes independently, which may limit its predictive 846 
performance. Deep learning models designed to account for temporal progress in data, such as 847 
Long Short Term Memory (LSTM) neural networks, may improve modeling accuracy of 848 
seasonal cycles (Reichstein et al., 2019; Yuan et al., 2022). 849 
 850 

4.2 Data limitations in current EC CH4 observations 851 

Data deficiency in EC CH4 flux observations in winter and in under-represented areas limited the 852 
RF model’s extrapolation ability. Data abundance and representativeness across space, time, 853 
and wetland types drives model performance and ability to extrapolate for the data-driven 854 
approach. The 26 wetland EC sites included in this study are largely located in Fennoscandia, 855 
East Canada and Alaska (Fig. 2), leaving some regional emission hotspots under-represented. 856 
For instance, Western Siberian Lowlands, the large wetland complex and the major contributor 857 
of interannual variations of CH4 in the region, has limited data that is compiled from a single site 858 
(RU-VRK, not included in this study due to the observations before our study period). Cold 859 
season emissions could contribute a substantial fraction of the Arctic tundra annual CH4 budget 860 
(Mastepanov et al., 2008; Mavrovic et al., 2024; Zona et al., 2016). But after filtering, 23% of the 861 
EC data in high latitudes (>60° N) were recorded between November and March, which could 862 
be insufficient for accurately modeling and upscaling zero curtain period fluxes. 863 
 864 
Ten bog and fen sites used for modeling contain all season daily flux records with more than 11 865 
half-hourly observations per day, all from Fennoscandia and Canada. Although Alaska is 866 
represented by 11 wetland sites, sufficient winter observations with good quality are still 867 
needed. West Siberian Lowlands are underrepresented by EC CH4 sites. Missing data in 868 
MODIS NBAR due to snow cover or gaps in SMAP reduced training data by 31% and 48% in 869 
the study domain, respectively. Filling data of MODIS NBAR to account for snow cover 870 
information and gap-filling SMAP soil moisture products can make full use of available EC 871 
observations and help improve model performance in cold seasons. Since gaps in winter SMAP 872 
data were filled with zero values, our approach has limitations in the estimation in winter soil 873 
moisture gaps in areas where zero curtain and talik were not represented by our interpolated 874 
soil temperatures, for example, in coastal areas. 875 
 876 
Many wetland sites in the study are located in areas with peatland presence, with 35% of sites 877 
in peatland-rich areas with >50% peatland cover (Hugelius et al., 2020). Mineral soil (soil 878 
containing less than 12% organic carbon by weight) marshes, though covering only 5% of the 879 
total wetland area in the northern high latitudes, need to be considered when deploying new EC 880 
sites due to their high CH4 emissions (Kuhn et al., 2021; Olefeldt et al., 2021). This study 881 
identified regional CH4 emission hotspots and areas undergoing strong interannual variations, 882 
which are yet not part of the current FLUXNET network. However, the 10 km resolution of the 883 
RF estimates prohibits the identification of local hotspots that may occur at <1-10 m scales 884 
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(Elder et al., 2021). The wall-to-wall flux maps also provide spatially continuous information for 885 
effectively further developing the CH4 flux tower network. 886 
 887 

4.3 Budget comparison 888 

WetCH4 estimated annual and seasonal mean emissions that were comparable to existing data-889 
driven products in the study domain (Table S3). With the dynamic WAD2Mv2 map, our 890 
estimation was 0.7 Tg CH4 yr-1 smaller than UpCH4 due to the mean seasonal cycles between 891 
2010 and 2020 from WAD2M applied in our estimation. With the same static GLWDv1 map, our 892 
estimation was about 22% larger than the estimate from Peltola et al. (37.5 ±12 Tg CH4 yr-1 for 893 
2013-2014) despite the different periods. This is attributed to higher fluxes estimated by WetCH4 894 
in DJF and JJA seasons. With two versions of the static GLWD maps, we estimated potential 895 
annual emissions between 46.0 and 51.6 Tg CH4 yr-1. Compared to GLWDv1, version 2 of 896 
GLWD mapped smaller wetland fractions in the Hudson Bay Lowlands with intense CH4 fluxes 897 
and more wetlands in the northwest of the Ural Mountains, Eastern Siberia, and the Sanjiang 898 
Plain, where CH4 intensities were weaker, resulting in a larger estimate of the annual emission 899 
(Fig. S13). The wide range of data-driven estimates was driven by the differences in wetland 900 
maps. While WAD2M provides crucial information on wetland inundation dynamics controlling 901 
interannual and inter-seasonal changes in CH4 emitting areas, areas with saturated soil in the 902 
Arctic tundra are likely severely underestimated (Fig. 8d), requiring more accurate maps 903 
delineating wet tundra communities at higher spatial resolution (e.g., < 1 km). Incorporating 904 
wetland fractions derived from high-resolution thematic maps (e.g., CALU) can improve the use 905 
of WAD2M in cold regions. Developing/improving higher resolution microwave remote sensing 906 
products capable of tracking dynamic changes in local soil moisture conditions is also needed. 907 
Together, these two components likely currently yield the largest sources of uncertainty in high 908 
latitude terrestrial CH4 budgets.  909 
 910 
Bottom-up estimates on wetland CH4 emissions from data-driven, GCP ensemble means and 911 
WetCHARTs are smaller than the top-down CarbonTracker-CH4 estimate on natural microbial 912 
emissions because the latter includes emissions from aquatic systems. Aquatic CH4 emissions 913 
for this region have been estimated at 5.5 Tg CH4 yr-1 from rivers and streams (Rocher-Ros et 914 
al., 2023) and 16.6 Tg CH4 yr-1 from lakes (Johnson et al., 2022). The total emissions budget for 915 
wetlands and open water, based on this study and the aquatic estimates, are about 44.9 Tg CH4 916 
yr-1, which is 4 Tg CH4 yr-1 more than the CarbonTracker-CH4 estimate. The amplitudes of 917 
WetCH4 seasonal mean fluxes align with bottom up and top down estimates. Differences in the 918 
seasonal dynamics of wetland maps are the major source of upscaling uncertainty and result in 919 
various uncertainties between regional estimates. While atmospheric inversion models need 920 
bottom-up estimates as priors, data-driven upscaled CH4 products offer alternatives to process-921 
based estimates to assist with inversion models in regions where data-driven models perform 922 
well (Bloom et al., 2017; Melton et al., 2013). 923 
 924 
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4.4 Future directions 925 

Future development of EC networks in the northern high latitudes is urgently needed to provide 926 
additional observations needed to improve model-based upscaling of CH4 flux budgets, and to 927 
address current gaps in ecosystem and regional representation. Deploying new sites in under-928 
represented areas will not only benefit flux upscaling efforts but also our understanding of how 929 
ecosystem metabolism responds to the changing climate (Baldocchi, 2020; Pallandt et al., 2022; 930 
Villarreal & Vargas, 2021). With the availability of long-term predictor variable data, it is possible 931 
to expand upscaling frameworks over longer periods (e.g., 2000 to current), when adequate flux 932 
observations in 2000-2010 from chambers are compiled, as 96% of the data were recorded 933 
after 2010 in FLUXNET-CH4 (McNicol et al., 2023). 934 
 935 
Several data products exist for the meteorological predictor variables. Quantifying measurement 936 
uncertainties between products of predictor variables and how the uncertainties propagate to 937 
upscaling products need to be addressed in future work. The mismatch of spatial scales 938 
between tower footprints and predictor variables may cause underestimation of abruptly high 939 
fluxes measured at tower landscapes when environmental conditions are averaged over half-940 
degree grids (Chu et al., 2021; McNicol et al., 2023). Therefore, downscaling predictor variables 941 
for developing higher-resolution products is needed, especially for the Arctic region where 942 
thermokarst development is shaping permafrost landscapes with fragments of wetlands, 943 
thermokarst ponds, and forests (Miner et al., 2022; Osterkamp et al., 2000; Wik et al., 2016). 944 
For example, Fang et al. (2022) have downscaled global SMAP surface soil moisture to 1-km 945 
resolution, and Optical/Thermal and microwave fusion methods have been developed to 946 
downscale soil moisture (J. Peng et al., 2017). Nevertheless, downscaled products for rootzone 947 
or profile soil moisture are needed for upscaling CH4 fluxes as are soil temperature products.  948 
 949 
Beyond the ML-based upscaling framework, hybrid modeling of the data-driven approach and 950 
process-based models is a promising but also challenging direction of future study (Reichstein 951 
et al., 2019). One practice constrained regional data-driven fluxes with top-down estimates via 952 
auto-learned weights on per pixel fluxes in a region (Upton et al., 2023). Another practice 953 
pretrained a time-dependent ML algorithm with initialization from process-based synthetic data 954 
and then fine-tuned the model with observations (Liu et al., 2022). Finally, leveraging physical 955 
constraints to increase the interpretability of data-driven models and computation efficiency is 956 
still an important factor to consider in all hybrid modeling. 957 

5. Code and data availability 958 

The daily CH4 flux intensities in the northern wetlands at a spatial resolution of 0.098° x 959 
0.098°and associated uncertainties, along with daily emissions weighted by WAD2M, GIEMS2, 960 
and GLWDv1, can be accessed through https://doi.org/10.5281/zenodo.10802153 (Ying et al., 961 
2024). Source code of ML modeling and upscaling is publicly available at 962 
https://github.com/qlearwater/WetCH4.git. Half-hourly EC data is available for download at 963 
https://fluxnet.org/data/fluxnet-ch4-community-product/ (Delwiche et al., 2021). 964 

https://doi.org/10.5281/zenodo.10802153
https://github.com/qlearwater/WetCH4.git
https://fluxnet.org/data/fluxnet-ch4-community-product/
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6. Conclusions 965 

We developed an ML framework (WetCH4) to upscale daily wetland CH4 fluxes of mid-high 966 
northern latitudes at 10-km spatial resolution combining EC tower measurements with satellite 967 
observations and climate reanalysis. WetCH4 is novel in that it is the first upscaling framework to 968 
introduce SMAP soil moisture and MODIS reflectance in modeling wetland CH4 fluxes to 969 
improve accuracy (mean R2 = 0.70). The remote-sensing products provided high spatial 970 
resolution constraints associated with the abiotic controllers of CH4 fluxes, indicating the 971 
importance of using high spatial resolution inputs in models for accurately simulating the 972 
spatiotemporally variable CH4 emissions from heterogeneous northern wetland landscapes. The 973 
framework highlights the importance of soil temperature, vegetation, and soil moisture for 974 
modeling CH4 fluxes in a data-driven approach. Using WetCH4, an average annual CH4 975 
emissions of 22.8 ±2.4 Tg CH4 yr-1 with WAD2Mv2 was estimated and ranged between 15.7 976 
±1.8 Tg CH4 yr-1 with GIEMS2 and 51.6 ±2.2 Tg CH4 yr-1 with GLWDv2 from vegetated wetlands 977 
(>45° N) for 2016-2022, approximately 14-32% of the global wetland CH4 budget (Saunois et 978 
al., 2020). Differences in estimates of wetland CH4 emissions due to different wetland maps 979 
applied, highlighting the need for high resolution wetland maps and accurate delineation of wet 980 
soil dynamics. Emissions were relatively lower in 2017-2019 and intensified in 2016, 2020 and 981 
2022, with the largest interannual variations coming from West Siberia. Spatio-temporal 982 
distributions of CH4 fluxes find emission hotspots and regions of intensified interannual 983 
variations that are not currently measured with EC. Comparing with current EC sites, we 984 
suggest a need for tower observations in wetlands of West Siberia and West Canada and 985 
diversified observations across wetland types. More site observations in soil water related 986 
variables are needed for improved understanding of flux controls in northern wetland 987 
ecosystems. Future wetland CH4 upscaling work could benefit from improved soil moisture 988 
products and hybrid modeling. 989 
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