
We thank the Referee #2 for the helpful comments and suggestions. They will help improve
the manuscript. We will address comments in the order discussed by the Referee. Our
responses are in blue.

Wetlands are the largest natural source of global methane (CH4) emissions, but with the
largest uncertainty. Ying et al. generated a machine learning based regional (>45) wetland
CH4 upscaling dataset. In general, their work is very important, and they provided a new
data-driven benchmark dataset constraint by the most eddy covariance observations, with
the highest spatial and temporal resolution, compared with previous ML-based wetland CH4

upscaling products. However, there remain many parts that are not clear or rigorous
enough. Detailed comments can be seen as follows:

Major comments:

1. For the feature selection part, why did you choose the first 10 variables? Did you test
other numbers of input features? In section 3.1.1, you mentioned that using all the
variables and using selected 10 variables showed no significant difference in wetland
CH4. Is this strategy still reasonable? Maybe the strategy in Peltola et al., 2019 could
be helpful. They calculated the feature importance of all the variables, but finally
chose four variables, because that group achieved the best performance. (Peltola,
O., Vesala, T., Gao, Y., Räty, O., Alekseychik, P., Aurela, M., ... & Aalto, T. (2019).
Monthly gridded data product of northern wetland methane emissions based on
upscaling eddy covariance observations. Earth System Science Data, 11(3),
1263-1289.)

Responses: Yes, all candidate variables were tested together within the random
forest model and we ranked the feature importance of all candidate variables as
shown in Fig.S3. The model performance converged with the top 10 most important
variables that were selected as input variables, as indicated by the out-of-bag R2

metric and Fig. S3.

Our modeling framework differed from Peltola et al., 2019 by separating in situ
variables and gridded variables and modeling at the site level and grid level
respectively. Previous studies trained and validated models with a mix of in situ and
gridded variables but performed upscaling with only gridded variables, causing the
evaluation metrics not to show the accuracy of upscaling products. In addition, this
modeling strategy tended to favor gridded proxies or variables over in situ variables,
leading to the real controlling variables of CH4 fluxes not being selected.

We improved the strategy by first modeling at the site level with only in situ variables
that were available at all wetland EC sites. We then used the gridded version of the
selected in situ variables. For some missing controlling factors that were not
measured across all sites, we further added remote-sensing-based variables or
proxies (e.g., SMAP soil wetness, MODIS reflectance) in a forward selection process
and demonstrated the improvement in model predictive performance as shown in



Fig. 3a. As a result, the grid-level modeling and evaluation is consistent with the
upscaling and reflecting the accuracy of the upscaling product.

We clarified this on lines 192-200 and 369-375 in the clean version of the revised
manuscript.

2. The workflow seems a little bit confusing to me. Please feel free to correct me if I
misunderstood. It seems that the feature selection only included the variables you
get from the MERA2 dataset. Why are the variables from remote sensing dataset
excluded in the feature selection step, but directly added into the final RF model? Is
that fair to all the variables?

Responses: The feature selection was performed at the site level with in situ
measurements. At the grid level, we further performed a forward feature selection by
adding remote-sensing datasets to the MERRA2 data. By evaluating the impacts of
adding constraints from remote-sensing data on the grid-level model performance as
shown in Fig.3a), we prove that adding remote-sensing variables can improve the
model’s ability to explain the average variability in daily CH4 fluxes across validation
sites and reduce prediction errors.

To better explain the framework, we edited sentences on lines 192-200 and 285-395.

3. The final produced dataset is 0.098*0.098degree, but the spatial resolution of input
datasets (e.g., MERRA2) is much lower. Similarly, the wetland extent dataset
(WAD2M, GIEMS) also has lower spatial and temporal resolution. Will that lead to
uncertainties in your final estimation? At least, some discussion of this issue should
be added to the manuscript.

Responses: Thanks for this helpful suggestion. We interpolated MERRA2 data to
0.098° x 0.098° weighted by MERIT-DEM. We then modeled and upscaled at this
spatial resolution. As a result, the model accuracy metrics reflected a portion of the
errors due to the scale difference between MERRA2 input and in situ measurements.

Per your suggestion, we discussed the need for accurate and dynamic wetland maps
at high spatial resolution to improve wetland CH4 estimations in the study area. We
suggested incorporating wetland fractions derived from high-resolution thematic
maps (e.g. CALU) to improve the use of WAD2M in cold regions.

4. L362-364: I think it is not surprising to see that groups (2) and (3) have lower
accuracy, because they only contain features from soil wetness or NBAR, but missed
the most important information from the features provided by MERRA2 (which you
revealed in the feature selection part). Thus, if my understanding is correct, would it
be more reasonable to set the input feature as MERRA2, MERRA2 + NBAR,
MERRA2+SMAP, and compare them to MERRA2+ all RS data?

Responses: Thanks for the suggestion. We redesigned the model input variable
settings to accommodate this suggestion and your comment #6. We updated Fig. 3.
Please see our responses to comment #6 for a complete description.
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5. Did you test uncertainties from MERRA2? Will the estimation and key findings be the
same if using different reanalysis datasets?

Responses: We improved the discussion on the uncertainties in MERRA2 and the
potential impacts on emission estimates on lines 791-797:

“However, lower correlations and overestimated monthly variability were found in the
cold season in Pan-Arctic (Herrington et al., 2022). This suggests the impact of the
uncertainty in MERRA2 soil temperatures were concentrated in the cold season, when
CH4 fluxes were low. The agreement between ensemble means of soil temperatures
from eight reanalysis and land data assimilation system products and station
measurements improved in the pan-Arctic region (Herrington et al., 2022), suggesting
the potential to reduce upscaling uncertainty forced by the ensemble mean of reanalysis
datasets.”

6. Figure 6: I am curious why DEM is the most important feature. You mentioned it
highly correlated with air pressure, but the importance of air pressure is very low.
Please share more explanation of the mechanisms of how DEM affects wetland CH4.

Responses: Thank you for this helpful comment. We found that the variable
importance ranked by the impurity decreases in RF models affected the
interpretation of real controlling variables when covariates existed. The collinearity
among input variables (such as temperatures at different depths, DEM and air
pressure, air temperature) allows some of the removed variable’s information to be
retained, potentially distorting its true importance. This highlights the need for careful
interpretation of correlated features’ importance and is the reason why DEM
appeared so important in the previous variable importance analysis. To address this,

1, We updated input variables by using interpolated MERRA2 variables (at ~10 km
spatial resolution) weighted by DEM for modeling and removing DEM from the input
predictors. We clarified this on lines 291-296. Accordingly, we updated Table 1 to
reflect this modeling spatial resolution change in MERRA2 data.

2, We improved our design of input feature settings at the grid-level modeling. We first
built a baseline grid-level model with independent variables after a pairwise Pearson
correlation test (Fig. S14) to exclude covariates. The resulting baseline features
included air pressure (pa), latent heat flux (le), sensible heat flux (h), soil temperature
(ts2), rootzone soil wetness (sm_r_wetness), slope, spi, and cti. Then we designed
four additional different model settings by changing predictor variables, including (1)
baseline variables plus covariates, (2) only variables from MODIS NBAR, (3) baseline
variables plus NBAR bands, and (4) all predictor variables. In this forward feature
selection process, we evaluated the impacts of adding constraint variables from remote
sensing products on model performance. RF models can enhance robustness when
handling correlated input variables, so these collinear variables shouldn’t negatively
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affect model performance, only the variable importance assessment. This is due to the
RF algorithm randomly selecting subsets of input variables and choosing the best one
for splitting nodes during tree constructions. We modified the description on lines
385-295. We demonstrated error reduction and model improvement as new variables,
including physically independent MODIS NBAR observations, were added as shown in
Fig. 3a.

3, We updated feature importances from the baseline model with non-covariates. We
merged Fig. 3 and Fig. 6, and showed the importance of baseline features in Fig. 3b.
The new result demonstrated the importance of soil temperature and moisture, as
described in the revised manuscript on lines 539-546.

4, We updated the predictive performance metrics of the upscaling model (lines
526-537, 561-592) and ultimately the upscaling results from non-DEM ensemble
models (the results section 3.2 Upscaled wetland CH4 emissions). The new model
improved performance at wet tundra sites but enlarged errors at a few fen and bog
sites. Overall, it slightly overestimated CH4 fluxes at the validation sites as shown by
positive bias (mean ME). The upscaling results from the new model manifest slightly
higher flux intensities in wet tundra and in the summer season (JJA), resulting in
increases in the estimates of mean annual emissions by ~2 Tg CH4 yr-1 with WAD2M to
~5 Tg CH4 yr-1 with GLWD v1 and v2. No significant change in the absolute and relative
interannual variability in subregions.

5, We added a discussion in the supporting materials Text 6 about the impact of
elevation on explaining the intra-site variability within the existing wetland sites of
northern high latitudes. We tested the impacts of elevation on model performance in
explaining the inter-site variability of CH4 upon the current locations of wetland EC
sites. We recognized that elevation may act as a factor in discerning fen and bog sites
with associated wetland attributes that may not be included by other input variables.

Minor comments:

1. L183: The boundary of Arctic-boreal is not exactly the same as ‘>45 degree’. If your
final dataset is >45 area, you cannot say it is Arctic-boreal region. Similar problems
appeared several times in the manuscript. Please go through the whole paper and
correct them.

Responses: Thanks for this suggestion. We have rephrased the study area to
wetland >45° N.

2. Are the important features the same at different sites? Or are they the same across
different wetland types? Did you build separate models for different wetland types?
Or use one model for all types?
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Responses: We built one model for all types of wetlands as the gridded wetland
fraction information by wetland types was not available in the whole study area that
was required for wetland fluxes upscaling.

3. Vegetation activity showed significant impacts on wetland CH4 emissions in many
previous studies, especially in the northern wetlands. Why not include proxies of
vegetation (such as, LAI, GPP, …) into your feature selection?

Responses: Previous studies (Peltola et al., 2019; McNicol et al., 2023) evaluated
MODIS-derived EVI as a proxy for GPP as a candidate predictor. However, none of
them selected EVI (concurrent or lagged) in their upscaling models because the
inclusion of EVI did not improve the model performance as much as the
temperature-related variables did. Therefore, we did not directly include proxies of
vegetation productivity in the feature selection, instead, we included constraints from
MODIS reflectance bands that were used to produce GPP, EVI, or LAI as well as
surface water indices. We explained this on lines 335-337.

4. Figure 4: Why is monthly prediction much better than that of daily prediction,
especially in terms of R2? Please add more explanation to the manuscript.

Responses:   Model predictive performance on aggregated monthly means of CH4 fluxes
increased by 37% as compared to daily means (R2 = 0.70, Fig.4, Table S4). Model
agreement worsened at daily and weekly timesteps due to higher variability in CH4 fluxes
at finer temporal resolutions (lines 768-769). The amount of noise in the flux data is
much higher at a daily resolution while mean monthly fluxes smooth some of this noise
away.

5. Figure 7: For carbon-tracker, why did you use natural microbial emissions instead of
wetland emissions? It seems that carbon-tracker also has an output layer of wetland
CH4.

Responses: Natural microbial emissions primarily comprise wetland and aquatic
emissions in northern high latitudes. According to Oh et al., 2023, the aquatic CH4

sources were not discerned from wetland emissions in the current release of
CarbonTracker-CH4. Therefore, we used natural microbial emissions.

Reference: Youmi Oh, Lori Bruhwiler, Xin Lan, Sourish Basu, Kenneth Schuldt, Kirk
Thoning, Sylvia E. Michel, Reid Clark, John B. Miller, Arlyn Andrews, Owen
Sherwood, Giuseppe Etiope, Monica Crippa, Licheng Liu, Qianlai Zhuang, James
Randerson, Guido van der Werf, Tuula Aalto, Stefano Amendola, Sébastien C.
Andra, Marcos Andrade, Nhat A. Nguyen, Shuji Aoki, Francesco Apadula, Ikhsan B.
Arifin, Sabrina Arnold, Mikhail Arshinov, Bianca Baier, Peter Bergamaschi, Tobias
Biermann, Sebastien C. Biraud, Pierre-Eric Blanc, Gordon Brailsford, Huilin Chen,
Aurelie Colomb, Cedric Couret, Paolo Cristofanelli, Emilio Cuevas, Lukasz Chmura,
Marc Delmotte, Lukas Emmenegger, Gulzhan Esenzhanova, Ryo Fujita, Luciana
Gatti, Elise-Andree Guerette, László Haszpra, Michal Heliasz, Ove Hermansen, Jutta
Holst, Tatiana Di lorio, Armin Jordan, Müller-Williams Jennifer, Anna Karion, Teruo
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Kawasaki, Victor Kazan, Petri Keronen, Seung-Yeon Kim, Tobias Kneuer, Katerina
Kominkova, Elena Kozlova, Paul Krummel, Dagmar Kubistin, Casper Labuschagne,
Ray Langenfelds, Olivier Laurent, Tuomas Laurila, Haeyoung Lee, Irene Lehner,
Markus Leuenberger, Matthias Lindauer, Morgan Lopez, Reza Mahdi, Ivan
Mammarella, Giovanni Manca, Michal V. Marek, Martine D. Mazière, Kathryn
McKain, Frank Meinhardt, Charles E. Miller, Meelis Mölder, John Moncrieff, Heiko
Moosen, Caisa Moreno, Shinji Morimoto, Catherine L. Myhre, Alberth C. Nahas,
Jaroslaw Necki, Sylvia Nichol, Simon ODoherty, Nina Paramonova, Salvatore
Piacentino, Jean M. Pichon, Christian Plass-Dülmer, Michel Ramonet, Ludwig Ries,
Alcide G. di Sarra, Motoki Sasakawa, Daniel Say, Hinrich Schaefer, Bert Scheeren,
Martina Schmidt, Marcus Schumacher, Mahesh K. Sha, Paul Shepson, Dan Smale,
Paul D. Smith, Martin Steinbacher, Colm Sweeney, Shinya Takatsuji, Gaston Torres,
Kjetil Tørseth, Pamela Trisolino, Jocelyn Turnbull, Karin Uhse, Taku Umezawa, Alex
Vermeulen, Isaac Vimont, Gabriela Vitkova, Hsiang-Jui (Ray) Wang, Doug Worthy,
Irène Xueref-Remy. CarbonTracker CH4 2023, 2023.DOI: 10.25925/40jt-qd67

6. What GCP models did you include in comparison? All the top-down and bottom-up
models in Saunois et al., 2019? It would be better to give more information of what
model did you used in the supplementary. Or at least, add the citation of GCP
models.

Responses: Thanks for the helpful suggestion. We added information about the GCP
models in the supporting materials:

The bottom-up estimates we used for comparison were from sixteen wetland CH4

models (CH4MODwetland, CLASSIC, DLEM, ELM-ECA, ISAM, JSBACH, JULES,
LPJ-MPI, LPJ-wsl, LPJ-GUESS, LPX-Bern, ORCHIDEE, SDGVM, TEM-MDM, VISIT,
TRIPLEX-GHG) in the Global Carbon Project (GCP) Methane Budget (Z. Zhang et
al., 2024).

7. Figure 10: Why exclude WetCH4-GIEMS?

Responses: We updated the figure by adding interannual variability estimated in
WetCH4-GIEMS.

8. Figure 8d: Please give more description of land and CALU data, and explain how
you generate wetCH4-land and wetCH4-CALU, and why did you use them.

Responses: We modified the manuscript as below:

“Given that the wetland area in this region is uncertain (Miller et al., 2016), we computed
mean seasonal cycles over the land assuming all land in this area is water saturated in
the soil, over freshwater wetlands of CALU, and over WAD2M and Hydrolakes,
representing three different scenarios. In the lowland area of the North Slope (74295 km2

spanning between 69.8°N - 71.4°N, 164.4°W - 152.7°W), the wetland area was
estimated at 10611 km2 from CALU, 4800 km2 from GLWDv2, and 4049 km2 from the
maximum extent month in July of WAD2Mv2, respectively.”
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9. Add citations: L78-80, L99-104.

Responses: Thanks for your suggestion. We added citations:

“The uncertainties in the estimates of wetland CH4 emissions are primarily attributed to
challenges in mapping vegetated wetlands versus open water leading to double counting
(Thornton et al., 2016), seasonal wetland dynamics and uncertainties in estimates on
flux rates.”

“Field observations of gas fluxes typically measure CH4 exchange between the land and
atmosphere at sub-meter to ecosystem (100s of m to km) scales (Bansal et al., 2023;
Chu et al., 2021).”

10. L921-928: Font style.

Responses:

Thanks for pointing this out. We edited the Font in this paragraph.
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