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Abstract 

CHclim25 is a climatic dataset with a 25 m resolution for Switzerland that includes daily, monthly and yearly layers for 10 

temperature, precipitation, relative sunshine duration, growing degree-days, potential evapotranspiration, bioclimatic 

variables and aridity. The dataset is downscaled from a daily 1 km resolution dataset from the Swiss federal agency for 

meteorology using local regressions with an elevation model to better account for local topography and complex local 

climatic phenomena. Climatic layers are provided for individual years, 1981-2010 baseline period and future periods 2020-

2049, 2045-2074, and 2070-209. Future layers incorporate three regional/global circulation models and three representative 15 

concentration pathways. We compare our predictions with values observed at independent weather stations and show that 

errors are minimal in comparison to the original dataset at 1 km resolution, and that the dataset is more accurate than 

available climatic global datasets at 30’ resolution, especially at high elevation. CHclim25 improves the temporal and spatial 

accuracy of climatic data available for Switzerland and enables new studies at very high resolution in ecology and 

environmental sciences.  20 

1 Introduction 

Several climatic datasets are now freely and easily available globally that provide gridded monthly temperature and 

precipitation variables at a resolution up to 30’ (~1 km at temperate latitudes) for individual recent years (e.g. 1979 to 2019 

for Chelsa; (Karger et al., 2021)) or averages for reference time periods (e.g. 1970-2000 for Worldclim2; (Fick and Hijmans, 

2017). These datasets include future climate projections derived from various regional/global circulation models 25 

(RCM/GCM; (Di Luca et al., 2016)) for different time periods and representative concentration pathways (RCPs; (Moss et 

al., 2010)). They have been shown to be vital inputs for many scientific studies of climate change impact, in conservation 

planning or in ecology. 

However, while a 1 km resolution may be appropriate for many areas with mild topography, for areas with highly rugged 

terrain such as the European Alps, climatic conditions may strongly vary at a much finer scale. For example, on a 40% slope 30 
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(i.e. usually considered as the maximum steepness for walking without equipment), walking 450 m uphill results in a 

temperature change of 1°C assuming an adiabatic rate of 6°C/km (Seidel and Free, 2003). Moreover, the distribution of 

surface temperature in the Alps shows considerable deviation from linear vertical dependence (i.e. adiabatic rate) depending 

on the slope, geometry, land cover and topographic shading of the valleys (Frei, 2014). For example, cold air pools 

frequently form in specific mountain valleys in winter as a result of night-time radiative cooling, resulting in inversions in 35 

the altitudinal temperature profile (Lareau et al., 2013). Furthermore, the smaller air volume in small valleys can lead to 

exacerbated thermal contrasts, with highest maximum summer temperatures observed in inner alpine valleys rather than the 

flatland (Whiteman, 1990). Finally, strong downslope winds (foehn) can lead to warm and dry anomalies at the foothills of 

the Alps (Jansing et al., 2022). Global datasets based on monthly climatologies cannot capture the complexity of these local 

phenomena. For these reasons, the Swiss federal agency for meteorology and climate (MeteoSwiss) produces daily 1 km 40 

resolution gridded temperature maps using spatial interpolations of daily temperature from station measurements built on 

nonlinear parametric function to model nonlinearities in the vertical thermal profile at the scale of major basins, coupled with 

a non-Euclidean distance weighting to account for local effects6.  

While the Meteoswiss dataset is optimal to deal with temporal complexities of the climate of the Swiss alps, the spatial 

resolution of the data is still not optimal for applications such as the prediction of the distribution of plants or sessile or 45 

dispersal-limited animals and associated conservation management plans. Here we aim to build on the MeteoSwiss daily 

dataset at 1km resolution to produce a climatic dataset that provides up-to-date daily climatic data at a resolution of 25m for 

Switzerland for the period 1981-2010, which is the reference period recommended by the World Meteorological 

Organization (Arguez and Vose, 2011). The dataset is thus compatible with the 5th assessment report of the IPCC (IPCC, 

2014). We further calculate future climatic layers for three general circulation models (GCMs), 3 time slices and 2 50 

representative concentration pathways (RCPs). 

2 Methods 

2.1 Downscaling of daily variables from 1 km to 25 m 

Owing to air temperature profiles that can change on a daily basis, we produced downscaled temperature maps for every day 

between January 1st 1981 and December 31st 2010. This allows for instance taking into account days when temperature 55 

profiles are inverted in internal valleys (cold air pools). The input data for the downscaling was the dataset of daily 

MeteoSwiss Grid-Data Products at 1 km resolution for 1981-2017 (MeteoSwiss, 2022) that include daily mean, maximum 

and minimum temperatures (TaveD, Tmin, Tmax), daily sum of precipitation (PrecD), and daily relative sunshine duration 

(SrelD)(Fig. 1).  
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Figure 1: Flow chart of relationships between variables and how they are calculated.  Black arrows correspond to direct 
aggregations of variables from lower to higher time resolutions. Blue arrows indicate integrations of several variables. 

The downscaling method for temperature is based on the adiabatic relationship between temperature and elevation. Local 

linear regressions were performed in each pixel of a rectangular moving window of 5 km x 5 km (using a customized 

function based on function focal of the R package raster) to calculate the intercept and slope of temperature with elevation at 65 

1 km : 

𝑇𝑇1𝑘𝑘𝑘𝑘 = 𝑎𝑎1𝑘𝑘𝑘𝑘  + 𝑏𝑏1𝑘𝑘𝑘𝑘 ∙ 𝐸𝐸1𝑘𝑘𝑘𝑘 , where 𝑇𝑇 =temperature, 𝐸𝐸 =elevation, 𝑎𝑎=intercept, 𝑏𝑏=slope for each 1 km pixel 

The 5 km x 5 km window was chosen to coincide to the average extent of valleys in the Alps. Intercepts a1km and slopes b1km 

are then disaggregated at 25 m (using the resample function with argument method=”nbg”) and smoothed spatially using 

function focal with a conic moving window of 1 km where weights are inversely proportional to the distance to the focal 70 

pixel. We thus obtain intercept a25m and slope b25m at 25 m resolution. Finally, the air temperature at 25 m resolution can be 

calculated using these intercepts and slopes and an elevation map at 25 m : 

𝑇𝑇25𝑘𝑘 = 𝑎𝑎25𝑘𝑘  + 𝑏𝑏25𝑘𝑘 ∙ 𝐸𝐸25𝑘𝑘 , where 𝑇𝑇 =temperature, 𝐸𝐸 =elevation, 𝑎𝑎=intercept, 𝑏𝑏=slope for each 25m pixel 

The procedure was applied for daily mean temperature (TaveD), minimum temperature (TminD) and maximum temperature 

(TmaxD). Daily precipitation (PrecD) and relative sunshine duration (SrelD) showed no relationship with elevation. For the 75 

latters, we thus applied simple bilinear interpolation to downscale the grids from 1 km to 25 m. 
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2.2 Monthly and yearly data 

We aggregated daily grids to obtain monthly and yearly grids for each variable. For monthly temperatures, we calculated the 

monthly (TaveM, TminM and TmaxM) and yearly (TaveY, TminY and TmaxY) averages of daily temperatures (TaveD, 

TminD and TmaxD) for every individual year. For precipitation (PrecM), we calculated the monthly (PrecM) and yearly 80 

(PrecY) sum of daily precipitation for every individual year. We then calculated averages of monthly and yearly temperature 

and precipitation for the periode 1981-2010 as the average of individual years between 1981 and 2010. For comparison, we 

also calculated monthly and yearly 1981-2010 temperature averages based on one single downscaling from 1 km to 25 m 

based on the 30 year average values using the same local linear regressions described above. This approach smoothens the 

temporal complexities of daily air temperature profiles but corresponds more closely to the approach taken in other datasets 85 

(e.g. worldclim; (Fick and Hijmans, 2017)).  

2.3 Future data 

For future layers, we used as inputs the transient daily time series of gridded climate scenarios of temperature and 

precipitation between 1981-2099 at 0.02°D (~2.2 km) provided by the CH2018 initiative (CH2018 Project Team, 2018). 

Anomalies between monthly temperature for 1981-2010 and monthly temperature for the future period at 2.2 km were 90 

downscaled at 25 m using bilinear interpolation (using function resample). These anomalies were then added to 1981-2010 

average monthly variables (TaveM, TminM, TmaxM, PrecM). We calculated future climatic layers for 4 RCM/GCM 

regional/global models (CLMCOM-CCLM4/HADGEM, DMI-HIRHAM/ECEARTH, MPICSC-REMO2/MPIESM, and 

SMHI-RCA/IPSL), 3 time slices (2020-2049, 2045-2074, and 2070-2099) and 3 representative concentration pathways (RCP 

2.6, 4.5 and 8.5). The 4 RCM/GCM models were chosen because they were the only models made available by the CH2018 95 

initiative (CH2018 Project Team, 2018) that implemented a EURO-CORDEX simulation at the finer resolution of 0.11 

degree (EUR-11, ~12.5 km) for RCP 4.5 and 8.5. For RCP 2.6, only DMI-HIRHAM/ECEARTH and MPICSC-

REMO2/MPIESM models were available. 

2.4 Extended climate variables 

We calculated monthly or/and yearly layers for a series of extended climatic variables derived mainly from precipitation and 100 

temperature. Monthly and yearly number of growing degree days (gddM and gddY) were calculated for three base 

temperatures (0, 3 and 5°C). gdd3M corresponds for instance to the monthly sum of degree days above 3°C. Potential 

evapotranspiration (etp) was calculated according to the Turc method (Turc, 1961) taking into account solar radiation (Srad) 

calculated at 25m for Switzerland (Zimmermann, 2022): 

𝑒𝑒𝑒𝑒𝑒𝑒 �
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We further calculated 19 bioclimatic variables with the function biovars from package dismo. They represent mean and 

seasonal annual temperature and precipitation trends or limiting variables such as temperature of the coldest month, or 

precipitation of the dry quarters. These variables, originally provided by the Worldclim data set (Fick and Hijmans, 2017), 

are biologically meaningful as they represent the same climatic features in both hemispheres and are for this reason often 

used in species distribution models (Guisan et al.). The aridity index (AI) was calculated as in the CGIAR/CSI dataset 110 

(Zomer et al., 2022). 

3 Validation 

To assess the accuracy of the basic variable (Prec, Tave, Tmin and Tmax) of our dataset, we compared observed values from 

weather stations to values from our dataset extracted at the coordinates of the stations. Observed values were extracted from 

the IDAWEB web portal (gate.meteoswiss.ch/idaweb). We used 3 sets of weather stations: stations from the Swiss National 115 

basic climatological Network (NBCN; 90, 67, 68, and 65 stations for Prec, Tave, Tmin, Tmax, respectively), from the 

institute for Avalanche Research (SLF; 77, 169, 169 and 168 stations for Prec, Tave, Tmin, Tmax, respectively) and from the 

National Air Pollution Monitoring Network (NABEL; 8, 7, 7 and 7 stations for Prec, Tave, Tmin, Tmax, respectively). We 

selected stations to have complete climatologies between 1981 and 2010 (i.e. no missing data). The NBCN dataset 

constitutes the bulk of the input data used for the modeling of the daily MeteoSwiss Grid-Data Products at 1 km 120 

(MeteoSwiss, 2022) and thus is not an independent dataset, but covers the country homogeneously. The SLF dataset is an 

independent dataset collected mostly at high elevation sites to monitor avalanches (mean elevation = 2467 ± 388 m). The 

NABEL dataset is an independent dataset collected mostly near the main cities of the Swiss plateau to monitor pollution 

(mean elevation = 580 ± 221 m).  

For each basic variable, we calculated the root-square mean error (RMSE) between the monthly averages observed at the 125 

three sets of weather stations and the monthly average values extracted from our dataset. This was done for individual years 

between 1981 and 2010 (Fig. 2, gray shaded areas), and for monthly averages for the 1981-2010 period (Fig. 2, black lines). 

To assess the influence of the choice of the size of the moving window (i.e. 5 km radius in the daily dataset) in the 

downscaling procedure, we further recalculated monthly datasets for each variable based on a downscaling of 1981-2010 

averages with moving windows of increasing radii of 5, 10 and 25 km  (i.e. one downscaling procedure is performed on data 130 

averaged at 1 km resolution, instead of daily downscalings then averaged across 30 years) and assessed the error to values 

observed at weather stations (Fig. 2, color lines).  We further compared the accuracy of the CHclim25 dataset to the 

MeteoSwiss (MeteoSwiss, 2022), Chelsa (Karger et al., 2021) and Worldclim2 (Fick and Hijmans, 2017) datasets (Fig. 3). 
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Figure 2: Monthly deviations between calculated values and values observed at weather stations. For each variable 135 
(Prec, Tave, Tmax and Tmin, in row) and each set of weather stations (NBCN, SLF and NABEL, in column), the error 
(rmse) between observed and calculated values is represented for individual years (gray areas; 10 and 90% quantiles of 
1981-2010 values) and 1981-2010 averages (solid lines). The black line corresponds to the daily downscaling dataset 
presented in the paper. Color lines correspond to datasets based on 1981-2010 averages downscaling with moving windows 
of radii of 5, 10 and 25 km. 140 
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Figure 3 – Comparison of monthly deviations between CHclim25 and other datasets.  For each variable (Prec, Tave, 
Tmax and Tmin, in row) and each set of weather stations (NBCN, SLF and NABEL, in column), boxplot of root-mean-
square error (RMSE) between observed and calculated values is shown for CHclim25, MeteoSwiss, Chelsea and 
Worldclim2. For CHclim25, we show RMSE for the integration of daily downscaling in a 5 km radius, as well as the 1981-145 
2010 downscaling with 5, 10 and 25 km moving window radii.  

Deviations to observed values are higher at high elevation sites than lowland sites (Fig. 2, Fig. 3). The deviations are fairly 

constant throughout the year, but lead to slightly more accurate calculations for Prec during summer, while calculations are 
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more accurate for Tave, Tmax and Tmin during winter months for lowland stations (Fig. 2). Interestingly, errors on 30 year 

monthly averages for the high elevation sites are lower than errors for separate years, indicating that interannual variability is 150 

accounted for when considering 30 year averages. Deviations between datasets calculated by aggregation of daily 

downscaled layers and datasets calculated by first aggregation values at 1km and then performing one downscaling do not 

show significant differences, indicating that the order of the data aggregation does not matter (Fig. 2, Fig. 3).  Differences in 

deviation can be noticed however depending on the choice of the radius of the moving window in the downscaling process. 

Although these differences are small, our results indicate that radii of 10 and 25 km provide more accurate estimates for 155 

temperature variables at high elevation (but not at low elevation), which are more accurate than the initial MeteoSwiss 

dataset (Fig. 3). In comparison to Chelsa and Wordclim2, CHclim25 provides overall more accurate estimates (and lower 

variance in the estimates) for all variables and sets of independent sites (except Tmax from Worldclim 2 at high elevation 

sites). 

Discussion 160 

CHclim25 dataset represents a significant advancement in the availability of high-resolution climatic data in Switzerland. 

This dataset offers a high spatial resolution of 25 meters with daily, monthly, and yearly climatic layers for the period 1981-

2010, as well as three future projections up to 2099. The downscaling process employed, using local regressions with 

elevation models, enhances the dataset's ability to capture complex local climatic phenomena, especially in regions with 

rugged terrain. The validation of CHclim25 demonstrates its accuracy, with minimal errors compared to both original 165 

datasets at 1 km resolution and global datasets at 30’ resolution. This increased accuracy is particularly notable at high 

elevations where microclimatic variations strongly influence ecological patterns and dynamics. 

 

Incorporating very high-resolution climatic maps, such as the CHclim25 dataset proposed in this study, is pivotal for 

advancing our understanding of microclimate-species interactions and their implications for ecological modelling. These 170 

maps offer crucial information for mapping species temperature preferences, microclimate heterogeneity, and microclimate 

refugia in much greater detail. The ability to consider microclimatic conditions at fine scales facilitates a more realistic, 

organism-cantered perspective when analysing climate–species interactions (Lembrechts et al., 2019; De Frenne et al., 

2021). The limitations of macro-climatic datasets such as Worldclim (Fick and Hijmans, 2017) or Chelsa (Karger et al., 

2021), which fail to capture the spatiotemporal variability in microclimate influenced by terrain, wind, and vegetation, have 175 

raised concerns about the accuracy of species distribution models (SDMs) (Patiño et al., 2023). The coarse spatial resolution 

of these dataset and the differences in local elevation and topographic complexity contribute to a mismatch between actual 

microclimatic conditions experienced by organisms and the macroclimate. In mountainous regions such as Switzerland, 

characterized by rugged terrain, this discrepancy is particularly pronounced, with microclimate varying noticeably over short 

distances (Graae et al., 2018). 180 
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Recent studies have emphasized the importance of fine-scale climate data in SDMs when forecasting the impact of climate 

change on the distribution of species (e.g. Patiño et al., 2023). Fine-scale climatic data are crucial for identifying 

microrefugia, small sheltered areas against changing climates, which play a significant role in the survival of warm- and 

drought-sensitive organisms (Finocchiaro et al., 2023; Hylander et al., 2015; Suggitt et al., 2018). Macro-climatic datasets 185 

tend to homogenize climatic gradients driven by elevation and topography, overlooking rare microclimates in the landscape 

(Moudrý et al., 2023). For instance, using SDM predictions based on a microclimate dataset, Patino et al. (2023) identified a 

higher number of microrefugia across mid-elevation ridges, emphasizing the relevance of high-resolution climatic datasets 

for predicting species responses to environmental changes. 

 190 

In conclusion, the CHclim25 dataset represents a valuable contribution in addressing the limitations of macro-climatic data, 

enabling more accurate analyses and forecasting of species distributions, range dynamics, and the identification of 

microrefugia during climate change. The dataset is not only relevant to fundamental and applied ecology but also holds 

significance for agriculture and forestry in the face of climate change. 

Data availability 195 

The layer files are stored on the Zenodo repository in the chclim25 community (https://zenodo.org/communities/chclim25). 

The data is stored as sub-datasets with individual DOI for each variable (Broennimann, 2023b, f, e, j, i, d, g, a, c). Monthly 

and yearly average layers for the 1981-2010 period and future periods are available online (Table 1). Daily layers for 

individual years can be provided on request.  

The layer files are stored in compressed GeoTIFF format with the “deflate” algorithm with option “predictor2” from the 200 

GDAL. This format has the advantage to enable a high compression ratio (i.e. save storage space) while allowing direct 

import in most GIS softwares. All the maps are projected in the Swiss coordinate system CH 1903+ LV95 (epsg:2056) with 

a resolution of 25x25m using the extent of the digital height model DHM25 of the Swiss office for topography (swisstopo). 

Table 1: description of variables, with availability of daily, monthly and yearly layers. A sub-dataset for each variable is 
available on Zenodo with a specific DOI (e.g. for Prec:  doi.org/10.5281/zenodo.7868383, final numbers of the DOIs for all 205 
variables are provided in the table).  Symbols indication layers availability: calculation not possible or not relevant : ×,  not 
calculated : o,  available on request : ✓, available online : ✓✓ 
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Code availability 

The R code to generate the local regressions, to aggregate daily layers into monthly and yearly layers as well as the code to 210 

generate extended climatic variables is available on https://doi.org/10.5281/zenodo.7898915 (Broennimann, 2023h). 
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