
1 

 

A flux tower site attribute dataset intended for land surface 

modeling 

Jiahao Shi1, Hua Yuan1, Wanyi Lin1, Wenzong Dong1, Hongbin Liang1, Zhuo Liu1, Jianxin Zeng1, 

Haolin Zhang1, Nan Wei1, Zhongwang Wei1, Shupeng Zhang1, Shaofeng Liu1, Xingjie Lu1, Yongjiu 

Dai1 5 

1Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for 

Climate Change and Natural Disaster Studies, School of Atmospheric Sciences, Sun Yat-Sen University, Zhuhai 519082, 

China 

Correspondence to: Hua Yuan (yuanh25@mail.sysu.edu.cn) 

Abstract. Land surface models (LSMs) should have reliable forcing, validation, and surface attribute data as the foundation 10 

for effective model development and improvement. Eddy covariance flux tower data are considered the benchmarking data 

for LSMs. However, currently available flux tower datasets often require multiple aspects of processing to ensure data 

quality before application to LSMs. More importantly, these datasets lack site-observed attribute data, limiting their use as 

benchmarking data. Here, we conducted a comprehensive quality screening of the existing reprocessed flux tower dataset, 

including the proportion of gap-filled data, external disturbances, and energy balance closure (EBC), leading to 90 high-15 

quality sites. For these sites, we collected vegetation, soil, topography information, and wind speed measurement height 

from literature, regional networks, and Biological, Ancillary, Disturbance, and Metadata (BADM) files. Then we obtained 

the final flux tower attribute dataset by global data product complement and plant functional types (PFTs) classification. This 

dataset is provided in NetCDF format complete with necessary descriptions and reference sources. Model simulations 

revealed substantial disparities in output between the attribute data observed at the site and the defaults of the model, 20 

underscoring the critical role of site-observed attribute data and increasing the emphasis on flux tower attribute data in the 

LSM community. The dataset addresses the lack of site attribute data to some extent, reduces uncertainty in LSMs data 

source, and aids in diagnosing parameter as well as process deficiencies. The dataset is available at 

https://doi.org/10.5281/zenodo.10939725 (Shi et al., 2024).  

1 Introduction 25 

Land surface models (LSMs) simulate the exchange of carbon, water and energy fluxes between soil, vegetation and 

atmosphere, and are essential tools for comprehending and predicting mass and energy interactions between the earth's 

biosphere and atmosphere (Pitman, 2003; Williams et al., 2009). The key role of LSMs is to provide the land surface 

boundary conditions for climate and weather forecast models (Mariotti et al., 2018; Pitman, 2003), as well as uncoupled 

stand-alone runs to investigate terrestrial water resources, ecology, and carbon storage (Crow et al., 2012; Humphrey et al., 30 
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2021; Ukkola et al., 2016a). Therefore, LSMs offer valuable insights for addressing environmental issues and mitigating 

climate change. Offline (i.e., uncoupled) LSMs are forced by meteorological data including wind speed, air temperature, 

specific humidity, air pressure, precipitation, and downward longwave and shortwave radiation. Flux towers measure the 

cycling of carbon, water and energy between the biosphere and atmosphere, providing observations with meteorological data 

that can be used to force offline LSMs. These observations are characterized by high temporal resolution (typically 30 min), 35 

continuous observations, measure fluxes directly, and often over multiple years. For these, they are regarded as 

benchmarking data for LSMs calibration, evaluation, and enhancement, allowing the development of models from sub-daily 

to seasonal and interannual scales. Numerous studies have leveraged flux tower data for developing LSMs (Best et al., 2015; 

Blyth et al., 2010; Harper et al., 2021; Melton et al., 2020; Stevens et al., 2020; Ukkola et al., 2016b; Zhang et al., 2017; 

Stockli et al., 2008). However, despite their significance, flux tower data was not originally designed for LSMs. When 40 

applied to LSMs, it suffers from poor data quality and a deficiency of attribute data. 

FLUXNET2015 is currently the most widely used flux tower dataset (Pastorello et al., 2020), but substantial 

preprocessing is frequently required to ensure the reliability of meteorological forcing and flux assessment data for LSM 

applications. To reduce the repetitious data processing efforts and improve consistency, Ukkola et al. (2022) integrated three 

flux tower datasets (FLUXNET2015, La Thuile, and OzFlux), then performed screening, gap-filling, and other procedures to 45 

resolve issues such as missing data and energy balance closure (EBC) within these datasets. As a result, a dataset called 

PLUMBER2 with a total of 170 high-quality sites is tailored for LSMs. This work considered as many available flux tower 

datasets as possible and used an automated, reproducible data screening process. It's worth noting, though, that the dataset 

only performs quality checks on meteorological forcing and not on flux assessment data, to obtain more available years and 

enable models to be assessed against specific weather and climate events. Consequently, a large proportion of gap-filled flux 50 

data is present in some sites. Land surface modelers usually go through stringent quality control procedures to avoid 

misleading model evaluation results (Blyth et al., 2010; Li et al., 2019; Purdy et al., 2016). Thus, these existing gap-filled 

data still require processing. 

Most importantly, these flux tower datasets lack site-observed vegetation soil, and topography information such as 

fractional vegetation cover (FVC), Leaf Area Index (LAI), soil texture, slope and aspect. For regional and single-point 55 

modeling, the current practice involves deriving these attribute data for LSMs through the inversion of global satellite 

observations. This raises the uncertainty of LSMs and diminishes the usefulness of flux tower data as benchmarking data for 

evaluating the model. 

Uncertainty in vegetation and soil data constitutes a significant source of uncertainty in LSMs (Dai et al., 2019b; Li et 

al., 2018). Vegetation composition and density play a prominent part in modulating the surface energy budget (Bagley et al., 60 

2017; Williams and Torn, 2015), by altering canopy conductance, aerodynamic properties, and albedo, ultimately affecting 

water and energy fluxes between the surface and atmosphere (Anderson et al., 2011; Bonan, 2008). Similarly, soil texture 

directly affects various soil hydrological and thermodynamic parameters, including saturated soil water content and soil 

thermal conductivity (Arya and Paris, 1981; Minasny and McBratney, 2007), which have a great impact on soil temperature 
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and moisture, and the terrestrial carbon and water cycle (Dirmeyer, 2011; Entekhabi et al., 1996). Although recent LSM 65 

development has attempted to use site-observed attribute data to reduce uncertainty in model results (Harper et al., 2021; 

Melton et al., 2020), the data used in these studies are typically limited and not publicly available, making it challenging for 

other researchers to apply these valuable data. Generally speaking, no flux tower dataset can be used directly in the building 

of LSMs, and they frequently lack the necessary site-observed information about soil, vegetation, and other attributes. 

To provide more accurate and reliable flux tower data for LSMs modeling and validation, in this study, we conducted 70 

thorough quality control for the site data based on the PLUMBER2 dataset produced by Ukkola et al. (2022), resulting in a 

total of 90 sites. Subsequently, an extensive collection of available flux tower attribute data is carried out, drawing from 

sources such as site-related literature and websites. The attribute data is further complemented by global data products. In the 

end, we generated a flux tower dataset that can be directly applied to LSMs and contains essential attribute data. Furthermore, 

by modeling for the four most important attribute variables—percentage of plant functional type (PFT) cover (PCT_PFT), 75 

LAI, canopy height and soil texture—we demonstrate how the site-observed attribute data and the conventional attribute data 

used by LSMs differ in their model output. These results emphasize the non-negligible impact of flux tower attribute data in 

model simulation and its development. 

2 Data and Methods 

2.1 Datasets 80 

The data used in this study can be categorized into four groupings, as Table 1 illustrates. Firstly, PLUMBER2 serves as the 

dataset for data quality screening. The second group is the attribute sources, including 113 site-related literature, 7 flux 

regional networks, and the Biological, Ancillary, Disturbance, and Metadata (BADM) files provided by FLUXNET and 

AmeriFlux.  

The third category includes data sources employed for PFTs classification, incorporating 7 site-related articles, flux 85 

tower site measurements of precipitation and air temperature, global maps of the Köppen-Geiger climate classification, and 

the reprocessed MODIS Version 6.1 Leaf Area Index dataset. The Köppen-Geiger climate classification maps, presented at 

an unprecedented 1 km resolution, are derived from an ensemble of four high-resolution, topographically corrected climatic 

maps. They demonstrate higher classification accuracy and substantially more detail than previous versions. And the 

reprocessed MODIS LAI is much smoother and more consistent with adjacent values, displaying better spatiotemporally 90 

continuous and consistency.  

Finally, three global datasets were used to complement attribute data of sites lacking site-observed FVC, LAI, and soil 

texture. LAI complements still use the reprocessed MODIS LAI. FVC complements use a global 300m PFT map, 

𝑃𝐹𝑇𝑙𝑜𝑐𝑎𝑙  (Harper et al. , 2023) . 𝑃𝐹𝑇𝑙𝑜𝑐𝑎𝑙  incorporates a variety of currently available high-resolution satellite data to 

quantify the percentage of PFT in each 300 m pixel worldwide. The 300m resolution is well-matched with the regional 95 

extent of the flux tower footprint (Chu et al., 2021), providing representative FVC data. Complements of soil texture using 
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the Global Soil Dataset for Earth System Models (GSDE) (Shangguan et al., 2014). The GSDE harmonizes the data 

collected from various sources and uses a standardized data structure and data processing procedures to derive the final 

dataset. It is extensively applied in Earth system models (Dai et al., 2019a). 

2.2 Processing Methods 100 

We undertook three primary processing steps to establish the final dataset: site and time period selection, attribute collection, 

and data processing. Firstly, the data selection process involves picking years with a low gap-filled percentage for fluxes 

(latent and sensible heat) and vapor pressure deficit (VPD), while excluding sites subject to external disturbances and unable 

to go through EBC. Following that, we collected site-observed vegetation, soil, and topography data. The vegetation 

attributes included FVC, maximum LAI and mean canopy height. The soil attributes included soil texture, bulk density and 105 

organic carbon concentration. The topography attributes included elevation, slope and aspect. Besides, the reference 

measurement height (for emulating the lowest layer of the atmospheric model to which the LSM would be coupled) was 

revised by wind speed measurement height if possible. Then, we complemented the vegetation attributes and soil texture 

using global data. Finally, the FVC was further breakdown to different PFTs. Figure 1 presents a flowchart of the processing 

pipeline, with each step described in detail below. 110 

Table 1. Summary of the data sources to derive the site attribute dataset. 

Data usage Name Sources 

Site and time period 

selection 
PLUMBER2 Ukkola et al., 2022 

Attribute data 

Site descriptions in literature (113 articles) Details in Table S1 

Site regional networks (7 websites) 

𝐴𝑚𝑒𝑟𝑖𝐹𝑙𝑢𝑥𝑎; 𝐴𝑇 − 𝑁𝑒𝑢 𝑤𝑒𝑏𝑠𝑖𝑡𝑎; 

𝐶ℎ𝑖𝑛𝑎𝐹𝑙𝑢𝑥𝑐; European Fluxesd 

𝐺𝑙𝑜𝑏𝑎𝑙 𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑖𝑛𝑔 𝐿𝑎𝑏𝑜𝑟𝑡𝑎𝑡𝑜𝑟𝑦𝑒; 

𝑂𝑧𝐹𝑙𝑢𝑥𝑓; 𝑆𝑤𝑖𝑠𝑠 𝐹𝑙𝑢𝑥𝑛𝑒𝑡𝑔  

Fluxnet BADM https://fluxnet.org/ 

AmeriFlux BADM https://ameriflux.lbl.gov/ 

PFT information 

Site descriptions in literature (7 articles) Details in Table S1 

Site measurements of precipitation and air 

temperature 
Ukkola et al., 2022 

Köppen-Geiger climate classification maps Beck et al., 2018 

Reprocessed MODIS Version 6.1 LAI dataset Lin et al., 2023 

Data complement 

𝑃𝐹𝑇𝑙𝑜𝑐𝑎𝑙  PFTs maps Harper et al., 2023 

Reprocessed MODIS Version 6.1 LAI dataset Lin et al., 2023 

Global soil dataset for earth system models Shangguan et al., 2014 
a https://ameriflux.lbl.gov/, b http://www.biomet.co.at/, c http://www.chinaflux.org/, d http://www.europe-fluxdata.eu/,  

e https://www.gml.noaa.gov/, f https://ozflux.org.au/, g https://www.swissfluxnet.ethz.ch/.  
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Figure 1. Data flow diagram for the generation of the flux tower attribute dataset. 115 

2.2.1 Site and time period selection 

The PLUMBER2 dataset got 170 sites by screening meteorological data. For FLUXNET2015 and La Thuile datasets, 

specific humidity is not provided in the original data, so it was calculated from VPD (Ukkola et al., 2017). However, the 

screening process did not take into account the gap-filled situation of VPD. As mentioned earlier, it also did not screen the 

flux variables. To address these limitations, we further implemented quality control on the PLUMBER2 dataset by 120 

performing the following three steps:  

1. Sites with only one year of observations were excluded.  

2. Selected the years where the proportion of data with fluxes (latent and sensible heat) quality control (QC) ≤ 1 

exceeds 90 % (QC = 0 denotes observed data, QC = 1 represents high-quality gap-filled data in FLUXNET2015 

and La Thuile, no QC = 1 in OzFlux).  125 

3. Selected the years where the proportion of VPD QC = 0 exceeds 90 % in FLUXNET2015 and La Thuile datasets. 

 Furthermore, we excluded 23 sites that lacked ground heat flux observations because the EBC correction factor 

(𝑓𝐸𝐵𝐶) could not be calculated ( 𝑓𝐸𝐵𝐶 = (Rn - G) / (LE + H), net radiation (Rn), ground heat flux (G), latent heat flux (LE) 

and sensible heat flux (H)). Additionally, two sites were removed as they have a very low energy closure radio (EBR, 

calculated as (LE + H) / (Rn – G) according to Wilson et al. (2002)) after performing energy closure (sites FR-Lq1 and FR-130 
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Lq2, detailed in Table S3). Lastly, we excluded 10 sites that experienced external disturbances during the observation period, 

such as irrigation, deforestation, and one site impacted by a sizable body of water. In the end, we preserved non-consecutive 

years that met the criteria. This allows us to maximize the utility of valuable observational data. Details of the selected and 

excluded sites and years are displayed in Tables S2 and S3. 

2.2.2 Data collection for vegetation attributes 135 

Percent plant functional types cover 

FVC data is sourced from site descriptions in literature, regional networks, and FLUXNET BADM files. We looked for 

appropriate representations of site FVC and obtained site-observed FVC information at 53 sites. We made assumptions in 

certain sites during the FVC collection to get as much FVC data as possible, addressing scenarios as follows:  

1. For sites lacking a direct FVC representation but providing information on the percentage of vegetation flux 140 

footprint contribution or dense forest canopy basal area, we also treat them as FVC. Because FVC directly 

determines this information, and they are close numerically. 

2. In the case of grassland and cropland sites, both surface cover landscapes are usually homogeneous cover and 

manual management. Therefore, we referred to site pictures to make a judgment. If a homogeneous cover could be 

determined from the pictures, it was assigned a 100 % coverage percentage. 145 

3. There may be seasonal bare soil in some grassland sites with annual vegetation. For these sites, we used the FVC 

during the peak vegetation growth period.  

4. We treated forest litter as if it were grass since bare soil may not be present in forests. 

For data completeness, we used the 𝑃𝐹𝑇𝑙𝑜𝑐𝑎𝑙  maps to complement the data for sites lacking site-observed vegetation 

cover proportion. After that, we further breakdown the FVC data in terms of different PFTs to align with the requirements of 150 

LSMs simulation using PFTs. First, trees and shrubs were classified as evergreen or deciduous, as well as coniferous or 

broadleaf types, based on the vegetation type expressed in the data sources. Next, Köppen-Geiger climate classification maps 

are employed to categorize the climate type of PFTs using the method proposed by Poulter et al. (2011). To better represent 

the C3 and C4 grasses, we prioritize segmentation based on the data source descriptions. If site description was not available, 

then segmentation was performed using the Still et al. (2003) method, which uses flux tower air temperature, precipitation, 155 

and reprocessed MODIS Version 6.1 LAI. 

A total of 16 PFTs includes the full set of 15 PFTs initially developed by Bonan et al. (2002) supplemented with a new 

bare soil surface type. The full set of PFTs includes bare soil; Needleleaf evergreen tree, temperate (ENT_Te); Needleleaf 

evergreen tree, boreal (ENT_Bo); Needleleaf deciduous tree (DNT); Broadleaf evergreen tree, tropical (EBT_Tr); Broadleaf 

evergreen tree, temperate (EBT_Te); Broadleaf deciduous tree, tropical (DBT_Tr); Broadleaf deciduous tree, temperate 160 

(DBT_Te); Broadleaf deciduous tree, boreal (DBT_Bo); Broadleaf evergreen shrub, temperate (EBS_Te); Broadleaf 

deciduous shrub, temperate (DBS_Te); Broadleaf deciduous shrub, boreal (DBS_Bo); C3 grass, arctic; C3 grass; C4 grass; 

Crop. This PFTs classification scheme is widely utilized in LSMs. 
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Maximum leaf area index 

Maximum LAI data is sourced from site descriptions in literature and AmeriFlux BADM files. Included are the explicitly 165 

stated maximum LAI and the maximum LAI acquired from interannual scatterplots. Similarly, we made assumptions in 

certain sites to get as much data as possible. Specifically, the summertime LAI observation is used as the maximum LAI. 

And we accept LAI to be maximum when the LAI value for a single site is provided without observation time or additional 

supporting information. To distinguish such instances, we have positioned quality control flags in the final dataset. Users are 

free to select based on how accepting they are. A total of 67 site observations of maximum LAI were collected, with 33 of 170 

these sites providing information on the year of observation. For data completeness, we used the reprocessed MODIS 

Version 6.1 LAI dataset to complement the data for sites in case of site-observed maximum LAI was unavailable.  

Canopy height 

We calculated the mean canopy height over the observation period for 69 sites included in FLUXNET2015 dataset, using the 

canopy heights reported in FLUXNET BADM file across different periods. The mean canopy height provides a more 175 

truthful representation of the vegetation condition during the period of observation. For the remaining 21 sites, the canopy 

height provided by PLUMBER2 was used. 

2.2.3 Data collection for soil attributes 

Soil texture 

Soil texture data is sourced from site descriptions in literature, regional networks, and AmeriFlux BADM files. These 180 

descriptions encompass both explicitly stated the percentages of sand, silt, and clay and the different types of soil textures, 

such as sandy loam. The latter does not directly give the percentages of sand, silt, and clay. So, we referred to the soil 

composition table shown by Dy and Fung (2016), enabling the derivation of specific proportions. The table classifies soil 

into 16 categories based on the proportions of sand, silt, and clay.  In total, 72 site observations of soil texture were collected, 

with 34 supplying information on the depth of observations. For data completeness, we used the GSDE dataset to 185 

complement the data for sites lacking site-observed soil texture.  

Soil bulk density and organic carbon concentration 

Soil bulk density and organic carbon concentration data are sourced from site descriptions in literature, regional 

networks, and AmeriFlux BADM file. Specifically, soil bulk density data were collected at 37 sites, and soil organic carbon 

concentration at 23 sites. At 32 and 22 sites, respectively, the observation depth was given. Despite the scarcity of site-190 

observed data for these two soil attributes, we have included them in the final dataset. For site-specific studies, they can 

provide useful references for researchers. 

2.2.4 Data collection for topography attributes 

The topography data encompasses site elevation, slope and aspect. These data are gathered from site descriptions in literature, 

regional networks, FLUXNET and AmeriFlux BADM files. Specifically, we acquired elevation for 89 sites, slope for 57 195 
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sites, and aspect for 49 sites from these reference sources. In the AU-Lit site, where site elevation data was unavailable from 

the aforementioned references, we used the elevation given in Ukkola et al. (2022). 

2.2.5 Reference measurement height 

Site descriptions in literature, regional networks, FLUXNET and AmeriFlux BADM files are all sources of the reference 

measurement height. From these sources. we look for the height of wind speed measurement or the height of instrument used 200 

to wind speed measurements (such as the wind cup). In instances where flux tower meteorological observation equipment 

lacks an individual wind speed observation apparatus, we suppose the use of three-dimensional sonic anemometer for wind 

speed measurements. As a result, wind observation heights are available for a total of 76 sites. For the remaining 14 sites 

where wind observation heights were not reported, we used flux observation height as a substitute. 

2.3 Modeling assessment of attribute data 205 

The impact of collected attributes on carbon, water, and energy fluxes is assessed through single-point simulations using the 

Common Land Model (CoLM) (Dai et al., 2003). We used its latest version, CoLM202X (https://github.com/CoLM-

SYSU/CoLM202X/tree/master, last access: 21 November 2023). Here, the simulations aim to evaluate the discrepancies in 

model results between using attributes observed at the site and commonly utilized by LSMs. For simplicity, we refer to site-

observed data as "site data" and data commonly utilized by LSMs as "default data" in subsequent descriptions. We focus on 210 

the four most essential attributes, PCT_PFT, LAI, canopy height and soil texture, to demonstrate their corresponding impacts.  

The default data generally rely on global LAI and soil texture mapping products, lookup table canopy height, and site 

IGBP (International Geosphere–Biosphere Programme) classifications to characterize surface vegetation and soil conditions. 

In this study, the default LAI and soil texture refer to the reprocessed MODIS version 6.1 LAI and GSDE soil texture as 

shown in Table 1. Lookup table canopy heights are sourced from CoLM, while site IGBP classifications are obtained from 215 

FLUXNET and OzFlux. We chose ten sites for each of the attributes—LAI, canopy height, and soil texture—where site data 

differ the most from default data (In the lookup table canopy height simulations, sites with zero plane displacement 

exceeding reference measurement height are excluded.). For PCT_PFT analyses, sites with IGBP types that are a 

combination of trees and grasses (OSH, WSA, SAV) were chosen, resulting in six available sites. These sites were simulated 

to show the respective impact of different attributes in model results. Table 2 provides an overview of the chosen sites along 220 

with their corresponding attribute information. 

At each site, we run CoLM at either half-hourly or hourly resolution, depending on the data available, for all years in 

the original dataset. Subsequent analyses are conducted exclusively for the years we have chosen. To reach an equilibrium in 

soil moisture and temperature, the first year of atmospheric forcing data was cycled. CoLM was recursively run at each site 

using a 20-year spin-up. The discrepancy of site data relative to default data is compared by an ensemble of climate-related 225 

variables, including latent heat (LE), sensible heat (H), net radiation (Rn), upward shortwave radiation (SWup), gross 

primary production (GPP), friction velocity (Ustar), surface(0-4.5cm) soil water content (SWC), and total runoff (TR). 
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To quantify differences between output from the site and default data, and considering the seasonal fluctuations in the 

impacts of soil and vegetation on climate-related variables (Dirmeyer, 2011; Forzieri et al., 2020). We designed a statistical 

indicator called the percentage of mean difference (MD %) (Eq. 1), which is calculated as the mean difference in each month 230 

expressed as a percentage of the observed or default modeled mean for the year. Multi-year average time series are used here 

to capture more stable differences in output. In addition, we used delta root mean squared error (∆RMSE) (Eq. 3) and ∆|Bias| 

(Eq. 5) to measure the difference in RMSE and Bias of the output between site and default data, enabling us to assess the 

model's performance after using site data. 

 𝑀𝐷 % =

{
 
 

 
 |

1

𝑛
∑ (𝑀𝑜𝑑𝑠𝑖𝑡𝑒,𝑖− 𝑀𝑜𝑑𝑑𝑒𝑓𝑎𝑢𝑙𝑡,𝑖)
𝑛
𝑖=1 |

1

365
∑ 𝑂𝑏𝑠𝑗
365
𝑗=1

, 𝑓𝑜𝑟 𝐿𝐸, 𝐻, 𝑅𝑛, 𝑆𝑊𝑢𝑝, 𝐺𝑃𝑃, 𝑎𝑛𝑑 𝑈𝑠𝑡𝑎𝑟

|
1

𝑛
∑ (𝑀𝑜𝑑𝑠𝑖𝑡𝑒,𝑖− 𝑀𝑜𝑑𝑑𝑒𝑓𝑎𝑢𝑙𝑡,𝑖)|
𝑛
𝑖=1

1

365
∑ 𝑀𝑜𝑑𝑑𝑒𝑓𝑎𝑢𝑙𝑡,𝑗
365
𝑗=1

, 𝑓𝑜𝑟 𝑆𝑊𝐶 𝑎𝑛𝑑 𝑇𝑅

     (1) 235 

 RMSE = √
∑ (𝑀𝑜𝑑𝑖−𝑂𝑏𝑠𝑖)

2𝑛
𝑖

𝑛
 (2) 

 ∆RMSE = 𝑅𝑀𝑆𝐸𝑠𝑖𝑡𝑒 − 𝑅𝑀𝑆𝐸𝑑𝑒𝑓𝑎𝑢𝑙𝑡 (3) 

 Bias = 
∑ ((𝑀𝑜𝑑𝑖−𝑂𝑏𝑠𝑖)
𝑛
𝑖

𝑛
 (4) 

 ∆|Bias| = |𝐵𝑖𝑎𝑠𝑠𝑖𝑡𝑒| − |𝐵𝑖𝑎𝑠𝑑𝑒𝑓𝑎𝑢𝑙𝑡| (5) 

Where 𝑀𝑜𝑑𝑠𝑖𝑡𝑒,𝑖  and 𝑀𝑜𝑑𝑑𝑒𝑓𝑎𝑢𝑙𝑡,𝑖  are the predicted value using site data and default data, respectively. 𝑂𝑏𝑠𝑗  is 240 

observed value. n is the number of paired values. 𝑅𝑀𝑆𝐸𝑠𝑖𝑡𝑒  and 𝑅𝑀𝑆𝐸𝑑𝑒𝑓𝑎𝑢𝑙𝑡  are the RMSE of the simulation results using 

site data and default data, respectively. 𝐵𝑖𝑎𝑠𝑠𝑖𝑡𝑒 and 𝐵𝑖𝑎𝑠𝑑𝑒𝑓𝑎𝑢𝑙𝑡  also correspond to the Bias in these results. 
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Table 2. Selected sites and their attribute values used in the modeling assessment for attribute data. The suffix "default" is 

for model default data, and the "site" represents site data. 

Site LAI_defaulta (m2/m2) LAI_siteb (m2/m2) Site TEX_defaultc TEX_siteb 

US-KS2 6.6 (2005e) 2.7 (2005) IT-Cpz 33/45/22 87/8/5 
DK-Lva 3.1 (2004) 6.9 DE-Gri 52/29/20 10/81/9 

DE-Bay 3.6 6.5 FI-Sod 52/25/20 92/5/3 

US-Goo 4.5 2.0  ES-LMa 49/24/24 80/11/9 
DE-Seh 3.2 (2009) 5.9 (2009) AU-Cpr 64/18/18 94/4/2 

US-GLE 1.5 3.8 SD-Dem 67/18/14 96/4/0 
US-Moz 6.1 (2006) 4.0 (2006) CZ-wet 39/37/32 10/85/5 

DE-Gri 6.5 (2004) 4.4 (2004) AU-DaP 63/18/19 92/5/3 

IT-Cpz 5.4 3.5  AU-DaS 63/12/25 92/5/3 
US-MMS 7.0 5.2  IT-SRo 69/17/15 95/4/1 

Site 𝑯𝒄𝒂𝒏_defaultd (m) 𝑯𝒄𝒂𝒏_siteb (m) Site IGBP PCT_PFT_siteb 

IT-Cpz 35 14.3 AU-How WSA EBT_Tr/DBS_Te/C4 : 50/25/25 
BE-Vie 17 33.7 ES-LMa SAV EBT_Te/C3 : 20/80 
AU-Lit 35 20.0 SD-Dem SAV EBT_Tr/C3/C4 : 10/27/63 

DE-Hai 20 33.9 US-SRM WSA DBS_Te/C3/C4 : 35/43/22 
IT-Ren 17 29.0 US-Ton WSA EBT_Te/C3 : 40/60 

DE-Tha 17 28.4 US-Whs OSH Bare/DBS_Te/C3 : 39/51/10 

IT-Lav 17 28.0     

US-Ton 20 9.9     

RU-Fyo 17 26.3     

CH-Dav 17 25     

a The maximum LAI at the pixel containing the site provided by Reprocessed MODIS version 6.1 LAI. b Site-observed data 255 

collected in this study. c Soil texture (sand/silt/clay) at the site location extracted from the GSDE dataset. d Canopy height of 

the dominant vegetation type at the site from the CoLM lookup table. e Specific year of maximum LAI. 
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Figure 2. Summary of selected sites and collected site-observed attribute data. (a) A map of selected sites and their IGBP 

types. (b) A histogram of site numbers for selected sites. (c) Number of selected sites per IGBP vegetation class. (d) Number 260 

of collected site-observed attribute data for PCT_PFT, maximum LAI (LAI), mean canopy height (𝐻𝑐𝑎𝑛), soil texture (TEX), 

bulk density (BD) and organic carbon concentration (OC), elevation (Elev), slope, aspect, and wind reference measurement 

height (𝐻𝑟𝑒𝑓).  
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3 Results 265 

3.1 Global distribution and attribute information of selected sites 

The final dataset contains 90 globally distributed sites (Fig. 2a). The majority are in North America and Europe, followed by 

Australia, with smaller representations in Asia (3 sites) and Africa (1 site). Temporal coverage spans from 1997 to 2017, 

totaling 475 site years. Individual site observations range from 1 to 17 years, with a median of 4 years (Fig. 2b). Despite a 

reduction in available sites and years due to thorough quality control, the dataset does offer reliable meteorological forcing 270 

and flux assessment data for LSMs. Furthermore, 90 sites encompass the full range of IGBP classifications originally 

presented, cover a wide spread of biomes, from grasslands and savannas to forest ecosystems (Fig. 2c). This enables users to 

evaluate models across various biomes using quality-benchmarked flux tower observations. 

Out of the 90 sites, data were collected on the PCT_PFT for 53 sites, maximum LAI for 67 sites, average canopy height 

for 69 sites, soil texture for 72 sites, soil bulk density for 37 sites, concentration of soil organic carbon for 23 sites, elevation 275 

for 89 sites, slope for 57 sites, aspect for 49 sites, as well as wind observation height at 76 sites (Fig. 2d). In the absence of 

site-observed PCT_PFT, TEX, and LAI, we opted for appropriate global data to complement them for data completeness. To 

improve data utilization, we offer the observation year of maximum LAI and the depth of soil texture, which were availed at 

33 and 34 sites, respectively.  

Figure 3. The discrepancies between site data and default data of (a) PCT_PFT (the asterisk indicates non-single PFTs), (b) 280 

maximum LAI, (c) canopy height (𝐻𝑐𝑎𝑛), and (d) the percentage of sand. 

https://doi.org/10.5194/essd-2024-77
Preprint. Discussion started: 10 April 2024
c© Author(s) 2024. CC BY 4.0 License.



13 

 

Figure 3 depicts the discrepancies between site data and default data for PCT_PFT, maximum LAI, canopy height, and 

soil texture. The PCT_PFT has non-single PFTs at 34 sites, offering a more accurate representation of the vegetation 

conditions compared to IGBP classifications. As for LAI, canopy height, and soil texture, variations between site data and 

default data are substantial in certain sites. Specifically, at 31 sites, there is a discrepancy in LAI values exceeding 1 m2/m2, 285 

and canopy height differing by over 10 meters at 15 sites, with the disparity in sand % exceeding 20 % at 18 sites. 

 

3.2 The flux tower site attribute dataset 

The final dataset is formatted in NetCDF (Network Common Data Form). Table 3 outlines the attribute variables and 

corresponding supporting descriptions for each site in the file.  These attributes can be categorized into vegetation, soil, and 290 

topography attributes, reference heights, and filtered high-quality years.  

For the maximum LAI, the file furnishes the range of years for maximum LAI, and the maximum for a specific year. 

Regarding three soil attributes, soil texture, bulk density, and organic carbon concentration, the file provides attribute values 

for multiple soil layers and gives the specific depth of their corresponding soil layer.  

Concerning reference height, we give its corresponding observed variable, i.e., wind speed or fluxes (latent and sensible 295 

heat). Additionally, the NetCDF file incorporates reference sources for each attribute. These sources are included to facilitate 

access to the original data and flexibility in application. A comprehensive summary of these reference sources is provided in 

Table S1.  

Table 3. Attribute variables and auxiliary descriptions provided in the final dataset (note that not all sites provide ‘Soil_BD’, 

‘Soil_OC’, ‘Slope’, and ‘Aspect’). 300 

Variable (Dimension) Long name Unit Description 

PCT_PFT (pft=16)  Percent plant functional types cover  % Sourcea; 

LAI_Max Maximum leaf area index  m2/m2 
Source; year_rangeb; 

LAI_Max_yearc 

Canopy_height Canopy height  m Source; 

Soil_TEX (particle_size=3, soil_layer=4)  Soil texture(sand/silt/clay)  % Source; layer_n_depthd 

Soil_BD (soil_layer=4)  Soil bulk density  g cm-3  Source; layer_n_depthd 

Soil_OC (soil_layer=4)  Soil organic carbon concentration  %  Source; layer_n_depthd 

Elevation Site elevation m Source; 

Slope Site slope - Source; 

Aspect Site aspect - Source; 

Reference_height Measurement height of wind speed or flux  m 
Source; Measurement 

variable (Wind or Flux) 

year_qc (year=21)  Selected year of high-quality data  - - 
a The sources of collected attribute data. b Range of years with maximum LAI. c Maximum LAI for specific year. d The "n" 

ranges from 1 to 4, denoting the four soil layers in ascending order of depth. The parameter "layer_n_depth" indicates the 

depth of respective "soil layer", corresponding to the depth at which soil data is observed. 
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3.3 Impact of site attributes on modeling 

The impacts of altering land surface representation from default data to site data, quantified by MD %, on LE, H, Rn, SWup, 305 

GPP, Ustar, SWC, and TR are shown in Fig. 4. It distinctly demonstrates how vegetation and soil components affect carbon, 

water, and energy to varying degrees, contingent on the season. The influence of vegetation cover, soil texture, and LAI on 

LE and H is primarily felt in the spring and summer. The opposite was true for canopy height, which produced the most 

substantial effects in autumn and winter. The impact of vegetation cover on Rn and SWup remains more consistent 

throughout the year, whereas LAI maintains a more pronounced effect in spring and summer. In terms of GPP, attribute 310 

factors play a more significant role during the summertime. But the effects of vegetation and soil on Ustar appear to be 

independent of season. For SWC and TR, both are predominantly influenced by soil texture. The difference is that soil 

texture significantly affects SWC across all seasons, whereas its impact on TR occurs primarily during the summer and fall. 

Additionally, it was noted that vegetation cover could have a significant change on TR. This is due to the salient impact at 

the SD-Dem site, situated within the African savannah with an average annual precipitation of 320mm (Ardö et al., 2008). 315 

To elucidate the magnitude of each attribute's impact on different variables, figure 5 further displays the monthly 

average maximum MD %. On average, the impacts of four attributes—PCT_PFT, LAI, canopy height, and soil texture—on 

LE and H were comparatively equilibrated. Their monthly average maximum MD % on H are all in the range of 15-30 %. 

And the effect of soil texture on LE is relatively significant, at 17.5 %. Moving on to Rn, vegetation cover emerges as the 

chief influencer with a monthly average maximum MD % of 8.5 %. In contrast, SWup is heavily dictated by LAI, at 52.8 % 320 

because of the exceptionally high value at the US-GLE site. The vegetation cover and LAI, with a monthly average 

maximum MD % of more than 50 %, dominate the changes of GPP. Since soil texture affects permeability, aeration, and the 

ability of the soil to hold water and nutrients, it also has a visible impact on GPP. On the other hand, Ustar is almost 

exclusively shaped by vegetation cover and canopy height. This makes sense because the intensity of land-atmosphere 

exchange in vegetated areas is directly tied to canopy height, and changes in vegetation cover typically correspond to 325 

changes in canopy height. Concerning SWC and TR, vegetation cover and soil texture are two crucial attributes. Soil texture 

exhibited monthly average maximum MD % of 46.8 % and 147.9 % for each, while vegetation cover showed 22.6 % and 

278.8 %, respectively. 

Figure 6 uses ∆RMSE and ∆|Bias| to show the shifts in model performance using site data. The incorporation of site-

observed attribute data significantly improves the simulation of Rn, SWup, and Ustar. Specifically with respect to individual 330 

attributes, the PCT_PFT proves helpful for modeling both Rn and SWup. Concurrently, the inclusion of site LAI also 

contributes to the enhancement of SWup. Enhancements to these fundamental energy terms contribute to more accurate 

modeling of latent and sensible heat. Furthermore, the use of site LAI and canopy height demonstrates steady improvements 

on GPP and Ustar, respectively. 

In summary, these results underscore the significant impact and importance of incorporating site-observed attribute data 335 

in the simulation of carbon, water, and energy fluxes in LSMs. 

https://doi.org/10.5194/essd-2024-77
Preprint. Discussion started: 10 April 2024
c© Author(s) 2024. CC BY 4.0 License.



15 

 

 

Figure 4. The percentage of mean difference (MD %) of PCT_PFT, LAI, canopy height (𝐻𝑐𝑎𝑛) and soil texture (TEX) on 

LE, H, Rn, SWup, GPP, Ustar, SWC and TR for each season, respectively. The error bars indicate a standard deviation from 

the multi-site mean. Monthly adjustments for southern hemisphere sites in calculations, to ensure consistency between 340 

seasons and months in multi-site averaging (i.e., DJF are considered to be JJA, MAM are considered to be SON, and so on.). 

 

Figure 5. The monthly average maximum MD % of PCT_PFT, LAI, canopy height (𝐻𝑐𝑎𝑛) and soil texture (TEX) on LE, H, 

Rn, SWup, GPP, Ustar, SWC and TR, respectively. The month with the maximum is indicated in parentheses. 
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 345 

Figure 6. Box plot of changes in RMSE (∆RMSE) and absolute Bias (∆|Bias|) when using site data versus default data. 

PCT_PFT, LAI, 𝐻𝑐𝑎𝑛 (Canopy height), and TEX (soil texture) denote the individual impacts of the four attributes. 

All_attributes represent the changes produced by four attributes together across the 36 sites selected. Boxes (25th and 75th 

percentiles) and whiskers (5th and 95th percentiles), with median (black line) and mean (black triangle). Solid circles denote 

outliers for values greater than 1.5 times the interquartile range from the nearest 25th or 75th percentile. 350 

 

Figure 7. Multi-year daily average of the seasonal cycle of model (default, site) and observed LE, H, SWup, and GPP at 8 

selected sites, smoothed with a 14-day moving average for clarity.  
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4 Discussion 

In land surface community, flux tower attribute data is currently not given enough attention. Here, we have acquired 90 sites 355 

with dependable quality by comprehensive selection, and provided data on vegetation, soil, and topography attributes 

observed at the site. Through single-point simulations, we illustrated their indispensable role in LSM development. Accurate 

attribute data will provide multiple benefits by lowering uncertainty in model single-point calibration and evaluation. 

After selection, fewer sites and years are available. However, the retained data offers trustworthy observations that can 

be directly applied. Data quality is generally the focus of model calibration and evaluation, and developing LSMs can benefit 360 

immensely from the usage of a modest number of sites (Brooke et al., 2019; Harper et al., 2021; Swenson et al., 2019). 

These updates will therefore help the model's evolution. To collect more site-observed attribute data, while taking into 

account the diversity described within the same attribute data, particularly the percentage of vegetation cover. We made a 

few approximations and assumptions in the data collection procedure. Although these methods may introduce slight 

deviations from the genuine values, they do a good job of reproducing the surface conditions of these sites. Furthermore, we 365 

provide descriptions of the attribute data as detailed as possible. For instance, the year and depth of observation are given 

along with the maximum LAI and soil texture whenever feasible, respectively. They are valuable references for data 

applications. One might argue that the auxiliary descriptions are just as important as the attribute data itself. 

Using CoLM at 36 sites, we evaluated the impacts of PCT_PFT, LAI, canopy height, and soil texture on model results. 

What is conducted here is not an ideal experiment, but rather an actual demonstration of the discrepancies in model results 370 

between site data and default data. According to the results, which are in line with earlier research (Dai et al., 2019b), 

vegetation cover appreciably affects each of the eight variables examined. And among the four attributes, net radiation was 

the most affected by vegetation cover (Fig. 5). This is due to the cover of plants being the most noticeable surface feature, 

directly changing surface energy absorption. The net radiation simulation was enhanced using the site PCT_PFT, but the 

latent and sensible heat did not perform as well. This may be related to the model's previous development and evaluation, 375 

which was mostly centered on the IGBP classifications (Dai et al., 2019c; Zhang et al., 2017; Zhu et al., 2017). Notably, unit 

LAI variations elicit more substantial fluctuations in fluxes at lower LAI values (usually less than 2 m2/m2), according to 

Launiainen et al. (2016). In light of that, all of the sites we chose have LAI values greater than 2 m2/m2, except US-GLE, the 

impact of LAI obtained here are relatively minor. 

Additionally, we find that the impact of attributes is substantially associated with precipitation. As illustrated in the 380 

average seasonal cycle shown in Fig. 7, the AU-How site in Australia along with ample rainfall during wet season, and the 

increase in surface available energy due to vegetation cover brings about a significant increase in LE. In contrast, since 

limited water is available for evapotranspiration at the SD-Dem site, H is the primary feedback from changes in surface 

energy. The results from the US-KS2 and US-GLE sites indicate that the growing season, synchronized with water 

availability, is when LAI exerts a major influence on GPP. And a notable variation in SWup was seen at the US-GLE site, 385 

attributed to the presence of snow cover (Berryman et al., 2018). Corrections to LAI can improve the simulation by reducing 
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albedo inaccuracies. This corroborates the Essery (2013) point that inadequate land-cover data was largely to blame for the 

uncertainty in the climate–snow albedo feedback in LSMs. Results from the IT-Cpz and BE-Vie sites suggest that 

differences in the intensity of land-air exchange, caused by variations in canopy height, are truly reflected in LE during the 

rainy season. Regarding soil texture, a comparison of results between FI-Sod and AU-Cpr sites revealed stronger control of 390 

LE by soil texture during the period of high precipitation intensity. This is partly attributed to increased water availability 

and largely to the full realization of differences in soil infiltration capacity under high-intensity precipitation. 

A previous study viewed that attribute data have little effect on model results (Ménard et al., 2015). Its study, however, 

may lack representativeness since it was limited to one site. Furthermore, it averaged differences resulting from attribute data 

across the whole time series, by using the raw RMSE and correlation coefficient statistics metrics. This does make it difficult 395 

to detect the crucial role of attribute data. As described in Sect. 3.3, the impacts of attribute data on climate-related variables 

occur mostly during the growing season.  

By combining multiple data sources, we were able to maximize the available site-observed attribute data. Nevertheless, 

the data sources were published works, leading to deficiencies for certain sites. And the attribute data we collected focused 

on fundamental soil and vegetation information. Future endeavors will call for the incorporation of additional surface 400 

parameters, such as irrigation, wildfire, and the depth of soil moisture and vegetation root, which are demanded for LSMs. 

These collections of site attributes are low-cost but would strongly benefit model enhancement. In addition, the impact of 

attribute data on model results was simulated using one model, potentially limiting the representativeness of our findings.  

As LSM continually advances its scheme and process, an increasing array of surface parameters will be incorporated, 

elevating the model to a heightened level of sophistication. It is imperative that these parameters be clarified. Working with 405 

site-observed attribute data enabled us to narrow down reasons for model biases, facilitating perception of the authentic 

feedback with diverse schemes and processes. 

5 Data availability 

The flux tower site attribute dataset provides comprehensive filtered high-quality years, site-observed vegetation, soil, 

topography attributes, and reference measurement height. Each site's data is formatted within a NetCDF file named 410 

according to the site name, database, and attributes (vegetation, soil, topography, and reference height), such as ‘AT-

Neu_FLUXNET2015_Veg_Soil_ Topography_ReferenceHeight.nc’. The dataset comprises a total of 90 NetCDF files and 

can be accessed at Zenodo under https://doi.org/10.5281/zenodo.10939725 (Shi et. al., 2024).  

 

https://doi.org/10.5194/essd-2024-77
Preprint. Discussion started: 10 April 2024
c© Author(s) 2024. CC BY 4.0 License.



19 

 

6 Code availability 415 

The processing codes are available at https://github.com/Mbnl1197/Flux-tower-attribute-for-LSM (last access: 2 March 2024)  

(DOI: https://doi.org/10.5281/zenodo.10939950; Shi et. al., 2024) 

7 Conclusions 

This study is centered on two issues with utilizing flux tower data in LSMs, including inadequate quality of data and 

insufficient site attribute data. We performed a comprehensive quality control on flux tower data. Through the examination 420 

of observation percentage, energy balance closure, and external disturbances, 90 high-quality flux tower sites with 475 site 

years were produced. Combining various data sources, we created a flux tower attribute dataset through data collection, 

processing, and complementarity. The site-observed PCT_PFT, maximum LAI, mean canopy height, soil texture, bulk 

density and organic carbon concentrations, site elevation, slope and aspect were collected, and wind speed measurement 

height was acquired.  425 

Furthermore, the attribute data collected in this study and frequently used by LSMs are incorporated in single-point 

modeling respectively, aimed at quantifying the differences in model output. Our results demonstrate the significance of 

certain attributes in the variation of specific variables. All four attributes significantly influence both latent and sensible heat. 

Their monthly average maximum MD % typically ranges from 10 % to 30 %. Vegetation cover and LAI serve as the primary 

controls for net radiation and upward shortwave radiation, respectively, with monthly average maximum MD % of 8.5 % 430 

and 52.8 %. Both GPP and Ustar were strongly influenced by vegetation cover, with LAI and tree height also exerting 

significant effects on GPP and Ustar, respectively. The monthly average maximum MD % for each of these impacts exceeds 

50 %.  For hydrologic variables, i.e., SWC and TR, soil texture typically holds greater significance, followed by vegetation 

cover. We reveal that the magnitude of these differences is usually accompanied by seasonal fluctuations. Particularly 

regarding fluxes and GPP, greater discrepancies are generally discerned during spring and summer. These results stress the 435 

necessity of site-observed attribute data in the development of LSMs.  

Our endeavors mitigate the inadequacies of flux tower attribute data, elevating the ability of flux tower data to serve as 

benchmarking data for LSMs. The dataset provides relatively complete site attribute data and high-quality flux validation 

data, which can be directly used as inputs and simulation validation for LSMs. This facilitates the comparison of LSM 

simulations under the same standard framework, promoting their development. Moreover, this effort will draw more 440 

attention to flux tower attribute data from the land surface modeling community and foster communication between ecology 

and modeling. 

 

 

 445 
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