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Abstract. Land surface models (LSMs) requireshoutd-have reliable forcing, validation, and surface attribute data as the

foundation for effective model development and improvement. Eddy covariance flux tower data are widely regarded as

censidered-the benchmarking-data for LSMs. However, currently available flux tower datasets often require multiple aspects
of processing to ensure data quality before application to LSMs. More importantly, these datasets frequently lack site-
observed attribute data, such as fractional vegetation cover and leaf area index, which limits their utility as benchmarking
data.Hmiting—their—use—as—benchmarking—data- Here, we conducted a comprehensive quality screening of the existing

reprocessed flux tower dataset, including the proportion of gap-filled data, energy balance closure (EBC), and external

disturbances such as irrigation and deforestation,external-disturbances—and-energybalance—closure(EBC); leading to 90
high-quality sites. For these sites, we collected vegetation, soil, and topography infermationdata, and-as well as wind speed,

temperature, and humidity measurement heights from literature, regional networks, and Biological, Ancillary, Disturbance,

and Metadata (BADM) files. We then compiled the final flux tower attribute dataset by filling in missing attributes with
global data and classifying plant functional types (PFTs) i i i

. This dataset is provided in NetCDF format
complete-with necessary descriptions and reference sources. Model simulations revealed substantial disparities in output
between the attribute data observed at the site and those commonly used by L SMsthe-defautts-ef-the-model, underscoring the

critical role of site-observed attribute data and increasing the emphasis on flux tower attribute data in the LSM community.
The dataset addresses the lack of site attribute data-to some extent, reduces uncertainty in LSMs data source, and aids in
diagnosing parameter as well as process deficiencies. The dataset is available at
https://doi.org/10.5281/zenodo.12596218hitps://dei-ergit0-5281/zenede-10939725 (Shi et al., 2024).
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1 Introduction

Land surface models (LSMs) simulate the exchange of carbon, water and energy fluxes between soil, vegetation and
atmosphere, and are essential tools for comprehending and predicting mass and energy interactions between the earth's
biosphere and atmosphere (Pitman, 2003; Williams et al., 2009). The key role of LSMs is to provide the land surface
boundary conditions for climate and weather forecast models (Mariotti et al., 2018; Pitman, 2003), as well as uncoupled
stand-alone runs to investigate terrestrial water resources, ecology, and carbon storage (Crow et al., 2012; Humphrey et al.,
2021; Ukkola et al., 2016a). Therefore, LSMs offer valuable insights for addressing environmental issues and mitigating
climate change. Offline (i.e., uncoupled) LSMs are forced by meteorological data including wind speed, air temperature,
specific humidity, air pressure, precipitation, and downward longwave and shortwave radiation. Flux towers measure the
cycling of carbon, water and energy between the biosphere and atmosphere, providing observations with meteorological data
that can be used to force offline LSMs. These observations are characterized by high temporal resolution (typically 30 min),
continuous observations, direct flux measurementsmeasure—fluxes—directly, and often ever-span multiple years. For these

reasons, they are regarded as benchmarking data for LSMs calibration, evaluation, and enhancement, enabling model
developmentaHewing-the-development-of-medels from sub-daily to seasonal and interannual scales. Numerous studies have
leveraged flux tower data for developing LSMs (Best et al., 2015; Blyth et al., 2010; Harper et al., 2021; Melton et al., 2020;
Stevens et al., 2020; Ukkola et al., 2016b; Zhang et al., 2017; Stockli et al., 2008). However, despite their significance, flux
tower data were was-not originally designed for testing and validating LSMs. When applied to LSMs, these datasets suffer
from poor data quality and a deficiency of site attribute data.it-suffers-from-poor-data-gquality-and-a-deficiency-ofattribute
data:

FLUXNET2015 is currently the most widely used flux tower dataset (Pastorello et al., 2020) . However-but substantial

preprocessing is frequently required to ensure the reliability of meteorological forcing and flux assessment data for LSM
appheations. To reduce the-repetitious data processing efforts and improve consistency, Ukkola et al. (2022) integrated three
flux tower datasets (FLUXNET2015, La Thuile, and OzFlux); and then performed screening, gap-filling, and other
procedures to resolve issues such as missing data and energy balance closure (EBC)-within-these—datasets. This effort
resulted inAs—aresult; a dataset called PLUMBER?2, comprisingwith-a-tetal-ef 170 high-quality sites is tailored for LSMs.
This work considered as many available flux tower datasets as possible and used an automated, reproducible data screening
process. However, H's-worth-noting—theugh—that-the PLUMBER? dataset only performs quality checks on meteorological

forcing_data, and-not on flux assessment data, to obtain more available years of data and enable models to be assessed

against specific weather and climate events. Consequently, a large proportion of gap-filled flux data is present in-at some
sites. Land surface modelers typically employusuathy-ge-threugh stringent quality control procedures to avoid misleading
model evaluation results (Blyth et al., 2010; Li et al., 2019; Purdy et al., 2016). ThereforeFhus, these existing gap-filled data

still require further processing.




65

70

75

80

85

90

Most importantly, these flux tower datasets lack site-observed vegetation, soil, and topography infermatien-data such as
fractional vegetation cover (FVC), Leaf Area Index (LAI), soil texture, slope and aspect. For regional and single-point
modeling, the current practice invehwes—derivingusually involves obtaining these attribute data for LSMs through the
inversion of global satellite observations. This approach introduces additionalraises—the uncertainty ef-into LSMs and
diminishes the utility usefulness-of flux tower data as benchmarking data for-evaluating-the model evaluation.

Uncertainty in vegetation and soil data constitutes a significant source of uncertainty in LSMs (Dai et al., 2019b; Li et

al., 2018). Vegetation composition and density play a prominent role part-in modulating the surface energy budget (Bagley et
al., 2017; Williams and Torn, 2015), by altering canopy conductance, aerodynamic properties, and albedo, ultimately
affecting water and energy fluxes between the surface and atmosphere (Anderson et al., 2011; Bonan, 2008). Similarly, soil
texture directly influences affeets-various soil hydrological and thermodynamic parameters, including saturated soil water
content and soil thermal conductivity (Arya and Paris, 1981; Minasny and McBratney, 2007) . These parameters;which have

a substantial great-impact on soil temperature and moisture, as well as and-the terrestrial carbon and water cycle (Dirmeyer,
2011; Entekhabi et al., 1996). Although recent LSM development has attempted to use site-observed attribute data to reduce
uncertainty in model results (Harper et al., 2021; Melton et al., 2020), the data used in these studies are typically limited and
not publicly available, making it challenging for other researchers to apply these valuable data. Generally speaking, no flux
tower dataset can be used directly in developing the-buiding-ef-LSMs, and they frequently lack the necessary site-observed
information about soil, vegetation, and other attributes.

To provide more accurate and reliable flux tower data for LSMs modeling and validation—n-this-study, we conducted
thorough quality control for the site data based on the PLUMBER?2 dataset produced by Ukkola et al. (2022), resulting in a
total of 90 sites. Subsequently, we carried out an extensive collection of available flux tower attribute data-is—carried-out,
drawing from sources such as site-related literature and websites. WeFhe-attribute-data-is further complemented the attribute
data with by-global data-preducts. As a resultir-the-end, we generated a flux tower dataset that can be directly applied to
LSMs and contains essential attribute data. Furthermore, through modeling comparison for the four key attribute variables—

percentage of plant functional type (PFT) cover (PCT PFT), LAI, canopy height, and soil texture—we demonstrate how the

outputs differ between site-observed attributes and the default attribute data employed by an LSM. These results emphasize
the non-negligible impact of flux tower attribute data on model simulation and development.Furthermore—by-modelingfor
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2 Data and Methods
2.1 Datasets

The data used in this study can be categorized into four groupsgreupings, as—Fable—% illustrateds in Table 1. Firstly,
PLUMBER? serves as the dataset for data quality screening. The second group comprisesis-the attribute sources, including
113 site-related literature, seven 7-flux regional networks, and the Biological, Ancillary, Disturbance, and Metadata (BADM)
files provided by FLUXNET and AmeriFlux.

The third category includes data sources employed for PFTs classification, incorporating 7 site-related articles_for

C3/C4 classification, flux tower site measurements of precipitation and air temperature, global maps of the K&pen-Geiger

climate classification, and the reprocessed MODIS Version 6.1 Leaf Area Index dataset. The K&ppen-Geiger climate
classification maps, presented at an-unprecedented-1 km resolution, are derived from an ensemble of four high-resolution,
topographically corrected climatic maps. They demonstrate higher classification accuracy and substantially more detail than

previous versions. The reprocessed MODIS LAI used the modified temporal spatial filter (mTSF) method for simple data

assimilation, then applied the post processing-TIMESAT (a software package to analyze time-series of satellite sensor data)
Savitzky—Golay (SG) filter to obtain the result. Site LAI validation shows that the reprocessed MODIS LAI is much

smoother and more consistent with adjacent values than the original MODIS LAI, and closer to site observations (Lin et al.,

Finally, three global datasets were used to fill in eomplement-attribute data of sites lacking site-observed FVC, LA, and
soil texture. LAI filling still uses the reprocessed MODIS LAI, whereas the FVC filling employs a global 300 m PFT

PFTcq; (Harper etal.,2023). PFT,,., incorporates a variety of currently available high-resolution satellite data to

quantify the percentage of PFT in each 300 m pixel worldwide. The 300m resolution is well-matched with the regional
extent of the flux tower footprint (Chu et al., 2021), providing representative FVVC data. Complements-Filling of soil texture
wsing-uses the Global Soil Dataset for Earth System Models (GSDE) (Shangguan et al., 2014). The GSDE harmonizes the
data collected from various sources and uses a standardized data structure and data processing procedures to derive the final

dataset. It has beenis-extensively applied in eEarth system models (Dai et al., 2019a).

2.2 Processing Methods

We undertook three primary processing-steps to establish the final dataset: site and time period selection, attribute collection,
and data processing. Firsthy, the data selection process involves picking years with a low gap-filled percentage for fluxes
(latent and sensible heat) and vapor pressure deficit (VPD), while-excluding sites subject to external disturbances and-or
unable to undergoge-threugh EBC_checks. Following that, we collected site-observed vegetation, soil, and topography data.
Fhe-Vvegetation attributes included FVC, maximum LAI and mean canopy height. Fhe-sSoil attributes included soil texture,

4
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bulk density, organic carbon concentration and depthbulk—density—and—organic—carbon—concentration. Fhe—Ttopography
attributes included elevation;—slope and aspect. AdditionallyBesides, we obtained the reference measurement heights (for

emulating the lowest layer of the atmospheric model to which the LSM would be coupled) of wind speed, air temperature

and humidity.

maximum LAl he-vegetation-atiributes and soil texture using global datasetsdata. Finally, the FVC was further breakdewn

tobroken down into different PFTs. Figure 1 presents a flowchart of the processing pipeline, with each step described in

detail below.

Table 1. Summary of the data sources to derive the site attribute dataset.

Data usage Name Sources
ForsSiteand time 1 ipppy Ukkola et al., 2022
period selection

Site descriptions in literature (113 articles) Details in Table S1

AmeriFlux?; AT — Neu websit?;
ChinaFlux¢; European Fluxes?
Global Monitoring Labortatory®;
0zFluxf; Swiss Fluxnet8

. Site regional networks (7 websites
Attribute data & ( )

Fluxnet BADM https://fluxnet.org/
AmeriFlux BADM https://ameriflux.lbl.gov/
Site descriptions in literature (7 articles) Details in Table S1
Site measurements of precipitation and air

PFT information temperature P Ukkola et al., 2022
Koppen-Geiger climate classification maps Beck et al., 2018
Reprocessed MODIS Version 6.1 LAl dataset  Lin et al., 2023

Data PFT;,.q PFTs maps : H?rper etal., 2023

| filling Reprocessed MODIS Version 6.1 LAl dataset  Lin et al., 2023

Global soil dataset for earth system models Shangguan et al., 2014

ahttps://ameriflux.lbl.gov/, © http://www.biomet.co.at/, ¢ http://www.chinaflux.org/, ¢ http://www.europe-fluxdata.eu/,

e https://www.gml.noaa.qov/, Fhttps://ozflux.org.au/, 9 https://mww.swissfluxnet.ethz.ch/.
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Figure 1. Data flow diagram for the generation of the flux tower attribute dataset.
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2.2.1 Site and time period selection

The PLUMBER?2 dataset got 170 sites by screening meteorological data (including five key variables that have the largest

influence_ on LSM simulations: incoming shortwave radiation, precipitation, air temperature, air _humidity, and wind
speed.). a- For FLUXNET?2015 and La Thuile datasets,

specific humidity is not provided in the original data, so it was calculated from VPD (Ukkola et al., 2017). However, the

screening process did not considertake-into-acceunt the gap-filled situation of VPD. As mentioned earlier, it also did not
screen the flux variables. To address these limitations, we further implemented quality control on the PLUMBER2 dataset by
performing the following three steps:

1. Sites with only one year of observations were excluded to ensure data stability and reliability.

2. Selected the years where the proportion of data with fluxes (latent and sensible heat) quality control (QC) <1
exceeds 90 % (QC = 0 denotes observed data, QC = 1 represents high-quality gap-filled data in FLUXNET2015
and La Thuile, no QC =1 in OzFlux).

3. Selected the years where the proportion of VPD QC = 0 exceeds 90 % in FLUXNET2015 and La Thuile datasets.
Furthermore, we excluded 23 sites that lacked ground heat flux observations because the EBC correction factor

(fesc) could not be calculated ( fzgc = (Rn - G) / (LE-Qle + QhH), net radiation (Rn), ground heat flux (G), latent heat flux
(EEQIle) and sensible heat flux (QhH)). Additionally, two sites (FR-Lgl and FR-Lg2) were removed as they have a very low
energy closure ratdio (EBR, calculated as (EE-Qle + QhH) / (Rn — G) according to Wilson et al. (2002)) after performing
energy closure (sites-FR-Lgl-and-FR-Lg2-detailsed in Table S3). Lastly, we excluded 10 sites that experienced external
disturbances during the observation period, such as irrigation, deforestation, and one site impacted by a sizable-large body-of

water body nearby (details in Table S3). In the end, we preserved non-consecutive years that met the-our criteria. This allows
us to maximize the utility of valuable observational data. Details of the selected and excluded sites and years are displayed in
Tables S2 and S3.

2.2.2 Data collection for vegetation attributes

Percent cover of plant functional types

Percentplantfunctional-types-cover

FVC data was is-sourced from site descriptions in literature, regional networks, and FLUXNET BADM files. We sought
looked-for appropriate representations of site FVC and obtained site-observed FVC infermation-data for at-53 sites. To
maximize the amount of FVC collected, some assumptions were made\We-made-assumptions in-at certain sites during the
data collection processF\/C-collection-to-getas-muech-F\/ Cdata-aspossible, addressing scenarios as follows:

1. For sites lacking explicit FVC data but providing the percentage of vegetation flux footprint contribution or dense

forest canopy basal area
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FVC. Because-Since FVC directly determines these metricsthis-information, and they are elese-numerically similar.
2. In grassland and cropland sites, the vegetation cover type typically exhibits a high degree of homogeneity.r-the

management. Therefore, we referred to site pictures (photographs taken at the site) to make a judgmentwe-referred

to-site-pictures-to-make-ajudgment. If a homogeneous cover could be determined from the pictures, it was assigned
a 100 % coverage percentage.

3. Some grassland sites with annual vegetation Fhere—may experience be—seasonal bare soil exposurein—seme

grassland-sites-with-annual-vegetation. For these sites, we used the FVVC during the peak vegetation growth period.
4. In forest sites, we simply We treated forest litter as H—it—were—grass cover in the absence of additional

informationsinee-bare-soil-may-not-be-present-in-forests.

After that, trees and shrubs were classified as evergreen or deciduous, coniferous or broadleaf, based on their vegetation

type. As an example, eucalyptus trees are classified as evergreen broadleaf trees. For data completeness, we used the

PFTy,.q; maps to fill in data for sites lacking site-observed FVC values.

We further broke down the FVC into PFTs to meet the requirements of LSM simulations using PFTs. The breakdown

method is as follows: First, the climate type of PFT was determined according to the K&pen climate classification (Poulter

et al., 2011). Then, C3 and C4 grasses were partitioned using site descriptions. If site descriptions were unavailable, flux

tower air temperature, precipitation, and the reprocessed MODIS LAl are used to calculate LAI proportions under C3/C4

climatic conditions, thereby estimating the C3/C4 grass proportions (Still et al., 2003).

A total of 16 PFTs includes the original fuH-set of 15 PFTs initially developed by Bonan et al. (2002) supplemented

with a new bare soil surface type. The full set of PFTs includes bare soil; Needleleaf evergreen tree, temperate (ENT_Te);
Needleleaf evergreen tree, boreal (ENT_Bo); Needleleaf deciduous tree (DNT); Broadleaf evergreen tree, tropical (EBT_Tr);
Broadleaf evergreen tree, temperate (EBT_Te); Broadleaf deciduous tree, tropical (DBT_Tr); Broadleaf deciduous tree,
temperate (DBT_Te); Broadleaf deciduous tree, boreal (DBT_Bo); Broadleaf evergreen shrub, temperate (EBS_Te);
Broadleaf deciduous shrub, temperate (DBS_Te); Broadleaf deciduous shrub, boreal (DBS_Bo); C3 grass, arctic; C3 grass;
C4 grass; Crop. This PFTs classification scheme is widely utilized in LSMs.

8
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Maximum leaf area index

Maximum LAI data were primarily is-sourced from site descriptions in literature and AmeriFlux BADM files which could be-
Ineluded-are the explicitly stated maximum LAI values or those derivedand-the-maximum-LAl-acquired from interannual
scatterplots. To maximize data availabilitySimiarly, we made the following assumptions in-at certain sites-to-get-as-much
data-as-pessible. Specifically, the-summertime LAI observation was consideredis-used as the maximum LAI. And-we-aceept
LA to-be-maximum when a single the-LAI value was provided fer-a-single-site-isprovided-without observation time or
additional-supporting information, it was accepted as the maximum LAI. To ensure data transparency, quality control flags

were implemented- in the final dataset, allowing users-
Users—are-free to select data based on their acceptance criteriahew-aceepting-they—are. A total of 67 site observations of
maximum LAI were collected, with 33—ef-these sites providing informatien—en—the year of observation. For data

completeness, we used the reprocessed MODIS Version 6.1 LAI dataset to complementfill in missing site-observed

maximum LAI datathe-dataforsites-in-case-of site-observed-maximum-LAlwas unavailable.

Canopy height

We calculated the mean canopy height over the observation period for 69 sites included in FLUXNET2015 dataset, using the
canopy heights reported in FLUXNET BADM file across different periods. The mean canopy height provides a more
truthful representation of the vegetation condition during the period of observation. For the remaining 21 sites, the canopy
height provided by PLUMBER2 was used.

2.2.3 Data collection for soil attributes

Soil texture
Soil texture data is-were sourced from site descriptions in literature, regional networks, and AmeriFlux BADM files. These
descriptions provided information in two forms:encompass-both-: explicithy-stated-the-percentages of sand, silt, and clay, and

(2) soil texture types-and-the-different-types-of soi-textures, such as sandy loam. For the Fhe-latter, which does not directly
provide ghve-the percentages of sand, silt, and clay. So, we referred to the soil composition table presented shewn-by Dy and

Fung (2016)_to derive the—enabling-the-derivation-of specific proportions. This Fhe-table classifies soil into 16 categories
based on the proportions of sand, silt, and clay. Overallin-total, 72 site observations of soil texture were collected, with 34

sites providing supphying-information on the depth of observations. For data completeness, we used the GSDE dataset to
complementfill in the data for sites lacking site-observed soil texture.

Soil bulk density, organic carbon concentration, and depth

Soil bulk density, organic carbon concentration, and depth data were sourced from site descriptions in literature, regional

networks, and AmeriFlux BADM file. Specifically, soil bulk density was collected at 37 sites, soil organic carbon

concentration at 23 sites, and soil depth at 31 sites. The observation depth was recorded for soil bulk density at 32 sites and

for organic carbon concentration at 22 sites. Despite the limited availability of site-observed data for the three soil attributes,
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we _included them in the final dataset. For researchers conducting site-specific_studies, these data can serve as valuable

references.

2.2.4 Data collection for topography attributes

The topography data encompasses site elevatien;—slope and aspect. These data were are-gathered from site descriptions in
literature, regional networks, FLUXNET and AmeriFlux BADM files. Specifically, we acquired elevationfor-89-sites-slope
for 57 sites, and aspect for 49 sites from these reference—sources. H—the-AU-Lit-site—where—site—elevation—data—was

2.2.5 Reference measurement height

Site descriptions in literature, regional networks, FLUXNET and AmeriFlux BADM files were are-all sources ef-for the

reference measurement heights. From these sources,- we searched leek-for the heights of wind speed, air temperature, and air

humidity measurements or the height of the instrument used for these measurements (e.g., wind cups and temperature and

humidity sensors).wi

eup)- In cases instances—where the flux tower meteorological observation equipment lacked a dedicated wind speed

measurement devicelacks—an—individual-wind-speed—observation—apparatus, we assumed suppose that-the use of three-

dimensional sonic anemometer for wind speed measurements. ConsequentlyAs-a—result, wind observation heights were are

available for a total of 76 sites, while 65 sites had temperature and humidity observation heights.- For the remaining 14-sites

where wind-observation heights were not reported, we used the flux observation height as a substitute.

2.3 Modeling assessment of attribute data

The impact of collected attributes on carbon, water, and energy fluxes is assessed through single-point simulations using the
latest version of the Common Land Model (Dai et al., 2003) (CoLM202X, https://github.com/CoLM-
SYSU/CoLLM202X/tree/master, last access: 21 November 2023). ColLM202X incorporates processes related to

biogeophysics, biogeochemistry, ecological dynamics and human activities, and offers optional processes and schemes

which can be customized by the user. In our experiments, vegetation is modeled using a set of time-invariant parameters

(optical properties: leaf optical properties; morphological properties: canopy height, vegetation root depth and profile, leaf

size and angle distributions; and physiological properties). The dynamic vegetation module is turned off and the time-variant

10
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LAl and stem area index (SAI) values are prescribed from the reprocessed MODIS LAI data (Lin et al., 2023; Yuan et al.,

2011). The two-big-leaf model (Dai et al., 2004) is employed to calculate processes such as radiative transfer (Yuan et al.,
2017), photosynthesis (Collatz et al., 1992; Farquhar et al., 1980), and stomatal conductance (Ball et al., 1987). Surface

turbulent exchange is simulated using similarity theory (Brutsaert, 1982:; Zeng and Dickinson, 1998). Total

evapotranspiration includes evaporation from stems, leaves, and the ground, as well as vegetation transpiration. Surface and

subsurface runoff consider factors such as terrain, groundwater level, precipitation, and infiltration rate. Additionally, the

model accounts for processes including precipitation phase and intensity, canopy interception, vertical movement of water in

snow and soil, and snow compaction (Dai et al., 2003).

Here—tThe simulations aim to evaluate the differences diserepancies-in model results between runs using site-observed

attributesattributes-observed-at-the-site and those commonly utilized by LSMs. For simplicity, we refer to site-observed data
as "site data" and data commonly utilized by LSMs as "default data" in subsequent descriptions. We focus on the-four
crucialmest-essentiat attributes, PCT_PFT, LAI, canopy height and soil texture, to demonstrate their corresponding impacts.
In site data simulations, we scaled the default LAI time series to match the maximum LAI observed, corrected the default

canopy height using site canopy height, and replaced the default topsoil texture (0-28.9 cm) with the site-observed soil

texture. For sites with multiple PFTs, we calculated the LAI for each PFT using growing degree days and PCT PFT values

(Lawrence and Chase, 2007). Canopy height was divided into three categories based on PFTs (trees, shrubs, or grassland),

using site data to adjust the default values for the corresponding group, while the other two groups retained their default

values.

The default data generally rely on global LAI and soil texture mapping products, lookup table canopy height, and site
IGBP (International Geosphere—Biosphere Programme) classifications to characterize surface vegetation and soil conditions.
In this study, the default LAI and soil texture refer to the reprocessed MODIS version 6.1 LAl and the GSDE soil texture as
shown in Table 1. Lookup table canopy heights are sourced from CoLM, while site IGBP classifications are obtained from
FLUXNET and OzFlux. We selected ehose-ten sites for each ef-the-attributes—LAl, canopy height, and soil texture—where
site data differ the-most from default data (In the lookup table canopy height simulations, sites with zero plane displacement
exceeding reference measurement height are excluded-). For the PCT_PFT analyses, sites with IGBP types that include

combinations of trees and grassessites-with-HGBP-types-that-are-a-combination-of-trees-and-grasses (OSH, WSA, SAV) were

chosen, resulting in six available sites. Table 2 provides an overview of the selected sites along with their corresponding

attribute information. Each site was simulated under three conditions: 1) using site data for all attributes at each site, 2) using

default data for all attributes at each site, and 3) using default data for the corresponding attribute at sites selected for each

attribute separately, while maintaining site data for the remaining attributes. The comparison between simulations (1) and (3)

aims to demonstrate the individual impact of each attribute, while the comparison between simulations (1) and (2) shows the

11
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At each site, we ran run-CoLM at either the half-hourly or hourly time resolution, depending on the forcing data

provided data-available, for all years in the original dataset. Subsequent analyses were are-conducted exclusivelyonly for the
years we have-selectedehesen. To reach an equilibrium in soil moisture and temperature, CoLM loops the atmospheric
forcing data for each site's observation period until it reaches 50 years long.the-first-yearof-atmesphericforcing-data-was

cycled-ColM-wasrecursivelyrun-at-each-site-using-a-20-year-spin-up- The discrepancy between site data and default data is
compared by variables related to land surface energy, water, and photosynthesis processes,Fhe-discrepancy—of-site-data

elative-to-default-data-is-compared-by-an-ensemble-of climate-related-variables; including latent heat (LEQIe), sensible heat

(QhH), net radiation (Rn), upward shortwave radiation (SWup), gross primary production (GPP), friction velocity (Ustar),
surface{6-4-5em} soil water content- (0-4.5cm) (SWC), and total runoff (TR).

To quantify the differences between the output from the-site data and default data; while accounting for seasonal
fluctuations in the impacts of soil and vegetation on climate-related variablesand-considering-the-seasenal-fluctuations-in-the
impacts—of-soil-and—vegetation-on—climate-related—variables (Dirmeyer, 2011; Forzieri et al., 2020),- Wewe designed a
statistical indicator called the percentage of mean difference (MD %) (Eq. 1); whichThis indicator is calculated by
expressing the mean difference for each monthas—the-mean—difference—in—each-month-expressed as a percentage of the
observed or default modeled annual meanmean—for-the-year. We used mMulti-year average time series are-used-here-to

capture more stable differences in output. In addition, we used delta root mean squared error (ARMSE) (Eq. 3) and A[Bias|

(Eq. 5) to measure the differences in RMSE and Bias of the output between site and default data, allowing enabling-us to
assess the model's performance after incorporating using-site data.
|%Z?=1(M0dsite,i_ M"ddefault,i)|

_1 y365 .
365 2j=10D5)

, for QleLE, QhH, Rn,SWup, GPP, and Ustar

MD % = n = days of month 1
0 |%Z?=1(M0dsite,i_ M"ddefault,i)| 7 f ( )
T3 , for SWC and TR
ﬁZj:l Modgefauit,j
RMSE = |EL(Modi=0bs)® 6
n
ARMSE = RMSEi;o — RMSE 4o aut 3
Bias = ZL((M0di=0bs) @)
n
A|Bias| = |Biasgire| — |BiaSaesquit! 5)
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Where Modg;e; and Modgepquie; are the predicted value using site data and default data, respectively. Obs; is

325 observed value. n is the number of paired values. RMSE;,, and RMSE4,f4,,: are the RMSE of the simulation results using

site data and default data, respectively. Biasg;;, and Biasgesqq¢ also correspond to the Bias in these results.

Table 2. Selected sites and their attribute values used in the modeling assessment for attribute data. The suffix "default"
denotesis-for-model-default data, and the "site"” represents site data.

Site LAI Lat Lon LAI max default?®m?>m?) LAI max site’(m2/m2)
DE-Bay 54.14  11.86 3.6 6.5

DE-Gri 50.94 13.51 6.5 (20049 4.4 (2004)
DK-Lva 55.68 12.08 3.1(2004) 6.9 (2004)
DE-Seh 58.87 6.44 3.2 (2009) 5.9 (2009)
IT-Cpz 41.70 12.37 5.4 3.5

US-GLE 41.36 106.24 1.5 3.8

US-Goo 34.25 -89.87 4.5 2.0

US-KS2 28.60 -80.67 6.6 (2005) 2.7 (2005)
US-MMS 39.32 -86.41 7.0 5.2

US-MOz 38.74 -92.20 6.1 (2006) 4.0 (2006)

Site TEX Lat Lon TEX-default! TEX site?
AU-Cpr -34.00 140.58 64/18/18 94/4/2

AU-DaP -14.06  131.31 63/18/19 92/5/3

AU-DaS -14.15 131.38  63/12/25 92/5/3

CZ-wet 49.02 14.77 39/37/32 10/85/5

DE-Gri 50.94 13.51 52/29/20 10/81/9 (0-23cm)
ES-LMa 39.94 -5.77 49/24/24 80/11/9 (0-30cm)
FI-Sod 67.36 26.63 52/25/20 92/5/3

IT-Cpz 41.70 12.37 33/45/22 87/8/5 (0-10cm)
IT-SRo 43.72 10.28 69/17/15 95/4/1 (10-20cm)
SD-Dem 13.28 30.47 67/18/14 96/4/0

Site HTOP Lat Lon H_,, default® (m) H,_,, site’ (m)
AU-Lit -13.17 130.79 35 20.0

BE-Vie 50.30 5.99 17 33.7

CH-Dav 46.81 9.85 17 25

DE-Hai 51.07 10.45 20 33.9

DE-Tha 50.93 13.56 17 28.4

IT-Cpz 41.70 12.37 35 14.3

IT-Lav 4595 1128 17 28.0

IT-Ren 46.58 11.43 17 29.0

RU-Fyo 56.46 32.92 17 26.3

US-Ton 38.43 120.96 20 9.9

Site FVC Lat Lon IGBP PCT PFT site®
AU-How  -1249 131.14 WSA EBT_TrDBS Te/C4

50/25/25
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ES-LMa 39.94 -5.77 SAV EBT Te/C3 : 20/80

SD-Dem 13.28 30.47 SAV EBT_Tr/C3/C4 : 10/27/63

US-SRM 31.82 11086 WSA DBS_Te/C3/C4 : 35/43/22

US-Ton 38.43 120.96 WSA EBT Te/C3 : 40/60

US-Whs 31.74 110.05 OSH Bare/DBS Te/C3 : 39/51/10
Site AL -default® LALsite® (m*/m?) S TEX default TEX_site’
US-KS2 6-6-(2005°) 2.7-(2005) 1 33/45/22 874845
DK-Lva 312004 69 D 52/29/20 10/81/9
DE-Bay 36 65 E 52/25/20 92/5/3
US-Gee 45 20 E 49/24/24 8049
DE-Seh 3.22009) 5:942009) A 64/48/18 94/412
US-GLE 5 38 S 674814 96/410
US-Mez 6-12006) 4042006) € 39/37/32 10/85/5
DE-Gri 6:5-2004) 442004y A 634819 92/5/3
T-Cpz 54 35 A 6342025 92/5/3
US-MMS 70 52 I 6947AS 95/4/4
Site Hegndefault’(m)  Hogsite"(m) S 1 PCT_PET site”
1T-Cpz 35 143 AW EBT T#/DBSTe/C4-+50/25/25
BE-Vie i) 337 ES EBT Te/C3-20/80
AU-Lit 35 200 Ss EBT-TF#/C3/C4-+10/27/63
DE-Hai 20 339 Uw DBSTFe/C3/C4-:35/43/22
IT-Ren 17 290 Uw EBT Te/C3+40/60
DE-Tha i) 284 U o Bare/DBS—Te/C3-+39/51/10
F-Lav 17 28.0
US-Ten 20 9.9
RU-Eye i) 263
CH-Dav 7 25

aThe maximum LAl at the pixel containing the site provided by Reprocessed MODIS version 6.1 LAI. ° Site-observed data
collected in this study. ¢ Specific year of maximum LAI. 9The top layer soil texture (sand/silt/clay) at the site location
extracted from the GSDE dataset.®Seil-texture{sand/sit/clay)-at the-site-location-extracted-from the GSDE dataset: ® Canopy
height of the dominant vegetation type at the site from the CoLM lookup table. ®Specific-year-of-maximum-LAL
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Figure 2. Summary of selected sites and collected site-observed attributes—data. (a) Geographical distributionA-map of
selected sites and their IGBP types. (b) A histogram showing the number of sites based on the number of years of selected
sites datanumbers—for-selected-sites. () Number of selected sites per IGBP vegetation class. (d) Number of collected site-
observed attributes for percent cover of PFTs (PCT_PFT), maximum LAI (LAI), mean canopy height (H,,,). Soil texture

340 (TEX), bulk density (BD), organic carbon concentration (OC), and soil depth (Depth), slope, aspect, and reference

measurement heights (Wind speed: H,; Air temperature: H,; Humidity: H,).(d)-Numberof-collected-site-observed-attribute
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3 Results
3.1 Global distribution and attribute information of selected sites

The final dataset contains 90 globally distributed sites (Fig. 2a). The majority are in North America and Europe, followed by
Australia, with smaller representations in Asia (3 sites) and Africa (1 site). Temporal coverage spans from 1997 to 2017,
totaling 475 site years. Individual site observations range from 1 to 17 years, with a median of 4 years (Fig. 2b). Despite a
reduction in available sites and years due to rigorous thereugh-quality control, the dataset does offer reliable meteorological
forcing and flux assessment data for LSMs. Furthermore, the 90 sites encompass the full range of IGBP classifications
originally presented, covering a wide spread of biomes, from grasslands and savannas to forest ecosystems (Fig. 2c). This
enables users to evaluate models across diverse varieus-hiomes using quality-benchmarked flux tower observations.

Out of the 90 sites, data were collected on the-PCT_PFT for 53 sites, maximum LAl for 67 sites, average canopy height
for 69 sites, soil texture for 72 sites, soil bulk density for 37 sites, soil organic carbon concentrationesneentration-of-seit
organic-carben for 23 sites, and soil depth for 31 sites. Data on slope were collected for 57 sites, aspect for 49 sites, wind
observation height for 76 sites, and air temperature and humidity observation heights for 65 sites (Fig. 2d).-elevationfor-89

—In the absence of site-
observed PCT_PFT, soil textureFEX, and LAI, we opted for appropriate global data to cemplementfill in these missing
them-for data completeness. To improve data utilization, we provide effer-the observation year of maximum LAI and the
depth of soil texture, which are availablewere-availed at 33 and 34 sites, respectively.

Figure 3. The discrepancies between site data and default data of (a) percent cover of PFTs (PCT_PFT), {the asterisk

indicates non-single PFTs}, (b) maximum LA, (c) canopy height (H.,,), and (d) the percentage of sand.

17



365

370

375

380

Figure 3 depicts the discrepancies between site data and default data for PCT_PFT, maximum LAI, canopy height, and
soil texture. The PCT_PFT shows multiplehas-nen-single PFTs at 34 sites, offering a more accurate representation of the
vegetation conditions compared to IGBP classifications. As-fFor LAI, canopy height, and soil texture, variations between

site data and default data are substantial #-at certain sites. Specifically, at 31 sites, discrepancies in LAl values exceed 1

m#n= canopy height differs by over 10 meters at 15 sites, and sand percentage varies by more than 20% at 18
sites. Specifically-at-31 sitesthere-is-a-discrepancy-in-LAlvalues-exceeding-L-m?*/m?-and-canopy-height-differing-by-over 10

3.2 The flux tower site attribute dataset

The final dataset is formatted in NetCDF (Network Common Data Form). Table 3 outlines the attribute variables and
corresponding stpperting-descriptions for each site in the file. These attributes can be categorized into vegetation, soil, and
topography attributes, as well as reference heights; and filtered high-quality years.

For the-maximum LAlI, the file provides both the year range covered byfurnishes-therange-ofyearsfor maximum LAI;
and the maximum value for a specific year. Regarding the three soil attributes, soil texture, bulk density, and organic carbon

concentration, the file provides attribute-values for multiple soil layers, along with the specific depth of each layer.-and-gives
the-specific-depth-of theircorrespending-soi-layer. Concerning reference height, we give its corresponding observed variable,

i.e., wind speed or fluxes (latent and sensible heat). Additionally, the NetCDF file incorporates reference sources for each

attribute. These sources are included to facilitate access to the original data and enhance flexibility in application. A

comprehensive-summary of these reference sources is presented provided-in Table S1.
Table 3. Attribute variables and their auxiiany/descriptions included provided-in the final dataset (note that not all sites

provide ‘Soil_BD’, ‘Soil_OC’, “Soil_depth’, ‘Slope’, and ‘Aspect’).

Variable (Dimension) Long name Unit  Description
PCT_PFT (pft=16) Percent plant functional types cover % Source?;
. b.
LAI Max Maximum leaf area index m?%m? Source; year_tange:
- LAI Max year®

Canopy_height Canopy height m Source;
Soil TEX (particle size=3, soil layer=4) Soil texture(sand/silt/clay) % Source; layer n_depth?
Soil_BD (soil_layer=4) Soil bulk density 3g cm Source; layer n_depth?
Soil_OC (soil_layer=4) Soil organic carbon concentration % Source; layer n_depth?
Soil_depth Soil depth cm Source
Elevation Site-elevation m Source;
Slope Site slope - Source;
Aspect Site aspect - Source;

. Measurement height of wind speed or Source; Measurement variable
Reference height v m .

- flux (Wind or Flux)

Reference_height t Measurement height of air m Source; Measurement variable

temperature or flux (Temperature or Flux)
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Measurement height of air humidity Source; Measurement variable
or flux — (Humidity or Flux)
year qc (year=21) Selected year of high-quality data - -

Reference_height g

aThe sources of collected attribute data. ® The year range covered byRange-of years-with maximum LAL. ¢ Maximum LAI for

specific year. ¢ The "n" ranges from 1 to 4, denoting the four soil layers in ascending order of depth. The parameter

"layer_n_depth" indicates the depth of respective "soil layer"”, corresponding to the depth at which soil data is observed.
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Figure 4. Quantification of discrepancies between site data and filled data for (a) PCT PFT, (b) maximum LAI, (c) canopy

height, and (d) percentage of sand (at all sites for which both types of data are available). The 16 PFTs were divided into

three main categories (bare soil, woody, and herbaceous vegetation) for separate quantification.

Figure 4 quantifies the differences between site data and filled data for sites where both data sources are available,

illustrating the inhomogeneities in the final dataset resulting from data filling. Differences in vegetation cover (including

bare soil, woody, and herbaceous vegetation) generally fall within 20 %, with a minority of sites exceeding 40 %. The mean

and median LAI differences are approximately 1 m2/m2. Canopy height deviations are primarily within 2 m, although a few

sites exceed 4 m. Differences in sand content typically remain within 30%, with both mean and median differences below

15 %. This quantification suggests that the filled data are generally reliable across most sites.

3.3 Impact of site attributes on modeling

The impacts of altering land surface representation from default data to site data, quantified by MD %, on LEQle, OhH, Rn,
SWup, GPP, Ustar, SWC, and TR are shown in Fig. 54. It distinctly demonstrates how vegetation and soil components affect

carbon, water, and energy_fluxes to varying degrees, contingent on the season. The impacts influence-of vegetation cover,

soil texture, and LAI on QleLE and QhH is primarily observed felt-in the spring and summer, while canopy height exerts its
most substantial effects in autumn and winter.- i i i i
effects-inautumn-andwinter- The impact of vegetation cover on Rn and SWup remains mere-consistent throughout the year,

whereas LAl maintains a more pronounced effect in spring and summer. In terms of GPP, attributes factors-play a more

significant role during the summertime. But-However, the effects of vegetation and soil on attributes Ustar appear to be
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independent of season. For-SWC and TR_are; both are-predominantly influenced by soil texture. The difference is that soil
texture significantly affects SWC across all seasons, whereas its impact on TR occurs primarily during the summer and fall.
Additionally, i-was-neted-that-vegetation cover was observed to eoutd-have a significant effect ehange-on TR at the SD-Dem
site. This is due to the salient impact at the SD-Dem site, situated within the African savannah with an average annual
precipitation of 320 mm (Ard©et al., 2008).

To elucidate the magnitude of each attribute's impact on different variables, figure 65 further displays the monthly
average maximum MD %. On average, changes in latent and sensible heat are not dominated by any single attribute. All four
attributes —PCT_PFT, LAI, canopy height, and soil texture—have a relatively strong impact on both.the-impacts-of-four

ibute PCT - PET, LAl -canopy-heightand-soil-texture—on and-H-were-comparatively-equilibrated: Their monthly
average maximum MD % on QhH are-is all in the range of 14-3615-30 %. And the effect of soil texture on QleLE is
comparatively relatively-significantgreater, at 18.3 %317.5-%. Moving-en-toRegarding Rn, vegetation cover emerges as the
chief influencer with a monthly average maximum MD % of 858.8 %. In contrast, SWup is heavily dictated by LAI, at
56.752-8 %, due tobecause-of the exceptionally high value at the US-GLE site. Fhe-vVegetation cover and LAI, both with a
monthly average maximum MD % of more than 50 %, dominate the changes in 6£GPP. Soil texture also has a visible impact
on GPP, due to its influence on soilSince-soi-texture-affects permeability, aeration, and the the capacity to retainabitity-of
the-soi-to-hold water and nutrients—it-alse-has—a-visible-impact-on-GPP. On the other hand, Ustar is almost exclusively
shaped by vegetation cover and canopy height. This makes sense because the intensity of land-atmosphere exchange in

vegetated areas is directly tied to canopy height, and changes in vegetation cover typically correspond to changes in canopy
height. Concerning SWC and TR, vegetation cover and soil texture are the two crucial attributes. Soil texture exhibits
exhibited- monthly average maximum MD % of 46.346-8 % for SWC and 147.9129.8 % for TR each, while vegetation cover
showsed 22.722-6 % and 278-8293.8 %, respectively.

Figure 76 uses ARMSE and A|Bias| to show the shifts in model performance using site data. The incorporation of site-
observed attribute data significantly improves the simulation of Rn, SWup, and Ustar. SpecificathyConcerningwith-respeet
te individual attributes, the-PCT_PFT proves particularly beneficialhelpful-for modeling both Rn and SWup. Concurrently,
the inclusion of site LAI also enhances the simulationeontributes—to—the—enhancement of SWup. Improvements

inEnhaneements—to these fundamental energy terms contribute to more accurate modeling of latent and sensible heat.

Furthermore, the-use-of site LAl and canopy height demonstrates steady improvements on GPP and Ustar, respectively.
In summary, these results underscore the significant impact and importance of incorporating site-observed attribute data
in the simulation of carbon, water, and energy fluxes in LSMs.
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Figure 5. Fhe-mMonthly average maximum MD % of PCT_PFT, LAI, canopy height (H..,) and soil texture (TEX) on
QleLE, OhH, Rn, SWup, GPP, Ustar, SWC and TR, respectively. The month of occurrence for eachwith-the maximum value

is indicated in parentheses.
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Figure 6. Box plot of changes in RMSE (ARMSE) and absolute Bias (A|Bias|) when using site data versus default data.
PCT_PFT, LAI, H.,, (Canepy-canopy height), and TEX (soil texture) denote the individual impacts of the four attributes.
All_attributes represents the changes produced by four attributes together across the 36 sites selected. Boxes (25th and 75th
455  percentiles) and whiskers (5th and 95th percentiles), with median (black line) and mean (black triangle). Solid circles denote

outliers defined as for-values greater than 1.5 times the interquartile range from the nearest 25th or 75th percentile.
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Figure 7. Multi-year daily average of the seasonal cycle of model (default, site) and observed QleLE, OhH, SWup, and GPP
460 at 8 selected sites, Two sites were chosen for each attribute for comparison: PCT_PFT (AU-How and SD-Dem), LAI (US-
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KS2 and US-GLE), H,,,, (IT-Cpz and BE-Vie), Soil texture (FI-Sod and AU-Cpr)..-Data are smoothed with a 14-day

moving average for clarity.

4 Discussion

In land surface community, flux tower attribute data is-currently does not receive sufficientgiven-enough attention. However

the site attribute data are nearly as critical as the flux tower observations themselves. We hope that future flux tower datasets

will provide standardized site attributes. In this study, we have acquired 90 sites with high guality by a comprehensive

selection process, and providing extensive site-observed data on vegetation, soil, and topography attributes.Herewe-have

attributes-observed-at-the-site: Through single-point simulations, we demonstrated Hustrated-their indispensable role in LSM
development. Accurate attribute data will provide multiple benefits by lowering uncertainty in model single-peint-calibration
and evaluation.

After selection, fewer sites and years are available. However, the retained data offers trustworthy observations that can
be directly applied. Data quality is generally the focus of model calibration and evaluation, and developing LSMs can benefit
immensely from usingthe-usage-of a modest number of sites (Brooke et al., 2019; Harper et al., 2021; Swenson et al., 2019).

Therefore, these updates will help the model's developments.Fhese-updates-wit-therefore-help-the-models-evolution: To
collect more site-observed attribute data, while consideringtaking-inte-account the diversity described within the same

attribute data, particularly the percentage of vegetation cover,—\A/we made a few approximations and assumptions duringi
the data collection procedure, such as using approximation substitution and site photographs to assist in judgment.- Although
these methods may introduce slight deviations-from-the-genuine-values, they do a good job of reproducing the surface
conditions of these sites. Furthermore, we provide descriptions of the attribute data as detailed as possible. For instance, the

year and depth of observation are given along with the maximum LAI and soil texture whenever feasible, respectively. They
are valuable references for data applications. One might argue that the auxiliary descriptions are just as important as the
attribute data itself.

Using CoLM at 36 sites, we evaluated the impacts of PCT_PFT, LAI, canopy height, and soil texture on model results.
What is conducted here is not an ideal experiment, but rather an actual demonstration of the discrepancies in model results

between site data and default data. The results are in line with previous research (Dai et al., 2019a), showing that vegetation

cover appreciably affects each of the eight variables examined, often being the dominant attribute (Fig. 6). This is due to

plant cover being the most prominent surface feature, directly altering surface energy absorption. The net radiation

simulation was improved using the site PCT PFT, but the performance of latent and sensible heat was not as good. This may

be related to uncertainties in the model itself as well as other input data. Such as vegetation biophysical parameters, soil

thermal and hydraulic conductivities, etc.A
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Additionally, we find that the impact of attributes is substantially associated with precipitation. As illustrated in the

average seasonal cycle shown in Fig. 87.; At the AU-How site in Australia-aleng-with, ample rainfall during the wet season,
and-combined with the increase in surface available energy due to vegetation cover, brings about a significant increase in
QleLE. In contrast, since limited water is available for evapotranspiration at the SD-Dem site, H-Oh is the primary feedback
from changes in surface energy. The results from the US-KS2 and US-GLE sites indicate that the growing season,

synchronized with water availability, is when LAI exerts a major influence on GPP. Furthermore, Aréd-a notable variation in

SWup was seen at the US-GLE site, attributed to the presence of snow cover (Berryman et al., 2018). Corrections to LAI can
improve the simulation by reducing albedo inaccuracies. This corroborates the-Essery (2013) point that inadequate land-
cover data was-is largely to blame for the uncertainty in the climate—snow albedo feedback in LSMs. Results from the IT-
Cpz and BE-Vie sites suggest that differences in the intensity of land-air exchange, caused by variations in canopy height,
are clearly truby-reflected in QleLE during the rainy season. Regarding soil texture, a comparison-efresults between FI-Sod
and AU-Cpr sites revealed stronger control of QleE by soil texture during the period of high precipitation intensity. This is
partly attributed to increased water availability and largely to the pronounced differences in soil infiltration capacity under
high-intensity precipitation events.the-ful-reatization-of differencesin-sot-infiltration-capacity-under-high-intensity

A previous study by Ménard et al. (2015)viewed-stated that attribute data have little effect on modeling results-(Méenard

etal;-2015). Hs-This study, however, may lack representativeness since it was limited to one site. Furthermore, it averaged

differences resulting from attribute data across the whole time series, by using the raw RMSE and correlation coefficient
statisticals metrics. This approach dees-makes it difficult to detect the crucial role of attribute data. As described in Sect. 3.3,
the impacts of attribute data on climate-related variables generally occur over specific periods (mostly during the growing

season) rather than throughout the yeareceurmosthy-during-the-growing-seasen.

By combining multiple data sources, we were able to maximize the available site-observed attribute data. Nevertheless

the data sources were primarily from published works, which led to some missing data at certain sites. The attribute data

focused only on soil and vegetation information.Neverthele

endeavors should incorporatewit-catforthe-incorporation-of additional surface parameters, such as irrigation, wildfire, and

the depth of soil moisture and vegetation roots, which are required demanded-for LSMs. Such observations and collections
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of site time-invariant attributes are generally low-cost but would strongly benefit model enhancement.Fhese-coHections-of

- In addition, the impact of attribute data on model

results was assessed simulated-using one model, potentially limiting the representativeness of our findings.

530 As LSMs continually advances-its their schemes and processes, an increasing array of surface parameters will be
incorporated, elevating the models to a heightened level of sephisticationcomplexity. It is imperative that these parameters
be clearly defined and prescribedelarified. Working with site-observed attribute data enabled us to narrow down reasons for

model biases, thereby enhancing our understanding of the true effects of diverse schemes and processes. faciitating

535 5 Data availability

The flux tower site attribute dataset provides comprehensive filtered high-quality years, site-observed vegetation, soil,

topography attributes, and reference measurement height. Each site's data is formatted within a NetCDF file named

according to the site name, database, and attributes (vegetation, soil, topography, and reference height), such as ‘AT-

Neu FLUXNET2015_Veg_Soil_ Topography_ReferenceHeight.nc’. The dataset comprises a total of 90 NetCDF files and
540 can be accessed at Zenodo under https://doi.org/10.5281/zenodo.12596218https-//dotorg/t0-5281/zenode-10939725-(Shi et.

al., 2024).

6 Code availability

The processing codes are available at https://github.com/Mbnl1197/Flux-tower-attribute-for-LSM (last access: 2 March 2024)
545 (DOI: https://doi.org/10.5281/zenodo.10939950; Shi et. al., 2024)

7 Conclusions

This study is centered on two issues with utilizing flux tower data in LSMs-ineluding: inadequate data quality ef-data-and
insufficient site attributes-data. We performed a comprehensive quality control on flux tower data. By examiningFhreugh-the
examination-of observation percentage, energy balance closure, and external disturbances, 90 high-quality flux tower sites
550 with 475 site years were produced. By €combining various data sources, we created a flux tower attribute dataset through
data collection, processing, and complementarityfilling procedures. This dataset includes —Fthe site-observed PCT_PFT,
maximum LAI, mean canopy height, soil properties (texture, bulk density, organic carbon concentrations, and depth), site

topography (slope and aspect), as well as the reference measurement heights. sei-texture-buli-density-and-organic-carbon

ohReentatHon e-e1evaton epeahRaasSpe were-colected—and-wind-speed-measurement-heigh Wasacquired.
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Furthermore, the attribute data collected in this study and frequently used by LSMs are incorporated in single-point
modeling respectively, aimed at quantifying the differences in model output. Our results demonstrate the significance of
certain attributes in the variation of specific variables. All four attributes significantly influence both latent and sensible heat.
Their monthly average maximum MD % typically ranges from 10 % to 30 %. Vegetation cover and LAI serve as the primary
controls for net radiation and upward shortwave radiation, respectively, with monthly average maximum MD % of 8.88.5 %
and 56.752.8 %. Both GPP and Ustar were strongly influenced by vegetation cover, with LAI and canopy tree-height also
exerting significant effects on GPP and Ustar, respectively. The monthly average maximum MD % for each of these impacts
exceeds 50 %. For hydrologic variables, i.e., SWC and TR, soil texture typically holds greater significance, followed by
vegetation cover. We reveal that the magnitude of these differences is usually accompanied by seasonal fluctuations.
Particularly regarding fluxes and GPP, greater discrepancies are generally observed diseerned-during spring and summer.
These results stress the necessity of site-observed attribute data in the development of LSMs.

Our endeavors mitigate the inadequacies of flux tower attribute data, enhancing elevating-the ability of flux tower data
to serve as benchmarking data for LSMs. The dataset provides relatively complete site attribute data and high-quality flux
validation data, making it suitable for direct use as inputs and for simulation validation in LSMswhich-can-be-directhy used
as-inputsand-simulation-vahidationfor SMs. This facilitates the comparison of LSM simulations under the same standard

framework, promoting their development. Moreover, this effort will draw more attention to flux tower attribute data from the

land surface modeling eemmunity-group and foster communication between ecology and modeling_communities. We

strongly advocate for the routine release of attribute data as part of flux tower data. Making such ancillary data more easily

and routinely accessible would greatly increase the value and usability of the data.
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