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Abstract. Accurate and comprehensive quantification of oil and gas methane emissions is pivotal in informing
effective methane mitigation policies while also supporting the assessment and tracking of progress towards
emissions reduction targets set by governments and industry. While national bottom-up source-level inven-
tories are useful for understanding the sources of methane emissions, they are often unrepresentative across
spatial scales, and their reliance on generic emission factors produces underestimations when compared with
measurement-based inventories. Here, we compile and analyze previously reported ground-based facility-level
methane emissions measurements (n= 1540) in the major US oil- and gas-producing basins and develop rep-
resentative methane emission profiles for key facility categories in the US oil and gas supply chain, including
well sites, natural-gas compressor stations, processing plants, crude-oil refineries, and pipelines. We then in-
tegrate these emissions data with comprehensive spatial data on national oil and gas activity to estimate each
facility’s mean total methane emissions and uncertainties for the year 2021, from which we develop a mean es-
timate of annual national methane emissions resolved at 0.1°× 0.1° spatial scales (∼ 10 km× 10 km). From this
measurement-based methane emissions inventory (EI-ME), we estimate total US national oil and gas methane
emissions of approximately 16 Tg (95 % confidence interval of 14–18 Tg) in 2021, which is ∼ 2 times greater
than the EPA Greenhouse Gas Inventory. Our estimate represents a mean gas-production-normalized methane
loss rate of 2.6 %, consistent with recent satellite-based estimates. We find significant variability in both the mag-
nitude and spatial distribution of basin-level methane emissions, ranging from production-normalized methane
loss rates of < 1 % in the gas-dominant Appalachian and Haynesville regions to > 3 %–6 % in oil-dominant
basins, including the Permian, Bakken, and the Uinta. Additionally, we present and compare novel compre-
hensive wide-area airborne remote-sensing data and results for total area methane emissions and the relative
contributions of diffuse and concentrated methane point sources as quantified using MethaneAIR in 2021. The
MethaneAIR assessment showed reasonable agreement with independent regional methane quantification re-
sults in sub-regions of the Permian and Uinta basins and indicated that diffuse area sources accounted for the
majority of the total oil and gas emissions in these two regions. Our assessment offers key insights into plausible
underlying drivers of basin-to-basin variabilities in oil and gas methane emissions, emphasizing the importance
of integrating measurement-based data when developing high-resolution spatially explicit methane inventories
in support of accurate methane assessment, attribution, and mitigation. The high-resolution spatially explicit
EI-ME inventory is publicly available at https://doi.org/10.5281/zenodo.10734299 (Omara, 2024).
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1 Introduction

Accurate characterization of oil and gas methane emissions
across spatial scales – from the facility level to the basin
and national level – is an essential component of methane
reduction programs that are integral to mitigating the near-5

term catastrophic impacts of human-induced global warming
(IPCC, 2021). As governments, industry, and various stake-
holders publicly commit to cut their methane emissions foot-
prints (OGCI, 2021; GMP, 2021), accurate methane invento-
ries will play a crucial role in the development and imple-10

mentation of effective methane reduction approaches as well
as in tracking progress toward emission reduction targets.

At the national level, methane inventories are typically
developed using “bottom-up” methods; for example, these
methods are used by most countries that report annual green-15

house gas inventories to the UNFCCC (UNFCCC, 2023).
Bottom-up methane inventories are developed by apply-
ing generic (or, in some cases, empirically determined)
component- or source-level emission factors to national oil
and gas activity data (EPA, 2022). While these inventories20

are useful as first-order estimates of the emission sources,
they often lack the accuracy needed to characterize methane
emissions, their sources, and their trends over time at the fa-
cility scale to the basin level.

In addition, scores of recent studies that have focused on25

specific oil and gas basins (Zhang et al., 2020), specific coun-
tries (Alvarez et al., 2018; Shen et al., 2021; Zavala-Araiza
et al., 2021; Johnson et al., 2023), and the analysis at the
global scale (Shen et al., 2023) have consistently found an
underestimation in bottom-up inventories when compared to30

measurement-based inventories, pointing to a need for im-
provements in the bottom-up methane inventory methodolo-
gies. Furthermore, satellite-based quantification of regional,
national, and global methane emissions has emerged as a
crucial tool for assessing the accuracies of methane inven-35

tories (Jacob et al., 2022; Shen et al., 2023). However, when
Bayesian inversion models are used for methane flux quan-
tification, spatially explicit methane inventories are needed
as a priori information (Shen et al., 2021, 2023). Past ef-
forts have produced such a priori information by spatially40

disaggregating methane emissions inventories reported to the
UNFCCC (Maasakkers et al., 2023; Scarpelli et al., 2022;
EDGAR, 2023), which, as noted above, can have large un-
derestimations and uncertainties in both the magnitude and
spatial distributions of oil and gas methane emissions.45

In this work, we utilize previous peer-reviewed facility-
level measurement data (n= 1540) for methane emissions at
oil and gas facilities in the major US oil and gas production
basins to develop an improved assessment of national, basin-
level, and facility-level methane emissions based on oil and50

gas activity in 2021. Our measurement-based inventory dif-
fers from other bottom-up inventories that use generic emis-
sion factors (e.g., EPA GHGI) in that we leverage empiri-
cal observations to derive insights on facility-level methane

emissions distributions that are useful for estimating popu- 55

lation mean total methane emissions. Our contributions are
threefold. First, we develop statistically robust facility-level
methane emission models based on measurement data col-
lected in the years post-2011 (when the EPA’s New Source
Performance Standards for the oil and gas industry were 60

first proposed) through 2020. We use these models to esti-
mate national methane emissions on both an absolute basis
(Tg yr−1) and a production-normalized basis (% emitted rela-
tive to methane production). Second, we extend this approach
to assess the variability and underlying drivers of oil and gas 65

methane emissions and methane loss rates across the major
US oil and gas basins. As part of this assessment, we present
and compare the quantification of total area methane emis-
sions and the relative contributions of diffuse area emissions
versus large concentrated methane sources in the Permian 70

and Uinta basins based on new remote-sensing measure-
ments by MethaneAIR (Staebell et al., 2021; Chulakadabba
et al., 2023; Chan Miller et al., 2023), an airborne precur-
sor to MethaneSAT (http://www.methanesat.org, last access:
22 August 2024). Finally, we construct a high-resolution spa- 75

tially explicit oil and gas methane emissions inventory for
2021, aggregated at the 0.1°× 0.1° (∼ 10 km× 10 km) spa-
tial scale, and use these results to characterize the spatial pat-
terns in national emissions.

2 Methods 80

2.1 Oil and gas activity data

We follow the procedure developed by Omara et al. (2022)
to assess the total number and site-level production charac-
teristics of actively producing onshore oil and gas well sites
in the US in 2021. The aggregation of wellhead data to well 85

site data (a well site can have multiple wellheads) is needed
because (i) methane measurement-based data are reported at
the well site level and (ii) production data are reported on
a monthly basis for each producing wellhead. Briefly, we
use the monthly well-level oil and gas production data as 90

reported by Enverus Prism (Enverus, 2024), which aggre-
gates public and proprietary data on monthly well-level pro-
duction. For each actively producing well, we derive aver-
age well-level oil (in barrels per day, bpd; 1 barrel of crude
oil∼ 0.136 t), gas (in 1000 ft3 d−1, Mcfd; 1 ft3 = 0.0283 m3), 95

and combined oil and gas (in barrels of oil equivalent per
day, boed; 1 boed = 6 Mcfd gas) production rates based on
the reported number of production days in the year and as-
suming 365 calendar days in the calendar year if the produc-
tion days were not reported, which occurred at < 5 % of the 100

producing wells (Fig. S10 in the Supplement). We filtered
the data for only the actively producing wells (n= 824 003)
and used geospatial clustering approaches, described in de-
tail in Omara et al. (2022), to derive well site attributes
(e.g., number of wells per site, site-level oil, gas, and boed 105

production). Based on this analysis, we estimate a total of

http://www.methanesat.org
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660 149 actively producing onshore oil and gas well sites
in the US in 2021 (Table 1), indicating an average of 1.2
wellheads per well site. Finally, we differentiate between low
(≤ 15 boed) and non-low (> 15 boed) production oil and gas
well sites based on their average site-level boed production5

rates in 2021. Our assessment indicates that low production
well sites accounted for 82 % of the total number of US on-
shore actively producing well sites in 2021 (Table 1). We
consider these spatial data as comprehensive for the US oil
and gas production well sites as it is consistent with the offi-10

cial gross oil and gas production reported by the US Energy
Information Administration for 2021 (e.g., the sum of the
gross gas production from spatially explicit well-level pro-
duction data from Enverus Prism is consistent with the total
of ∼ 42× 1012 ft3 (trillion cubic feet, Tcf)CE2 of US natural15

gas gross withdrawals reported by the US Energy Informa-
tion Administration, https://www.eia.gov/dnav/ng/ng_prod_
sum_dc_NUS_mmcf_a.htm, last access: 22 August 2024).

We estimate the total number of operational gathering
and transmission compressor stations, natural-gas process-20

ing plants, and crude-oil refineries based on spatial data re-
ported by Enverus Prism (Enverus, 2024) supplemented with
additional spatial data from the Oil and Gas Infrastructure
Mapping (OGIM) database (Omara et al., 2023), which con-
solidates public-domain data on oil and gas infrastructure lo-25

cations and facility characteristics. For gathering and trans-
mission pipelines, we estimate total pipeline miles based
on the Enverus Prism (Enverus, 2024). In addition, we as-
sess methane emissions associated with gas flaring activity,
leveraging the natural-gas flaring detections dataset based on30

VIIRS (Visible Infrared Imaging Radiometer Suite) instru-
ments onboard the Suomi National Polar-orbiting Partner-
ship (NPP) and NOAA-20 satellites to identify the locations
of gas flaring facilities or clusters of facilities and associated
gas flared volumes (Elvidge et al., 2015). Table 1 shows the35

summary statistics for the oil and gas activity data used in
this study.

2.2 Facility-level measurement-based methane
emissions data

We begin by performing a comprehensive data review and40

assessment of previously published peer-reviewed data on
facility-level methane emissions measurements for US oil
and gas basins, leveraging Google Scholar search results
based on keywords that reflect the geography of interest
(oil and natural-gas methane emissions in the US), measure-45

ment methods (ground-based facility-level methods, OTM-
33A, tracer flux, and mobile transects), and major oil and
natural-gas facility categories (production well sites, natural-
gas gathering and transmission compressor stations, process-
ing facilities, pipelines, and crude-oil refineries). We focus on50

ground-based measurement studies that report total facility-
level methane emissions quantification for well sites, natural-
gas gathering and boosting compressor stations, natural-gas

transmission compressor stations, and natural-gas processing
plants. 55

These ground-based measurement approaches include
dual-tracer downwind mobile measurements (Mitchell et al.,
2015; Omara et al., 2016, 2018), EPA Other Test Method
(OTM-33A) downwind stationary measurements (Brantley
et al., 2014; Robertson et al., 2017, 2020), and downwind 60

mobile measurements with Gaussian-plume transport mod-
eling (Caulton et al., 2019; Omara et al., 2018). Omara et
al. (2018) provide a detailed overview of these ground-based
measurement methods. Other recently published studies that
used chamber flux quantification approaches and reported 65

only wellhead methane emissions quantification (e.g., well-
head methane emissions in Deighton et al. (2020) and Rid-
dick et al. (2019)) are not included, as unquantified methane
sources (e.g., from separators, tanks, and pneumatic devices)
likely lead to a low bias in facility-level total methane emis- 70

sions. However, we use the facility-level total methane emis-
sions data reported by Zimmerle et al. (2020) for natural-
gas gathering and boosting stations, based on the aggrega-
tion of each facility’s onsite component-level measurements
performed using a high-flow sampler following leak detec- 75

tion with an infrared camera. We acknowledge a possible
low bias in this dataset given the limitations of facility-level
measurements using high-flow samplers, including an inabil-
ity to access all methane-emitting sources and/or to quan-
tify large emission sources beyond the high-flow sampler 80

capacity (Zimmerle et al., 2020). Finally, given their large
size and the difficulty of quantifying facility-wide emissions
with ground-based measurement approaches, we use avail-
able measurement-based methane emissions data for crude-
oil refineries based on aerial remote-sensing methods (Lavoie 85

et al., 2017; Duren et al., 2019).
For non-low production well sites, we use previously pub-

lished facility-level measurement data collected in eight US
basins, including the Barnett (n= 254; Brantley et al., 2014;
Lan et al., 2015; Rella et al., 2015; Yacovitch et al., 2015), 90

Denver-Julesburg (n= 46; Robertson et al., 2017; Brantley
et al., 2014; Omara et al., 2018), Eagle Ford (n= 3; Brant-
ley et al., 2014); Fayetteville (n= 47; Robertson et al., 2017),
Marcellus Shale (n= 572; Omara et al., 2016, 2018; Caulton
et al., 2019), Permian (n= 72; Robertson et al., 2020), Uinta 95

(n= 31; Robertson et al., 2017; Omara et al., 2018), and Up-
per Green River (n= 129; Brantley et al., 2014; Robertson et
al., 2017). The consolidated site-level measurement data in-
clude data collected in the years post-2011 (when EPA’s New
Source Performance Standards for the oil and gas industry 100

were first proposed) through 2020. We only focus on data
from studies that reported total facility-level emissions quan-
tification in addition to the production characteristics (i.e.,
gas and/or oil production rates). We use each study’s reported
facility-level methane loss rate, computed as the methane 105

emissions relative to the methane production at each facil-
ity, in our modeling of methane emissions. Where methane
loss rates were not reported, we compute the percent methane

https://www.eia.gov/dnav/ng/ng_prod_sum_dc_NUS_mmcf_a.htm
https://www.eia.gov/dnav/ng/ng_prod_sum_dc_NUS_mmcf_a.htm
https://www.eia.gov/dnav/ng/ng_prod_sum_dc_NUS_mmcf_a.htm
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Table 1. Oil and gas activity data and estimates of total methane emissions.

Facility Facility Units Activity Measurement-based data Estimated total EPA GHGI, 2020
category sub-category data sources (sample size)a methane emissions, (Tg)b

2021 (Tg, 95 % CI)

Well sites Low produc-
tion

No. CE3 of well
sites

541 987 n= 1153, see footnote for
study references

4.3 (2.9–6.0) 3.4

Non-low pro-
duction

No. of well
sites

118 162 5.1 (3.6–7.4)

Natural-gas
compressor sta-
tions

Gathering
and boosting
stations

No. of stations 4651 n= 116 (Mitchell et
al., 2015), n= 180 (Zimmerle
et al., 2020)

1.6 (0.9–3.0) 1.4

Transmission
stations

No. of stations 2107 n= 47 (Subramanian et
al., 2015)

1.7 (0.7–4.5) 1.6

Natural-gas
processing
plants

– No. of plants 908 n= 16 (Mitchell et al., 2015) 1.6 (0.7–3.7) 0.51

Crude-oil
refineriesb

– No. of refiner-
ies

143 n= 28 (see footnote) 0.14 (0.1–0.18) 0.03

Pipelines Gathering
pipelines

Pipeline miles 367 717 EPA Greenhouse Gas Inventory
(EPA, 2022)

0.13 (0.12–0.14) 0.13

Transmission
pipelines

Pipeline miles 552 150 0.47 (0.46–0.48) 0.17

Natural-gas
flaring
detections

No. of flaring
detections

No. of detec-
tions

3153 n= 3153 (Elvidge et al., 2015) 0.56 (0.55–0.57) –

Estimated gas
flared volumes

MMcf yr−1 344 217 Elvidge et al. (2015)

Total estimated methane emis-
sions

15.7 (14.1–18.0) 8.3 (7.0–9.6)

a Measurements at well sites include 1153 facility-level measurements from nine studies in eight basins or production regions in the US. Studies include Brantley et al. (2014), Robertson et
al. (2017, 2020), Omara et al. (2016, 2018), Caulton et al. (2019), Rella et al. (2015), Lan et al. (2015), and Yacovitch et al. (2015). For crude-oil refineries, available facility-level
measurements are based on aerial remote-sensing quantification (Duren et al., 2019; Lavoie et al., 2017). b The EPA GHGI total includes 0.5 Tg methane from natural-gas distribution,
liquified-natural-gas CE4 storage, and other sources not shown in this table. MMcf: 1× 106 ft3 (1 ft3 = 0.0283 m3). CE5

loss rates as follows, based on the reported average gas pro-
duction rate at the time of measurement:

Methane loss rate [unitless]= CH4

[
kg
h

]
×

1
Gas[Mcfd]

×
1Mcf

19.2 [kgCH4]
×

1
σCH4

×
24h
1d

, (1)

where CH4 [kg h−1] is the measured facility-level methane
emission rate in kg h−1, Gas[Mcfd] is the reported gas pro-5

duction rate in Mcfd, Mcf is 1000 ft3, 19.2 kg/Mcf is the
methane density at 60 °F (15.5 °C) and 1 atm, and σCH4 is the
assumed methane content of the produced natural gas (we
assume an average of 80 % methane content in the produced
natural gas).10

For low production well sites (≤ 15 boed), we use the same
facility-level methane emissions data and emissions assess-
ment methods as described in detail in Omara et al. (2022).
Briefly, we use the reported empirical observations (n= 240;
Omara et al., 2022) in a hybrid Monte Carlo and non-15

parametric probabilistic model that simultaneously estimates
the frequency of below-detection-limit sites, the frequency of
high-emitting sites representing the top 5 % of emitting facil-
ities based on absolute methane emissions, and the distribu-
tion of high-emitter methane emissions while accounting for 20

the weakly observed positive relationship between emission
rates and production rates for the bottom 95 % of emitting
well sites. We integrate this model with spatially explicit ac-
tivity data on low production oil and gas well sites in 2021
(Enverus, 2024) to estimate their total methane emissions. 25

For non-low production well sites (> 15 boed), we use
the reported site-level measurement data described above
and shown in Fig. 1a, which indicates an inverse relation-
ship between production-normalized methane loss rates and
facility-level gas production rates (Omara et al., 2018). The 30

measurement-based data include measurements that were re-
ported as zeros or were below the method detection limits of
0.036 kg h−1 (Robertson et al., 2017; Brantley et al., 2014)
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for the OTM-33A methods and 0.01 kg h−1 (Omara et al.,
2016) for the dual-tracer flux quantification.

Figure 1b shows the previously reported facility-level
measurements at midstream/downstream facilities, includ-
ing natural-gas gathering and boosting compressor stations,5

transmission compressor stations, processing plants, and
crude-oil refineries. In all cases, we use the average facility-
level methane emissions data as reported, acknowledging
that inherent limitations in these measurement approaches
(e.g., pseudo-random facility-level measurements with small10

sample sizes in ground-based approaches or difficulty quanti-
fying large emitters using high-flow samplers in component-
level measurements) likely increase the uncertainties in our
estimates of total, regional, and national methane emissions.

2.3 Facility-level methane emissions model15

development and estimation of total national
methane emissions

Our approach for estimating regional and national oil and
gas methane emissions builds upon previous works that used
data from hundreds to thousands of ground-based facility-20

level measurements (Zavala-Araiza et al., 2015; Alvarez et
al., 2018; Omara et al., 2018, 2022) in combination with ro-
bust probabilistic models integrated with oil and gas activity
data. Zavala-Araiza et al. (2015) and Alvarez et al. (2018)
demonstrated that measurement-based inventories developed25

using these methods produce total methane emission results
that are in good agreement, within statistical uncertainty, of
independent airborne measurements of total area methane
emissions.

For non-low production well sites (average facility-level30

production rates> 15 boed), we begin by evaluating facil-
ity representativeness on the basis of (i) the geographical
diversity of measurements, (ii) the distribution of facility-
level production rates of measurements compared with the
national population of well site facilities, and (iii) the distri-35

bution of facility-level methane emission rates across basins
(Fig. S3). Our measurement data, while limited in sam-
ple size, cover eight major US oil and gas basins with di-
verse oil and gas production characteristics, including the
Appalachian, Permian, Uinta, Barnett, Fayetteville, Greater40

Green River, and Denver-Julesburg. The wide range of basin-
level gas-to-oil ratios (∼ 1 to 800 Mcf/barrel) is well repre-
sented in the data for the sampled basins (Fig. S3b).

In addition, the distribution of facility-level natural-gas
production rates shows reasonable overlap with that for45

the national population of non-low production facilities,
and the broad range in distribution of facility-level produc-
tion rates across the national population of sites (∼ 90 to
> 50 000 Mcfd) is well represented in the sampled sites
(Fig. S3c). However, the distribution of production rates50

for the sampled sites suggests potential bias toward higher-
producing sites relative to the national distribution (Fig. S3c).
We account for any such potential biases by developing emis-

sions models based on production-normalized methane loss
rate distributions (methane emitted relative to methane pro- 55

duced) across seven cohorts of specific gas production rates
(further details below).

We develop and use probabilistic emission rate distribu-
tions based on production-normalized methane loss rates,
which show a wide range (< 0.01 % to > 90 %; Fig. 1a) 60

across all basins (Fig. S3d), reflecting, in part, the diver-
sity in production characteristics within and across basins.
We use production-normalized methane loss rate distribu-
tions because (i) the empirical data across a wide diversity of
oil and gas production facilities suggest an inverse relation- 65

ship in which high-producing facilities exhibit comparatively
low methane loss rates, and vice versa (Fig. 1a), and (ii) the
consolidated dataset includes measurements collected in ear-
lier years (before 2021). By using the production-normalized
methane loss rate distribution models for specific cohorts of 70

facility-level production rates, we do not model any particu-
lar site that is active in 2021 as exhibiting the same emission
rate size as observed when measurements were taken in the
past, as the empirical data and the model constrain facility-
level methane loss rates to production levels, which will be 75

time variant. As such, we provide a necessary constraint
on our estimates, effectively adjusting modeled facility-level
methane emission rates if production rates have substantially
changed over time.

To estimate regional methane emissions for non-low pro- 80

duction well sites, we group the data for the empirical
facility-level methane loss rates into seven log-normalized
gas production (Mcfd) cohorts, as shown in Fig. 1a and de-
lineated by dashed vertical lines (log-Mcfd≤ 5, 5–6, 6–7, 7–
8, 8–9, 9–10, and log-Mcfd> 10). We use one log-e space 85

(between log-Mcfd ≤ 5 and log-Mcfd> 10) to develop these
production cohorts, given the inverse relationship between
facility-level methane loss rate and production rates, and they
are selected to provide sufficient sample sizes for emissions
distribution modeling for each production cohort (Fig. 1a). 90

For each cohort, we simulate the frequency of finding a site
emitting below the method detection limits (reported as zeros
or below the method detection limit) through a random boot-
strapping procedure, repeated 104 times, with replacement.
From this simulation, we develop a frequency distribution for 95

the sites below the detection limits (fBDL), which averaged
roughly 20 % to 30 % for all cohorts with the exception of
the last production cohort (> 10 Mcfd), where the frequency
drops to roughly 10 % to 20 % (Fig. S1).

For the measured oil and gas production well sites with 100

emissions above the method detection limits, we begin by
applying a log transformation to the reported facility-level
methane loss rates in each cohort and assessing the good-
ness of fit of the empirical distributions to a lognormal dis-
tribution, using the Kolmogorov–Smirnov test with signif- 105

icance established at p< 0.05. For all seven cohorts, we
find that the lognormal distribution assumption is valid, with
p> 0.05 (Fig. S2). For each cohort’s empirical distribution,
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Figure 1. Previously reported facility-level measurement-based methane emissions data. (a) Facility-level methane emissions data (percent
methane loss rate) as a function of gas production rate (n= 961 non-low production well sites). The bottom x axis shows the log-normalized
gas production rates, with dashed vertical lines delineating the seven production cohorts used to model total methane emissions. Sample sizes
for the production cohorts are shown at the bottom of the plot, above the bottom x-axis tick labels. The top x axis shows the same production
data in Mcfd. Each point is color coded by basin and sized in proportion to the quantified methane emission rate in kg h−1. Measurements
that were reported as being below the method detection limits are not shown. (b) Absolute methane emission rate data (kg h−1) for gathering
and boosting (G&B) compressor stations (n= 295), transmission and storage (T&S) compressor stations (n= 47), natural-gas processing
plants (n= 16), and crude-oil refineries (n= 28). The swarm plots show individual facility-level measurements, while the notched box plots
show the distributions (the boxes represent the 25th and 75th percentiles and the whiskers extend to 1.5 × the interquartile range).

we assume a univariate normal likelihood with mean µ and
standard deviation σ and use Bayesian models with weakly
informative priors to estimate µ and σ , for example, as
µ∼Normal(−10,5) and σ ∼HalfNormal(3) for the first co-
hort of non-low production sites. For Bayesian inference, we5

draw 5000 posterior samples from the posterior distribution
using the PyMC3 (Salvatier et al., 2016) implementation of
the No-U-Turn Sampler (NUTS) algorithm (Hoffman and
Gelman, 2014), from which we estimate µ and σ as well as
the 94 % highest posterior density (HPD) intervals. Note that10

the mean facility-level methane loss rate for each cohort can
be computed as exp(µ+ 0.5σ 2). From the posterior results,
we generate 5000 predictions of the facility-level methane
loss rate for each measured well site within each production
cohort. Figure 2 shows the cumulative probability distribu-15

tion function for the observed data and 500 random samples
from the model predictions.

We follow a similar Bayesian modeling procedure to de-
velop predictions of emissions distributions (kg h−1 per fa-
cility), conditional on empirical data, for the gathering and20

boosting compressor stations, transmission compressor sta-
tions, natural-gas processing plants, and crude-oil refineries.
For these facility categories, we use the measured mean ab-
solute methane emissions data as is (kg h−1 per facility) in
our models, as we lack natural-gas capacity or throughput25

information for the national population of facilities.
We then proceed as follows to estimate methane emis-

sions for the total population of facilities. For every facility in
each facility category and/or production cohort, we randomly

draw an emission rate from the modeled posterior predictions 30

(Fig. 2). For non-low production oil and gas production facil-
ities, we randomly draw a methane loss rate estimate which
is then multiplied by the facility’s average methane produc-
tion rate to estimate methane emissions in kg h−1. As some
facilities can have emissions below the method detection lim- 35

its, we decrement the total estimated emission rate based on
the randomly sampled frequency of sites below the detec-
tion limit (fBDL) randomly drawn from the modeled distri-
butions. We repeat this procedure 500 times and develop a
methane emissions distribution for the total methane emis- 40

sions for each facility category or production cohort.
Given the scarcity of facility-level measurements for gath-

ering and transmission pipelines, we use the emission factors
estimated by the US EPA Greenhouse Gas Emission Inven-
tory (177 and 362 kg methane km−1 yr−1, respectively; EPA, 45

2022) and assume normal distributions of emission factors
with 50 % uncertainty. Our use of the EPA’s GHGI emission
factors for these emission sources makes it possible to pro-
vide a more complete spatially explicit inventory of oil and
gas methane emissions (inclusive of gathering and transmis- 50

sion pipelines for which we have geospatial activity data), but
it likely increases uncertainties in our total methane emission
estimates given the potential underestimation in the GHGI
emission factors.

We also estimate the methane emissions associated with 55

gas flaring activities using location-specific gas flaring data
from the VIIRS instrument (Elvidge et al., 2015) and apply
an average effective methane destruction removal efficiency
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Figure 2. Empirical cumulative distribution functions of observed data and model predictions. Empirical CDFs are shown as solid black
lines while thin colored lines show 500 random samples drawn from the model predictions. Sample sizes and data sources for empirical
data are shown in Table 1. (a) Non-low production well sites (modeled as facility-level methane loss rates); the plot shows the CDF for the
5< log-Mcfd< 6 production cohort. Figure S2 shows the CDFs for all seven non-low production cohorts in Fig. 1. (b) Low production well
sites (kg h−1 per site). (c) Gathering and boosting compressor stations. (d) Transmission compressor stations. (e) Natural-gas processing
plants. (f) Crude-oil refineries.

of 91 % (95 % confidence interval of ∼ 90 %–92 %; Plant et
al., 2022).

Finally, we combine the emissions distributions for all fa-
cility categories and sources using Monte Carlo methods to
estimate the mean total national methane emissions and the5

95 % confidence interval based on the 2.5th and the 97.5th
percentiles of the modeled distributions. Figure 3 shows a
general schematic of the emissions model development and
the estimation of total methane emissions.

2.4 Spatial allocation of estimated methane emissions10

and basin-level methane loss rates

For each facility with a known location (latitude, longitude),
our assessment includes 500 different estimates of likely
facility-level methane emission rates (in kg h−1), from which
we derive 500 different estimates of total national methane15

emissions. We use 500 simulation results for each facility
as a reasonable simulation size that is not too computation-
ally intensive to implement but also gives sufficient statis-
tical power to develop a robust model uncertainty assess-
ment. We use a search algorithm to identify a random sam-20

ple of the facility-level emission rate distribution that most
closely matches the computed mean estimate for the popula-
tion of facilities. We use a similar approach to select a ran-
dom sample of the facility-level emissions distributions rep-

resenting uncertainties in the total emission estimates (i.e., 25

the distribution that most closely matches the lower bound
and upper bound of the 95 % confidence interval for the to-
tal estimated methane emissions). We then aggregate the to-
tal mean methane emissions (and the associated upper- and
lower-bound estimates) on regular grids of 0.1°× 0.1° deci- 30

mal degrees (∼ 10 km× 10 km) to produce spatially explicit
oil and gas methane emissions inventories and related uncer-
tainties in the total methane emissions within each grid.

Our spatial allocation of estimated total oil and gas
methane emissions is dependent, in part, on the complete- 35

ness and spatial accuracy of the oil and gas infrastructure lo-
cations for specific regions and oil and gas basins, for which
related uncertainties are difficult to quantify based on avail-
able information. Our spatial allocation provides the mean
methane emissions estimates for the year 2021 aggregated in 40

each 0.1°× 0.1° grid cell (∼ 10 km× 10 km) and are not in-
tended to characterize methane emissions at a specific point
in time, as substantial short-term variability in emissions may
occur due in part to the stochastic character of facility-level
methane emissions. 45

We compute basin-level and national methane loss rates as
the ratio of estimated basin-level methane emissions to the
gross methane production in 2021, based on gross natural-
gas production data from Enverus Prism (Enverus, 2024) and
an assumed average methane content of 80 % in natural gas. 50
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Figure 3. General schematic for model development and the estimation of total methane emissions, given activity data for each facility
category.

Our assumption of an average 80 % methane content in natu-
ral gas is informed by regional estimates of methane compo-
sition in natural gas based on the EPA GHGI (EPA, 2022).
We acknowledge that uncertainties in methane composi-
tion across basins likely increase uncertainties in our over-5

all methane loss rate calculations. Further studies on basin-
level methane composition are needed to constrain these un-
certainties. This methane intensity metric allows for a di-
rect comparison of estimated methane losses relative to gross
methane production across different basins. While our use of10

gross methane production accounts for emissions from asso-
ciated gas produced during oil operations, the results are not
intended to represent life-cycle emission intensities, which
are outside the scope of this work.

2.5 Model uncertainties and limitations15

In our modeling, we use the average facility-level emissions
data as is while assuming that facility emissions arise from
an underlying methane emissions distribution that is sta-
tistically described by lognormal distributions. The imple-
mentation of these probabilistic models produces emissions20

distribution models (Fig. 2) that account for uncertainties
in each facility’s measured average methane emission rate
and the facility-to-facility variability in methane emissions
within and across multiple oil and gas production regions.
The 95 % confidence intervals obtained through the Monte25

Carlo methods above reflect these uncertainties as well as
the model uncertainties in the predictions of emissions dis-
tributions, given the limited sample sizes used herein. Addi-
tional uncertainties that are difficult to quantify include un-
certainties in the oil and gas activity data and uncertainties in 30

the potential impacts of recently promulgated federal/state-
specific regulations or operator-specific practices regarding
regular facility-level methane emissions monitoring and re-
pair. In addition, due to a lack of comprehensive spatially
explicit activity data, our measurement-based inventory does 35

not include methane emissions from downstream natural-gas
distribution, liquified-natural-gas storage, post-meter emis-
sions, and abandoned oil and gas wells. The EPA GHGI
(EPA, 2022) estimates that these sources account for ∼ 0.5
to 1 Tg yr−1 of the total methane emissions; the vast major- 40

ity of these would be distributed in urban locations outside
of major oil and gas production regions.

3 Results and discussion

3.1 Total national oil and gas supply chain methane
emissions 45

We estimate a measurement-based methane emissions inven-
tory (EI-ME) of total national oil and gas methane emis-
sions for the onshore US of 15.7 Tg (95 % confidence in-
terval of 14–18 Tg or −10 %/+15 % uncertainty; Table 1;
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Fig. 4) for the year 2021. Our central estimate and con-
fidence bounds are in reasonable agreement with recent
measurement-based facility-level emission estimates (Al-
varez et al., 2018; Rutherford et al., 2021 (production sec-
tor only)) and satellite-derived oil and gas methane emis-5

sions, including quantifications using GOSAT (Lu et al.,
2022, 2023) and TROPOMI (Shen et al., 2022) (Fig. 3b).
In addition, consistent with previous findings (Alvarez et al.,
2018; Rutherford et al., 2021; Shen et al., 2022), our central
estimate is significantly greater than inventories developed10

using the traditional bottom-up source-level emission factor
approaches: we find 1.9× and 1.8× greater total methane
emissions than are estimated by the EPA Greenhouse Gas
Inventory (EPA, 2022) and EDGAR v8 (EDGAR, 2023) in-
ventories for the year 2021, respectively (Fig. 4).15

We attribute the largest discrepancy between our
measurement-based estimates and the EPA GHGI to the
estimated emissions for the oil and gas production sec-
tor, which we estimate accounts for approximately 60 % of
the total onshore methane emissions – a total of ∼ 9 Tg in20

2021, roughly 2.6× greater than the EPA GHGI’s estimate
for the production-related methane emissions (Fig. 4; Ta-
ble 1). These results are in reasonable agreement with pre-
vious measurement-based inventories (Alvarez et al., 2018;
Rutherford et al., 2021; Omara et al., 2022) and, as has25

been noted elsewhere (Alvarez et al., 2018; Rutherford et al.,
2021; Omara et al., 2018), likely reflect the use of emission
factors in the EPA GHGI that do not adequately character-
ize the contributions of high-emitting methane sources that
have been consistently observed in measurement-based stud-30

ies. Furthermore, within the oil and gas production sector,
we find that the low production well site cohort (< 15 boed)
accounts for roughly one-half of the total production site
methane emissions in 2021, consistent with recent findings
based on 2019 oil and gas activity (Omara et al., 2022). As35

Table 1 shows, the estimated total methane emissions from
the low production well site cohort alone are ∼ 26 % more
than the total methane emissions from all low production and
non-low production well sites based on the EPA GHGI.

In 2021, we estimate a national methane loss rate of 2.6 %40

(95 % CI: 2.3 %–2.9 %) relative to gross natural-gas produc-
tion, assuming an average of 80 % methane content in natural
gas (see the Methods section). Our average methane loss rate
assessment is in reasonable agreement with recent satellite-
derived estimates (Shen et al. (2022) using TROPOMI and45

Lu et al. (2023) using GOSAT). Lu et al. (2023) report a
steadily declining national methane loss rate between 2010
(∼ 3.7 %) and 2019 (∼ 2.5 %) and attribute these trends to
two likely factors: (i) a slower increase or decrease in abso-
lute methane emissions compared to the increase in methane50

production during this period and (ii) the impact of national
regulations, such as the EPA’s New Source Performance
Standards, promulgated in 2012, which focused on reducing
emissions from newly constructed well sites, among other
requirements. As we discuss further below, we find signifi-55

cant variability in the total methane emissions as well as the
spatial distributions of the estimated emissions at the region-
al/basin level for the oil and gas activity in 2021.

3.2 Variability in estimated basin-level methane
emissions 60

Among the major oil and gas production basins, we iden-
tify the Permian, Appalachian, Anadarko, Eagle Ford, Hay-
nesville, and Barnett basins as the top six methane-emitting
basins, with estimated mean total basin-level methane emis-
sions ranging from approximately 70 to 340 t h−1 (Table 2, 65

Fig. 5). These six basins account for 72 % of the onshore
total combined oil and gas production (boed) and 52 % of
the estimated total oil and gas methane emissions. Among
these basins, we estimate considerable variability in gas
production-normalized methane loss rates, with the lowest 70

mean methane loss rates of < 1 % occurring in the Ap-
palachian and the Haynesville basins and the highest mean
methane loss rates of 3 %–4 % occurring in the Permian,
Anadarko, and Barnett (Table 2). The basin-level differences
in methane loss rates among basins are consistent with the 75

GOSAT-derived estimates for 2019 (Lu et al., 2023, Table 2)
except for the Appalachian and the Eagle Ford basins, where
this study’s estimates are roughly 2× greater (Table 2). As
with our findings on the comparative assessments with the
EPA GHGI at the national level, our basin-level methane 80

emission estimates are consistently greater than the EPA
GHGI estimates (Maasakkers et al., 2023) by factors of 1.7×
(Appalachian) to ∼ 4× (Anadarko).

The confluence of various possible factors, including the
spatial density and characteristics of methane-emitting oil 85

and gas infrastructure and basin-level operational character-
istics (gas dominant versus oil dominant, intensive flaring
versus basins with negligible flaring, etc.), contribute to the
differences in the modeled basin-level methane emissions. In
each basin, we estimate a predominant contribution of to- 90

tal methane emissions from well site infrastructure, ranging
from 55 % to 75 % of the total basin-level methane emis-
sions (Table 2; Fig. 5). Well site infrastructure characteris-
tics vary significantly among basins; for example, the Ap-
palachian Basin is characterized by a large population of 95

old, leak-prone, low-producing gas well sites (Omara et al.,
2016; Deighton et al., 2020; Riddick et al., 2019), although
more than 95 % of the gas produced there comes from the
∼ 3 % of well sites that are unconventional non-low produc-
tion well sites (Enverus, 2024). This contrasts with the San 100

Joaquin Basin, where well site infrastructure is dominated by
low-producing oil pump jacks with limited onsite process-
ing equipment, which in turn contrasts with the oil-dominant
Bakken, dominated by high-producing horizontally drilled
well site facilities that typically have multiple wellheads and 105

auxiliary processing equipment including separators, storage
tanks, and flare stacks. These varying basin-level oil and gas
infrastructure characteristics likely contribute to the modeled
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Figure 4. Comparison of this study’s national estimate of total methane emissions from the oil and gas supply chain with previous
measurement-based estimates. The first three bars show the oil and gas methane emissions estimated from facility-level measurements (this
study; Alvarez et al., 2018) and production-sector-only methane emissions estimated by Rutherford et al. (2021) using models developed
from component-level measurement data. Blue bars show the estimated emissions for the production sector. Gold bars show the estimated
emissions for the midstream and downstream facilities (compressor stations, processing plants, refineries, and gathering and transmission
pipelines). Error bars show the estimated 95 % confidence bounds on the mean total methane emission estimates. This study’s estimate of
total national methane emissions includes ∼ 0.1 Tg yr−1 of estimated methane emissions for Alaska. The green bars and the red bars show
the satellite-derived estimates for the contiguous US based on GOSAT and TROPOMI observations, respectively. The last two bars show
the bottom-up inventories from EPA GHGI and EDGAR v8 for the contiguous US. In all cases, the years for which methane emissions are
estimated are shown on the top x axis.

emission differences, given that the empirical data synthe-
sized herein reveal the weak correlation of methane emis-
sion profiles with well site production characteristics (loss
rates; Fig. 1a) and infrastructure category (absolute emis-
sions; Figs. 1b, 2).5

Furthermore, the magnitude of modeled methane emis-
sions varies by basin-level operational characteristics. For
example, the Permian Basin, with its significant new oil and
gas development, stands in contrast to the relatively mature
basins such as the Barnett or Uinta with steadily declining10

gas production and aging well site infrastructure. As Lu et
al. (2023) observed, high methane loss rates tend to be as-
sociated with oil-dominant basins (e.g., the Permian, Eagle
Ford, and Bakken), where production activities are focused
on oil production, even though substantial associated gas is15

co-produced along with the oil. In these basins, potentially
higher methane emissions may occur due to venting and/or
inefficient flaring of the co-produced gas, especially when
there is insufficient infrastructure to gather and process the
associated gas production and then transport it to market, as20

has been postulated for the Permian Basin (Lyon et al., 2021;
Varon et al., 2023; Lu et al., 2023). As noted previously,
basin-level differences in total methane emissions could also
be impacted by federal/state-level regulations for oil and gas
methane emissions and/or operator-specific practices, affect- 25

ing both the magnitude and temporal variability of emissions.
While our methods are based on insights derived from empir-
ical observations and robust modeling to estimate methane
emissions specific to oil and gas activity in 2021, we lack
sufficient data to characterize the impacts of specific regula- 30

tions or operator practices. Further studies are needed to as-
sess oil and gas methane emission trends and corresponding
underlying drivers.

3.3 Sub-basin methane assessment and comparison
with emissions quantification using MethaneAIR 35

This study’s EI-ME inventory provides methane emission es-
timates at geolocated oil and gas facilities, making it possible
to develop aggregate methane emission estimates across sub-
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Figure 5. Basin-level differences in modeled mean total methane
emissions and comparison with the EPA GHGI (Maasakkers et
al., 2023), TROPOMI-derived estimates (Shen et al., 2022), and
GOSAT-derived estimates (Lu et al., 2023). See Fig. S11 for a sim-
ilar chart showing the state-by-state breakdown for the top 10 emit-
ting US states based on the EI-ME inventory estimates.

basin to basin and national levels. We compare our sub-basin
estimates for the Delaware portion of the Permian Basin and
the Uinta Basin with new remote-sensing-based quantifica-
tion by MethaneAIR (Staebell et al., 2021; Chulakadabba et
al., 2023; Chan Miller et al., 2023), an airborne precursor 5

to the MethaneSAT satellite, which was launched in March
2024. The MethaneAIR and MethaneSAT missions are man-
aged by MethaneSAT LLC (http://www.methanesat.org, last
access: 22 August 2024), which is a wholly owned sub-
sidiary of Environmental Defense Fund. Both MethaneAIR 10

and MethaneSAT are designed to produce quantitative data
on total regional methane emissions while spatially disag-
gregating diffuse area emissions and detecting high-emitting
point sources. Detailed descriptions of the MethaneAIR in-
strument technical specifications, instrument calibration, re- 15

trieval methods, and point-source detections and validation
can be found in recent works by Staebell et al. (2021), Con-
way et al. (2024), Chulakadabba et al. (2023), El Abbadi et
al. (2023), Chan Miller et al. (2023), and Omara et al. (2023).

In August 2021, MethaneAIR flew across a ∼ 10 000 km2
20

area in the Delaware Sub-basin of the Permian Basin (re-
search flight RF-06) and the Uinta Basin (research flight
RF-08) and produced a quantification of the total area
methane emissions using a geostatistical inverse model-
ing (GIM) framework (based on Miller et al., 2020). 25

The GIM framework was applied to the inversion of
the column mean methane dry-air mole fraction retrieved
using MethaneAIR measurements obtained while flying
at 40 000 ft (∼ 12 000 m) above the ground aboard the
NCAR GV aircraft (https://www.eol.ucar.edu/field_projects/ 30

methaneair, last access: 22 August 2024). For MethaneAIR
and MethaneSAT, the GIM framework is specialized to ex-
ploit the instrument’s high spatial resolution, wide spatial

http://www.methanesat.org
https://www.eol.ucar.edu/field_projects/methaneair
https://www.eol.ucar.edu/field_projects/methaneair
https://www.eol.ucar.edu/field_projects/methaneair
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coverage, and high precision. It ingests high-emitting point-
source detections, which are quantified using the modi-
fied integrated mass enhancement method (Chulakadabba
et al., 2023). As such, remote-sensing measurements by
MethaneAIR at 40 000 ft (∼ 12 000 m) above the ground pro-5

duce a high-resolution spatially explicit quantification of
the total area methane emissions as well as high-emitting
methane point sources emitting above ∼ 200 kg h−1.

We compare this new MethaneAIR total area methane
quantification with the EI-ME modeled results as well as10

the results from previous peer-reviewed studies in domains
overlapping with the RF-06 Permian and the RF-06 Uinta
regions. For both regions, we find good agreement, within
uncertainty bounds, of the MethaneAIR quantification with
other studies (Fig. 6), with emission rate quantifications that15

fall within representative ranges of mean total sub-basin
methane emissions of 80–100 and 17–24 t h−1 for RF-06 Per-
mian and RF-08 Uinta, respectively (horizontal dashed lines
in Fig. 6).

Based on the MethaneAIR quantifications for these two20

regions, we estimate that diffuse area emissions (which are
assessed using the GIM modeling framework) account for
the majority of the methane emissions in both sub-basins;
they represent 63 % and 88 % of the total area methane emis-
sions in the RF-06 and RF-08 regions, respectively. The re-25

mainder (37 % and 12 % of the total in RF-06 and RF-08,
respectively) is attributable to the quantified high-emitting
methane point sources with facility-specific methane emis-
sion rates in excess of∼ 200 kg h−1 per facility. These results
are in reasonable agreement with the EI-ME results – aver-30

aged over the year – for the same spatial domains, in which
oil and gas methane sources with mean methane emission
rates < 200 kg h−1 account for 85 % and 90 % of the total
estimated methane emissions for RF-06 and RF-08, respec-
tively. Furthermore, Cusworth et al. (2022) report similar re-35

sults for the same regions overlapping with these domains
in the Permian and Uinta. They find that methane sources
below 200 kg h−1 account for 70 % and 88 % of total area
emissions, which were quantified based on the area inver-
sion of TROPOMI satellite observations and point-source40

detections by AVIRIS-NG in 2021 and 2020 for RF-06 and
RF-08, respectively. Furthermore, for a different sub-region
of the Permian Basin, Kunkel et al. (2023) observed that
facility-sized emission sources with rates below 280 kg h−1

contribute 67 % of the total emission rate from all sources45

with rates above 10 kg h−1. At the national level, Omara et
al. (2022) previously showed that the large population of
low-producing well sites (also known as marginal wells) with
population-average methane emission rates of ∼ 1 kg h−1

per site account for roughly one-half of all production site50

methane emissions. Taken together, these results underscore
the importance of small methane-emitting sources dispersed
across areas; while individually emitting at low rates, in ag-
gregate, these sources can nevertheless contribute a dispro-
portionate fraction of the regional total methane emissions.55

Williams et al. (2024) expand on these assessments, provid-
ing a detailed look at facility-level methane emissions distri-
butions at the basin and national level.

3.4 Variability in estimated spatial distribution of
methane emissions 60

Our spatially explicit EI-ME inventory suggests that basin-
level differences also manifest as differences in the spatial
distribution of total methane emissions. On average, we find
oil and gas methane emission hotspots in every major US oil
and gas production basin, including the Permian (the largest 65

oil-producing basin in the US, located in western Texas and
southern New Mexico), Appalachian (Pennsylvania, Ohio,
West Virginia, and New York), Anadarko (Oklahoma and
Texas), Eagle Ford (Texas), Bakken (North Dakota), and
Haynesville (Texas and Louisiana; Figs. 6, S4) basins. Our 70

analysis suggests that methane emission hotspots tend to be
concentrated in areas with high oil and gas production, as
evidenced, for example, by the two large hotspots in the
rapidly developing, high-producing Delaware and Midland
sub-basins of the Permian Basin (Fig. 7a; see Fig. S9 for 75

maps representing the lower bounds and upper bounds on
spatially gridded emissions), consistent with spatial distribu-
tions for the satellite-observed methane emissions quantifi-
cation in this region (Zhang et al., 2020; Varon et al., 2023).
In addition, as with the total basin-level emissions, methane 80

emissions spatial distributions are functions of oil and gas
activity and their related facility-level emission characteris-
tics. For example, substantial low production oil and gas well
site activity yields modeled methane emission hotspots in the
southwestern tip of the Appalachian Basin (Fig. 7a), even 85

though this region is not an oil and gas production hotspot
(Fig. S5). Furthermore, our analysis suggests the spatial cor-
relation of methane emission hotspots with intensive gas flar-
ing activity, particularly for the oil-producing basins with
substantial associated gas production, including the Permian, 90

the Eagle Ford, and the Bakken regions (Figs. 4, S5).
We further assess the variability in the spatial distribu-

tion of modeled methane loss rates, which reveals areas
(25× 25 km2 grids) in each major basin where methane loss
rates are < 0.25 %–1 % of the methane production. These ar- 95

eas, in general, are characterized by significant unconven-
tional oil and gas production; examples are found in the Ap-
palachian Basin (northeastern Pennsylvania and the tri-state
corner of southern Pennsylvania, eastern Ohio, and north-
ern West Virginia) as well as in the Permian Delaware and 100

Midland sub-basins and in parts of the Haynesville, Eagle
Ford, and Bakken (Fig. 8). We also estimate areas with ex-
cessive methane loss rates (> 10 % of methane production;
Fig. 8) in each major producing basin, particularly in the Ap-
palachian Basin, in the Michigan Basin, and in the Greater 105

Anadarko area of Missouri (Fig. 8). High methane loss rates
are likely linked to the predominance of old, leak-prone, low-
producing well sites (e.g., in parts of the Appalachian and
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Figure 6. Comparison of the EI-ME inventory with MethaneAIR and other peer-reviewed studies for two sub-regions of the Permian
and Uinta basins. Bars are color coded by emissions quantification method (MethaneAIR – hatched green bar; EI-ME – hatched dark green;
PermianMAP airborne studies – purple; PermianMAP or tower-based study – red color; TROPOMI studies – dark blue bars). Lin et al. (2021)
report total Uinta Basin methane emission estimates; we adjusted their estimate to account for the ratio of gas production in the RF-08 region
to the total gas produced in Uintah and Duchesne counties in 2021 (RF-08 accounts for 74 % of the total production in the two counties). For
all other studies, we use only the reported emission estimates that overlap with the MethaneAIR target boundaries. The dashed horizontal
lines show a representative range of sub-basin methane emissions, computed via a bootstrapping procedure from all previously reported
methane emissions (including the EI-ME results) to derive a lower bound and an upper bound on the mean total methane emissions based on
the 2.5th and 97.5th percentiles of the resulting bootstrap distribution, respectively. Map credit: ESRI, 2023.

San Joaquin basins – although the overall lack of correla-
tion between absolute methane emissions [kg h−1] andCE6

site age in Fig. S8 should be noted; also see Brantley et al.,
2014) or may be associated with modeled midstream infras-
tructure emissions from sources not collocated with signifi-5

cant oil and gas production.
The updated 2020 gridded EPA GHGI inventory for oil

and gas systems (Maasakkers et al., 2023) uses the same
source of oil and gas activity data as this study (Enverus,
2024) and allocates GHGI emissions to specific emission10

source categories using infrastructure locations and methane
emission scaling factors (e.g., scaled using well count and
oil and/or gas production for well sites, depending on the
source category). The estimated methane emission hotspots
(Fig. 7b) are in reasonable agreement with this study’s es-15

timated spatial distributions (r = 0.64; Fig. 7a), with no-
table exceptions in parts of the Michigan Basin (Michigan),

the Appalachian Basin (Pennsylvania, Ohio, and West Vir-
ginia), the Powder River Basin (Wyoming), and the Bar-
nett (east Texas), the Permian (west Texas), and the San 20

Joaquin (southern California) basins (Fig. 7b). In parts of
these basins, strong methane hotspots appear in regions that
likely reflect a dependence of emissions spatial allocation on
the spatial density of infrastructure (Fig. S5). This differs
from this study’s spatial allocation, which not only leverages 25

infrastructure locations but simultaneously integrates the em-
pirically observed facility-level methane emission character-
istics (Figs. 1, 2), which can vary among populations in the
same facility category (e.g., the distinction between emission
profiles for low/non-low production well sites or among dif- 30

ferent production cohorts of the non-low production well site
category).

In general, we find large differences in the magnitude
of methane emissions in all of the major basins shown in



14 M. Omara et al.: Constructing a measurement-based spatially explicit methane inventory

Figure 7. Estimated spatial distribution of total methane emissions and comparison with the EPA GHGI estimates. (a) This study’s assess-
ment of the spatial distribution of US total oil and gas methane emissions, showing the estimates for the contiguous US (excluding Alaska,
the total estimated methane emissions were 15.6 Tg in 2021). For visualization and comparison with the EPA GHGI inventory, the total
methane emissions are gridded to a 0.1°× 0.1° spatial scale (∼ 10 km× 10 km). Major basin boundaries are outlined using black polygons.
(b) Estimated spatial distribution of total oil and gas methane emissions based on the EPA GHGI (2020; Maasakkers et al., 2023). Note that
the EPA GHGI data shown here are for the year 2020, the latest year for which spatially explicit data are available. (c) Difference in spatially
explicit methane emissions between this study’s estimates and the EPA GHGI. Warmer colors indicate comparatively high estimates from
this study relative to the EPA GHGI. We acknowledge that the comparison is limited by the different time periods of the two studies – 2021
in this study versus 2020 for the EPA GHGI. Nevertheless, as both studies report annual averages, it is unlikely that significant differences in
aggregate spatial distribution would have occurred between 2020 and 2021 that would alter the main conclusions from this analysis. For the
EI-ME, uncertainty estimates for each grid cell (i.e., lower bound and upper bound on mean estimates) are presented in map form in Fig. S9.
Map credit: ESRI, 2023. Basin boundaries are based on US EIA basin boundaries data (https://www.eia.gov/maps/maps.php, last access:
22 August 2024).

https://www.eia.gov/maps/maps.php
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Figure 8. Estimated mean spatial distribution of production-normalized methane loss rates. For ease of visualization, we aggregate our
facility-level methane inventories to a coarser spatial grid (25× 25 km2) and normalize each grid’s total estimated methane emissions relative
to total methane production to derive spatially explicit methane loss rates, assuming an 80 % methane content in natural gas. Major basin
boundaries are outlined in black, and mean basin-level methane loss rates are shown as %. Map credit: ESRI, 2023. Basin boundaries are
based on US EIA basin boundaries data (https://www.eia.gov/maps/maps.php, last access: 22 August 2024).

Fig. 7 when comparing the spatially explicit methane emis-
sions in the GHGI and this study’s estimates (Figs. 7c, S6).
We also find large differences in the spatial distribution of
the methane emissions when comparing this study’s spa-
tially explicit emissions inventory with the EDGAR v8 in-5

ventory (EDGAR, 2023; Fig. S7). Note that the EDGAR
v8 total methane emissions are similar in magnitude to the
EPA GHGI inventory estimates (Fig. 1), although emissions
spatial allocation methods are primarily dependent on scal-
ing by oil production characteristics, such that large methane10

hotspots are estimated to be located in the oil-dominant
basins of the Permian, the Bakken, and the Eagle Ford
(Fig. S7).

Our results suggest both an underestimation of the mag-
nitude of spatially explicit emissions in key US oil and gas15

basins as well as potentially unrepresentative spatial distri-
butions of these emissions in the EDGAR v8 and the EPA
GHGI gridded inventories. These results carry important im-
plications for the use of traditional bottom-up inventories as
a priori information in Bayesian inversions of satellite obser-20

vations for methane quantification since both the magnitude
and the spatial allocation of emissions could influence the
posterior results from these modeling systems under certain
observational data constraints, such as insufficient observa-
tional data density (Shen et al., 2022).25

4 Data availability

EI-ME_v1.0 can be accessed at
https://doi.org/10.5281/zenodo.10734299 (Omara, 2024) in
the open-access GeoPackage file format. The GeoPackage
file includes estimates for Alaska, while a .netdf file is 30

also provided with gridded emission results for only the
lower 48 US states to facilitate easier comparison with
recent satellite-derived methane emission estimates for the
contiguous US (Shen et al., 2022; Lu et al., 2023).

5 Code availability 35

The Python 3.7 code used for emissions modeling, extrap-
olation to populations of facilities, and data visualization is
available from the corresponding author upon reasonable re-
quest.

https://www.eia.gov/maps/maps.php
https://doi.org/10.5281/zenodo.10734299
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6 Conclusions

Accurate and comprehensive assessment of oil and gas
methane emissions is pivotal in informing effective methane
mitigation policies. In this study, we develop robust statisti-
cal models based on measured facility-level methane emis-5

sions and integrate these models with comprehensive oil and
gas activity data for onshore US oil and gas facilities to es-
timate total national oil and gas methane emissions for the
year 2021. We estimate a total of ∼ 16 (14–18) Tg of oil and
gas methane emissions in 2021, representing a mean methane10

loss rate of 2.6 % of gross gas production. Our national
methane emission estimate, while in reasonable agreement
with previous measurement-based estimates using facility-
level measurements and satellite observations, is nevertheless
roughly 2× greater than official inventories from the EPA15

Greenhouse Gas Inventory (GHGI). This improved assess-
ment of national methane emissions underscores the impor-
tance of integrating measurement-based data to develop ro-
bust methane emissions inventories which, as we show in this
work, exhibit substantial variability in both the magnitude20

and spatial distribution of total methane emissions across ma-
jor oil and gas basins.

Further improvements to methane emissions inventories
are possible through greater integration of measurement-
based data, including remote-sensing approaches that can25

provide comprehensive area-wide total methane emissions,
quantifications of high-emitting methane point sources, and
high-resolution spatial disaggregation of total methane emis-
sions. In this study, we present the first set of such remote-
sensing quantifications, based on MethaneAIR measure-30

ments in sub-basins of the Permian and Uinta, and we
demonstrate reasonable agreement with several previous
peer-reviewed assessments of total area methane emissions
over similar spatial domains and time periods. These compre-
hensive area-wide assessments also enable a detailed charac-35

terization of the importance of small methane sources dis-
persed across regions viz-à-viz large, concentrated methane
point sources, revealing their relative importance and vari-
ability across unique US oil- and gas-producing basins.

The EI-ME inventory provides a detailed characterization40

of total methane emissions by key facility category at the na-
tional level as well as at the regional/basin level, thus help-
ing provide policy-relevant information that is important in
developing and tracking effective methane mitigation strate-
gies. The quantified uncertainties in our methane emission45

estimates could be improved upon in future studies through
additional peer-reviewed data collection efforts, which are
needed to develop further insights in response to ongoing
methane mitigation efforts. There is a research need to de-
velop robust statistical methods for the effective integration50

of lower-detection-limit ground-based facility-level methane
emissions data (such as the data synthesized herein) with
the growing number of airborne facility-level measurement
studies, which generally have higher method detection lim-

its (e.g., the airborne methane remote-sensing data in Duren 55

et al., 2019; Cusworth et al., 2022; Sherwin et al., 2024).
As demonstrated herein, improved integrated assessments of
facility-level, regional, and national methane emissions in-
ventories, based on measurement data, support ongoing ef-
forts to accurately quantify methane emissions, identify key 60

methane sources and regions for targeted methane reduc-
tions, and track progress toward methane reduction goals.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-16-1-2024-supplement.
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CE2 Please note the change to exponential formatting here and below.
CE3 Please note the change to our standard abbreviation of “no.” for “number” throughout the table.
CE4 Please note the insertion. For consistency with “natural-gas distribution”, “liquified-natural-gas storage” was also hy-
phenated.
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