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Abstract 

Accurate and comprehensive quantification of oil and gas methane emissions is pivotal in informing effective methane 

mitigation policies, while also supporting the assessment and tracking of progress towards emissions reduction targets 

set by governments and industry. While national bottom-up source-level inventories are useful for understanding the 

sources of methane emissions, they are often unrepresentative across spatial scales, and their reliance on generic 15 

emission factors produces underestimations when compared with measurement-based inventories. Here, we compile 

and analyze previously reported ground-based facility-level methane emissions measurements (n = 1,540) in the major 

US oil and gas producing basins and develop representative methane emission profiles for key facility categories in 

the US oil and gas supply chain, including well sites, natural gas compressor stations, processing plants, crude oil 

refineries, and pipelines. We then integrate these emissions data with comprehensive spatial data on national oil and 20 

gas activity to estimate each facility’s mean total methane emissions and uncertainties for the year 2021, from which 

we develop a mean estimate of annual national methane emissions, resolved at 0.1º × 0.1º spatial scales (~10 km × 10 

km). From this measurement-based methane emissions inventory (EI-ME), we estimate total US national oil/gas 

methane emissions of approximately 1615.7 Tg (95% confidence interval of 14-18 Tg) in 2021, which is ~2 times 

greater than the EPA Greenhouse Gas Inventory. Our estimate represents a mean gas production-normalized methane 25 

loss rate of 2.6%, consistent with recent satellite-based estimates. We find significant variability in both the magnitude 

and spatial distribution of basin-level methane emissions, ranging from <1% production-normalized methane loss 

rates in the gas-dominant Appalachian and Haynesville regions to >3-6% in oil-dominant basins, including the 

Permian, Bakken, and the Uinta. Additionally, we present and compare novel comprehensive wide-area airborne 

remote sensing data and results of total area methane emissions and the relative contributions of diffuse and 30 

concentrated methane point sources as quantified using MethaneAIR in 2021. The MethaneAIR assessment showed 

reasonable agreement with independent regional methane quantification results in sub-regions of the Permian and 

Uinta basins and indicated that together indicate diffuse area sources accountedaccounting for the majority of total 

regional oil and gas emissions in these two regions. Our assessment offers key insights into plausible underlying 

drivers of basin-to-basin variabilities in oil and gas methane emissions, emphasizing the importance of integrating 35 
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measurement-based data in developing high-resolution, spatially explicit methane inventories in support of accurate 

methane assessment, attribution, and mitigation. The high-resolution spatially explicit EI-ME inventory is publicly 

available at https://doi.org/10.5281/zenodo.10734300 (Omara et al. 2024) 

 

1. Introduction 40 

Accurate characterization of oil and gas methane emissions across spatial scales – from the facility-level to 

the basin- and national-level – is an essential component of methane reduction programs, integral to mitigating the 

near-term catastrophic impacts of human-induced global warming (IPCC, 2021). As governments, industry, and 

various stakeholders publicly commit to cut their methane emissions footprint (OGCI, 2021; GMP, 2021), accurate 

methane inventories will play a crucial role in the development and implementation of effective methane reduction 45 

approaches as well as tracking progress toward emission reduction targets.  

At the national level, methane inventories are typically developed using “bottom-up” methods, for example, 

these methods are used by most countries that report annual greenhouse gas inventories to when reported as part of 

the UNFCCC Greenhouse Gas Inventory (UNFCCC, 2023). “Bottom-up” methane inventories are developed by 

applying generic, or in some cases, empirically determined, component- or source-level emission factors to national 50 

oil and gas activity data (EPA, 2022). While these inventories are useful as first-order estimates of the emission 

sources, they often lack the accuracy needed to characterize methane emissions, their sources, and their trends over 

time at the facility-scale to the basin-level.  

In addition, scores of recent studies at specific oil and gas basins (Zhang et al., 2020), countries (Alvarez et 

al., 2018; Shen et al., 2021; Zavala-Araiza et al., 2021; Johnson et al., 2023), and globally (Shen et al., 2023) have 55 

consistently found an underestimation in bottom-up inventories when compared to measurement-based inventories, 

pointing to a need for improvements in the bottom-up methane inventory methodologies. Furthermore, satellite-based 

quantification of regional, national, and global methane emissions has emerged as crucial tools for assessing the 

accuracies of methane inventories (Jacob et al., 2022; Shen et al., 2023). However, when Bayesian inversion models 

are used for methane flux quantification, spatially explicit methane inventories are needed as a priori information 60 

(Shen et al., 2021, 2023). Past efforts have produced such a priori information by spatially disaggregating methane 

emissions inventories reported to the UNFCCC (Maasakkers et al., 2023; Scarpelli et al., 2022; EDGAR, 2023) which, 

as noted above, can have large underestimation and uncertainties in both the magnitude and spatial distributions of oil 

and gas methane emissions. 

In this work, we utilize previous peer-reviewed facility-level measurement data (n = 1,540) for methane 65 

emissions at oil and gas facilitiessites in the major US oil and gas production basins to develop an improved assessment 

of national, basin-level, and facility-level methane emissions based on oil and gas activity in 2021. Our measurement-

based inventory differs from other “bottom-up” inventories that use generic emission factors (e.g., EPA GHGI) in that 

we leverage empirical observations to derive insights on facility-level methane emission distributions useful for 

estimating population mean total methane emissions. Our contributions are three-fold: First, we develop statistically 70 

robust facility-level methane emission models based on measurement data collected in the years post-2011 (when 

EPA’s New Source Performance Standards for the oil and gas industry were first proposed) through 2020. Weand use 
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these models to estimate national methane emissions, on both an absolute basis (Tg/year) and production-normalized 

basis (% emitted relative to methane production). Second, we extend this approach to assess variability and underlying 

drivers of oil and gas methane emissions and methane loss rates across the major US oil and gas basins. As part of 75 

this assessment, we present and compare the quantification of total area methane emissions and the relative 

contributions of diffuse area emissions versusand large concentrated methane sources in the Permian and Uinta Basins, 

based on new remote sensing measurements by MethaneAIR (Staebell et al., 2021; Chulakadabba et al., 2023; Chan 

Miller et al., 2023), an airborne precursor to MethaneSAT (www.methanesat.org). Finally, we construct a high-

resolution spatially explicit oil and gas methane emissions inventory for 2021, aggregated at 0.1º × 0.1º (~10 km × 10 80 

km) spatial scales, and use these results to characterize the spatial patterns in national emissions.   

 

2. Methods 

2.1. Oil and gas activity data  

We follow the procedure developed by Omara et al. (2022) to assess the total number and site-level 85 

production characteristics of actively producing onshore oil and gas well sites in the US in 2021. Aggregation of 

wellhead data to well site data (a well site can have multiple wellheads) is needed because (i) methane measurement-

based data are reported at the well site level and (ii) production data are reported on a monthly basis for each producing 

wellhead. Briefly, we use the monthly well-level oil and gas production data as reported by Enverus Prism (Enverus, 

20242023), which aggregates public and proprietary data on monthly well-level production. For each actively 90 

producing well, we derive average well-level oil (barrels per day, bpd; 1 barrel crude oil ~ 0.136 tonnes), gas (1 

thousand cubic feet per day, Mcfd; 1 ft3 = 0.0283 m3), and combined oil and gas (barrels of oil equivalent per day; 1 

boed = 6 Mcfd gas) production rates based on the reported number of production days in the year, and assuming 365 

calendar days in the calendar year if production days were not reported, which occurred at <5% of producing wells 

(Supplementary Fig. 10).. We filtered the data for only the actively producing wells (n = 824,003) and used geospatial 95 

clustering approaches, described in detail in Omara et al. (2022), to derive well site attributes (e.g., number of wells 

per site, site-level oil, gas, and boed production). Based on this analysis, we estimate a total of 660,149 actively 

producing onshore oil and gas well sites in the US in 2021 (Table 1), indicating an average of 1.2 wellheads per well 

site. Finally, we differentiate between low-production (≤ 15 boed) and non-low production (> 15 boed) oil and gas 

well sites based on their average site-level boed production rates in 2021. Our assessment indicates that low production 100 

well sites accounted for 82% of the total number of US onshore actively producing well sites in 2021 (Table 1). We 

consider these spatial data as comprehensive for the US oil and gas production well sites as it is consistent with the 

official gross oil and gas production reported by the US Energy Information Administration for 2021 (e.g., the sum of 

gross gas production from spatially explicit well-level production data from Enverus Prism is consistent with the total 

of ~42 Tcf of US natural gas gross withdrawals reported by the US Energy Information Administration, 105 

https://www.eia.gov/dnav/ng/ng_prod_sum_dc_NUS_mmcf_a.htm) 

We estimate the total number of operational gathering and transmission compressor stations, natural gas 

processing plants, and crude oil refineries, based on spatial data reported by Enverus Prism (Enverus, 20242023), 

supplemented with additional spatial data from the Oil and Gas Infrastructure Mapping (OGIM) database (Omara et 
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al., 2023), which consolidates public-domain data on oil and gas infrastructure locations and facility characteristics. 110 

For gathering and transmission pipelines, we estimate total pipeline miles based on the Enverus Prism (Enverus, 

20242023). In addition, we assess methane emissions associated with gas flaring activity, leveraging the natural gas 

flaring detections dataset based on VIIRS (visible infrared imaging radiometer suite) instruments onboard the Suomi 

National Polar-orbiting Partnership (NPP) and NOAA-20 satellites to identify the locations of gas flaring facilities or 

clusters of facilities and associated gas flared volumes (Elvidge et al., 2015). Table 1 shows the summary statistics for 115 

the oil and gas activity data used in this study. 

 

2.2. Facility-level measurement-based methane emissions data 

We begin by performing a comprehensive data review and assessment of previously published peer-reviewed 

data on facility-level methane emissions measurements for US oil and gas basins, leveraging Google Scholar search 120 

results based on keywords that reflect geography of interest (oil and natural gas methane emissions in the US), 

measurement methods (ground-based facility-level methods, OTM-33A, tracer flux, mobile transects), and major oil 

and natural gas facility categories (production well sites, natural gas gathering and transmission compressor stations, 

processing facilities, pipelines, crude oil refineries). We focus on ground-basedfacility-level methane emissions 

measurements, focusing on ground-based facility-level measurement studies that report total facility-level methane 125 

emissions quantification for well sites, natural gas gathering and boosting compressor stations, natural gas 

transmission compressor stations, and natural gas processing plants.  

These ground-based measurement approaches include the dual tracer downwind mobile measurements 

(Mitchell et al., 2015; Omara et al., 2016, 2018), the EPA Other Test Method (OTM-33A) downwind stationary 

measurements (Brantley et al., 2014; Robertson et al., 2017, 2020), and downwind mobile measurements with 130 

Gaussian plume transport modelling (Caulton et al., 2019; Omara et al., 2018). Omara et al. (2018) provides a detailed 

overview of these ground-based measurement methods. Other recent published studies that used chamber flux 

quantification approaches and reported only wellhead methane emissions quantification (e.g., wellhead methane 

emissions in Deighton et al. (2020) and Riddick et al. (2019)) are not included, as unquantified methane sources (e.g., 

from separators, tanks, pneumatic devices, etc) likely lead to a low bias in facility-level total methane emissions. 135 

However, we use the total facility-level methane emissions data reported by Zimmerle et al. (2021) for natural gas 

gathering and boosting stations, based on aggregation of each facility’s onsite component-level measurements 

performed using high flow sampler following leak detection with an infrared camera. We acknowledge possible low 

bias in this dataset given the limitations of facility-level measurements using high-flow samplers, including inability 

to access all methane emitting sources and/or to quantify large emission sources beyond the high-flow sampler 140 

capacity (Zimmerle et al., 2021). Finally, given their large size and difficulty of quantifying facility-wide emissions 

with ground-based measurement approaches, we use available measurement-based methane emissions data for crude 

oil refineries based on aerial remote sensing methods (Lavoie et al., 2017; Duren et al., 2019).  

 

 145 
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Table 1. Oil and gas activity data and estimates of total methane emissions  

Facility 

category 

Facility sub-

category 

Units Activity 

data 

Measurement-

based data sources 

(sample size)a   

Estimated total 

methane 

emissions, 2021 

(Tg, 95% CI) 

EPA 

GHGI, 

2021 

(Tg)b 

Well sites Low 

production 

# of well 

sites 

541,987  n = 1,153, see 

footnote for study 

references 

4.3 (2.9-6.0) 3.4 

Non-low 

production 

# of well 

sites 

118,162 5.1 (3.6-7.4) 

Natural gas 

compressor 

stations 

Gathering and 

boosting 

stations 

# of 

stations 

4,651 n = 116 (Mitchell et 

al. (2015)), n = 180 

(Zimmerle et al. 

(2020)) 

1.6 (0.9-3.0) 1.4 

Transmission 

stations 

# of 

stations 

2,107 n = 47 

(Subramanian et al. 

(2015)) 

1.7 (0.7-4.5) 1.6 

Natural gas 

processing 

plants 

-- # of plants 908 n = 16 (Mitchell et 

al. (2015)) 

1.6 (0.7-3.7) 0.51 

Crude oil 

refineries b 

-- # of 

refineries 

143 n = 28 (see footnote) 0.14(0.1-0.18) 0.03 

Pipelines Gathering 

pipelines 

Pipeline 

miles 

367,717 EPA Greenhouse 

Gas Inventory (EPA, 

2022) 

0.13 (0.12-0.14) 0.13 

Transmission 

pipelines 

Pipeline 

miles 

552,150 0.47 (0.46-0.48) 0.17 

Natural gas 

flaring 

detections 

  

# of flaring 

detections  

# of 

detections 

3,153 n = 3,153; Elvidge et 

al. (2015) 

 0.56 (0.55-0.57) - 

Estimated gas 

flared volumes 

MMcf/year  344,217 Elvidge et al. (2015) 

   

Total estimated 

methane emissions 

 15.7 (14.1-18.0) 8.3 (7.0-

9.6) 

a Measurements at well sites include 1,153 facility-level measurements from nine studies in eight basins or production regions in 
the US. Studies include Brantley et al. (2014), Robertson et al. (2017), Robertson et al. (2020), Omara et al. (2016), Omara et al. 150 
(2018), Caulton et al. (2019), Rella et al. (2015), Lan et al. (2015), and Yacovitch et al. (2015). For crude oil refineries, available 
facility-level measurements are based on aerial remote sensing quantification (Duren et al., 2019; Lavoie et al., 2017).  



 

6 
 

b EPA GHGI total includes 0.5 Tg methane from natural gas distribution, LNG storage, and other sources not shown in this table. 
 

the EPA Other Test Method (OTM-33A) downwind stationary measurements (Brantley et al., 2014; 155 

Robertson et al., 2017, 2020), and downwind mobile measurements with Gaussian plume transport modelling (Caulton 

et al., 2019; Omara et al., 2018). Omara et al. (2018) provides a detailed overview of these ground-based measurement 

methods. Other recent published studies that used chamber flux quantification approaches and reported only wellhead 

methane emissions quantification (e.g., wellhead methane emissions in Deighton et al. (2020) and Riddick et al. 

(2019)) are not included, as unquantified methane sources (e.g., from separators, tanks, pneumatic devices, etc) likely 160 

lead to a low bias in facility-level total methane emissions. However, we use the total facility-level methane emissions 

data reported by Zimmerle et al. (2021) for natural gas gathering and boosting stations, based on aggregation of each 

facility’s onsite component-level measurements performed using high flow sampler following leak detection with an 

infrared camera. We acknowledge possible low bias in this dataset given the limitations of facility-level measurements 

using high-flow samplers, including inability to access all methane emitting sources and/or to quantify large emission 165 

sources beyond the high-flow sampler capacity (Zimmerle et al., 2021). Finally, given their large size and difficulty 

of quantifying facility-wide emissions with ground-based measurement approaches, we use available measurement-

based methane emissions data for crude oil refineries based on aerial remote sensing methods (Lavoie et al., 2017; 

Duren et al., 2019).  

For non-low production well sites, we use previously published facility-level measurement data collected in 170 

eight US basins, including the Barnett (n = 254; Brantley et al. 2014; Lan et al., 2015; Rella et al., 2015; Yacovitch et 

al., 2015), Denver-Julesburg (n = 46; Robertson et al., 2017; Brantley et al., 2014; Omara et al., 2018), Eagle Ford (n 

= 3; Brantley et al., 2014); Fayetteville (n = 47; Robertson et al., 2017), Marcellus Shale (n = 572; Omara et al., 2016; 

Omara et al., 2018; Caulton et al., 2019), Permian (n = 72; Robertson et al., 2020), Uinta (n = 31; Robertson et al., 

2017; Omara et al., 2018), and Upper Green River (n = 129; Brantley et al., 2014; Robertson et al., 2017). The 175 

consolidated site-level measurement data (n = 1,153) included data collected in the years post-2011 (when EPA’s 

New Source Performance Standards for the oil and gas industry were first proposed) through 2020. We only focus on 

data from studies that reported total facility-level emissions quantification in addition to the production characteristics 

(i.e., gas and/or oil production rates). We use each study’s reported facility-level methane loss rate, computed as 

methane emissions relative to methane production at each facility, in our modellingmodeling of methane emissions. 180 

Where methane loss rates were not reported, we compute the percent methane loss rates as follows, based on the 

reported average gas production rate at the time of measurement: 

𝑚𝑒𝑡ℎ𝑎𝑛𝑒 𝑙𝑜𝑠𝑠 𝑟𝑎𝑡𝑒 [𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠] ==  𝐶𝐻ସ[
𝑘𝑔

ℎ
] ×

1

𝐺𝑎𝑠 [𝑀𝑐𝑓𝑑]
×

1 𝑀𝑐𝑓

19.2 [𝑘𝑔 𝐶𝐻ସ]
×

1

𝜎஼ுସ

×
24ℎ

1𝑑
 

where 𝐶𝐻ସ [kg/h] is the measured facility-level methane emission rate in kg/h, Gas[Mcfd] is the reported gas 

production rate in thousand cubic feet [Mcf] per day, 19.2 kg/Mcf is the methane density at 60 oF (15.5 oC) and 1 atm, 185 

and 𝜎஼ுସ is the assumed methane content of𝜎஼ுସ is the assumed methane fraction in the produced natural gas (we 

assume an average of 80% methane content in the produced natural gas).  



 

7 
 

For low-production well sites (≤15 boed), we use the same facility-level methane emissions data and 

emissions assessment methods as described in detail in Omara et al. (2022). Briefly, we use the reported empirical 

observations (n = 240; Omara et al., 2022) in a hybrid Monte-Carlo and non-parametric probabilistic model that 190 

simultaneously estimates the frequency of below-detection-limit sites, the frequency of high-emitting sites 

representing the top 5% of emitting facilities based on absolute methane emissions, and the distribution of high-emitter 

methane emissions, while accounting for the weakly observed positive relationship between emission rates and 

production rates for the bottom 95% of emitting well sites. We integrate this model with spatially explicit activity data 

on low-production oil and gas well sites in 2021 (Enverus, 2024) to estimate their total methane emissions.   195 

For non-low production well sites (>15 boed), we use the reported site-level measurement data described above and 

shown in Fig. 1a, which indicates an inverse relationship between production-normalized methane loss rates and 

facility-level gas production rates (Omara et al., 2018). The measurement-based data includes measurements that were 

reported as zeros or below the method detection limits of 0.036 kg/h (Robertson et al. 2017; Brantley et al., 2014) for 

the OTM-33A methods and 0.01 kg/h (Omara et al., 2016) for the dual tracer flux quantification. 200 

 

 

Figure 1. Previously reported facility-level measurement-based methane emissions data. a. Facility-level methane 
emissions data (percent methane loss rate) as a functionfunctions of gas production raterates (n = 961 non-low 
production well sites1,153). The bottom x-axis shows the log-normalized gas production rates, with dashed vertical 205 
lines delineating the seven production cohorts used to model total methane emissions. Sample sizes for each 
production cohort are shown at the bottom of the Fig. panel above the bottom x-axis tick labels. The top x-axis shows 
the same production data in Mcfd. Each point is color-coded by basin and sized by the quantified methane emission 
rate in kg/h. Not shown are measurements that were reported as below the method detection limits. b. Absolute 
methane emission rate data (kg/h) for gathering and boosting (G&B) compressor stations (n = 295), transmission and 210 
storage (T&S) compressor stations (n = 47), natural gas processing plants (n = 16), and crude oil refineries (n = 28). 
The swarm plots show individual facility-level measurements, while the notched box plots show the distribution, 
where the boxes represent the 25th and 75th percentiles and the whiskers extend to 1.5× the interquartile range. 
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0.036 kg/h (Robertson et al. 2017; Brantley et al., 2014) for the OTM-33A methods and 0.01 kg/h (Omara et al., 2016) 215 

for the dual tracer flux quantification. 

To assess facility representativeness, we compare and find reasonable overlap in the distribution of facility-

level gas production rates for the measured non-low production sites with the distribution for the national population 

of non-low production sites (Supplementary Fig. 3). We account for potential bias in oversampling of the higher 

producing well sites by using the gas production-normalized methane loss rate models in our estimates of total methane 220 

emissions for the non-low production well sites. 

Figure 1b shows the previously reported facility-level measurements at midstream/downstream facilities, 

including natural gas gathering and boosting compressor stations, transmission compressor stations, processing plants, 

and crude oil refineries. In all cases, we use the average facility-level methane emissions data as reported, 

acknowledging inherent limitations in these measurement approaches (e.g., pseudo-random facility-level 225 

measurements with small sample sizes in ground-based approaches, or difficulty quantifying large emitters using high 

flow samplers in component-level measurements, etc.) likely increases the uncertainties in our estimates of total, 

regional, and national methane emissions.   

 

2.3. Facility-level methane emissions model development and estimation of total national methane emissions 230 

Our approach for estimating regional and national oil and gas methane emissions builds upon previous works 

that used data from hundreds to thousands of ground-based facility-level measurements (Zavala-Araiza et al., 2015; 

Alvarez et al., 2018; Omara et al. 2018; Omara et al., 2022) in combination with robust probabilistic models integrated 

with oil and gas activity data. Zavala-Araiza et al. (2015) and AlvarezFor non-low production well sites (average 

facility-level production rates > 15 boed), we group the et al. (2018) demonstrated that measurement-based inventories 235 

developed using these methods produce total methane emission results that are in good agreement, within statistical 

uncertainty, of independent airborne measurements of total area methane emissions.  

For non-low production well sites (average facility-level production rates > 15 boed), we begin by evaluating 

facility representativeness on the basis of (i) geographical diversity of measurements, (ii) distribution of facility-level 

production rates of measurements compared with the national population of well site facilities, and (iii) the distribution 240 

of facility-level methane emission rates across basins (Supplemental Fig. 3). Our measurement data, while limited in 

sample size, covers eight major US oil and gas basins with diverse oil and gas production characteristics, including 

the Appalachian, the Permian, Uinta, Barnett, Fayetteville, Greater Green River, and Denver-Julesburg. The wide 

range in basin-level gas-to-oil ratios (~1 to 800 Mcf/barrel) is well represented in the data for the sampled basins 

(Supplementary Fig. 3b).  245 

In addition, the distribution of facility-level natural gas production rates shows reasonable overlap with that 

for the national population of non-low production facilities, and the broad range in distribution of facility-level 

production rates across the national population of sites (~90 Mcfd to >50,000 Mcfd) is well represented in the sampled 

sites (Supplementary Fig. 3c). However, the distribution of production rates for the sampled sites suggests potential 
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bias toward higher-producing sites relative to the national distribution (Supplementary Fig. 3c). We account for any 250 

such potential biases by developing emission models based on production-normalized methane loss rate distributions 

(methane emitted relative to methane produced) across seven cohorts of specific gas production rates (further details 

below).  

We develop and use probabilistic emission rate distributions based on production-normalized methane loss 

rates, which shows a wide range <0.01% to >90% (Figure 1a) across all basins (Supplementary Fig. 3d), reflecting, in 255 

part, the diversity in production characteristics within and across basins. We use production-normalized methane loss 

rate distributions because (i) the empirical data across a wide diversity of oil and gas production facilities suggests an 

inverse relationship in which high-producing facilities exhibit comparatively lower methane loss rates, and vice versa 

(Figure 1a) and (ii) the consolidated dataset includes measurements collected in earlier years before 2021. By using 

the production-normalized methane loss rate distribution models for specific cohorts of facility-level production rates, 260 

we do not model any particular site that is active in 2021 as exhibiting the same emission rate size as observed when 

measurements were taken in the past, as the empirical data and the model constrains facility-level methane loss rates 

to production levels, which will be time-variant. As such, we provide a necessary constraint on our estimates, 

effectively adjusting modelled facility-level methane emission rates if production rates have substantially changed 

over time.  265 

To estimate regional methane emissions for non-low production well sites, we group the data for the empirical 

facility-level methane loss rates into seven log-normalized gas production (Mcfd) cohorts, shown in Fig. 1a and 

delineated by dashed vertical lines (log-Mcfd ≤ 5, 5-6, 6-7, 7-8, 8-9, 9-10 and log-Mcfd > 10). We use one log-e space 

(between log-Mcfd ≤ 5 to log-Mcfd > 10) to develop these production cohorts, given the inverse relationship between 

facility-level methane loss rate and production rates, and selected to provide sufficient sample sizes for emissions 270 

distribution modellingmodeling for each production cohort (Fig. 1a). For each cohort, we simulate the frequency of 

finding a site emitting below the method detection limits (reported as zeros or below the method detection limit) 

through a random bootstrapping procedure, repeated 104 times, with replacement. From this simulation, we develop a 

frequency distribution for the sites below the detection limits (fBDL),, which averaged roughly 20% to 30% for all of 

the cohorts, with the exception of the last production cohort (>10 Mcfd), where the frequency drops to roughly 10 to 275 

20% (Supplementary Fig. 1).  

For the measured oil and gas production well sites with emissions above the method detection limits, we 

begin by applying a log-transformation to the reported facility-level methane loss rates in each cohort and assessing 

the goodness of fit for the empirical distributions to a lognormal distribution, using the Kolmogorov-Smirnov test with 

significance established at p < 0.05. For all seven cohorts, we find that the lognormal distribution assumption is valid, 280 

with p > 0.05 (Supplementary Fig. 2). For each cohort’s empirical distribution, we assume a univariate normal 

likelihood with mean µ and standard deviation σ and use Bayesian models with weakly informative priors to estimate 

μ and σ, for example, as  μ~Normal(-10,5) and σ~HalfNormal(3) for the first cohort of non-low production sites. For 

Bayesian inference, we draw 5,000 posterior samples from the posterior distribution using the PyMC3 (Salvatier et 

al., 2016) implementation of the No-U-Turn Sampler (NUTS) algorithm (Hoffman and Gelman, 2014) from which 285 

we estimate μ and σ, as well as the 94% highest posterior density intervals (HPD). Note that the mean facility-level 
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methane loss rate for each cohort can be computed as exp(μ+0.5σ2).  From the posterior results, we generate 5,000 

predictions of the facility-level methane loss rate for each measured well site within each production cohort. Fig. 2 

shows the cumulative probability distribution function for the observed data and 500 random samples from the model 

predictions. 290 

We follow similarthe above Bayesian modellingmodeling procedure to develop predictions of emission 

distributions (kg/h/facility), conditional on empirical data, for the gathering and boosting compressor stations, 

transmission compressor stations, natural gas processing plants, and crude oil refineries. For these facility categories, 

specifically for natural gas compressor stations and processing plants, we use the measured mean absolute methane 

emissions data as is (kg/h/facility) in our models, as we lack natural gas capacity or throughput information for the 295 

national population of facilities.   

We then proceed as follows to estimate methane emissions for the total population of facilities: for every 

facility in each facility category and/or production cohort, we randomly draw an emission rate from the 

modelledmodeled posterior predictions (Fig. 2). For non-low production oil and gas production facilities, we randomly 

draw a methane loss rate estimate which is then multiplied by the facility’s average methane production rate to estimate 300 

methane emissions in kg/h. As some facilities can have emissions below the method detection limits, we decrement 

the total estimated emission rate based on a randomly sampled frequency of BDL sites (fBDL), randomly drawn from 

the modelled distributions.). We repeat this procedure 500 times and develop a methane emission distribution for the 

total methane emissions for each facility category or production cohort. 

 305 
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Figure 2. Empirical cumulative distribution functions of observed data and model predictions. Empirical CDFs are 
shown in solid black lines while thin colored lines show 500 random samples drawn from the model predictions. 
Sample sizes and data sources for empirical data are shown in Table 1. a. Non-low production well sites 
(modelledmodeled as facility-level methane loss rates), the Fig. shows the CDF for the 5 < log-Mcfd < 6 production 310 
cohort. Supplementary Fig. 2 shows the CDFs for all seven non-low production cohorts in Fig. 1. b. Low-production 
well sites (kg/h/site), c. Gathering and boosting compressor stations, d. Transmission compressor stations, e. Natural 
gas processing plants, f. Crude oil refineries. 
 

Given the scarcity of facility-level measurements for gathering and transmission pipelines, we use the 315 

emission factors estimated by the US EPA Greenhouse Gas Emission Inventory (EPA, 2022; 285 kg 

methane/mile/year and 582 kg methane/mile/year, respectively) and assume normal distributions of emission factors 

with 50% uncertainty. Our use of EPA’s GHGI emission factors for these emissions sources makes it possible to 

provide a more complete spatially explicit inventory of oil and gas methane emissions (inclusive of gathering and 

transmission pipelines for which we have geospatial activity data), but likely increases uncertainties in our total 320 

methane emission estimates given potential underestimation in the GHGI emission factors. 

We also estimate the methane emissions associated with gas flaring activities using location-specific gas 

flaring data from the VIIRS instrument (Elvidge et al., 2015) and apply average effective methane destruction removal 

efficiency of 91% (Plant et al., 2022; 95% confidence interval of ~90—92%). 

Finally, we combine the emission distributions for all facility categories and sources using Monte Carlo 325 

methods to estimate the mean total national methane emissions and the 95% confidence interval based on the 2.5th 

and the 97.5th percentiles of the modelledmodeled distributions. Fig. 3 shows a general schematic of the emissions 

model development and estimation of total methane emissions.  

 

 330 
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Figure 3. General schematic for model development and estimation of total methane emissions, given activity data 

for each facility category. 

 335 

2.4. Spatial allocation of estimated methane emissions and basin-level methane loss rates 

For each facility with known location (latitude, longitude), our assessment includes 500 different estimates 

of likely facility-level methane emission rates (in kg/h), from which we derive 500 different estimates of total national 

methane emissions. We use 500 simulation results for each facility as a reasonable simulation size that is not too 

computationally intensive to implement but that also gives sufficient statistical power to develop robust model 340 

uncertainty assessment. We use a search algorithm to identify a random sample of the facility-level emission rate 

distribution that most closely matches the computed mean estimate for the population of facilities. We use a similar 

approach to select a random sample of the facility-level emissions distributions representing uncertainties in the total 

emission estimates (i.e., the distribution that most closely matches the lower bound and upper bound of the 95th percent 

confidence intervals on the total estimated methane emissions). We then aggregate total mean methane emissions (and 345 

associated upper and lower bound estimates) on regular grids of 0.1º × 0.1º decimal degrees (~10 km × 10 km), to 

produce spatially explicit oil and gas methane emission inventories and related uncertainties on the total methane 

emissions within each grid. . 

Our spatial allocation of estimated total oil and gas methane emissions is dependent, in part, on the 

completeness and spatial accuracy of oil and gas infrastructure locations for specific regions and oil and gas basins, 350 

for which related uncertainties are difficult to quantify based on available information. Our spatial allocation provides 

the mean methane emissions estimates for the year 2021 aggregated at each 0.1º × 0.1º grid (~10 km × 10 km) and are 
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not intended to characterize methane emissions at a specific point in time, where substantial short-term variability in 

emissions may occur in part due to the stochastic character of facility-level methane emissions. 

We compute basin-level and national methane loss rates as the ratio of estimated basin-level methane 355 

emissions to gross methane production in 2021, based on gross natural gas production data from Enverus Prism 

(Enverus, 2024) and an assumed average methane content of 80% in natural gas. Our assumption of an average 80% 

methane content in natural gas is informed by regional estimates of methane composition in natural gas based on the 

EPA GHGI (EPA, 2022). We acknowledge that uncertainties in methane composition across basins likely increases 

uncertainties in our overall methane loss rate calculations. Further studies on basin-level methane composition are 360 

needed to constrain these uncertainties. This methane intensity metric allows for a direct comparison of estimated 

methane losses relative to gross methane production across different basins. While our use of gross methane 

production accounts for emissions from associated gas produced during oil operations, the results are not intended to 

represent lifecycle emission intensities, which are outside the scope of this work.  

 365 

2.5. Model uncertainties and limitations 

In our modellingmodeling, we use the average facility-level emissions data as is, while assuming facility 

emissions arise from an underlying methane emissions distribution that is statistically described by lognormal 

distributions. The implementation of these probabilistic models produces emission distribution models (Fig. 2) that 

account for uncertainties in each facility’s measured average methane emission rate and facility-to-facility variability 370 

in methane emissions within and across multiple oil and gas production regions. The 95% confidence intervals 

obtained through the Monte Carlo methods above reflect these uncertainties, as well as the model uncertainties in 

predictions of emissions distributions, given the limited sample sizes used herein. Additional uncertainties that are 

difficult to quantify include uncertainties in the oil and gas activity data and uncertainties in the potential impacts of 

recently promulgated federal/state-specific regulations or operator-specific practices regarding regular facility-level 375 

methane emissions monitoring and repair. In addition, due to lack of comprehensive spatially explicit activity data 

limitations, our measurement-based inventory doesnational estimates do not include methane emissions from 

downstream natural gas distribution, LNG storage, post-meter emissions, and abandoned oil and gas wells. The EPA 

GHGI (EPA, 2022) estimates these sources account for ~0.5 to 1 Tg a year of total methane emissions, the vast 

majority of these would be distributed in urban locations outside of major oil and gas production regions. 380 

3. Results and discussion 

3.1 Total national oil and gas supply chain methane emissions 

We estimate a measurement-based methane emission inventory (EI-ME) of total national oil and gas methane 

emissions for the onshore US as 15.7 Tg (95% confidence interval of 14 – 18 Tg or -10%/+15% uncertainty; Table 1; 

Fig. 4) for the year 2021. Our central estimate and confidence bounds are in reasonable agreement with recent 385 

measurement-based facility-level emission estimates (Alvarez et al., 2018; Rutherford et al., 2021 (production sector 

only)) and satellite-derived oil and gas methane emissions, including GOSAT (Lu et al., 2022, 2023) and TROPOMI 
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(Shen et al., 2022) quantification (Fig. 3b). In additionHowever, consistent with previous findings (Alvarez et al., 

2018; Rutherford et al., 2021; Shen et al., 2022), our central estimate is significantly greater than inventories developed 

using the traditional “bottom-up” source-level emission factor approaches: we find a factor of 1.9× and 1.8× greater 390 

total methane emissions than is estimated by the EPA Greenhouse Gas Inventory (EPA, 2022) and EDGAR v8 

(EDGAR, 2023) inventories for the year 2021. (Fig. 45a). 

We attribute the largest discrepancy between our measurement-based estimates and the EPA GHGI to the 

estimated emissions for the oil and gas production sector, which we estimate accounts for approximately 60% of the 

total onshore methane emissions for a total of ~9 Tg in 2021, or roughly 2.6× greater than the EPA GHGI’s estimate 395 

for the production-related methane emissions (Fig.GHGI (Fig. 4; Table 1). These results are in reasonable agreement 

with previous measurement-based inventories (Alvarez et al., 2018; Rutherford et al., 2021; Omara et al., 2022) and, 

as has been noted elsewhere (Alvarez et al., 2018; Rutherford et al., 2021; Omara et al., 2018), likely reflect the use 

of emission factors in the EPA GHGI that do not adequately characterize the contributions of high-emitting methane 

sources that have been consistently observed in measurement-based studies. Furthermore, within the oil and gas 400 

production sector, we find that the low-production well site cohort (<15 boed) accounts for roughly one-half of total 

production site methane emissions in 2021, consistent with recent findings based on 2019 oil and gas activity (Omara 

et al. 2022). As Table 1 shows, the estimated total methane emissions from the low-production well site cohort alone 

are ~26% more than the total methane emissions from all low-production and non-low production well sites based on 

the EPA GHGI. 405 

In 2021, we estimate a national methane loss rate of 2.6% (95% CI: 2.3 – 2.9%) relative to gross natural gas 

production, assuming an average of 80% methane content in natural gas (Methods). Our average methane loss rate 

assessment is in reasonable agreement with. Similar results have been reported based on recent satellite-derived 

estimates (Shen et al., 2022 using TROPOMI and Lu et al., 2023 using GOSAT). Lu et al. (2023) reports a steadily 

declining national methane loss rate between 2010 (~3.7%) and 2019 (~2.5%) and attributes these trends to  410 
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Figure 4. Comparison of this study’s national estimate of total methane emissions from the oil and gas supply chain 
with previous measurement-based estimates. The first three bars show the oil and gas methane emissions estimated 
from facility-level measurements (this study, Alvarez et al. 2018) and production-sector-only methane emissions 
estimate by Rutherford et al. (2021) using component-level measurement data. Blue bars show the estimated emissions 415 
for the production sector, gold bars show the estimated emissions for the midstream and downstream facilities 
(compressor stations, processing plants, refineries, gathering and transmission pipelines). Error bars show the 
estimated 95% confidence bounds on the mean total methane emissions estimates. 
 

 420 

two likely factors: (i) a slower increase/decrease in absolute methane emissions compared to the increase in methane 

production during this period and (ii) the impact of national regulations, such as the EPA’s New Source Performance 

Standards, promulgated in 2012, which focused on reducing emissions from newly constructed well sites, among other 

requirements. As we discuss further below, we find significant variability in the total methane emissions as well as 

spatial distributions of the estimated emissions at regional/basin-level for the of oil and gas activity in 2021. 425 
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Figure 4. Comparison of this study’s national estimate of total methane emissions from the oil and gas supply chain 
with previous measurement-based estimates. The first three bars show the oil and gas methane emissions estimated 
from facility-level measurements (this study, Alvarez et al. 2018) and production-sector-only methane emissions 430 
estimate by Rutherford et al. (2021) using models developed from component-level measurement data. Blue bars show 
the estimated emissions for the production sector, gold bars show the estimated emissions for the midstream and 
downstream facilities (compressor stations, processing plants, refineries, gathering and transmission pipelines). Error 
bars show the estimated 95% confidence bounds on the mean total methane emissions estimates. This study’s estimate 
of total national methane emissions include ~0.1 Tg/year of estimated methane emissions for Alaska. The green bars 435 
and the red bars show the satellite-derived estimates for the contiguous US based on GOSAT and TROPOMI 
observations, respectively. The last two bars show the “bottom-up” inventories from EPA GHGI and EDGAR v8 for 
the contiguous US. In all cases, the years for which methane emissions are estimated are shown on the top x-axis. 
 

3.2. Variability in estimated basin-level methane emissions 440 

Among the major oil and gas production basins, we identify the Permian, Appalachian, Anadarko, Eagle 

Ford, Haynesville, and the Barnett basins as the top six methane emitting basins, with estimated mean total basin-level 

methane emissions ranging from approximately 70 t/h to 340 t/h (Table 2, Fig. 5). These six basins account for 72% 

of onshore total combined oil and gas production (boe), and 52% of estimated total oil and gas methane emissions. 

Among these basins, we estimate considerable variability in gas production-normalized methane loss rates, with the 445 
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lowest mean methane loss rates of <1% in the Appalachian and the Haynesville basins and the highest mean methane 

loss rates of 3-4% in the Permian, Anadarko, and the Barnett (Table 2). The basin-level differences in methane loss 

rates among basins are consistent with the GOSAT-derived estimates for 2019 (Lu et al. 2023, Table 2), except for  

Table 2. Top six methane emitting basins’ production, loss rate, and comparison with the EPA GHGI (traditional 

bottom-up inventory) and Lu et al. 2023a (satellite-derived estimates). 450 

Basin Basin 

area 

(km2) 

Well site 

count 

(% from 

low-

prod.) 

Total 

annual 

(2021) gas 

production 

(Tcfb) 

EI-ME 

methane 

emissions, 

2021 (t/hr, 

95% CI) | % 

from well sites 

EPA 

GHGI 

methane 

emissions, 

20202018 

(t/hr) 

EI-ME 

methane 

loss rate, 

2021 (%, 

95% CI)c 

EPA 

GHGI 

methane 

loss rate, 

20202018 

(%) 

Lu et al. 

GOSAT 

methane 

loss rate, 

2019 

(%)de 

Shen et al. 

TROPO

MI 

methane 

loss rate, 

2019 (%)e 

Permian 165,325 129,364 

(78%) 

6.5 335 (274 - 

428) | 69% 

10698 2.6 (2.1-

3.3) 

1.02 2.7 (1.6 -

3.0) 

3.5 - 4.6 

Appalachian 415,446 167,132 

(97%) 

12.7 231 (165 - 

324) | 75% 

145140 0.92 

(0.66-

1.30) 

0.6867 0.45 (0.40 

- -0.47) 

0.46 

Anadarko 42,479 24,180 

(64%) 

1.9 119 (93 -166) | 

55% 

3332 3.2 (2.5-

4.4) 

1.0.74 3.4 (2.1 -

3.6) 

1.5 

Eagle Ford 50,179 24,377 

(54%) 

2.3 90 (73 - 119) | 

75% 

2927 2.0 (1.7-

2.7) 

0.6956 1.1 (0.78 -

1.3) 

2.0 

Haynesville 28,922 23,895 

(78%) 

4.8 75 (59 - 95) | 

69% 

3029 0.80 

(0.63-1.0) 

0.4146 1.2 (0.89 -

1.2) 

1.0 

Barnett 68,146 25,760 

(79%) 

0.92 74 (57 - 96) | 

68% 

3533 4.1 (3.1-

5.3) 

2.01.4 4.0 (3.3 -

4.1) 

2.6 

Note the differences in the temporal resolution of the studies used for the comparison, specifically the EPA GHGI basin-level 

estimates are based on Maasakkers et al. (2023) for the year 2020 (the latest year for which spatially explicit estimates are available), 

2018 and Lu et al. (2023) GOSAT estimates are for the year 2019, and Shen et al. (2022) TROPOMI estimates are based on satellite 

observation data aggregated over the period between May 2018 and February 2020.  a Loss rates calculated assuming 90% methane 

content in each basin, for ease of comparison with Lu et al. b Tcf = Trillion cubic feet c. Methane loss rate calculated using 2021 455 

production data from Enverus Prism d. Methane lossLoss rate calculated using 2019 production data from Enverus Prism. d. For 

the Permian, Shen et al. (2022) reports posterior emissions in the range of 2.9 to 3.7 Tg/year representing a production-normalized 

methane loss rate of 3.5% to 4.6%.  

 

loss rates of 3-4% in the Permian, Anadarko, and the Barnett (Table 2). The basin-level differences in methane loss 460 

rates among basins are consistent with the GOSAT-derived estimates for 2019 (Lu et al. 2023, Table 2), except for 

the Appalachian and the Eagle Ford Basins, where this study’s estimates are roughly 2× greater (Table 2). As with 
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our findings on the comparative assessments with the EPA GHGI at the national level, our basin-level methane 

emissions estimates are consistently greater than the EPA GHGI estimates (Maasakkers et al., 2023) by a factor of 

1.7× (Appalachian) to ~4× (Anadarko). 465 

  

Figure 5. Basin-level differences in modelled mean total methane emissions and comparison with the EPA GHGI 
(Maasakkers et al., 2023), TROPOMI-derived estimates (Shen et al., 2022) and GOSAT-derived estimates (Lu et al., 
2023). See Supplementary Fig. 11 for a similar chart showing the state-by-state breakdown for the top 10 US 470 
emitting states based on the EI-ME inventory estimates. 
 

The confluence of various possiblemodeled factors, including the spatial density and characteristics of 

methane emitting oil and gas infrastructure and basin-level operational characteristics (gas-dominant versus oil-

dominant, intensive flaring versus basins with negligible flaring, etc) contribute to the differences in the 475 

modelledmodeled basin-level methane emissions. In each basin, we estimate a predominant contribution of total 

methane emissions from well site  
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Figure 5. Basin-level differences in modeled mean total methane emissions and comparison with the EPA GHGI 
(Maasakkers et al., 2023), TROPOMI-derived estimates (Shen et al., 2022) and GOSAT-derived estimates (Lu et al., 480 
2023). 
 

infrastructure, ranging from 55% to 75% of the total basin-level methane emissions (Table 2; Fig. 5). Well 

site infrastructure characteristics vary significantly among basins, for example, the Appalachian Basin is characterized 

by a large population of old, leak-prone low-producing gas well sites (Omara et al., 2016; Deighton et al., 2020; 485 

Riddick et al., 2019) even as more than 95% of the gas produced comes from ~3% of well sites that are unconventional 

non-low production well sites (Enverus, 20242023). This contrasts with the San Joaquin Basin, where well site 

infrastructure is dominated by low-producing oil pump jacks with limited onsite processing equipment, which in turn 

contrasts with the oil-dominant Bakken, dominated by high-producing horizontally-drilled well site facilities, typically 

with multiple wellheads and auxiliary processing equipment including separators, storage tanks, and flare stacks. Such 490 

basin-level oil and gas infrastructure characteristics likely contribute to the modelledmodeled emission differences, 

given that the empirical data synthesized herein reveal the weakly correlated methane emission profiles with well site 

production characteristics (loss rates, Fig. 1a) and infrastructure category (absolute emissions, Fig. 1b, Fig. 2).  

Furthermore, the magnitude of modelledmodeled methane emissions varies by basin-level operational 

characteristics. For example, the Permian Basin with significant new oil and gas development stands in contrast to the 495 

relatively mature basins such as the Barnett or Uinta with steadily declining gas production and aging well site 
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infrastructure. As Lu et al. (2023) observed, high methane loss rates tend to be associated with oil-dominant basins 

where production activities are focused on oil production even as substantial associated gas is co-produced along with 

oil (e.g., Permian, Eagle Ford, Bakken). In these basins, potentially higher methane emissions may occur due to 

venting and/or inefficient flaring of the co-produced gas, especially when there is insufficient infrastructure to gather, 500 

process, and transport to market the associated gas production, as has been postulated for the Permian Basin (Lyon et 

al., 2021; Varon et al., 2023; Lu et al., 2023). As noted previously, basin-level differences in total methane emissions 

could also be impacted by federal/state-level regulations of oil and gas methane emissions and/or operator-specific 

practices, affecting both the magnitude and temporal variability in emissions. While our methods are based on insights 

derived from empirical observations and robust modelling to estimate methane emissions specific to oil and gas 505 

activity in 2021, we lack sufficient data to characterize the impacts of specific regulations or operator practices. Further 

studies are needed to assess oil and gas methane emission trends and corresponding underlying drivers.  

3.3. Sub-basin methane assessment and comparison with emissions quantification using MethaneAIR  

This study’s EI-ME inventory provides methane emission estimates at geolocated oil and gas facilities, 

making it possible to develop aggregate methane emissions estimates across sub-basin to basin and national levels. 510 

We compare our sub-basin estimates for the Delaware portion of the Permian Basin and Uinta Basin with new 

remote sensing-based quantification by MethaneAIR (Staebell et al., 2021; Chulakadabba et al., 2023; Chan Miller 

et al., 2023), an airborne precursor to MethaneSAT satellite, which is scheduled to launch in 2024. MethaneAIR and 

MethaneSAT missions are managed by MethaneSAT LLC (www.methanesat.org), which is a wholly owned 

subsidiary of Environmental Defense Fund. Both MethaneAIR and MethaneSAT are designed to produce 515 

quantitative data on total regional methane emissions while spatially disaggregating diffuse area emissions and 

detecting high-emitting point sources. Detailed description of the MethaneAIR instrument technical specifications, 

instrument calibration, retrieval methods and point source detections and validation can be found in recent works by 

Staebell et al., 2021, Conway et al. (2023), Chulakadabba et al., 2023, El Abbadi et al. (2023), Chan Miller et al. 

(2023), and Omara et al. (2023).  520 

In August 2021, MethaneAIR flew a ~10,000 km2 area in the Delaware sub-basin of the Permian Basin 

(research flight RF-06) and Uinta Basin (research flight RF-08) and produced quantification of total area methane 

emissions using a geostatistical inverse modellingmodeling (GIM) framework (based on Miller et al., 20202023). 

The GIM framework was applied to inversion of the column mean methane dry air mole fraction retrieved using 

MethaneAIR measurements flying at 40,000 ft above ground aboard the NCAR GV aircraft 525 

(https://www.eol.ucar.edu/field_projects/methaneair). For MethaneAIR and MethaneSAT, the GIM framework is 

specialized to exploit the instrument’s high spatial resolution, wide spatial coverage, and high precision, and ingests 

high-emitting point source detections which are quantified using the modified integrated mass enhancement method 

(Chulakadabba et al., 2023). As such, remote sensing measurements by MethaneAIR at 40,000 ft above ground 

produce a high resolution, spatially explicit quantification of the total area methane emissions as well as high-530 

emitting methane point sources emitting above ~200 kg/h.  
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We compare these new MethaneAIR total area methane quantification with the EI-ME modelledmodeled 

results, as well as the results from previous peer-reviewed studies in overlapping domains with the Permian RF-06 

and the Uinta RF-08 regions. For both regions, we find good agreement, within uncertainty bounds, of the 

MethaneAIR quantification with other studies (Fig. 6), with emission rates quantification that fall within a 535 

representative range of mean total sub-basin methane emissions of 80 – 100 t/h and 17 – 24 t/h for RF-06 Permian 

and RF-08 Uinta, respectively (horizontal dashed lines in Fig. 6). 
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Fig. 6. Comparison of the EI-ME inventory with MethaneAIR and other peer-reviewed studies for two sub-regions 540 
of the Permian and Uinta Basins. Bars are color-coded by emission quantification method (MethaneAIR – hatched 
green bar; EI-ME – hatched dark green; PermianMAP airborne studies – purple; PermianMAP or tower-based study 
– red color; TROPOMI studies – dark blue bars). Lin et al. (2021) reports total Uinta Basin methane emissions 
estimates; we adjusted their estimate by the ratio of gas production in RF-08 region to total gas produced in Uintah 
and Duchesne counties in 2021 (RF-08 accounts for 74% of the total production in the two counties). For all other 545 
studies, we use only the reported emission estimates that overlap the MethaneAIR target boundaries. The dashed 
horizontal lines show a representative range of sub-basin methane emissions, computed via a bootstrapping 
procedure of all previously reported methane emissions (including the EI-ME results) to derive a lower bound and 
upper bound on the mean total methane emissions, based on the 2.5th and 97.5th percentiles of the resulting bootstrap 
distribution. Map credit: ESRI, 2023. 550 
 

mean total sub-basin methane emissions of 80 – 100 t/h and 17 – 24 t/h for RF-06 Permian and RF-08 Uinta, 
respectively (horizontal dashed lines in Fig. 6). 

Based on MethaneAIR quantification for these two regions, we estimate that diffuse area emissions (which 

are assessed using the GIM modellingmodeling framework) account for the majority of methane emissions in both 555 

sub-basins, representing 63% and 88% of the total area methane emissions in the RF-06 and RF-08 regions, 

respectively. The remainder (37% and 12% of the total in RF-06 and RF-08 respectively), is attributable to the 

quantified high-emitting methane point sources with facility-specific methane emission rates in excess of ~200 

kg/h/facility. These results are in reasonable agreement with the EI-ME results –averaged over the year—for the 
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same spatial domains, in which oil and gas methane sources with mean methane emission rates <200 kg/h account 560 

for 85% and 90% of the total estimated methane emissions for RF-06 and RF-08, respectively. Furthermore, 

Cusworth et al. (20222021) reports similar results for the same regions overlapping these domains in the Permian 

and Uinta, finding that methane sources below 200 kg/h account for 70% and 88% of total area emissions, which 

were quantified based on area-inversion of TROPOMI satellite observations and point source detections by 

AVIRIS-NG in 2021 and 2020 for RF-06 and RF-08, respectively. Furthermore, for a different sub-region of the 565 

Permian Basin, Kunkel et al. (2023) observed that facility sized emission sources with rates below 280 kg/h 

contribute 67% of the total emission rate from all sources with rates above 10 kg/h. At the national level, Omara et 

al. (20222023) previously showed that the large population of low producing well sites (also known as marginal 

wells), with population average methane emissions rates of ~1 kg/h/site, account for roughly one-half of all 

production site methane emissions. Taken together, these results underscore the importance of small methane 570 

emitting sources dispersed across areas that, while individually emitting at low rates, nevertheless can contribute, in 

aggregate, a disproportionate fraction of regional total methane emissions. Williams et al. (2024) expands on these 

assessments, providing a detailed look at facility-level methane emissions distributions at the basin- and national-

level. 

3.4. Variability in estimated spatial distribution of methane emissions 575 

Our spatially explicit EI-ME inventory suggests that basin-level differences also manifest as differences in 

the spatial distribution of total methane emissions. On average, we find oil and gas methane emission hotspots in every 

major US oil and gas production basin, including the Permian (the largest oil producing basin in the US located in 

western Texas and southern New Mexico), the Appalachian (Pennsylvania, Ohio, West Virginia, New York), 

Anadarko (Oklahoma, Texas), Eagle Ford (Texas), Bakken (North Dakota), and the Haynesville basins (Texas, 580 

Louisiana; Fig. 6)., Supplementary Fig. 4). Our analysis suggests methane emission hotspots tend to concentrate in 

high oil and gas production areas, for example, as evidenced by the two large hotspots in the rapidly developing, high-

producing Delaware and Midland sub-basins of the Permian Basin in (Fig. 7a; see Supplementary Fig. 9 for maps 

representing lower bounds and upper bounds on spatially gridded emissions7a), consistent with spatial distributions 

for the satellite-observed methane emissions quantification in this region (Zhang et al., 2020; Varon et al., 2023). In 585 

addition, as with the total basin-level emissions, methane emissions spatial distributions are functions of oil and gas 

activity and their related facility-level emission characteristics. For example, substantial low-production oil and gas 

well site activity yields modelledmodeled methane emission hotspots in the southwestern tip of the Appalachian Basin 

(Fig. 7a), even as this region is not an oil and gas production hotspot (Supplementary Fig. 5). Furthermore, our analysis 

suggests spatial correlation of methane emission hotspots with intensive gas flaring activity, particularly for the oil 590 

producing basins with substantial associated gas production, including the Permian, the Eagle Ford, and the Bakken 

regions (Fig. 4, Supplementary Fig. 5). 
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(a) 15.6 Tg 

(b) 7.9 Tg 

(c) EI-ME – GHGI =  7.7 Tg 
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We further assess variability in the spatial distribution of modeled methane loss rates, which reveals areas 625 

(25 × 25 km2 grids) in each major basin where methane loss rates are <0.25-1% of methane production. These areas, 

in general, are characterized by significant unconventional oil and gas production, for example, in the Appalachian 

Basin (northeastern Pennsylvania and the tri-state corner of southern Pennsylvania, eastern Ohio, and northern West 

Virginia) as well as in the Permian Delaware and Midland sub-basins, and parts of the Haynesville, Eagle Ford, and  
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(a) 15.7 Tg 

(b) 8.3 Tg 

(c) EI-ME – GHGI =  7.4 Tg 
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Figure 7. Estimated spatial distribution of total methane emissions and comparison with the EPA GHGI estimates. a. 
This study’s assessment of spatial distribution of US total oil and gas supply chain methane emissions, showing the 
estimates for the contiguous US (excluding Alaska, the total estimated methane emissions is 15.6 Tg in 2021).. For 
visualization and comparison with the EPA GHGI inventory, the total methane emissions are gridded to 0.1º × 0.1º 665 
spatial scales (~10 km × 10 km).1 × 0.1 degrees. Major basin boundaries are outlined using black polygons. b. 
Estimated spatial distribution of total oil and gas methane emissions based on the EPA GHGI (20202022; Maasakkers 
et al., 2023). Note that the EPA GHGI data shown here is for the year 2020, the latest year for which spatially explicit 
data are available. c. Difference in spatially explicit methane emissions between this study’s estimates and the EPA 
GHGI. Warmer colors indicate comparatively higher estimates from this study relative to the EPA GHGI. We 670 
acknowledge the comparison is limited by the different time periods in the two studies – 2021 in this study versus 
20202018 for the EPA GHGI. Nevertheless, as both studies report annual averages, it is unlikely that significant 
differences in aggregate spatial distribution would have occurred between 2020 and 2021 to alter the main conclusions 
from this analysis. For the EI-ME, uncertainty estimates for each grid (i.e., lower bound and upper bound on mean 
estimates are presented in map form in Supplementary Fig. 9).over the three intervening years. Map credit: ESRI, 675 
2023. Basin boundaries based on US EIA basin boundaries data (https://www.eia.gov/maps/maps.php)  
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Figure 8. Estimated mean spatial distribution of production-normalized methane loss rates. For ease of visualization, 
we aggregate our facility-level methane inventories to a coarser spatial grid (25 × 25 km2) and normalize each grid’s 
total estimated methane emissions relative to total methane production to derive spatially explicit methane loss rates, 
assuming 80% methane content in natural gas. Major basin boundaries are outlined in black and mean basin-level 
methane loss rates are shown as %. Map credit: ESRI, 2023. Basin boundaries based on US EIA basin boundaries data 685 
(https://www.eia.gov/maps/maps.php).  
 

producing basins with substantial associated gas production, including the Permian, the Eagle Ford, and the Bakken 

regions (Fig. 4, Supplementary Fig. 5). 

We further assess variability in the spatial distribution of modelled methane loss rates, which reveals areas 690 

(25 × 25 km2 grids) in each major basin where methane loss rates are <0.25-1% of methane production. These areas, 

in general, are characterized by significant unconventional oil and gas production, for example, in the Appalachian 

Basin (north-eastern Pennsylvania and the tri-state corner of southern Pennsylvania, eastern Ohio, and northern West 

Virginia) as well as in the Permian Delaware and Midland sub-basins, and parts of the Haynesville, Eagle Ford, and 

the Bakken (Fig. 8). We also estimate areas with excessive methane loss rates >10% of methane production (Fig. 8) 695 

in each major producing basin, particularly in the Appalachian Basin, in the Michigan Basin, and in the greater 

Anadarko area of Missouri (Fig. 8). High methane loss rates are likely linked to the predominance of old, leak-prone 

low-producing well sites (e.g., in parts of the Appalachian and San Joaquin basins—although, note the overall lack of 

absolute methane emissions [kg/h] with site age in Supplementary Fig. 8; also see Brantley et al., 2014) or may be 

associated with modelledmodeled midstream infrastructure emissions from sources not collocated with significant oil 700 

and gas production. 

The updated 20202018 gridded EPA GHGI inventory for oil and gas systems (Maasakkers et al., 2023) uses 

the same source of oil and gas activity data as this study (Enverus, 20242023), and allocates GHGI emissions to 

specific emission source categories using infrastructure locations and methane emission scaling factors (e.g., scaled 

using well count, oil, and/or gas production for well sites depending on source category). The estimated methane 705 

emission hotspots (Fig. 7b) are in reasonable agreement with this study’s estimated spatial distributions (Fig. 7a, r = 

0.64), with notable exceptions in parts of the Michigan Basin (Michigan), the Appalachian Basin (Pennsylvania, Ohio, 

West Virginia) Basin, the Powder River Basin (Wyoming), the Barnett (east Texas), the Permian (west Texas), and 

the San Joaquin (southern California) Basins (Fig. 7b6b). In parts of these basins, strong methane hotspots appear in 

regions that likely reflect a dependence of emissions spatial allocation on spatial density of infrastructure 710 

(Supplementary Fig. 5). This differs with this study’s spatial allocation which leverages not just infrastructure 

locations, but simultaneously integrates the empirically observed facility-level methane emissions characteristics (Fig. 

1, Fig. 2), which can vary  
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Figure 8. Estimated mean spatial distribution of production-normalized methane loss rates. For ease of visualization, 
we aggregate our facility-level methane inventories to a coarser spatial grid (25 × 25 km2) and normalize each grid’s 
total estimated methane emissions relative to total methane production to derive spatially explicit methane loss rates, 
assuming 80% methane content in natural gas. Major basin boundaries are outlined in black and mean basin-level 
methane loss rates are shown as %. Map credit: ESRI, 2023. Basin boundaries based on US EIA basin boundaries data 720 
(https://www.eia.gov/maps/maps.php).  
 

among populations of the same facility category (e.g., the distinction between emission profiles for low/non-low 

production well sites or among different production cohorts of the non-low production well site category). 

In general, we find large differences in the magnitude of methane emissions in all of major basins shown in 725 

Fig. 77c when comparing the spatially explicit methane emissions in the GHGI and this study’s estimates (Fig. 7c, 

Supplementary Fig. 6). We also find large differences in the spatial distributions of the methane emissions when 

comparing this study’s spatially explicit emissions inventory with the EDGAR v8 inventory (EDGAR, 2023; 

Supplementary Fig. 7). Note that the EDGAR v8 total methane emissions are similar in magnitude to the EPA GHGI 

inventory estimates (Fig. 1), although emissions spatial allocation methods are primarily dependent on scaling by oil 730 

production characteristics, such that large methane hotspots are estimated in the oil-dominant basins of the Permian, 

the Bakken, and the Eagle Ford Basins (Supplementary Fig. 7).  

Our results suggest both an underestimation in the magnitude of spatially explicit emissions in key US oil 

and gas basins as well as potentially unrepresentative spatial distributions of these emissions in the EDGAR v8 and 
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the EPA GHGI gridded inventories. These results carry important implications for the use of traditional “bottom-up” 735 

inventories as a priori information in Bayesian inversions of satellite observations for methane quantification, since 

both the magnitude and spatial allocation of emissions could influence the posterior results from these 

modellingmodeling systems under certain observational data constraints, such as insufficient observational data 

density (Shen et al., 2022). 

 740 

4. Data availability 

EI-ME_v1.0 can be accessed at https://doi.org/10.5281/zenodo.10734300 (Omara et al. 2024) in an open-access 

GeoPackage file format. The GeoPackage file includes estimates for Alaska, while a .netdf file is also provided with 

gridded emission results for only the lower 48 US states to facilitate easier comparison with recent satellite-derived 

methane emissions estimates for the contiguous US (Shen et al., 2022; Lu et al., 2023). 745 

 

5. Code availability 

Python 3.7 code used for emissions modellingmodeling, extrapolation to population of facilities, and data visualization 

is available from the corresponding author upon reasonable request. 

 750 

7. Conclusions 

Accurate and comprehensive assessment of oil and gas methane emissions is pivotal in informing effective 

methane mitigation policies. In this study, we develop robust statistical models based on measured facility-level 

methane emissions and integrate these models with comprehensive oil and gas activity data for onshore US oil and 

gas facilities to estimate total national oil and gas methane emissions for the year 2021. We estimate a total of ~1615.7 755 

(14 – 18) Tg of oil and gas methane emissions in 2021, representing a mean methane loss rate of 2.6% of gross gas 

production. Our national methane emission estimate, while in reasonable agreement with previous measurement-based 

estimates using facility-level measurements and satellite observations, are nevertheless roughly a factor of 2× greater 

than official inventories from the EPA Greenhouse Gas Inventory (GHGI). This improved assessment of national 

methane emissions underscores the importance of integrating measurement-based data to develop robust methane 760 

emission inventories which, as we show in this work, exhibit substantial variability in both the magnitude and spatial 

distribution of total methane emissions across major oil and gas basins.  

Further improvements to methane emission inventories are possible through greater integration of 

measurement-based data including remote sensing approaches that can provide comprehensive area-wide total 

methane emissions, quantification of high-emitting methane point sources, as well as high-resolution spatial 765 

disaggregation of total methane emissions. In this study, we present the first set of such remote sensing quantification, 

based on MethaneAIR measurements in sub-basins of the Permian and Uinta and demonstrate reasonable agreement 

with several previous peer-reviewed assessments of total area methane emissions over similar spatial domains and 

time periods. These comprehensive area wide assessments also enable a detailed characterization of the importance 

of small methane sources dispersed across regionsdiffuse area emissions viz-a-viz large concentratedhigh-emitting 770 
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methane point sources, revealing theirthe relative importance of diffuse area emissions and their variability across 

unique US oil and gas producing basins.  

The EI-ME inventory provides a detailed characterization of total methane emissions by key facility 

categories at the national level as well as at the regional/basin-level, thus helping provide policy-relevant information 

that is important in developing and tracking effective methane mitigation strategies. The quantified uncertainties in 775 

our methane emission estimates could be improved upon in future studies through additional peer-reviewed data 

collection efforts, which are needed to develop further insights in response to ongoing methane mitigation efforts. 

There is a research need to develop robust statistical methods for effective integration of lower-detection-limit ground-

based facility-level methane emissions data (such as data synthesized herein) with the growing number of airborne 

facility-level measurement studies, which generally have higher method detection limits (e.g., airborne methane 780 

remote sensing data in Duren et al., 2019; Cusworth et al., 2022; Sherwin et al., 2024). As demonstrated herein,. These 

improved integrated assessments of facility-level, regional, and national methane emission inventories, based on 

measurement dataas demonstrated herein, support ongoing efforts to accurately quantify methane emissions, identify 

key methane sources and regions for targeted methane reductions, and track progress toward methane reduction goals. 

 785 
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