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Abstract. The AR6 Scenarios Database is a vital repository of climate change mitigation pathways used in
the latest Intergovernmental Panel on Climate Change (IPCC) assessment cycle. In its current version, many
scenarios in the database lack information about the level of anthropogenic carbon dioxide (CO,) removal via
land sinks, as net-negative CO, emissions and gross removals on land are not always separated and are not
consistently reported across models. This makes scenario analyses focusing on CO, removal challenging. We
test and compare the performance of different regression models to impute missing data on land carbon seques-
tration for the global level and for several sub-global macro-regions from available data on net CO; emissions
from agriculture, forestry, and other land uses. We find that a k-nearest neighbors regression performs best
among the tested regression models and use it to impute and provide two publicly available imputation datasets
(https://doi.org/10.5281/zenodo.13373539, Priitz et al., 2024) on CO, removal via land sinks for incomplete
global scenarios (n = 404) and incomplete regional R10 scenario variants (n = 2358) of the AR6 Scenarios
Database. We discuss the limitations of our approach, the use of our datasets for secondary assessments of AR6

scenario ensembles, and how this approach compares to other recent AR6 data reanalyses.

1 Introduction

Climate change mitigation pathways, created with integrated
assessment models (IAMs), have come to play a critical role
in the assessment work of Working Group III of the Inter-
governmental Panel on Climate Change (IPCC) (Guivarch et
al., 2022b; Riahi et al., 2022). The AR6 Scenarios Database,
hosted by the International Institute for Applied Systems
Analysis (ITASA), contains climate change mitigation path-
ways compiled for and considered in the Working Group 111
contribution to the [PCC Sixth Assessment Report (Byers et
al., 2022; Kikstra et al., 2022).
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In these pathways, carbon dioxide removal (CDR) from
the atmosphere is primarily represented by bioenergy with
carbon capture and storage (BECCS) and by carbon seques-
tration in land sinks — primarily via afforestation and refor-
estation (Riahi et al., 2022). Among the global scenarios in
the AR6 Scenarios Database that passed the vetting process
(n = 1202) (see Guivarch et al., 2022b, for details about the
ARG scenario vetting process), 419 pathways miss the vari-
able for carbon sequestration on land (“Carbon Sequestration
| Land Use”), which complicates secondary analyses that in-
vestigate CDR implications across scenarios and models. A
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range of different secondary scenario ensemble evaluations
based on data from the AR6 Scenarios Database have been
published in recent years, for example, assessing the arising
gap in CDR deployment (Lamb et al., 2024), determining the
level and composition of residual emissions (Lamb, 2024),
analyzing the removal per land unit (Zhao et al., 2024), eval-
uating the attainability of mitigation scenarios (Warszawski
etal., 2021), classifying emission pathways reflecting the cli-
mate objectives of the Paris Agreement (Schleussner et al.,
2022), or exploring scenario characteristics driving CDR de-
ployment (Priitz et al., 2023). All of these analyses rely on
proxy data or interim solutions to address the limited data
availability of land carbon sequestration in the AR6 Scenar-
ios Database.

Two such interim solutions to account for this data gap
are documented in the literature, namely, (1) the use of net-
negative CO; emissions in agriculture, forestry, and other
land use (AFOLU) as a lower-bound proxy variable for CDR
via land sinks (Priitz et al., 2023; Schleussner et al., 2022;
Warszawski et al., 2021) and (2) a criteria-based scenario-
filtering and exclusion approach to ensure a consistent se-
lection of scenarios with similar reporting of CDR via land
sinks (Priitz et al., 2023). Both approaches have limitations
with respect to adequately and comprehensively depicting
CDR via land sinks (Ganti et al., 2024). A more recent ap-
proach is based on a reanalysis of land CO;, fluxes using
the reduced-complexity compact Earth system model OS-
CAR v3.2 (Gidden et al., 2023). While the AR6 reanalysis
dataset by Gidden et al. (2023) manages to resolve several
of the data issues linked to CDR via land sinks — specifi-
cally, aligning the removal baseline and improving the con-
sistency across scenarios — it still combines gross and net
CO; fluxes on land in the land sink CDR variable, resulting in
both positive and negative CDR values, which conflicts with
the concept and clean definition of anthropogenic CDR from
the atmosphere (Matthews et al., 2021). In the AR6 Scenar-
ios Database, CDR is conventionally reported using positive
numbers. Moreover, while being very comprehensive, the re-
analyzed dataset by Gidden et al. (2023) is limited to a sub-
set (n = 914) of all global and vetted scenarios (n = 1202)
of the AR6 Scenarios Database, although it also provides
reanalyzed scenario data for five sub-global macro-regions
(R5 level). Figure 1 compares the available land sink CDR
data of the AR6 Scenarios Database to the reanalyzed vari-
able by Gidden et al. (2023) and the net-negative AFOLU
CO, proxy, showing the differences between the available
land sink CDR data of the AR6 Scenarios Database, the net-
negative AFOLU CO, proxy, and the land sink CDR data
from the reanalysis. The figure also shows the negative val-
ues for land sink CDR from the reanalysis.

Here, we test and compare the performance of several dif-
ferent regression models to impute missing data on land car-
bon sequestration (Land CDR) based on available data on
net CO, emissions in AFOLU for both global scenarios and
the R10 regions in the AR6 Scenarios Database. We use the
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best-performing regression model to impute missing data for
404 global scenarios and 2358 sub-global scenario variants
across the R10 regions and provide two imputation datasets,
which are made publicly available. Lastly, we discuss our
approach’s use cases and limitations and detail how our ap-
proach compares to the two abovementioned interim solu-
tions and the recent reanalysis of the AR6 Land CDR data.
In the following, we refer to CDR via land sinks or car-
bon sequestration on land as “Land CDR”. Table 1 gives an
overview and description of key variables in this analysis.

2 Methods

2.1 Overview

In our analysis, we used different regression models to pre-
dict missing data on AR6 Land CDR (target variable: “Car-
bon Sequestration | Land Use”) for 404 incomplete global
scenarios and for 2358 incomplete sub-global scenario vari-
ants across R10 regions based on available scenario data
on AFOLU CO; emissions (predictor variable: “Emissions
| CO2 | AFOLU”). AFOLU CO; emissions were chosen as
a predictor variable due to good data availability in the AR6
Scenarios Database and because this variable is conceptually
most closely related to AR6 Land CDR among the variables
in the AR6 Scenarios Database — the variable for AFOLU
CO, emissions represents the net CO, fluxes corresponding
to the gross variable for Land CDR, as defined in Table 1. The
ARG6 R10 region classification comprises 10 macro-regions
plus 1 additional region for “rest of the world” (Fig. 4b),
resulting in a total of 11 macro-regions, all of which were
considered in our analysis. While the AR6 R10 classification
allows for a comparison of regions across models and scenar-
ios, not all regions are available for all models and scenarios,
e.g., only a small subset of models has the category “rest of
the world” (R10ROWO). For our analysis, we used the exact
R10 regional classification as assigned in the AR6 Scenarios
Database without excluding or adjusting regions for individ-
ual scenarios or models.

As an initial step, we selected all vetted scenarios from the
ARG6 Scenarios Database for which both the predictor and
the target variable are available at the global level (n = 783)
and across the R10 regions (n = 6162). Among the vetted
global scenarios (n = 1202) in the AR6 Scenarios Database,
15 scenarios from the REMIND model (version 1.6) do not
report AFOLU CO; emissions, which is why we could not
include these scenarios in our imputation. Among the vet-
ted regional scenario variants (n = 8531) across the R10 re-
gions in the AR6 Scenarios Database, 11 regional variants
of the EN_INDCi2100 scenario from the GEM-E3 V2021
model do not report AFOLU CO; emissions, which is why
we could not include these scenario variants in our imputa-
tion. Figure 2 provides a simplified conceptual overview of
the scenario selection, exclusion, and imputation workflow.
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Table 1. Overview of the analysis variables.

Variable

Description

“Carbon Sequestration | Land Use”

This variable from the AR6 Scenarios Database is defined as the “total carbon dioxide se-
questered through land sinks (e.g., afforestation, soil carbon enhancement, biochar)”. This is
the target variable that we impute for incomplete scenarios. In this analysis, we refer to this
variable as AR6 Land CDR.

“AR6 Reanalysis | OSCARv3.2 | Car-
bon Removal | Land | Direct”

This variable from the reanalysis by Gidden et al. (2023) is intended to depict CDR through
land sinks, similar to the AR6 Land CDR. However, the baseline CO, flux substantially dif-
fers compared with the AR6 Land CDR, as the data were aligned to national greenhouse gas
inventories. This variable contains both positive and negative values, which suggests that it is
showing net instead of gross removal. In this analysis, we refer to this variable as Gidden et
al. (2023) Land CDR (direct).

“Emissions | CO2 | AFOLU”

This variable from the AR6 Scenarios Database is defined as the net “CO, emissions from
agriculture, forestry and other land use (IPCC category 3)”. This is the predictor variable that
we use to predict the target variable. In this analysis, we refer to this variable as net AFOLU
CO; emissions.

| “Emissions | CO2 | AFOLU” < 0 |

This variable shows the net CO; removal from agriculture, forestry, and other land use, based
on the negative values in the variable net AFOLU CO, emissions. This variable has been used
in several studies as lower-bound proxy for AR6 Land CDR. We refer to this variable as net-
negative AFOLU CO5.

“Imputed | Carbon Sequestration | Land
Use”

This is one of two variables in the imputation datasets provided in this analysis. This variable
contains the predicted values from our data imputation without further adjustment.

“Imputed & Proxy | Carbon Sequestra-
tion | Land Use”

This is one of two variables in the imputation datasets provided in this analysis. This variable
contains the predicted values from our data imputation. For scenarios in which the predicted
Land CDR is lower than the net-negative AFOLU CO;, we replaced all predicted removals

with the values from the net-negative AFOLU CO, and indicated this adjustment.

We split both the global and the regional scenario datasets
into training and testing sets (9 : 1) for our regression anal-
ysis in order to obtain a large dataset for training the mod-
els while also still having a sufficiently large testing dataset
to evaluate the prediction performance and to validate the
models. The training set was used to fit the predictor vari-
able to the target variable to train the regression models, and
the testing set was then used to evaluate the prediction perfor-
mance of the trained regression models. The regression mod-
els were separately trained on the global scenario data and
the regional scenario variants, as the scale of AR6 Land CDR
deployment differs substantially between the global and the
regional level. Regional scenario variants for model training
were treated as one large training set, rather than splitting the
data by R10 region before training. For both the global sce-
narios and regional scenario variants, we did not distinguish
between AR6 scenario categories during the model-training
process to keep the number of training data points as large as
possible and, thus, optimize the models’ performance. The
ARG scenario category (C1-C8) classification is based on the
scenarios’ global-warming levels from a low warming value
of 1.5 °C with no or limited temporary temperature overshoot
(C1) to a high warming value of more than 4 °C within this
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century (C8) (Guivarch et al., 2022a). An overview of the
ARG scenario categories is provided in Table 2.

2.1.1 Regression models

We considered and compared four commonly used regres-
sion models in our analysis: gradient boosting, decision tree,
random forest, and a k-nearest neighbors regression model.
In the initial stage, a more extensive set of commonly used
regression models, including linear regression and multilayer
perceptron regression, were tested, among which the four
abovementioned models were selected for further hyperpa-
rameter tuning due to their superior performance compared
with other regression models in the initial set, based on the
performance evaluation metrics described below.

For all models, we use the machine learning scikit-learn
library for Python (Pedregosa et al., 2011). In the following,
the four considered regression models are briefly described,
while more detail is provided in the referenced seminal works
and the scikit-learn documentation of the respective models,
including the mathematical representations of the underlying
algorithms. A decision tree model is a supervised learning
method to predict a target variable based on decision rules
derived from a predictor variable. The model produces piece-
wise approximations of the target variable through a series of
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Figure 1. Comparison of available AR6 Land CDR data (“Carbon Sequestration | Land Use”) with the Land CDR reanalysis by Gidden et
al. (2023) (“ARG6 Reanalysis | OSCARv3.2 | Carbon Removal | Land | Direct”) and the AR6 net-negative AFOLU CO, emissions (based on
negative values in “Emissions | CO2 | AFOLU”) as a lower-bound proxy for AR6 Land CDR across AR6 scenario categories. Only scenarios
available for all three variables are considered in the figure (n = 725 scenarios). The Land CDR scenarios in the reanalysis by Gidden et
al. (2023) are aligned with national greenhouse gas inventories, shown by the difference in the baseline in 2020 compared with the other
two variables. The solid lines show the median across scenarios, while the shaded area shows the min—max range. Note that we follow the
convention of the AR6 Scenarios Database and report CDR using positive numbers, whereas the Land CDR variable in the reanalysis by
Gidden et al. (2023) shows both positive and negative CDR numbers. An overview of the AR6 scenario categories (C1-C8) is provided in
Table 2.

Table 2. Overview of scenario categories, as in Guivarch et al. (2022a).

Category  Description

Cl1 Scenarios limiting warming to 1.5 °C in 2100 (> 50 % probability) with no or limited overshoot (< 67 % exceedance
probability of 1.5 °C)

C2 Scenarios returning to warming of 1.5°C in 2100 (> 50 % probability) after a high overshoot (> 67 % exceedance
probability of 1.5 °C)

C3 Scenarios limiting warming to 2 °C throughout this century (> 67 % probability)

C4 Scenarios limiting warming to 2 °C throughout this century (> 50 % probability)

C5 Scenarios limiting warming to 2.5 °C throughout this century (> 50 % probability)

C6 Scenarios limiting warming to 3 °C throughout this century (> 50 % probability)

C7 Scenarios limiting warming to 4 °C throughout this century (> 50 % probability)

C8 Scenarios exceeding warming of 4 °C within this century (> 50 % probability)
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Figure 2. Conceptual overview of the scenario selection, exclusion, and imputation workflow for the global scenarios and for regional
scenario variants at the AR6 R10 level. The numbers in parentheses indicate the respective number of scenarios. Dashed lines indicate a
process, while solid lines depict the origin of a scenario subset. Details about the model selection, training, and performance evaluation are

provided in Sect. 2.

binary data splits based on values of the predictor variable.
For continuous predictor variables, such as net AFOLU CO»
emissions in our case, the decision tree model iteratively se-
lects thresholds for the predictor variable to split the data into
a group above and below the respective threshold and then
averages the target variable values per group to come up with
a prediction. At each node of the tree, multiple potential splits
are evaluated, and the imposed threshold that minimizes the
prediction error is selected to increase the accuracy of the
prediction of the target variable. This process continues re-
cursively, splitting the data at each node until the tree reaches
the leaf node, where no further splits are possible or no fur-
ther reduction in the prediction error is achieved. At the leaf
node, the tree makes a final prediction of the target variable
— in our case, the expected AR6 Land CDR (Breiman et al.,
1984). A gradient boosting regression model is an ensemble
method that sequentially combines multiple simple models,
called weak learners (typically decision trees, as described
above), which correct the previous models’ predictions to re-
duce the error and improve the final model (Friedman, 2001).
A random forest model is also an ensemble method that com-
bines multiple decision trees, as described above; however,
unlike gradient boosting, the trees in a random forest model
run in parallel instead of sequentially. Each decision tree
works independently, and their individual predictions are av-
eraged to produce the final prediction (Breiman, 2001). The
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k-nearest neighbors model is not based on decision trees.
Instead, it uses the proximity (similarity) of a scenario to a
number (k) of neighbors (similar scenarios) to make predic-
tions. For a given scenario, the model identifies the k-nearest
data points of the predictor variable in the feature space and
then averages the target variable values of these neighbors to
come up with a prediction (Goldberger et al., 2004).

2.1.2 Performance optimization and evaluation

From the scikit-learn machine learning library, we used (1)
grid search for our regression model hyperparameter opti-
mization and (2) bootstrapping to estimate the variability in
prediction performance for different subsamples of our train-
ing and testing data (Pedregosa et al., 2011). Grid search is
an algorithm commonly used for regression problems and al-
lows one to efficiently run regression models in different se-
tups using all possible hyperparameter combinations to even-
tually select the best-performing model setup. The selection
of hyperparameter options for the model optimization was
driven by the observed model performance and computa-
tion time. We used bootstrapping to explore how the predic-
tion performance of our optimized regression models varied
based on different resamples (n = 1000) of the training and
testing data, allowing us to better evaluate the robustness of
the perceived performance of the tested models.

Earth Syst. Sci. Data, 17, 1-11, 2025
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The model performance was determined based on four
widely applied evaluation metrics, namely, R?, mean abso-
lute error, median absolute error, and maximum absolute er-
ror. These four evaluation metrics are briefly described in the
following. R? was used to explore how well the tested regres-
sion model captured the relationship between the predicted
variable and the actual variable in the validation dataset, indi-
cating the goodness of their fit. R? can range from 0 to 1, with
higher values indicating better fits. The other three evaluation
metrics instead indicate absolute error, meaning the absolute
difference between the predicted and the actual variable in
the validation dataset throughout 2020-2100 — lower error
values indicate more accurate predictions of the regression
models. As the absolute error differs across variable pairs of
the global scenarios (n = 79) and the regional scenario vari-
ants (n = 617) in the testing dataset, we reported the mean,
median, and maximum error across the considered scenarios.
Mean and median error are useful to estimate the prediction
models’ overall performance, whereas the maximum error is
used to indicate the extreme in lower-end performance, based
on the most inaccurately predicted scenario. Ultimately, the
best-performing model (k-nearest neighbors) was used to im-
pute the missing AR6 Land CDR data for incomplete global
scenarios (n = 404) and incomplete sub-global scenario vari-
ants (n = 2358) across the R10 regions in the AR6 Scenarios
Database. The performance of the four considered regression
models and the selection of the k-nearest neighbors model is
discussed further in Sect. 3.

2.1.3 Data post-processing

For all imputed scenarios, the predicted target variable was
compared to their predictor variable to identify cases where
imputed CDR on land is smaller than the respective net-
negative AFOLU CO, emissions, as this conceptual error
was partly also perceived in the AR6 Scenarios Database.
The two imputation datasets for the global scenarios and
R10 regional variants contain two data sheets. The first
data sheet contains unadjusted imputation outputs. In con-
trast, the second sheet accounts for the conceptual error de-
scribed above by replacing conceptually inconsistent predic-
tions with their respective net-negative AFOLU CO, emis-
sions for all years in affected scenarios to provide a lower-
bound proxy for AR6 Land CDR - the implications of this
are explained in Sect. 5. The code to implement the analysis
and the global and regional imputation datasets are publicly
available at https://doi.org/10.5281/zenodo.13373539 (Priitz
et al., 2024).

3 Results

We show the performance of the four tested regression mod-
els along the four above-described evaluation metrics based
on the testing set used for regression model validation for the
global scenarios (Fig. 3a) and their regional scenario variants
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(Fig. 4a). Overall, the k-nearest neighbors regression model
performs best, as it resembles the actual variable most accu-
rately, while keeping mean, median, and absolute difference
between the predicted variable and the actual variable com-
paratively low throughout 2020-2100 for both the global sce-
narios and the regional scenario variants. It also shows rela-
tively low variance in performance across the bootstrapping
results (Figs. 3a and 4a). While the gradient boosting regres-
sion performs comparatively well for the prediction of the
global scenarios and slightly better concerning the maximum
absolute error (Fig. 3a), the k-nearest neighbors regression
outperforms the gradient boosting regression regarding mean
and median absolute error for the prediction of the incom-
plete regional scenario variants (Fig. 4a). While the overall
performance of these two regression models is similar, the
k-nearest neighbors model was chosen to produce the two
imputation datasets of this study, as the gradient boosting
model partly predicted slightly negative values in the target
variable, which is conceptually inconsistent with a clean def-
inition of Land CDR, which should have a uniform removal
sign. The other two regression models perform less well than
the k-nearest neighbors and gradient boosting regressions.
Overall, all models show a slight performance drop for R?
around 2020-2060, with more stable or increased perfor-
mance thereafter — we have found no convincing explanation
for this slight temporal variation in performance.

In absolute terms, the mean, median, and maximum errors
are larger for the evaluated global scenarios than for their
regional scenario variants — this is expected due to the sub-
stantially higher levels of Land CDR deployment at a global
level compared with the R10 regions. At a global level, the
mean error of the k-nearest neighbors model is consistently
below 200 MtCO, yr’l, while the median error is consis-
tently below 40 MtCO, yr~; at the R10 region level, we see
a mean error consistently below 15MtCO, yr~! and a me-
dian error close to 0MtCO, yr~!. At both the global and
regional level, the mean and median absolute differences
between the predicted variable and the actual variable are
judged to be reasonably low, based on the k-nearest neigh-
bors regression, and the absolute difference between the ac-
tual and predicted variable is substantially smaller than be-
tween the actual variable and the net-negative AFOLU CO,
emissions as a lower-bound proxy for comparison (see also
Figs. 3b and 4b). As a point of reference, the median AR6
Land CDR deployment across available scenarios of the sce-
nario categories C1-C8 in the AR6 Scenarios Database is
1253 MtCO, yr~! for 2020-2060 and 3570 MtCO, yr~! for
2060-2100; across the R10 regions, median deployment is
39 and 179 MtCO, yr~!, respectively. This means that the
median error accounts for around 1% of the median AR6
Land CDR deployment throughout the time series for the
original global scenarios, while this value is even lower for
the original regional scenario variants in the regression val-
idation dataset. However, while the regression model seems
to perform well overall based on the regression evaluation

https://doi.org/10.5194/essd-17-1-2025
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dataset, the observed maximum error suggests substantially
worse performance in extreme cases, when looking at the
scenario with the highest absolute error (Figs. 3a and 4a).

Figures 3b and 4b show Land CDR across the global
scenarios and their regional scenario variants in the regres-
sion validation dataset, considering the actual variable for
AR6 Land CDR, the predicted Land CDR using the k-
nearest neighbors regression, and the net-negative AFOLU
CO; emissions as a lower-bound proxy for comparison. Con-
sidering the scenarios in the global and regional regression
validation datasets, the predicted variable appears to be a
better proxy variable for missing AR6 Land CDR than the
net-negative AFOLU CO, emissions proxy, as the predicted
variable better resembles the shape of the actual variable and
shows less absolute error throughout 2020-2100. While the
predicted variable resembles the actual variable well across
all eight ARG scenario categories, Fig. 3b suggests some vari-
ance in performance across these categories — the drop in
resemblance of the actual variable is most visible for C8 sce-
narios. This is at least partly due to the small number of un-
derlying scenarios of this category in the regression valida-
tion dataset at the global level (n = 2). The prediction per-
formance across the different R10 regions is comparatively
consistent, as shown in Fig. 4b. In some cases, the actual
variable and the predicted Land CDR are smaller than the
net-negative AFOLU CO; emissions proxy (e.g., as visible in
some instances for the R10 region RIOEUROPE in Fig. 4b).
This highlights a conceptual error in the underlying data, as
further discussed in the subsequent section.

4 Code and data availability

The analysis code and the global and re-
gional imputed datasets are publicly available at
https://doi.org/10.5281/zenodo.13373539 (Priitz et al.,
2024).

5 Discussion and conclusions

In this study, we tested and compared four regression models
to impute missing AR6 scenario data on Land CDR based
on available data on net AFOLU CO; emissions. The tested
k-nearest neighbors regression model performed best and
was used to impute the missing AR6 Land CDR data for
incomplete global scenarios (n = 404) and incomplete sub-
global scenario variants (n = 2358) across the R10 regions.
The global and regional imputation datasets are publicly
available at https://doi.org/10.5281/zenodo.13373539 (Priitz
et al., 2024).

While we effectively resemble and impute AR6 Land CDR
data for incomplete scenarios, our imputed datasets do not
resolve underlying inconsistencies in the reporting of AR6
Land CDR in the AR6 Scenarios Database. The original data
in the AR6 Scenarios Database for the “Carbon Sequestra-
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tion | Land Use” variable are based on different reporting
methodologies across IAMs, and land CO; fluxes are not al-
ways consistently and explicitly split into net-negative CO;
emissions and gross removals (Ganti et al., 2024; Priitz et
al., 2023). Different baselines for today’s land removal are
also perceived across scenarios, as shown in Fig. 1. For sev-
eral scenarios in the AR6 Scenarios Database, net-negative
AFOLU CO; emissions are larger than the reported AR6
Land CDR; this indicates conceptual errors, as Land CDR is
a gross variable that can only be larger than or equal to net-
negative AFOLU CO; emissions (Byers et al., 2022; Priitz et
al., 2023). The issues of inconsistent removal baselines and
net-negative CO;, emissions being larger than gross removal
are partly also perceived in our imputed datasets, as we use
data from the AR6 Scenarios Database to train our model.

To address the latter problem, we provide an unadjusted
imputation dataset as well as an adjusted imputation dataset
for which we replaced conceptually inconsistent predictions
(those with net-negative CO; emissions larger than gross re-
moval) with their respective net-negative AFOLU CO; emis-
sions for all years in the affected scenarios to provide a lower-
bound proxy for AR6 Land CDR in the global and regional
imputation dataset. We adjusted 106 global and 1594 re-
gional scenario variants and indicated (in the adjusted im-
putation dataset) the scenarios for which the adjustment was
made.

We emphasize that our global and regional imputed
datasets are imperfect and that the persisting issue of net-
negative CO; emissions and gross removals on land not al-
ways being separated or consistently reported across models
must be considered when using our data imputation. Here,
the applied approach to infill missing data is purely based
on statistical relationships and is not intended to replace fur-
ther improvements in comprehensively reporting Land CDR
in the next generation of mitigation scenarios produced with
process-based models. Nevertheless, Figs. 3b and 4b show
that our imputed Land CDR variable is a markedly better
proxy than the use of net-negative CO, emissions, which
have partly been used in previous studies (Priitz et al., 2023;
Schleussner et al., 2022; Warszawski et al., 2021) — both in
terms of resembling the removal curve and reducing absolute
error. Our imputation is also a better alternative to omitting
a large part of the scenario space that does not report AR6
Land CDR.

Concerning use cases, we believe that our global and re-
gional imputed datasets on AR6 Land CDR are most useful
for analyses that aim to use the largest possible set of both
original and imputed global scenarios (n = 783 4+ 404) or re-
gional R10 scenario variants (n = 6162 +2358) and a uni-
form carbon removal sign. Such scenario ensemble assess-
ments are relevant to better understand a range of different
aspects concerning Land CDR in climate change mitigation
pathways. Several specific use cases have been highlighted
above, including an assessment of the arising gap in CDR
deployment (Lamb et al., 2024), an analysis of residual emis-
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Figure 3. Prediction performance for the global scenario data. Panel (a) shows the performance of tested regression models to predict
missing AR6 land removal data based on the used regression validation dataset (n = 79 scenarios). Performance across the four evaluation
metrics is shown as the median (solid line) and 5th—-95th percentile range (shaded area) of the bootstrapping results (n = 1000) for each of
the four tested regression models. The performance results refer to the comparison between the predicted variable and the actual variable
in the regression validation dataset. Panel (b) shows the actual (“Carbon Sequestration | Land Use”) versus predicted Land CDR and the
ARG net-negative AFOLU CO, emissions (based on negative values in “Emissions | CO2 | AFOLU”) as a lower-bound proxy for AR6 Land
CDR across AR6 scenario categories in the regression validation dataset (n = 79 scenarios). The predicted data in the figure are based on
the k-nearest neighbors regression. The solid lines show the median across scenarios, while the shaded area shows the 5th—95th percentile
range. Note that we follow the convention of the AR6 Scenarios Database and report CDR using positive numbers. An overview of the AR6
scenario categories (C1-C8) is provided in Table 2.

sions including the land sector (Lamb, 2024), estimations of
land per removal (Zhao et al., 2024), or evaluations of the at-
tainability of mitigation scenarios, which rely on Land CDR
(Warszawski et al., 2021).

Thus far, such analyses have relied on insufficient proxy
data or interim solutions to address the limited data avail-
ability of land carbon sequestration in the AR6 Scenarios

Earth Syst. Sci. Data, 17, 1-11, 2025

Database and could benefit from the more comprehensive
dataset on Land CDR across scenarios provided in this work.
Based on the evaluation of mean, median, and maximum ab-
solute error of the regression model used here, it is advis-
able to use our dataset for analyses that rely on a large en-
semble of scenarios, for example, all scenarios of a certain
scenario category or even several categories. This is because
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Figure 4. Prediction performance for the R10 regions’ scenario data. Panel (a) shows the performance of tested regression models to predict
missing AR6 land removal data based on the used regression validation dataset (n = 617 for regional scenario variants). Performance across
the four evaluation metrics is shown as the median (solid line) and 5th-95th percentile range (shaded area) of the bootstrapping results
(n = 1000) for each of the four tested regression models. The performance results refer to the comparison between the predicted variable and
the actual variable in the regression validation dataset. Panel (b) shows the actual (“Carbon Sequestration | Land Use”) versus predicted Land
CDR and the ARG net-negative AFOLU CO; emissions (based on negative values in “Emissions | CO2 | AFOLU”) as a lower-bound proxy
for AR6 Land CDR across AR6 R10 regions in the regression validation dataset (n = 617 for regional scenario variants). The predicted data
in the figure are based on the k-nearest neighbors regression. The solid lines show the median across scenarios, while the shaded area shows
the 5th-95th percentile range. Note that we follow the convention of the AR6 Scenarios Database and report CDR using positive numbers.
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the prediction results from the regression model are more re-
liable for scenario ensembles than for individual scenarios,
which may show larger error, as shown by the maximum er-
ror in Figs. 3a and 4a — arguably, it is generally advisable
to aim to use scenario ensembles instead of individual sce-
narios to better capture uncertainties and diverse underly-
ing assumptions, which may lead to more robust and cred-
ible analysis outcomes (Guivarch et al., 2022b). The reanal-
ysis discussed above by Gidden et al. (2023) is perceived
to be more suitable in terms of the consistency and accu-
racy of today’s removals and for direct comparisons of sce-
nario data and national greenhouse gas inventories (NGHGI).
While our imputation dataset contains Land CDR data for
the base year 2020, present-day and historical emissions and
removals are better captured and more comprehensively dis-
cussed by the Global Carbon Project (Friedlingstein et al.,
2023) — the merit of our imputation dataset lies in the future
time steps of scenarios. As the imputation approach used in
this work is purely based on statistical relationships between
the predictor and target variable, it can also be applied to
data availability problems in other domains to infill missing
data, given that sufficient data are available to train and eval-
uate the model and that the models’ performance is judged
to be adequate. Ultimately, we hope that this study can be
a valuable and complementary addition to the existing ap-
proaches addressing the Land CDR data gap in the AR6 Sce-
narios Database.
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