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Abstract. The AR6 Scenario Database is a vital repository of climate change mitigation pathways used in the latest IPCC 

assessment cycle. In its current version, many scenarios in the database lack information about the level of anthropogenic 

carbon dioxide removal via land sinks, as net negative CO2 emissions and gross removals on land are not always separated 

and not consistently reported across models. This makes scenario analyses focusing on carbon dioxide removal challenging. 15 

We test and compare the performance of different regression models to impute missing data on land carbon sequestration for 

the global level and for several sub-global macro regions from available data on net CO2 emissions in agriculture, forestry, 

and other land use. We find that a k-nearest neighbors regression performs best among the tested regression models and use it 

to impute and provide two publicly available imputation datasets [https://doi.org/10.5281/zenodo.13373539] (Prütz et al., 

2024) on carbon dioxide removal via land sinks for incomplete global scenarios (n=404) and incomplete regional R10 scenario 20 

variants (n=2358) of the AR6 Scenario Database. We discuss the limitations of our approach, the use of our datasets for 

secondary assessments of AR6 scenario ensembles, and how this approach compares to other recent AR6 data reanalyses. 

1 Introduction 

Climate change mitigation pathways, created with integrated assessment models (IAMs), have come to take up a critical role 

in the assessment work of Working Group III of the Intergovernmental Panel on Climate Change (IPCC) (Guivarch et al., 25 

2022b; Riahi et al., 2022). The AR6 Scenario Database hosted by the International Institute for Applied Systems Analysis 

(IIASA) contains climate change mitigation pathways compiled for and considered in the Working Group III Contribution to 

the IPCC Sixth Assessment Report (Byers et al., 2022; Kikstra et al., 2022). 

In these pathways, carbon dioxide removal (CDR) from the atmosphere is primarily represented by bioenergy with carbon 

capture and storage (BECCS) and by carbon sequestration in land sinks – primarily via afforestation and reforestation (Riahi 30 

et al., 2022). Among the global scenarios in the AR6 Scenario Database that passed the vetting process (n=1202) (see Guivarch 

et al. (2022b) for details about the AR6 scenario vetting process), 419 pathways miss the variable for carbon sequestration on 

land (‘Carbon Sequestration|Land Use’), which complicates secondary analyses that investigate CDR implications across 

https://doi.org/10.5281/zenodo.13373539
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scenarios and models. A range of different secondary scenario ensemble evaluations based on data from the AR6 Scenario 

Database have been published in recent years, e.g., assessing the arising gap in CDR deployment (Lamb et al., 2024), 35 

determining the level and composition of residual emissions (Lamb, 2024), analysing the removal per land unit (Zhao et al., 

2024), evaluating the attainability of mitigation scenarios (Warszawski et al., 2021), classifying emission pathways reflecting 

the climate objectives of the Paris Agreement (Schleussner et al., 2022), or exploring scenario characteristics driving CDR 

deployment (Prütz et al., 2023). All these analyses rely on proxy data or interim solutions to address the limited data availability 

of land carbon sequestration in the AR6 Scenario Database. 40 

Two such interim solutions to account for this data gap are documented in the literature, namely, the use of net negative CO2 

emissions in agriculture, forestry, and other land use (AFOLU) as a lower bound proxy variable for CDR via land sinks (Prütz 

et al., 2023; Schleussner et al., 2022; Warszawski et al., 2021), and a criteria-based scenario filtering and exclusion approach 

to ensure a consistent selection of scenarios with similar reporting of CDR via land sinks (Prütz et al., 2023). Both approaches 

have limitations in depicting CDR via land sinks adequately and comprehensively (Ganti et al., 2024). A more recent approach 45 

is based on a reanalysis of land CO2 fluxes using the reduced-complexity compact earth system model OSCAR v3.2 (Gidden 

et al., 2023). While the AR6 reanalysis dataset by Gidden et al. manages to resolve several of the data issues linked to CDR 

via land sinks – specifically, aligning the removal baseline and improving the consistency across scenarios – it still combines 

gross and net CO2 fluxes on land in their land sink CDR variable, resulting in both positive and negative CDR values, which 

conflicts with the concept and clean definition of anthropogenic CDR from the atmosphere (Matthews et al., 2021). In the AR6 50 

Scenario Database, CDR is conventionally reported in positive numbers. Also, while being very comprehensive, the reanalysed 

dataset by Gidden et al. is limited to a subset (n=914) of all global and vetted scenarios (n=1202) of the AR6 Scenario Database, 

while also providing reanalysed scenario data for five sub-global macro regions (R5 level). Figure 1 compares the available 

land sink CDR data of the AR6 Scenario Database to the reanalysed variable by Gidden et al. and the net-negative AFOLU 

CO2 proxy, showing the discrepancy of the net-negative AFOLU CO2 proxy and the negative values for land sink CDR of the 55 

reanalysis.  

Here, we test and compare the performance of several different regression models to impute missing data on land carbon 

sequestration (Land CDR) based on available data on net CO2 emissions in AFOLU for both global scenarios and the R10 

regions in the AR6 Scenario Database. We use the best performing regression model to impute missing data for 404 global 

scenarios and 2358 sub-global scenario variants across the R10 regions and provide two imputation datasets, which are made 60 

publicly available. Lastly, we discuss our approach's use cases and limitations and detail how our approach compares to the 

two above-mentioned interim solutions and the recent reanalysis of the AR6 Land CDR data. In the following, we refer to 

CDR via land sinks or carbon sequestration on land as Land CDR. Table 1 gives an overview and description of key variables 

in this analysis. 

Table 1. Overview of the analysis variables 65 

Variable Description 
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'Carbon Sequestration|Land Use' This variable from the AR6 Scenario Database is defined as the “total carbon dioxide 
sequestered through land sinks (e.g., afforestation, soil carbon enhancement, biochar)”. This 
is the target variable that we impute for incomplete scenarios. In this analysis, we refer to 
this variable as AR6 Land CDR. 

'AR6 Reanalysis|OSCARv3.2|Carbon 
Removal|Land|Direct' 

This variable from the reanalysis by Gidden et al. is intended to depict CDR through land 
sinks, similar to the AR6 Land CDR. However, the baseline CO2 flux substantially differs 
compared to the AR6 Land CDR, as the data was aligned to national greenhouse gas 
inventories. This variable contains both positive and negative values, which suggests that it 
is showing net instead of gross removal. In this analysis, we refer to this variable as Gidden 
et al. Land CDR (direct). 

'Emissions|CO2|AFOLU' This variable from the AR6 Scenario Database is defined as the net “CO2 emissions from 
agriculture, forestry and other land use (IPCC category 3)”. This is the predictor variable 
that we use to predict the target variable. In this analysis, we refer to this variable as net 
AFOLU CO2 emissions. 

| 'Emissions|CO2|AFOLU' < 0 | This variable shows the net CO2 removal from agriculture, forestry and other land use, based 
on the negative values in the variable net AFOLU CO2 emissions. This variable has been 
used in several studies as lower bound proxy for AR6 Land CDR. We refer to this variable 
as net negative AFOLU CO2. 

'Imputed|Carbon Sequestration|Land Use' This is one of two variables in the imputation datasets provided in this analysis. This variable 
contains the predicted values from our data imputation without further adjustment. 

'Imputed & Proxy|Carbon 
Sequestration|Land Use' 

This is one of two variables in the imputation datasets provided in this analysis. This variable 
contains the predicted values from our data imputation. For scenarios in which the predicted 
Land CDR is lower than the net negative AFOLU CO2, we replaced all predicted removals 
with the values from the net negative AFOLU CO2 and indicated this adjustment. 
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Figure 1. Comparison of available AR6 Land CDR data (‘Carbon Sequestration|Land Use’) with the Land CDR reanalysis by Gidden et al. 
(‘AR6 Reanalysis|OSCARv3.2|Carbon Removal|Land|Direct’) and the AR6 net negative AFOLU CO2 emissions (based on negative values 70 
in ‘Emissions|CO2|AFOLU’) as a lower bound proxy for AR6 Land CDR across AR6 scenario categories. Only scenarios available for all 
three variables were considered in the figure (scenarios n=725). The Land CDR scenarios in the reanalysis by Gidden et al. are aligned with 
national greenhouse gas inventories, shown by the difference in baseline in 2020 compared to the other two variables. The solid lines show 
the median across scenarios while the shaded area shows the min-max range. Note: We follow the convention of the AR6 Scenario Database, 
to report CDR in positive numbers, whereas the Land CDR variable in the reanalysis by Gidden et al. shows both positive and negative CDR 75 
numbers. An overview of AR6 scenario categories (C1-8) is provided in Table 2. 

2 Methods 

Overview. In our analysis, we used different regression models to predict missing data on AR6 Land CDR (target variable: 

‘Carbon Sequestration|Land Use’) for 404 incomplete global scenarios and for 2358 incomplete sub-global scenario variants 

across R10 regions based on available scenario data on AFOLU CO2 emissions (predictor variable: ‘Emissions|CO2|AFOLU’). 80 

AFOLU CO2 emissions were chosen as predictor variable due to good data availability in the AR6 Scenario Database and 

because this variable is conceptually most closely related to AR6 Land CDR among the variables in the AR6 Scenario Database 

– the variable for AFOLU CO2 emissions represents the net CO2 fluxes corresponding to the gross variable for Land CDR, as 

defined in Table 1. The AR6 R10 region classification comprises 10 macro regions plus one additional region for “rest of the 

world” (Figure 4b), resulting in a total of 11 macro regions, which we considered in our analysis. While the AR6 R10 85 

classification allows for a comparison of regions across models and scenarios, not all regions are available for all models and 
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scenarios, e.g., only a small subset of models has the category “rest of the world” (R10ROWO). For our analysis, we used the 

exact R10 regional classification as assigned in the AR6 Scenario Database without excluding or adjusting regions for 

individual scenarios or models. 

As an initial step, we selected all vetted scenarios from the AR6 Scenario Database for which both the predictor and the target 90 

variable are available at the global level (n=783) and across the R10 regions (n=6162). Among the vetted global scenarios 

(n=1202) in the AR6 Scenario Database, 15 scenarios from the model REMIND 1.6 do not report AFOLU CO2 emissions, 

which is why we could not include these scenarios in our imputation. Among the vetted regional scenario variants (n=8531) 

across the R10 regions in the AR6 Scenario Database, 11 regional variants of scenario EN_INDCi2100 from the model GEM-

E3 V2021 do not report AFOLU CO2 emissions, which is why we could not include these scenario variants in our imputation. 95 

Figure 2 provides a simplified conceptual overview of the scenario selection, exclusion, and imputation workflow. 

 

 
Figure 2. Conceptual overview of the scenario selection, exclusion, and imputation workflow for the global scenarios and for regional 

scenario variants at AR6 R10 level. The numbers in brackets indicate the respective number of scenarios. Dashed lines indicate a process, 100 
while solid lines depict the origin of a scenario subset. Details about the model selection, training, and performance evaluation are provided 

in the Methods section. 

We split both the global and the regional scenario datasets into training and testing sets (9:1) for our regression analysis to 

have a large dataset for training the models while still having a sufficiently large testing dataset to evaluate the prediction 
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performance and to validate the models. The training set was used to fit the predictor variable to the target variable to train the 105 

regression models, and the testing set was then used to evaluate the prediction performance of the trained regression models. 

The regression models were separately trained on the global scenario data and the regional scenario variants as the scale of 

AR6 Land CDR deployment differs substantially between the global and the regional level. Regional scenario variants for 

model training were treated as one large training set rather than splitting the data by R10 region before training. For both the 

global scenarios and regional scenario variants, we did not distinguish between AR6 scenario categories during the model 110 

training process to keep the number of training data points as large as possible to optimize the models’ performances. The AR6 

scenario category (C1-8) classification is based on the scenarios’ global warming levels from low warming of 1.5 °C with no 

or limited temporary temperature overshoot (C1) to high warming of more than 4 °C within this century (C8) (Guivarch et al., 

2022a). An overview of the AR6 scenario categories is provided in Table 2. 

 115 

Table 2. Overview of scenario categories as in Guivarch et al. (2022a) 

Category Description 

C1 Scenarios limiting warming to 1.5 °C in 2100 (>50% probability) with no or limited 
overshoot (≤67% exceedance probability of 1.5 °C) 

C2 Scenarios returning to warming of 1.5 °C in 2100 (>50% probability) after a high overshoot 
(>67% exceedance probability of 1.5 °C) 

C3 Scenarios limiting warming to 2 °C throughout this century (>67% probability) 

C4 Scenarios limiting warming to 2 °C throughout this century (>50% probability) 

C5 Scenarios limiting warming to 2.5 °C throughout this century (>50% probability) 

C6 Scenarios limiting warming to 3 °C throughout this century (>50% probability) 

C7 Scenarios limiting warming to 4 °C throughout this century (>50% probability) 

C8 Scenarios exceeding warming of 4 °C within this century (≥50% probability) 

 

Regression models. We considered and compared four commonly used regression models in our analysis: gradient boosting, 

decision tree, random forest, and a k-nearest neighbors regression model. In the initial stage, a more extensive set of commonly 

used regression models, including linear regression and multilayer perceptron regression, were tested, among which the four 120 

above-mentioned models were selected for further hyperparameter tuning due to their superior performance compared to other 

regression models in the initial set, based on the performance evaluation metrics described below.  

For all models, we use the machine learning scikit-learn library for Python (Pedregosa et al., 2011). In the following, the four 

considered regression models are briefly described, while more detail is provided in the referenced seminal works and the 

scikit-learn documentation of the respective models including the mathematical representations of the underlying algorithms. 125 

A decision tree model is a supervised learning method to predict a target variable based on decision rules derived from a 

predictor variable. The model produces piecewise approximations of the target variable through a series of binary data splits 

based on values of the predictor variable. For continuous predictor variables, as in our case net AFOLU CO2 emissions, the 



7 
 

decision tree model iteratively selects thresholds for the predictor variable to split the data into a group above and below the 

respective threshold and then averages the target variable values per group to come up with a prediction. At each node of the 130 

tree, multiple potential splits are evaluated, and the imposed threshold that minimizes the prediction error is selected to increase 

the accuracy of the prediction of the target variable. This process continues recursively, splitting the data at each node until 

the tree reaches the leaf node, where no further splits are possible or no further reduction in the prediction error is achieved. 

At the leaf node, the tree makes a final prediction of the target variable – in our case, the expected AR6 Land CDR (Breiman 

et al., 1984). A gradient boosting regression model is an ensemble method which sequentially combines multiple simple 135 

models, called weak learners (typically decision trees as described above), which correct the previous models’ predictions to 

reduce the error and improve the final model (Friedman, 2001). A random forest model is also an ensemble method which 

combines multiple decision trees as described above, but unlike gradient boosting, the trees in a random forest model run in 

parallel instead of sequentially. Each decision tree works independently, and their individual predictions are averaged to 

produce the final prediction (Breiman, 2001). The k-nearest neighbors model is not based on decision trees. Instead, it uses the 140 

proximity (similarity) of a scenario to a number (k) of neighbors (similar scenarios) to make predictions. For a given scenario, 

the model identifies the k nearest data points of the predictor variable in the feature space and then averages the target variable 

values of these neighbors to come up with a prediction (Goldberger et al., 2004). 

Performance optimization and evaluation. From the machine learning library scikit-learn, we used grid search for our 

regression model hyper-parameter optimization, and bootstrapping to estimate the variability in prediction performance for 145 

different subsamples of our training and testing data  (Pedregosa et al., 2011). Grid search is an algorithm commonly used for 

regression problems, which allows to efficiently run regression models in different setups using all possible hyper-parameter 

combinations to eventually select the best performing model setup. The selection of hyper-parameter options for the model 

optimization was driven by the observed model performance and computation time. We used bootstrapping to explore how 

the prediction performance of our optimized regression models varied based on different resamples (n=1000) of the training 150 

and testing data, allowing us to better evaluate the robustness of the perceived performance of the tested models.  

The model performance was determined based on four widely applied evaluation metrics, namely R-squared, mean absolute 

error, median absolute error, and maximum absolute error. These four evaluation metrics are briefly described in the following. 

R-squared was used to explore how well the tested regression model captured the relationship between the predicted variable 

and the actual variable in the validation dataset, indicating the goodness of their fit. R-squared can range from zero to one with 155 

higher values indicating better fits. The other three evaluation metrics instead indicate absolute error, meaning the absolute 

difference between the predicted and the actual variable in the validation dataset throughout 2020-2100 – lower error values 

indicate more accurate predictions of the regression models. As the absolute error differs across variable pairs of the global 

scenarios (n=79) and the regional scenario variants (n=617) in the testing dataset, we reported the mean, median and maximum 

error across the considered scenarios. Mean and median error are useful to estimate the prediction models’ overall performance 160 

whereas the maximum error is used to indicate the extreme in lower-end performance, based on the most inaccurately predicted 

scenario. Ultimately, the best performing model (k-nearest neighbors) was used to impute the missing AR6 Land CDR data 
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for incomplete global scenarios (n=404) and incomplete sub-global scenario variants (n=2358) across the R10 regions in the 

AR6 Scenario Database. The performance of the four considered regression models and the selection of the k-nearest neighbors 

model is discussed further under Results. 165 

Data postprocessing. For all imputed scenarios, the predicted target variable was compared to their predictor variable to 

identify cases where imputed CDR on land is smaller than the respective net negative AFOLU CO2 emissions, as this 

conceptual error was partly also perceived in the AR6 Scenario Database. The two imputation datasets for the global scenarios 

and R10 regional variants contain two data sheets. The first data sheet contains unadjusted imputation outputs. In contrast, the 

second sheet accounts for the conceptual error described above by replacing conceptually inconsistent predictions with their 170 

respective net negative AFOLU CO2 emissions for all years in affected scenarios to provide a lower bound proxy for AR6 

Land CDR – implications are explained in the discussion section. The code to implement the analysis and the global and 

regional imputation datasets are publicly available at [https://doi.org/10.5281/zenodo.13373539]. 

3 Results 

We show the performance of the four tested regression models along the four above-described evaluation metrics based on the 175 

testing set used for the regression model validation for the global scenarios (Figure 3a) and their regional scenario variants 

(Figure 4a). Overall, the k-nearest neighbors regression model performs best, as it resembles the actual variable most 

accurately, while keeping mean, median and absolute difference between the predicted variable and the actual variable 

comparatively low throughout 2020-2100 for both the global scenarios and the regional scenario variants. It also shows 

relatively low variance in performance across the bootstrapping results (Figure 3a and 4a). While the gradient boosting 180 

regression performs comparatively well for the prediction of the global scenarios and slightly better concerning the maximum 

absolute error (Figure 3a), the k-nearest neighbors regression outperforms the gradient boosting regression regarding mean 

and median absolute error for the prediction of the incomplete regional scenario variants (Figure 4a). While the overall 

performance of these two regression models is similar, the k-nearest neighbors model was chosen to produce the two 

imputation datasets of this study, as the gradient boosting model partly predicted slightly negative values in the target variable, 185 

which is conceptually inconsistent with a clean definition of Land CDR, which should have a uniform removal sign. The other 

two regression models perform less well than the k-nearest neighbors and gradient boosting regressions. Overall, all models 

show a slight performance drop for R-squared around 2020-2060, with more stable or increased performance thereafter – we 

have found no convincing explanation for this slight temporal variation in performance.  

In absolute terms, the mean, median, and maximum errors are larger for the evaluated global scenarios than for their regional 190 

scenario variants – this is expected due to the substantially higher levels of Land CDR deployment on the global level compared 

to the R10 regions. On the global level, mean error of the k-nearest neighbors model is consistently below 200 MtCO2 yr-1 and 

for the median error consistently below 40 MtCO2 yr-1 – on the R10 region level we see mean error consistently below 15 

MtCO2 yr-1 and median error close to zero. For both the global and regional level, the mean and median absolute difference 

between the predicted variable and the actual variable is judged to be reasonably low, based on the k-nearest neighbors 195 

https://doi.org/10.5281/zenodo.13373539
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regression, and the absolute difference between the actual and predicted variable is substantially smaller than between the 

actual variable and the net negative AFOLU CO2 emissions as a lower bound proxy for comparison (see also Figure 3b and 

4b). As a point of reference, the median AR6 Land CDR deployment across available scenarios of the scenario categories C1-

8 in the AR6 Scenario Database is 1253 MtCO2 yr-1 for 2020-2060 and 3570 MtCO2 yr-1 for 2060-2100 – across the R10 regions 

median deployment is 39 MtCO2 yr-1 and 179 MtCO2 yr-1 respectively. This means that the median error accounts to around 200 

1% of the median AR6 Land CDR deployment throughout the timeseries for the original global scenarios and even lower for 

the original regional scenario variants in the regression validation dataset. However, while the regression model seems to 

perform well overall based on the regression evaluation dataset, the observed maximum error suggests substantially worse 

performance in extreme cases, when looking at the scenario with the highest absolute error (Figure 3a and 4a). 

 205 
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Figure 3. Prediction performance for the global scenario data. Panel (a) shows the performance of tested regression models to predict missing 
AR6 land removal data based on the used regression validation dataset (scenarios n=79). Performance across the four evaluation metrics is 
shown as the median (solid line) and 5-95 percentile range (shaded area) of the bootstrapping results (n=1000) for each of the four tested 
regression models. The performance results refer to the comparison between the predicted variable compared to the actual variable in the 210 
regression validation dataset. Panel (b) shows the actual (‘Carbon Sequestration|Land Use’) versus predicted Land CDR and the AR6 net 
negative AFOLU CO2 emissions (based on negative values in ‘Emissions|CO2|AFOLU’) as a lower bound proxy for AR6 Land CDR across 
AR6 scenario categories in the regression validation dataset (scenarios n=79). The predicted data in the figure is based on the k-nearest 
neighbors regression. The solid lines show the median across scenarios while the shaded area shows the 5-95 percentile range. Note: We 
follow the convention of the AR6 Scenario Database, to report CDR in positive numbers. An overview of AR6 scenario categories (C1-8) 215 
is provided in Table 2. 

Figure 3b and 4b show Land CDR across the global scenarios and their regional scenario variants in the regression validation 

dataset, considering the actual variable for AR6 Land CDR, the predicted Land CDR using the k-nearest neighbors regression, 

and the net negative AFOLU CO2 emissions as a lower bound proxy for comparison. Considering the scenarios in the global 
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and regional regression validation datasets, the predicted variable appears to be a better proxy variable for missing AR6 Land 220 

CDR than the net negative AFOLU CO2 emissions proxy, as the predicted variable better resembles the shape of the actual 

variable and shows less absolute error throughout 2020-2100. While the predicted variable resembles the actual variable well 

across all eight AR6 scenario categories, Figure 3b suggests some variance in performance across these categories – for C8 

scenarios the drop in resemblance of the actual variable is most visible. This is at least partly due to the small number of 

underlying scenarios of this category in the regression validation dataset at the global level (n=2). The prediction performance 225 

across the different R10 regions is comparatively consistent, as shown in Figure 4b. In some cases, the actual variable and the 

predicted Land CDR are smaller than the net negative AFOLU CO2 emissions proxy, e.g., visible in some instances for the 

R10 region R10EUROPE in Figure 4b. This highlights a conceptual error in the underlying data, which is further discussed in 

the subsequent section. 

 230 
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Figure 4. Prediction performance for the R10 regions scenario data. Panel (a) shows the performance of tested regression models to predict 
missing AR6 land removal data based on the used regression validation dataset (regional scenario variants n=617). Performance across the 
four evaluation metrics is shown as the median (solid line) and 5-95 percentile range (shaded area) of the bootstrapping results (n=1000) for 
each of the four tested regression models. The performance results refer to the comparison between the predicted variable compared to the 235 
actual variable in the regression validation dataset. Panel (b) shows the actual (‘Carbon Sequestration|Land Use’) versus predicted Land 
CDR and the AR6 net negative AFOLU CO2 emissions (based on negative values in ‘Emissions|CO2|AFOLU’) as a lower bound proxy for 
AR6 Land CDR across AR6 R10 regions in the regression validation dataset (regional scenario variants n=617). The predicted data in the 
figure is based on the k-nearest neighbors regression. The solid lines show the median across scenarios while the shaded area shows the 5-
95 percentile range. Note: We follow the convention of the AR6 Scenario Database, to report CDR in positive numbers. 240 
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4 Discussion and conclusion 

In this study, we tested and compared four regression models to impute missing AR6 scenario data on Land CDR based on 

available data on net AFOLU CO2 emissions. The tested k-nearest neighbors regression model performed best and was used 

to impute the missing AR6 Land CDR data for incomplete global scenarios (n=404) and incomplete sub-global scenario 

variants (n=2358) across the R10 regions. The global and regional imputation datasets are publicly available at: 245 

[https://doi.org/10.5281/zenodo.13373539].  

While we effectively resemble and impute AR6 Land CDR data for incomplete scenarios, our imputed datasets do not resolve 

underlying inconsistencies in the reporting of AR6 Land CDR in the AR6 Scenario Database. The original data in the AR6 

Scenario Database for the variable ‘Carbon Sequestration|Land Use' is based on different reporting methodologies across 

IAMs, and land CO2 fluxes are not always consistently and explicitly split into net negative CO2 emissions and gross removals 250 

(Ganti et al., 2024; Prütz et al., 2023). Different baselines for today’s land removal are also perceived across scenarios, as 

shown in Figure 1. For several scenarios in the AR6 Scenario Database, net negative AFOLU CO2 emissions are larger than 

the reported AR6 Land CDR, which indicates conceptual errors as Land CDR is a gross variable, which can only be larger or 

equal to net negative AFOLU CO2 emissions (Byers et al., 2022; Prütz et al., 2023). The issues of inconsistent removal 

baselines and net negative CO2 emissions being larger than gross removal are partly also perceived in our imputed datasets, as 255 

we use data from the AR6 Scenario Database to train our model.  

To address the latter problem, we provide an unadjusted imputation dataset as well as an adjusted imputation dataset for which 

we replaced conceptually inconsistent predictions (net negative CO2 emissions being larger than gross removal) with their 

respective net negative AFOLU CO2 emissions for all years in the affected scenarios to provide a lower bound proxy for AR6 

Land CDR in the global and regional imputation dataset. We adjusted 106 global and 1594 regional scenario variants and 260 

indicated in the adjusted imputation dataset for which scenarios the adjustment was made.  

We emphasize that our global and regional imputed datasets are imperfect and that the persisting issue of net negative CO2 

emissions and gross removals on land not always being separated and consistently reported across models, must be considered 

when using our data imputation. The here applied approach to infill missing data is purely based on statistical relationships 

and is not intended to replace further improvements in comprehensively reporting Land CDR in the next generation of 265 

mitigation scenarios produced with process-based models. Nevertheless, Figure 3b and 4b show that our imputed Land CDR 

variable is a markedly better proxy than the use of net-negative CO2 emissions, which was partly used in previous studies 

(Prütz et al., 2023; Schleussner et al., 2022; Warszawski et al., 2021)  – both in terms of resembling the removal curve and 

reducing absolute error. Our imputation is also a better alternative to omitting a large part of the scenario space that does not 

report AR6 Land CDR.  270 

Concerning use cases, we believe our global and regional imputed datasets on AR6 Land CDR are most useful for analyses 

that aim to use the largest possible set of both original and imputed global scenarios (n=783+404) or regional R10 scenario 

variants (n=6162+2358) and a uniform carbon removal sign. Such scenario ensemble assessments are relevant to better 

https://doi.org/10.5281/zenodo.13373539
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understand a range of different aspects concerning Land CDR in climate change mitigation pathways. Several specific use 

cases have been highlighted above, including an assessment of the arising gap in CDR deployment (Lamb et al., 2024), an 275 

analysis of residual emissions including the land sector (Lamb, 2024), estimations of land-per-removal (Zhao et al., 2024) or 

evaluations of the attainability of mitigation scenarios, which rely on Land CDR (Warszawski et al., 2021).  

So far, such analyses rely on insufficient proxy data or interim solutions to address the limited data availability of land carbon 

sequestration in the AR6 Scenario Database and could benefit from the here provided more comprehensive dataset on Land 

CDR across scenarios. Based on the evaluation of mean, median, and maximum absolute error of the here used regression 280 

model, it is advisable to use our dataset for analyses that rely on a large ensemble of scenarios, e.g., all scenarios of a certain 

scenario category or even several categories.  This is because the prediction results from the regression model are more reliable 

for scenario ensembles than for individual scenarios, which may show larger error, as shown by the maximum error in Figure 

3a and 4a – arguably, it is generally advisable to aim to use scenario ensembles instead of individual scenarios to better capture 

uncertainties and diverse underlying assumptions, which may lead to more robust and credible analysis outcomes (Guivarch 285 

et al., 2022b).  The reanalysis discussed above by Gidden et al. is perceived to be more suitable in terms of consistency and 

accuracy of today's removals and for direct comparisons of scenario data and national greenhouse gas inventories (NGHGI). 

While our imputation dataset contains Land CDR data for the scenario starting year 2020, today’s and also historical emissions 

and removals are better captured and more comprehensively discussed by the Global Carbon Project (Friedlingstein et al., 

2023) – the merit of our imputation dataset lies in the future timesteps of scenarios. As the here used imputation approach is 290 

purely based on statistical relationships between the predictor and target variable, it can also be applied to data availability 

problems in other domains to infill missing data, given that sufficient data is available to train and evaluate the model and that 

the models’ performance is judged to be adequate. Ultimately, we hope this study can be a valuable and complementary 

addition to the existing approaches addressing the Land CDR data gap in the AR6 Scenario Database. 
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