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Abstract. The AR6 Scenario Database is a vital repository of climate change mitigation pathways used in the latest IPCC 

assessment cycle. In its current version, severalmany scenarios in the database lack information about the level of 

grossanthropogenic carbon dioxide removal onvia land sinks, as net negative CO2 emissions and gross removals on land are 

not always separated and consistently reported across models. This makes scenario analyses focusing on carbon 

removalsdioxide removal challenging. We test and compare the performance of different regression models to impute missing 15 

data on land carbon sequestration for the global level and for R10 regions from available data on net CO2 emissions in 

agriculture, forestry, and other land use. We find that a gradient boostingk-nearest neighbors regression performs best among 

the tested regression models and provide atwo publicly available imputation datasetdatasets 

[https://doi.org/10.5281/zenodo.10696654] (Prütz et al., 2024) on carbonhttps://doi.org/10.5281/zenodo.13373539] (Prütz et 

al., 2024) on carbon dioxide removal onvia land sinks for 404 incomplete global scenarios (n=404) and incomplete regional 20 

R10 scenario variants (n=2358) in the AR6 Scenario Database. We discuss the limitations of our approach, itsthe use casesof 

our datasets for secondary assessments of AR6 scenario ensembles, and how this approach compares to other recent AR6 data 

re-analysesreanalyses. 

1 Introduction 

Climate change mitigation pathways, created with integrated assessment models (IAMs), have come to take up a critical role 25 

in the assessment work of Working Group III of the Intergovernmental Panel on Climate Change (IPCC) (Riahi et al., 2022; 

Guivarch et al., 2022). The AR6 Scenario Database hosted by the International Institute for Applied Systems Analysis (IIASA) 

contains climate change mitigation pathways compiled for and considered in the Working Group III Contribution to the IPCC 

Sixth Assessment Report (Byers et al., 2022; Kikstra et al., 2022). 

In these pathways, carbon dioxide removal (CDR) from the atmosphere is primarily represented by bioenergy with carbon 30 

capture and storage (BECCS) and by carbon sequestration on land – primarily via afforestation and reforestation (Riahi et al., 

2022). Among the scenarios in the AR6 Scenario Database that passed the vetting process (n=1202) (see Guivarch et al. (2022) 

https://doi.org/10.5281/zenodo.13373539
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for details about the AR6 scenario vetting process), 419 pathways miss the variable for carbon sequestration on land (‘Carbon 

Sequestration|Land Use’), which complicates secondary analyses that investigate CDR implications across scenarios and 

models. This gap requires the use of proxy data and interim solutions. Two such interim solutions to account for this data gap 35 

are documented in the literature, including the use of net negative CO2 emissions in agriculture, forestry, and other land use 

(AFOLU) as a proxy variable for land-based CDR (Warszawski et al., 2021; Schleussner et al., 2022; Prütz et al., 2023) or 

scenario filtering and exclusion (Prütz et al., 2023). Both approaches have limitations in depicting gross carbon removals on 

land adequately and comprehensively (Ganti et al., 2024). A more recent approach is based on a re-analysis of land CO2 fluxes 

using the earth system model OSCAR v3.2 (Gidden et al., 2023). While the AR6 re-analysis dataset by Gidden et al. manages 40 

to resolve several of the data issues linked to carbon removal on land, it still combines gross and net CO2 emissions on land in 

their land-based CDR variable, resulting in both positive and negative CDR values, which conflicts with the concept and clean 

definition of gross CDR. Also, while being very comprehensive, the re-analyzed dataset by Gidden et al. is limited to a subset 

(n=914) of all global and vetted scenarios (n=1202) of the AR6 Scenario Database. Figure 1 compares the available land 

carbon sequestration data of the AR6 Scenario Database to the re-analyzed variable by Gidden et al. and the net-negative 45 

AFOLU CO2 proxy, showing the discrepancy of the net-negative AFOLU CO2 proxy and the negative values for land-based 

CDR of the re-analysis.  

Here, we test and compare the performance of several different regression models to impute missing data on gross land carbon 

sequestrationClimate change mitigation pathways, created with integrated assessment models (IAMs), have come to take up a 

critical role in the assessment work of Working Group III of the Intergovernmental Panel on Climate Change (IPCC) (Guivarch 50 

et al., 2022b; Riahi et al., 2022). The AR6 Scenario Database hosted by the International Institute for Applied Systems Analysis 

(IIASA) contains climate change mitigation pathways compiled for and considered in the Working Group III Contribution to 

the IPCC Sixth Assessment Report (Byers et al., 2022; Kikstra et al., 2022). 

In these pathways, carbon dioxide removal (CDR) from the atmosphere is primarily represented by bioenergy with carbon 

capture and storage (BECCS) and by carbon sequestration in land sinks – primarily via afforestation and reforestation (Riahi 55 

et al., 2022). Among the global scenarios in the AR6 Scenario Database that passed the vetting process (n=1202) (see Guivarch 

et al. (2022b) for details about the AR6 scenario vetting process), 419 pathways miss the variable for carbon sequestration on 

land (‘Carbon Sequestration|Land Use’), which complicates secondary analyses that investigate CDR implications across 

scenarios and models. A range of different secondary scenario ensemble evaluations based on data from the AR6 Scenario 

Database have been published in recent years, e.g., assessing the arising gap in CDR deployment (Lamb et al., 2024), 60 

determining the level and composition of residual emissions (Lamb, 2024), analysing the removal per land unit (Zhao et al., 

2024), evaluating the attainability of mitigation scenarios (Warszawski et al., 2021), classifying emission pathways reflecting 

the climate objectives of the Paris Agreement (Schleussner et al., 2022), or exploring scenario characteristics driving CDR 

deployment (Prütz et al., 2023). All these analyses rely on proxy data or interim solutions to address the limited data availability 

of land carbon sequestration in the AR6 Scenario Database. 65 
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Two such interim solutions to account for this data gap are documented in the literature, including the use of net negative CO2 

emissions in agriculture, forestry, and other land use (AFOLU) as a lower bound proxy variable for CDR via land sinks (Prütz 

et al., 2023; Schleussner et al., 2022; Warszawski et al., 2021) or criteria-based scenario filtering and exclusion to ensure a 

consistent selection of scenarios with similar reporting of CDR vial land sinks (Prütz et al., 2023). Both approaches have 

limitations in depicting CDR via land sinks adequately and comprehensively (Ganti et al., 2024). A more recent approach is 70 

based on a reanalysis of land CO2 fluxes using the reduced-complexity compact earth system model OSCAR v3.2 (Gidden et 

al., 2023). While the AR6 reanalysis dataset by Gidden et al. manages to resolve several of the data issues linked to CDR via 

land sinks – specifically, aligning the removal baseline and improving the consistency across scenarios – it still combines gross 

and net CO2 fluxes on land in their land sink CDR variable, resulting in both positive and negative CDR values, which conflicts 

with the concept and clean definition of anthropogenic CDR from the atmosphere (Matthews et al., 2021). In the AR6 Scenario 75 

Database, CDR is conventionally reported in positive numbers. Also, while being very comprehensive, the reanalyzed dataset 

by Gidden et al. is limited to a subset (n=914) of all global and vetted scenarios (n=1202) of the AR6 Scenario Database, while 

also providing reanalysed scenario data for five sub-global macro regions (R5 level). Figure 1 compares the available land 

sink CDR data of the AR6 Scenario Database to the reanalyzed variable by Gidden et al. and the net-negative AFOLU CO2 

proxy, showing the discrepancy of the net-negative AFOLU CO2 proxy and the negative values for land sink CDR of the 80 

reanalysis.  

Here, we test and compare the performance of several different regression models to impute missing data on land carbon 

sequestration (Land CDR) based on available data on net CO2 emissions in AFOLU.  for both global scenarios and the R10 

regions in the AR6 Scenario Database. We use the best performing regression model to impute missing data for 404 global 

scenarios and to2358 sub-global scenario variants across the R10 regions and provide antwo imputation datasetdatasets, which 85 

isare made publicly available. Lastly, we discuss our approach's use cases and limitations and detail how our approach 

compares to the two above-mentioned interim solutions and the recent re-analysis of the AR6 land carbon removal data. 

reanalysis of the AR6 Land CDR data. In the following, we refer to CDR via land sinks or carbon sequestration on land as 

Land CDR. Table 1 gives an overview and description of key variables in this analysis. 

 90 
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Table 1. Overview of the analysis variables 

Variable Description 
'Carbon Sequestration|Land Use' This variable from the AR6 Scenario Database is defined as the “total carbon dioxide 

sequestered through land sinks (e.g., afforestation, soil carbon enhancement, biochar)”. This 
is the target variable that we impute for incomplete scenarios. In this analysis, we refer to 
this variable as AR6 Land CDR. 

'AR6 Reanalysis|OSCARv3.2|Carbon 
Removal|Land|Direct' 

This variable from the reanalysis by Gidden et al. is intended to depict CDR through land 
sinks, similar to the AR6 Land CDR. However, the baseline CO2 flux substantially differs 
compared to the AR6 Land CDR, as the data was aligned to national greenhouse gas 
inventories. This variable contains both positive and negative values, which suggests that it 
is showing net instead of gross removal. In this analysis, we refer to this variable as Gidden 
et al. Land CDR (direct). 

'Emissions|CO2|AFOLU' This variable from the AR6 Scenario Database is defined as the net “CO2 emissions from 
agriculture, forestry and other land use (IPCC category 3)”. This is the predictor variable 
that we use to predict the target variable. In this analysis, we refer to this variable as net 
AFOLU CO2 emissions. 

| 'Emissions|CO2|AFOLU' < 0 | This variable shows the net CO2 removal from agriculture, forestry and other land use, based 
on the negative values in the variable net AFOLU CO2 emissions. This variable has been 
used in several studies as lower bound proxy for Land CDR. We refer to this variable as net 
negative AFOLU CO2. 

'Imputed|Carbon Sequestration|Land Use' This is one of two variables in the imputation datasets provided in this analysis. This variable 
contains the predicted values from our data imputation without further adjustment. 
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'Imputed & Proxy|Carbon 
Sequestration|Land Use' 

This is one of two variables in the imputation datasets provided in this analysis. This variable 
contains the predicted values from our data imputation. For scenarios in which the predicted 
Land CDR is lower than the net negative AFOLU CO2, we replaced the predicted removal 
with the values from the net negative AFOLU CO2. 

 

 
Figure 1:. Comparison of available AR6 land-basedLand CDR data (‘Carbon Sequestration|Land Use’) with the land carbon removal re-95 
analysis Land CDR reanalysis by Gidden et al. (‘AR6 Reanalysis|OSCARv3.2|Carbon Removal|Land|Direct’) and the AR6 net negative 
AFOLU CO2 emissions (based on negative values in ‘Emissions|CO2|AFOLU’) as a conservativelower bound proxy for land-basedLand 
CDR across AR6 scenario categories. Only scenarios available for all three variables were considered in the figure (scenarios n=725). The 
Land CDR scenarios in the reanalysis by Gidden et al. are aligned with national greenhouse gas inventories, shown by the difference in 
baseline in 2020 compared to the other two variables. The solid lines show the median across scenarios while the shaded area shows the 100 
min-max range. Note: We follow the convention of the AR6 Scenario Database, to report CDR in positive numbers. 

2 Methods 

Overview. In our analysis, we used different regression models to predict missing AR6 data on gross land carbon sequestration 

(dependentLand CDR (target variable: ‘Carbon Sequestration|Land Use’) for 404 global scenarios and 2358 sub-global 

scenario variants across R10 regions based on available scenario data on AFOLU CO2 emissions (independentpredictor 105 

variable: ‘Emissions|CO2|AFOLU’). AFOLU CO2 emissions were chosen as predictor variable due to good data availability 

in the AR6 Scenario Database and because this variable is conceptually most closely related to Land CDR among the variables 
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in the AR6 Scenario Database – the variable for AFOLU CO2 emissions represents the net emission fluxes corresponding to 

the gross variable for Land CDR. The AR6 R10 region classification comprises 10 macro regions plus one additional region 

for “rest of the world”, as shown in Figure 3a. As an initial step, we selected all vetted scenarios from the AR6 Scenario 110 

Database for which both the independentpredictor and the dependenttarget variable are available at the global level (n=783).) 

and across the R10 regions (n=6162). Among the vetted global scenarios (n=1202) in the AR6 Scenario Database, 15 scenarios 

from the model REMIND 1.6 do not report AFOLU CO2 emissions, which is why we could not include these scenarios in our 

imputation. Among the vetted regional scenario variants across the R10 regions (n=8531) in the AR6 Scenario Database, 11 

regional variants of scenario EN_INDCi2100 from the model GEM-E3 V2021 do not report AFOLU CO2 emissions, which is 115 

why we could not include these scenario variants in our imputation. 

We then split this dataset both the global and the regional scenario datasets into training and testing sets (9:1) for our regression 

analysis. to have a large dataset for training the models while still having a sufficiently large testing dataset to evaluate the 

prediction performance and to validate the models. The training set was used to fit the dependentpredictor variable to the 

independenttarget variable to train the regression modelmodels, and the testing set was then used to evaluate the prediction 120 

performance of the trained regression modelmodels. The regression models were separately trained on the global scenario data 

and the regional scenario variants as the scale of Land CDR deployment differs substantially between the global and the 

regional level. Regional scenario variants for model training were not further split into training bins depending on their 

respective R10 region, and we did not split scenarios into different training bins based on their AR6 scenario categories to 

keep the number of training data as large as possible to optimize the models’ performances. The AR6 scenario category (C1-125 

8) classification is based on the scenarios’ global warming level from low warming of 1.5 °C with no or limited temporary 

temperature overshoot (C1) to high warming of more than 4 °C within this century (C8) (Guivarch et al., 2022a). 

Regression models. We considered and compared four commonly used regression models in our analysis: gradient boosting, 

decision tree, random forest, and a k-nearest neighborneighbors regression model. In the initial stage, a more extensive set of 

differentcommonly used regression models, including linear regression and multilayer perceptron regression, were tested, 130 

among which the four models mentioned above were selected for further hyperparameter tuning due to their superior 

performance compared to other regression models in the initial set. We used grid search for our regression model hyper-

parameter optimization, using the machine learning library scikit-learn (Pedregosa et al., 2011)., based on the performance 

evaluation metrics described below.  

For all models, we use the machine learning scikit-learn library for Python (Pedregosa et al., 2011). In the following, the four 135 

considered regression models are briefly described, while more detail is provided in the referenced seminal works and the 

scikit-learn documentation of the respective models including the mathematical representations of the underlying algorithms. 

A decision tree model is a supervised learning method to predict a target variable based on decision rules derived from a 

predictor variable. The model produces piecewise approximations of the target variable through a series of binary data splits 

– similar to a tree structure with multiple branches. For continuous predictor variables, as in our case net AFOLU CO2 140 

emissions, the decision tree iteratively selects thresholds to split the data of the predictor into two groups. At each node of the 
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tree, multiple potential splits are evaluated, and the imposed threshold that minimizes the prediction error is selected to increase 

the accuracy of the prediction of the target variable. These nodes represent decision points where the data is divided based on 

whether it falls above or below the selected threshold. This process continues recursively, splitting the data at each node until 

the tree reaches the leaf nodes. At the leaf nodes, the tree makes a final prediction of the target variable – in our case, the 145 

expected Land CDR (Breiman et al., 1984). A gradient boosting regression model is and ensemble method which sequentially 

combines multiple simple models, called weak learners (typically decision trees as described above), which correct the 

previous models’ predictions to reduce the error and improve the final model (Friedman, 2001). A random forest model is also 

an ensemble method which combines multiple decision trees as described above, but unlike gradient boosting, the trees in a 

random forest model run in parallel instead of sequentially. Each decision tree works independently, and their individual 150 

predictions are averaged to produce the final prediction (Breiman, 2001). The k-nearest neighbors model is not based on 

decision trees. Instead, it uses the proximity (similarity) of a scenario to a number (k) of neighbors (similar scenarios) to make 

predictions. For a given scenario, the model identifies the k nearest data points of the predictor variable in the feature space 

and then averages the target variable values of these neighbors to come up with a prediction (Goldberger et al., 2004). 

Performance optimization and evaluation. From the machine learning library scikit-learn, we also used grid search for our 155 

regression model hyper-parameter optimization, and bootstrapping to estimate the variability in prediction performance for 

different subsamples of our training and testing data  (Pedregosa et al., 2011). Grid search is an algorithm commonly used for 

regression problems, which allows to efficiently run regression models in different setups using all possible hyper-parameter 

combinations to eventually select the best performing model setup. The selection of hyper-parameter options for the model 

optimization was driven by the observed model performance and computation time. We used bootstrapping to explore how 160 

the prediction performance of our optimized regression models varied based on different resamples (n=1000) of the training 

and testing data, allowing us to better evaluate the robustness of the perceived performance of the tested models.  

The model performance was evaluateddetermined based on four widely applied evaluation metrics:, namely R-squared, mean 

absolute error, median absolute error, and maximum absolute error. These four evaluation metrics are briefly described in the 

following. R-squared was used to explore how well the tested regression model captured the relationship between the 165 

dependent and independentpredicted variable, while mean, median and maximum absolute errors were used to evaluate and 

the actual variable in the validation dataset, indicating the goodness of their fit. R-squared can range from zero to one with 

higher values indicating better fits. The other three evaluation metrics instead indicate absolute error, meaning the absolute 

difference between the dependentpredicted and the independentactual variable in the validation dataset throughout 2020-2100. 

– lower error values indicate more accurate predictions of the regression models. As the absolute error differs across variable 170 

pairs of the global scenarios (n=79) and the regional scenario variants (n=617) in the training and testing dataset, we reported 

the mean, median and maximum error across the considered scenarios. Mean and median error are useful to estimate the 

prediction models’ overall performance whereas the maximum error is used to indicate the extreme in lower-end performance, 

based on the most inaccurately predicted scenario. Ultimately, the best performing model (gradient boosting regressionk-

nearest neighbors) was used to impute the missing gross land carbon sequestrationLand CDR data for 404 incomplete scenarios 175 
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global scenarios (n=404) and incomplete sub-global scenario variants (n=2358) across the R10 regions in the AR6 Scenario 

Database.  

For two time steps of two imputed scenarios, negative values of up to -3 Mt CO2 yr-1 were predicted, which is conceptually 

false and likely explained by the remainingThe performance of the four considered regression models and the selection of the 

k-nearest neighbors model error. These values are only slightly below the conceptual minimum and, therefore, set to zero.is 180 

discussed further under Results. 

Data postprocessing. For all imputed scenarios, the predicted dependenttarget variable was compared to their 

independentpredictor variable to identify cases where imputed CDR on land is smaller than the respective net negative AFOLU 

CO2 emissions, as this conceptual error was partly also perceived in the AR6 Scenario Database. The two imputation dataset 

containsdatasets for the global scenarios and R10 regional variants contain two data sheets:. The first data sheet contains 185 

unadjusted imputation outputs. In contrast, the second sheet accounts for the conceptual error described above by replacing 

conceptually falseinconsistent predictions with their respective net negative AFOLU CO2 emissions as a conservativelower 

bound proxy for land-basedLand CDR – implications are explained in the discussion section. The code to implement the 

analysis and the global and regional imputation datasetdatasets are publicly available at 

[https://doi.org/10.5281/zenodo.1069665413373539]. 190 

3 Results 

Figure 2 shows2a and 3a show the performance of the four tested regression models along the four above-described evaluation 

metrics based on the testing set used for the regression model validation. for the global scenarios and their regional scenario 

variants. Overall, the gradient boostingk-nearest neighbors regression model performs best, as it describes the relationship 

betweenresembles the dependent and independentactual variable most accurately, while keeping mean, median and absolute 195 

difference between the two variablespredicted variable and the actual variable comparatively low throughout 2020-2100. 

While the k-nearest neighbor regression  for both the global scenarios and the regional scenario variants. It also shows relatively 

low variance in performance across the bootstrapping results (Figure 2a and 3a). While the gradient boosting regression 

performs comparatively well or for the prediction of the global scenarios and slightly better concerning the mean and 

medianmaximum absolute error, (Figure 2a), the k-nearest neighbors regression outperforms the gradient boosting regression 200 

outperforms the k-nearest neighbor regression regarding R-squared and the maximum absolute error. Also, the performance 

of the mean and median absolute error for the prediction of the incomplete regional scenario variants (Figure 3a). While the 

overall performance of these two regression models is similar, the k-nearest neighbors model was chosen to produce the two 

imputation datasets of this study, as the gradient boosting regression is most consistent when varying the ratio between the 

training and the testing set.model partly predicted slightly negative values in the target variable, which is conceptually 205 

inconsistent with a clean definition of Land CDR, which should have a uniform removal sign. The other two regression models 

perform less well than the k-nearest neighbors and gradient boosting and k-nearest neighbor regressions. Overall, all models 

https://doi.org/10.5281/zenodo.13373539
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show a slight performance drop for R-squared around 2020-2060, with more stable or increased performance thereafter – we 

have found no convincing explanation for this slight temporal variation in performance.  

 210 

 
Figure 2: Performance of tested regression models to predict missing AR6 land removal data based on the used regression validation 
dataset (scenarios n=79). 

Figure 3 shows the carbon removal on land across the scenarios In absolute terms, the mean, median, and maximum errors are 

larger for the evaluated global scenarios than for their regional scenario variants – this is expected due to the substantially 215 

higher levels of Land CDR deployment on the global level compared to the R10 regions. On the global level, mean error is 

consistently below 200 MtCO2 yr-1 and for the median error consistently below 40 MtCO2 yr-1 – on the R10 region level we see 

mean error consistently below 15 MtCO2 yr-1 and median error close to zero. For both the global and regional level, the mean 

and median absolute difference between the predicted variable and the actual variable is judged to be reasonably low, based 

on the k-nearest neighbors regression, and the absolute difference between the actual and predicted variable is substantially 220 

smaller than between the actual variable and the net negative AFOLU CO2 emissions as a lower bound proxy for comparison 

(see also Figure 2b and 3b). As a point of reference, the median Land CDR deployment across available scenarios of the 

scenario categories C1-8 in the AR6 Scenario Database is 1253 MtCO2 yr-1 for 2020-2060 and 3570 MtCO2 yr-1 for 2060-2100 

– across the R10 regions median deployment is 39 MtCO2 yr-1 and 179 MtCO2 yr-1 respectively. This means that the median 
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error is around 1% of the median Land CDR deployment throughout the timeseries for the global scenarios and even lower for 225 

the regional scenario variants in the regression validation dataset. However, while the regression model seems to perform well 

overall based on the regression evaluation dataset, the observed maximum error suggests substantially worse performance in 

extreme cases, when looking at the scenario with the highest absolute error (Figure 2a and 3a). 

 

 230 
Figure 2. Prediction performance for the global scenario data. Panel (a) shows the performance of tested regression models to predict missing 
AR6 land removal data based on the used regression validation dataset (scenarios n=79). Performance across the four evaluation metrics is 
shown as the median (solid line) and 5-95 percentile range (shaded area) of the bootstrapping results (n=1000) for each of the four tested 
regression models. The performance results refer to the comparison between the predicted variable compared to the actual variable in the 
regression validation dataset. Panel (b) shows the actual (‘Carbon Sequestration|Land Use’) versus predicted Land CDR and the AR6 net 235 
negative AFOLU CO2 emissions (based on negative values in ‘Emissions|CO2|AFOLU’) as a lower bound proxy for Land CDR across AR6 
scenario categories in the regression validation dataset (scenarios n=79). The predicted data in the figure is based on the k-nearest neighbors 
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regression. The solid lines show the median across scenarios while the shaded area shows the 5-95 percentile range. Note: We follow the 
convention of the AR6 Scenario Database, to report CDR in positive numbers. 

Figure 2b and 3b show Land CDR across the global scenarios and their regional scenario variants in the regression validation 240 

dataset, considering the actual AR6 variable for carbon sequestration on landLand CDR, the predicted carbon sequestration on 

landLand CDR using the gradient boostingk-nearest neighbors regression, and the net negative AFOLU CO2 emissions as a 

conservativelower bound proxy for comparison. Considering the scenarios in thisthe global and regional regression validation 

datasetdatasets, the predicted variable appears to be a better proxy variable for missing AR6 land carbon sequestrationLand 

CDR than the net negative AFOLU CO2 emissions proxy, as the predicted variable better resembles the shape of the actual 245 

variable and shows less absolute error throughout 2020-2100. While the predicted variable resembles the actual variable well 

across all eight AR6 scenario categories, Figure 32b suggests some variance in performance across these categories – for C8 

scenarios, the drop in resemblance of the actual variable is most visible. This is at least partly due to the small number of 

underlying scenarios of this category in the regression validation dataset at the global level (n=2). The prediction performance 

across the different R10 regions is comparatively consistent, as shown in Figure 3b. 250 
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Figure 3: Actual. Prediction performance for the R10 regions scenario data. Panel (a) shows the performance of tested regression models 
to predict missing AR6 land removal data based on the used regression validation dataset (regional scenario variants n=617). Performance 255 
across the four evaluation metrics is shown as the median (solid line) and 5-95 percentile range (shaded area) of the bootstrapping results 
(n=1000) for each of the four tested regression models. The performance results refer to the comparison between the predicted variable 
compared to the actual variable in the regression validation dataset. Panel (b) shows the actual (‘Carbon Sequestration|Land Use’) versus 
predicted land-basedLand CDR and the AR6 net negative AFOLU CO2 emissions (based on negative values in ‘Emissions|CO2|AFOLU’) 
as a conservativelower bound proxy for land-basedLand CDR across AR6 scenario categories in the regression validation dataset 260 
(scenariosregional scenario variants n=79617). The predicted data in the figure is based on the gradient boosting regression. k-nearest 
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neighbors regression. The solid lines show the median across scenarios while the shaded area shows the 5-95 percentile range. Note: We 
follow the convention of the AR6 Scenario Database, to report CDR in positive numbers. 

4 Discussion and conclusion 

In this study, we tested and compared four regression models to impute missing AR6 scenario data on land carbon 265 

sequestrationLand CDR based on available data on net AFOLU CO2 emissions. The tested gradient boostingk-nearest 

neighbors regression model performed best and was used to impute the missing land carbon sequestrationLand CDR data for 

404 incomplete global scenarios. (n=404) and incomplete sub-global scenario variants (n=2358) across the R10 regions. The 

global and regional imputation dataset isdatasets are publicly available at: 

[https://doi.org/10.5281/zenodo.1069665413373539].  270 

While we effectively resemble and impute land carbon sequestration data for 404 incomplete scenarios, our imputed dataset 

does not account for perceived land sequestration related data issues in the AR6 Scenario Database beyond data availability. 

The use of the variable ‘Carbon Sequestration|Land Use' is further complicated as different reporting methodologies were used 

across IAMs, and land CO2 fluxes are not always consistently and explicitly split into emissions and removals (Ganti et al., 

2024). Different baselines for today’s land removal are also perceived across scenarios, as shown in Figure 1. For several 275 

scenarios in the AR6 Scenario Database, net negative AFOLU CO2 emissions are larger than the reported carbon sequestration 

on land, which indicates conceptual errors as carbon sequestration on land is perceived to be a gross variable (Byers et al., 

2022; Prütz et al., 2023). The issue of inconsistent removal baselines and net removal being larger than gross removal (which 

is the case for less than a quarter of all scenarios) is partly also perceived in our imputed dataset, as we use data from the AR6 

Scenario Database to train our model.  280 

To address the latter problem, we provide an unadjusted imputation dataset as well as an adjusted imputation dataset for which 

we replaced conceptually false predictions (net removal being larger than gross removal) with their respective net negative 

AFOLU CO2 emissions as a conservative proxy for land-based CDR. We emphasize that our imputed dataset is imperfect and 

that the remaining data issues highlighted above must be considered when using our data imputation. Nevertheless, Figure 3 

shows that our imputed land-based CDR variable is a markedly better proxy than the use of net-negative CO2 emissions, which 285 

was partly used in previous studies (Schleussner et al., 2022; Warszawski et al., 2021; Prütz et al., 2023)  – both in terms of 

resembling the removal curve and reducing absolute error. Our imputation is also a better alternative to omitting a large part 

of the scenario space that does not report carbon sequestration on land.  

WeWhile we effectively resemble and impute Land CDR data for incomplete scenarios, our imputed datasets do not resolve 

underlying inconsistencies in the reporting of Land CDR in the AR6 Scenario Database. The use of the variable ‘Carbon 290 

Sequestration|Land Use' is further complicated as different reporting methodologies were used across IAMs, and land CO2 

fluxes are not always consistently and explicitly split into net negative CO2 emissions and gross removals (Ganti et al., 2024; 

Prütz et al., 2023). Different baselines for today’s land removal are also perceived across scenarios, as shown in Figure 1. For 

several scenarios in the AR6 Scenario Database, net negative AFOLU CO2 emissions are larger than the reported Land CDR, 

https://doi.org/10.5281/zenodo.13373539
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which indicates conceptual errors as Land CDR is a gross variable, which can only be larger or equal to net negative AFOLU 295 

CO2 emissions (Byers et al., 2022; Prütz et al., 2023). The issues of inconsistent removal baselines and net negative CO2 

emissions being larger than gross removal are partly also perceived in our imputed datasets, as we use data from the AR6 

Scenario Database to train our model.  

To address the latter problem, we provide an unadjusted imputation dataset as well as an adjusted imputation dataset for which 

we replaced conceptually inconsistent predictions (net negative CO2 emissions being larger than gross removal) with their 300 

respective net negative AFOLU CO2 emissions as a lower bound proxy for Land CDR in the global (n=106) and regional 

(n=1594) imputation dataset.  

We emphasize that our global and regional imputed datasets are imperfect and that the persisting issue of net negative CO2 

emissions and gross removals on land not always being separated and consistently reported across models, must be considered 

when using our data imputation. Nevertheless, Figure 2b and 3b show that our imputed Land CDR variable is a markedly 305 

better proxy than the use of net-negative CO2 emissions, which was partly used in previous studies (Prütz et al., 2023; 

Schleussner et al., 2022; Warszawski et al., 2021)  – both in terms of resembling the removal curve and reducing absolute 

error. Our imputation is also a better alternative to omitting a large part of the scenario space that does not report Land CDR.  

Concerning use cases, we believe our global and regional imputed datasetdatasets on land carbon removal isLand CDR are 

most useful for analyses that aim to use the largest possible set of both original and imputed global scenarios (n=783+404) or 310 

regional R10 scenario variants (n=6162+2358) and a uniform carbon removal sign. However, the re-Such scenario ensemble 

assessments are relevant to better understand a range of different aspects concerning Land CDR in climate change mitigation 

pathways. Several specific use cases have been highlighted above, including an assessment of the arising gap in CDR 

deployment (Lamb et al., 2024), an analysis mentionedof residual emissions including the land sector (Lamb, 2024), 

estimations of land-per-removal (Zhao et al., 2024) or evaluations of the attainability of mitigation scenarios, which rely on 315 

Land CDR (Warszawski et al., 2021).  

So far, such analyses rely on insufficient proxy data or interim solutions to address the limited data availability of land carbon 

sequestration in the AR6 Scenario Database and could benefit from the here provided more comprehensive dataset on Land 

CDR across scenarios. Based on the evaluation of mean, median, and maximum absolute error of the here used regression 

model, it is advisable to use our dataset for analyses that rely on a large ensemble of scenarios, e.g., all scenarios of a certain 320 

scenario category or even several categories.  This is because the prediction results from the regression model are more reliable 

for scenario ensembles than for individual scenarios, which may show larger error, as shown by the maximum error in Figure 

2a and 3a – arguably, it is generally advisable to aim to use scenario ensembles instead of individual scenarios to better capture 

uncertainties and diverse underlying assumptions, which may lead to more robust and credible analysis outcomes (Guivarch 

et al., 2022b).  The reanalysis discussed above by Gidden et al. is perceived to be more usefulsuitable in terms of consistency 325 

and accuracy of today's removals and for direct comparisons of scenario data and national greenhouse gas inventories 

(NGHGI). While our imputation dataset contains Land CDR data for the scenario starting year 2020, today’s and also historical 

emissions and removals are better captured and more comprehensively discussed by the Global Carbon Project (Friedlingstein 
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et al., 2023) – the merit of our imputation dataset lies in the future timesteps of scenarios. Ultimately, we hope this study can 

be a valuable and complementary addition to the existing approaches addressing the land carbon sequestrationLand CDR data 330 

gap in the AR6 Scenario Database. 
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