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Abstract. Cultivated pastures have rapidly developed across the Tibetan Plateau over the past several decades, raising concerns 15 

about grassland degradation. Accordingly, considerable attention is focused on the protection of Tibetan grassland ecosystems. 

However, high-resolution spatial distribution of cultivated pastures on the Tibetan Plateau remains poorly understood, 

primarily due to the difficulty of discriminating cultivated pastures from other land cover types using remote sensing techniques. 

The absence of such information hinders efficient agricultural and livestock husbandry management, making it challenging to 

support ecological protection and restoration efforts. Here, we mapped the cultivated pastures on the Tibetan Plateau at a 30-20 

m resolution for the years 1988 to 2021 using Landsat data on the Google Earth Engine (GEE) cloud computing platform. We 

built a Random Forest (RF) binary classification model with inputs of the spectral-temporal metrics of Landsat data acquired 

in the growing season, as well as ancillary topographic data. The model was trained using carefully selected training samples 

and validated against 2,000 independent random reference points in two pilot study regions with different climates and 

landscapes. The model achieved an overall accuracy of 97.05% ± 0.4% and an F1 spatial consistency score of 82.51% ± 14.22% 25 

(Precision: 90.04% ± 6.18%, Recall: 76.74% ± 9.91%), suggesting high confidence in mapping the distribution of cultivated 

pastures on the plateau. Using the RF model, we then produced a dataset of cultivated pasture maps for the years from 1988 

to 2021 for Qinghai Province and the Tibet Autonomous Region on the Tibetan Plateau, covering 77% of the plateau. At both 

the province and county levels, the cultivated pasture areas estimated in this study matched well with government statistics in 

recent years. The area of cultivated pastures on the Tibetan Plateau experienced a significant expansion from 0.46 Mha in 1988 30 

to 1.57 Mha in 2021, with the average annual growth of 33.5 ± 2.5 Kha. To our knowledge, we are the first to map cultivated 

pastures on the Tibetan Plateau, and our RF binary classification approach holds promise in identifying cultivated pastures in 
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other regions of the world, which could prove invaluable for scientists, policymakers, ecological conservation practitioners, 

and herdsmen. The dataset is available on Zenodo at https://doi.org/10.5281/zenodo.14271782 (Han et al., 2024).  

1 Introduction 35 

Grasslands on the Tibetan Plateau play essential roles in carbon, water, and nutrient cycles (Chen et al., 2022; Piao et al., 2020; 

Wang et al., 2022; Zhang et al., 2022), in maintaining biodiversity (He et al., 2024), in mediating energy balances (Chang et 

al., 2021), and in supporting the livelihoods of millions of pastoralists (Fuglie et al., 2021; Hou et al., 2021). However, under 

the joint influence of climate change (He et al. 2020; Yao et al., 2022; Zhang et al., 2020) and human activity (Ding et al., 

2022; Li et al., 2021; Zhang et al., 2022), Tibetan grasslands face serious degradation problems (Bardgett et al., 2021; Wang 40 

et al., 2022; Zhu et al., 2023). Numerous ecological restoration measures have been implemented in the past two decades to 

address the problem of grassland degradation on the plateau (Bardgett et al., 2021; Li et al., 2020; Zhu et al., 2023) and to 

improve the welfare of Tibetan pastoral communities (Fuglie et al., 2021; Hou et al., 2021). The establishment of cultivated 

pastures, which is common in western developed countries (Vroey et al., 2022), is encouraged in developing countries as one 

of these efforts (Wang and Zhang, 2023). 45 

Cultivated pastures are also known as tame grasslands/pastures (Fisher et al., 2018; McInnes et al., 2015), agricultural 

grasslands (Zalite et al., 2016), green fodder lands (Yang et al., 2021), or planted pastures (Parente et al., 2017). Cultivated 

pastures primarily cultivate alfalfa, silage corn, forage oat, ryegrass, or similar crops. The vegetation spectral signals of these 

cultivated pastures are similar to those of conventional croplands during peak growing seasons. However, cultivated pastures 

are generally harvested before reaching full maturity to optimize nutrient retention and maintain palatability. As a result, the 50 

duration of vegetation growth in cultivated pastures is shorter compared to croplands. This discrepancy may lead to noticeable 

differences in vegetation spectral signals between conventional croplands and cultivated pastures at the end of the growing 

season (Ashourloo et al., 2018; Yang et al., 2021).  

Mapping cultivated pastures on the Tibetan Plateau is important for the following reasons. Firstly, cultivated pastures 

provide substantial amounts of forage for livestock, the main economic income of Tibetan pastoralists (Fuglie et al., 2021; 55 

Hou et al., 2021). Secondly, cultivated pastures are essential for the ecological conservation and restoration efforts in this 

ecologically fragile area by reducing grazing pressure on natural grasslands (Kumar et al., 2019; Fang et al., 2016). Thirdly, 

encouraging cultivated pastures on the Tibetan Plateau has led to considerable changes in land use and land cover. These 

cultivated pastures, if well planned, can have significant impacts on ecosystem services and biodiversity conservation (Chen 

et al., 2021; Dong et al., 2022); if not well planned, they will result in ecosystem degradation that will be difficult to restore in 60 

the extreme environments.  

Satellite remote sensing is an essential tool for mapping cultivated pastures (McInnes et al., 2015; Ashourloo et al., 2018; 

Fisher et al., 2018; Yang et al., 2021; Wang et al., 2022). For example, McInnes et al. (2015) used MODIS data to discriminate 

native and non-native grasslands in a dry mixed prairie in Canada, with an overall accuracy of 73% assessed by independent 
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validation. Ashourloo et al. (2018) identified alfalfa fields in Iran and the United States using Landsat time series data, and the 65 

overall accuracy reached above 90% by cross-validation, although their method did not require a very dense number of valid 

observations. LiDAR data has been used to distinguish cultivated grasslands from natural grasslands, as in one study in 

southwestern Saskatchewan, Canada, and an overall accuracy of 96 % was achieved (Fisher et al. 2018). Satellite remote 

sensing has also been used to map pastoral lands in China. Yang et al. (2021) used Landsat data during the growing season to 

map green fodder fields in the northeastern Tibetan Plateau in 2010, 2015, and 2019, and achieved overall accuracies of 94.2%, 70 

93.1%, and 96.6%. They found that the green fodder lands in northeastern Tibetan Plateau expanded from 16.3 km² in 2010 

to 136.1 km² in 2019, 7.35 times the initial area. Wang et al. (2022) identified oat pastures in Shandan County of Gansu 

Province using Sentinel-2 data from 2019 to 2021, with an overall accuracy of 98% assessed by cross-validation. They found 

that the area of cultivated oat pastures decreased from 347.8 km² in 2019 to 318.9 km² in 2021.  

While a number of studies have mapped cultivated pastures (Ashourloo et al., 2018; Fisher et al., 2018; McInnes et al., 75 

2015; Wang et al., 2022; Yang et al., 2021), many mapped cultivated pastures that grow certain types of tame grass species, 

such as alfalfa (Ashourloo et al., 2018), oat (Wang et al., 2022), and rapeseed (Yang et al., 2021); few studies focused on the 

mapping of general cultivated pastures, especially in the harsh environments on the Tibetan Plateau. The temporal evolution 

of the distribution of cultivated pastures on the Tibetan Plateau, which is of great interest to policymakers and researchers, 

remains poorly understood. 80 

Therefore, the aims of the study are (1) to develop a method for mapping general cultivated pastures using satellite remote 

sensing data, (2) to clarify important technical details for successful mapping of general cultivated pastures on the Tibetan 

Plateau, and (3) to understand the temporal evolution of the spatial distribution of cultivated pastures on the Tibetan Plateau.  

2 Study region 

The Tibetan Plateau spans from 25°59’ E to 40°04’ E in latitude and from 73°29’ N to 104°40’ N in longitude, with an average 85 

elevation of over 4,000 m (Fig. 1). The region has a continental plateau climate, with an annual mean temperature of 2.0˚C 

and an annual mean precipitation of 373.5 mm (Zhang et al., 2023). The growing season lasts from April to October (Wang et 

al., 2020). The land cover types include grasslands, deserts, croplands, forests, etc. (Fig. 1). The Tibetan Plateau is the habitat 

of over 50 million Tibetan sheep and 13 million yaks (Cheng et al., 2016), which rely on natural grasslands and cultivated 

pastures for their forage. The dominant native grass species in this region mainly include Stipa aliena, Carex przewalskii, and 90 

Kobresia deasyi (Jia et al., 2019). The cultivated grass species are Elymus nutans, Medicago sativa, Poa crymophila, Lolium 

perenne, Avena sativa and silage Zea mays (Fig. 2). Our study region is geographically limited to Qinghai and Tibet, which 

together comprise approximately 77% of the Tibetan Plateau. 

During the summer of 2021, we conducted a field campaign in Qinghai Province and the Tibet Autonomous Region on the 

Tibetan Plateau. We travelled 4,280 km and visited the counties of Gonghe, Xinghai, Tongde, Guinan, Guide, Kangma, 95 
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Linzhou, Sajia, Dangxiong, Longzi, and Nanmulin. These counties are referred to as the pilot study regions in Qinghai Province 

and the Tibet Autonomous Region (Fig. 1). 

 
Figure 1. The land cover types of the study region and the distribution of the pilot study regions in Qinghai and Tibet. The land cover data 
source: the Resource and Environment Science and Data Center (http://www.resdc.cn/) of the Chinese Academy of Sciences. The binary 100 
classification model for mapping cultivated pastures was trained and validated in the pilot study regions. 
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Figure 2. Photographs of the cultivated pastures visited in the 2021 field campaign on the Tibetan Plateau. (a) Dahurian wildrye (Elymus 
nutans), (b) alfalfa (Medicago sativa), (c) annual bluegrass (Poa crymophila), (d) ryegrass (Lolium perenne), (e) oat (Avena sativa), (f) silage 105 
corn (Zea mays). 

3 Methods 

We used surface reflectance (SR) data from the Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and 

Operational Land Imager (OLI) sensors onboard the Landsat satellites (Wulder et al., 2022) to map cultivated pastures on the 

Tibetan Plateau. The mapping algorithm classified the spectral-temporal metrics of each pixel into two categories: cultivated 110 

pasture and other. Other include natural grasslands, forests, croplands, deserts, water bodies, etc. The Random Forest (Breiman, 

2001) method was used as the classification algorithm. Since we were interested in the identification of cultivated pastures 

rather than other land cover types, the RF model was designed as a binary classification model. The Random Forest binary 

classification model used in this study was trained with representative land cover type samples carefully selected during the 

field campaign or with the aid of high spatial resolution images on Google Earth. The inputs to the binary classification model 115 

were the spectral-temporal metrics of Landsat visible and infrared bands, spectral indices, as well as ancillary topographical 

information. The binary classification algorithm was implemented on Google Earth Engine (GEE; Gorelick et al., 2017) cloud 

computing platform using the geoscience data stored on it.  

3.1 Data 

To map cultivated pastures on the Tibetan Plateau, we used the surface reflectance (SR) data from the Landsat 5, 7, and 8 120 

satellites (Roy et al., 2014) in the visible and infrared bands in the years from 1988 to 2021. Globally, the Landsat 5 TM data 

were available from March 1984 to June 2013, the Landsat 7 ETM+ data available since April 1999, and the Landsat 8 OLI 

since February 2013. The band settings of OLI are different from those of TM and ETM+, so we used a conversion procedure 
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(Roy et al., 2016) to convert the SR of TM and ETM+ to that of OLI. This way, the RF binary classification model trained 

with the Landsat 8 data in 2021 as inputs can be applied to historical periods when TM or ETM+ data were available.  125 

The Landsat data have a spatial resolution of 30 meters and a temporal frequency of 16 days (Wulder et al., 2019). The 

Land Surface Reflectance Code (LaSRC; Vermote et al., 2018) was used to perform atmospheric correction. The data also 

include Quality Assessment (QA) fields produced with the CFMask method (Zhu and Woodcock, 2014), which label clouds, 

cloud shadows, snow, water, and pixel saturation. We used Landsat data during the growing season (April to October) on the 

Tibetan Plateau, as there is little vegetation signal during the non-growing season (Wang et al., 2020). The QA fields in the 130 

Landsat data were used to mask out clouds, cloud shadows, snow, and pixel saturation. Although the nominal temporal 

frequency of Landsat data is 16 days, the actual valid observations tend to have a temporal frequency of more than 16 days 

due to cloud, cloud shadow, and snow interference. Moreover, due to the side-overlapping of Landsat scenes, some locations 

have more valid observations compared to others. There were more valid Landsat observations in recent years than in earlier 

years (Fig. S1). The striping patterns in Figure S1 arise from the overlapping paths of Landsat swaths (Zhang et al. 2022). 135 

In addition to the SR, we also used seven spectral indices including Normalized Difference Vegetation Index (NDVI; 

Tucker, 1979), Enhanced Vegetation Index (EVI; Liu and Huete, 1995), Normalized Burn Ratio (NBR; López García and 

Caselles, 1991), Normalized Difference Built-Up Index (NDBI; Zha et al., 2003), Normalized Difference Phenology Index 

(NDPI; Wang et al., 2017), Normalized Difference Water Index (NDWI; Gao, 1996), and Modified Normalized Difference 

Water Index (MNDWI; Xu, 2006). Using these spectral indices can expedite the land cover classification efficiency, at both 140 

the training and classification stages. 

Topography can affect the growth conditions of grasses. Cultivated pastures are typically located on flat terrains to facilitate 

the use of automated machinery for ploughing and harvesting, hence topography features may be useful to identify cultivated 

pastures. In our study region, we characterized the topography using the Shuttle Radar Topography Mission (SRTM) Digital 

Elevation Model (DEM) data (Farr et al., 2007), which had a spatial resolution of 30 meters. The RF binary classification 145 

model’s inputs included slope, aspect, and hill shade derived from elevation. 

3.2 Spectral-temporal metrics 

Remotely sensed vegetation spectrums are characterized by high reflectance in near-infrared wavelengths and low reflectance 

in visible wavelengths (Tian et al., 2023). During the peak growing season, many vegetation types exhibit similar spectral 

features (Zeng et al., 2022). We used satellite remote sensing data throughout the growing season because vegetation has 150 

different phenological profiles due to species composition and human management (Dong et al., 2016; Parente et al., 2017). 

We used some key metrics from among all spectral-temporal data to reduce the computation burden while maintaining 

accuracy (Parente et al., 2019, 2017; Parente and Ferreira, 2018; Wang et al., 2022; Yang et al., 2021). Specifically, we used 

three descriptive statistical metrics, namely the 25%, 50%, and 75% quantiles of remote sensing data during the growing season 

instead of the complete time series of all available Landsat data during the growing season (Aghighi et al., 2018; Moon et al., 155 

2021). We referred to these descriptive statistical metrics of remote sensing data as spectral-temporal metrics. The spectral-



7 
 

temporal metrics inherently contain vegetation phenological information that can be used to classify land covers. The quantiles 

were used as independent input variables in the Random Forest classification model and did not interact with one another. As 

is standard with Random Forest models, the importance of each input variable is determined during the training process and is 

subsequently applied uniformly across all pixels in the classification. In summary, we used the 25%, 50%, and 75% quantiles 160 

of the time series of all available Landsat visible and infrared SR, seven spectral indices (i.e., NDVI, EVI, NBR, NDBI, NDPI, 

NDWI, and MNDWI) in the growing season. 

3.3 The training samples 

In the pilot study region of Qinghai Province, we visited 81 cultivated pastures. Of these, 40 were Dahurian wildrye (Elymus 

nutans) fields, 11 were miscanthus (Elymus sibiricus) fields, 6 were annual bluegrass (Poa crymophila) fields, 4 were ryegrass 165 

(Lolium perenne) fields, 2 were Guinea grass (Roegneria grandiglumis) fields, and 18 were oat (Avena sativa) fields. In the 

pilot study region of the Tibet Autonomous Region, we visited 114 cultivated pastures. Of these fields, 62 were oat pasture 

(Avena sativa), 33 were alfalfa (Medicago sativa), 10 were silage corn (Zea mays), and 9 were Dahurian wildrye (Elymus 

nutans). The detailed number and area of the visited cultivated pastures are listed in Table 1 and shown in Fig. 3a and Fig. 3c. 

The boundaries of the visited cultivated pastures were recorded using a handheld Global Positioning System (GPS) device. 170 

Fig. 3a and 3c show the spatial distribution of the two land cover categories (cultivated pasture and other) in the pilot study 

regions used to train the RF binary classification model. The number and area of the training polygons for cultivated pasture 

and other are summarized in Table 2. 
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Figure 3. The spatial distribution of the training polygons and the validation points in the pilot study regions. The training polygons (a, c) 175 
were recorded during the 2021 field campaign, and the 1,000 independent random validation points (b, d) in each pilot study region were 
labelled with the aid of high-resolution images on Google Earth.  

Table 1. Summary of the type, number, and area of the cultivated pastures visited during the 2021 summer field campaign in the pilot study 
regions. 

Cultivated pasture type Number of polygons Number of pixels Area (ha) 
Qinghai Province    

Dahurian wildrye (Elymus nutans) 41 40016 3601.4 
Miscanthus (Elymus sibiricus) 8 6931 623.8 
Annual bluegrass (Poa crymophila) 8 3748 337.3 
Ryegrass (Lolium perenne) 4 3027 272.4 
Guinea grass (Roegneria grandiglumis) 2 1083 97.5 
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Oat (Avena sativa) 18 28388 2554.9 
Total 81 83193 7487.3 

The Tibet Autonomous Region    
Oat (Avena sativa) 62 13666 1229.9 
Alfalfa (Medicago sativa) 33 2223 200.1 
Silage corn (Zea mays) 10 1539 138.5 
Dahurian wildrye (Elymus nutans) 9 482 43.4 
Total 114 17910 1611.9 

 180 
Table 2. Summary of the training polygons in the pilot study regions. 

Region Land cover category Number of polygons Number of pixels Area (ha) 

Qinghai Province 
Cultivated pasture 81 83193 7487.4 
Other  465 144818 13033.6 
Total 546 228011 20521.0 

The Tibet Autonomous Region 
Cultivated pasture 114 17910 1611.9 
Other  1429 31537 2838.3 
Total 1543 49447 4450.2 

3.4 The government statistics data 

China Agricultural Press in Beijing published the annual China Pratacultural Statistics (e.g., Li and Wang, 2017), in which 

the areas of cultivated pastures were reported at the province level. The area of cultivated pastures at the province level were 

summed from the county-level areas of cultivated pastures, which were from the county-level governments’ cultivated pasture 185 

census data. However, the areas of cultivated pastures at the county level were not reported in the annual China Pratacultural 

Statistics.  

From 2010 to 2017, the annual China Pratacultural Statistics considered all grasslands intervened by humans as cultivated 

pastures, including purely cultivated pastures and grasslands improved by human activities (i.e. seed-sowing and grazing 

prohibition). From 2001 to 2009 and from 2018 to 2021, the annual China Pratacultural Statistics only considered grasslands 190 

with ploughing and seed-sowing management practices as cultivated pastures. The statical caliber in the years from 2010 to 

2017 was more reasonable and agreed with our definition of cultivated pastures. 

Furthermore, we collected some county-level statistics data (13 counties in Qinghai and 12 counties in Tibet) of the areas 

of cultivated pastures for 2021 from the Qinghai Province Bureau of Forestry and Grassland as well as the Bureau of 

Agriculture and Rural Affairs of the Tibet Autonomous Region. We collected these county-level statistics data for comparison 195 

with the areas of cultivated pastures mapped through remote sensing. 
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3.5 The binary classification algorithm 

A RF binary classification model was used to identify cultivated pastures in the study region (Fig. 4). The classification model 

consisted of 500 trees and used the spectral-temporal metrics of the remote sensing data (SR in the seven Landsat visible and 200 

infrared bands, NDVI, EVI, NBR, NDBI, NDPI, NDWI, and MNDWI) in the growing season as well as the ancillary 

topographic data as inputs. The RF binary classification model was trained using the training polygons shown in Fig. 3a and 

Fig. 3c. The training process on the GEE platform took 10 minutes. The RF binary classification model generated the likelihood 

of each pixel belonging to the two land cover categories (cultivated pasture and other) and classified the pixel to the land cover 

category with the higher likelihood.   205 

The RF binary classification model was assessed in the pilot study regions using the validation points (ref. Section 3.6). 

When the classification overall accuracy was not satisfactory (less than 90%), the model was adjusted by refining the training 

polygons by excluding cultivated pasture polygons with possible mixed pixel problems until the overall accuracy was over 

95%. 

3.6 Accuracy assessment and area estimation 210 

To evaluate the accuracy of the cultivated pasture mapping, we used 1,000 randomly selected independent validation points in 

the pilot study region of Qinghai Province and another 1,000 in the pilot study region of the Tibet Autonomous Region, as 

shown in Figures 3b and 3d. Independent validation was used rather than cross-validation to avoid overestimating the accuracy 

of classified land cover maps (Foody, 2002; Friedl et al., 2000). Two authors independently labeled the land cover type of each 

validation site as either cultivated pastures or not using high spatial resolution images on Google Earth. To visualize the spatial 215 

extent of a validation site, a 30-meter radius buffer circle with the validation site as the center was introduced. The authors 

used field knowledge gained during the 2021 campaign to label the validation sites. For instance, forage production companies 

in the pilot study regions typically managed cultivated pastures using heavy mechanical machines. As a result, tractor furrows 

were present, but field ridges were not. In contrast, many field ridges were visible in conventional croplands managed by small 

household farmers. 220 

When both interpretations agreed, the identified land cover category was assigned to the validation point. In cases when 

the two interpretations did not agree, a third author was invited to resolve the conflict. The land cover category determined by 

the three coauthors was then assigned to the validation point. The labeled independent random validation reference points were 

illustrated in Fig. 3b and 3d and summarized in Table 3. 

The overall, producer’s, and user’s accuracies of the trained RF binary classification model in the pilot study regions were 225 

calculated. Since this was a binary classification, the F1 spatial consistency score (based on precision and recall) was also 

calculated. The kappa coefficient was not reported since it has been proven unsuitable for assessing land cover maps’ accuracy 

(Foody, 2020). To compute the uncertainties of the overall accuracy, producer’s accuracy, user’s accuracy, and F1 spatial 
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consistency score, we used the method described in (Yang et al., 2024). In addition, we computed the areas of cultivated 

pastures in each of the pilot study regions and the uncertainties using the method described in (Olofsson et al., 2014). 230 

In this study, our primary objective was to assess the quality of the final cultivated pasture dataset, rather than the 

performance of the classification model per se. Therefore, we employed an independent validation approach using a separate 

set of reference data, instead of cross-validation. This approach is better suited for evaluating the accuracy and reliability of 

the dataset itself. 

 235 
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Figure 4. Overview of the method for mapping cultivated pastures on the Tibetan Plateau. 

Table 3. Summary of the labeled independent random validation points in the pilot study regions in Qinghai Province and the Tibet 
Autonomous Region. 

Region Land cover category Number of points 

Qinghai Province 
Cultivated pasture 77 
Other  923 
Total 1000 

The Tibet Autonomous Region 
Cultivated pasture 16 
Other  984 
Total 1000 

4 Results 240 

4.1 The maps of cultivated pastures in the pilot study regions in 2021 

Fig. 5a and 6a show the extent of cultivated pastures in the pilot study regions in 2021, when the field campaign was conducted. 

In the pilot region in Qinghai Province, cultivated pastures were mainly distributed around Qinghai Lake and in valleys with 

favorable hydrothermal conditions. In the pilot study region in the Tibet Autonomous Region, cultivated pastures were 

primarily located in low-altitude regions such as Shigatse, Lhasa, Shannan, Nyingchi, and Chamdo. Fig. 5b and 6b show the 245 

number of valid Landsat OLI observations during the 2021 growing season in the pilot study regions. The RF binary 

classification model generated the likelihood of each pixel belonging to one of two land cover categories: cultivated pasture 

and other. The land cover category with the higher likelihood was assigned to the pixel grid. For instance, Fig. 5c and 6c 

illustrate the likelihood of each pixel belonging to the cultivated pasture category. 

The areas of cultivated pastures in the pilot study regions were estimated (Fig. 7a). In the pilot study region in Qinghai 250 

Province, cultivated pastures covered 0.422 ± 0.03 Mha, and in the pilot study region of the Tibet Autonomous Region, 0.058 

± 0.03 Mha. In addition, Fig. 5 and 6 provide close-ups illustrating the boundaries of cultivated pastures. The distinct 

boundaries between cultivated pasture and other suggested that our RF binary classification method could effectively identify 

cultivated pastures. 
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 255 
Figure 5. Mapped cultivated pastures in the Qinghai Province pilot study region in 2021. (a) Despite displaying a similar spectrum to natural 
grasslands during the peak growing season, cultivated pastures were identified by the RF binary classification model. (b) The number of 
good observations from Landsat OLI in the pilot study region in 2021. Close-up views of the three regions A, B, and C are on the right panel. 
In particular, region B had fewer than 5 good observations, but this did not prevent the RF binary classification algorithm from identifying 
cultivated pastures there. (c) The likelihood of each 30-m grid being classified as cultivated pasture in the pilot study region. The likelihood 260 
was calculated by the RF binary classification algorithm. 
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Figure 6. Mapped cultivated pastures in pilot study region of the Tibet Autonomous Region in 2021. The panel descriptions are the same as 
those of Fig. 5. 

4.2 Accuracy of the mapping method 265 

The likelihood of cultivated pastures being classified as cultivated pasture was way higher than being classified as other in the 

pilot study regions of both Qinghai Province and the Tibet Autonomous Region (Fig. S2). As assessed by our independent 

random validation sites, the cultivated pasture map in Fig. 5a has an overall accuracy of 96.5% ± 0.5% and an F1 spatial 

consistency score of 80% ± 12%, the land cover map in Fig. 6a has an overall accuracy of 99.2% ± 0.3% and an F1 spatial 

consistency score of 85% ± 14% (Table 4). In the Qinghai Province pilot study region, the producer’s accuracy (92.3% ± 2.9%) 270 

was higher than the user’s accuracy (71.0% ± 4.6%) for cultivated pastures (Fig. 7b), indicating a higher commission error 

than omission error. In the pilot study region of the Tibet Autonomous Region, the user’s accuracy (95.6% ± 3.1%) was higher 

than the producer’s accuracy (88.2% ± 4.6%) for cultivated pastures (Fig. 7b), indicating a higher omission error than 

commission error. To evaluate the overall accuracy of the cultivated pasture mapping, we combined the validation points from 
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Qinghai and Tibet, resulting in an accuracy of 97.05% ± 0.4% and an F1 spatial consistency score of 82.51% ± 14.22% 275 

(Precision: 90.04% ± 6.18%, Recall: 76.74% ± 9.91%). In the pilot study regions where the climates and landscapes differ 

substantially, the overall accuracies of our cultivated pastures mapping method were both higher than 95%, indicating that we 

could use the mapping method to map cultivated pastures on the Tibetan Plateau.  

The importance rankings of input variables in the trained Random Forest models for classifying cultivated pastures revealed 

consistent patterns across Qinghai and Tibet (Table 5). In both regions, elevation emerged as the most influential variable, 280 

contributing 30.1% and 28.4% of the model importance in Qinghai and Tibet, respectively. Vegetation indices such as NDVI, 

EVI, NDWI, and NDPI also played major roles, collectively accounting for a substantial portion of the variable importance in 

both regions. For instance, NDVI contributed 14.7% in Qinghai and 18.2% in Tibet. Spectral bands (e.g., B2, B3, B4, B5) had 

moderate to low importance, while topographic variables such as slope and aspect, along with certain indices like NDBI and 

MNDWI, showed relatively minor contributions. These findings underscore the critical role of both topography and vegetation 285 

dynamics in distinguishing cultivated pastures on the Tibetan Plateau. 

We also compared the area of cultivated pastures mapped using remote sensing with those from the government statistics. 

In the government statistics reports on grasslands in 2021, there were 13 county-level summaries of the area of cultivated 

pastures in Qinghai Province, and 12 county-level summaries of the area of cultivated pastures in the Tibet Autonomous 

Region (Table S1). We compared theses with the areas of cultivated pastures mapped using remote sensing data (Fig. 8). Our 290 

estimates using remote sensing data matched well with those from the government statistics. 

Table 4. The error matrix for the cultivated pasture maps in the pilot study regions in Qinghai Province and the Tibet Autonomous Region. 
 Category Cultivated pasture Other  User’s accuracy 

Qinghai Province 
Cultivated pasture 0.134 0.036 71.0% ± 4.6% 
Other  0.011 0.819 99.3% ± 0.3% 
Producer’s accuracy 92.3% ± 2.9% 96.8% ± 0.5% 96.5% ± 0.5% 

Tibet Autonomous Region 
Cultivated pasture 0.002 0.002 95.6% ± 3.1% 
Other  0.001 0.995 99.4% ± 0.2% 
Producer’s accuracy 88.2% ± 4.6% 99.8 ± 0.2% 99.2% ± 0.3% 

 

Table 5. The importance of each input variable in the trained Random Forest models for classifying cultivated pastures in 
Qinghai and Tibet. 295 

Qinghai 

Index Importance Index Importance Index Importance Index Importance 
Elevation 30.1% B3 8.3% B7 0.8% Aspect  0.1% 
NDVI 14.7% B5 5.4% B4 0.6% B1 0.1% 
EVI 12.0% NBR 3.1% NDBI  0.4%   
NDWI 10.6% MNDWI 2.8% B6 0.4%   
NDPI 9.1% B2 1.2% Slope 0.3%   

Tibet 

        
Elevation 28.4% B2 7.6% NDBI 1.1% B7 0.2% 
NDVI 18.2% B4 4.8% Slope 0.5% Aspect 0.1% 
EVI 12.3% B3 3.3% B6 0.5%   
NDPI 9.8% B5 2.6% B1 0.3%   
NDWI 8.3% NBR 1.8% MNDWI 0.2%   
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Figure 7. The areas and classification accuracies of the mapped cultivated pastures in the pilot study regions in Qinghai province and the 
Tibet autonomous region. 300 

 
Figure 8. Comparison of the areas of cultivated pastures mapped using remote sensing with those from the government statistics at the 
county level for 2021 in (a) Qinghai Province and (b) the Tibet Autonomous Region. The government statistics of cultivated pasture areas 
were from Qinghai Forestry and Grassland Bureau and the Tibet Autonomous Region Agriculture and Rural Affairs Department. 

4.3 The spatial and temporal distribution of cultivated pastures on the Tibetan Plateau 305 

Using the Landsat data from 1988 to 2021 over the Tibetan Plateau, we mapped the annual distribution of cultivated pastures 

in Qinghai Province and the Tibet Autonomous Region (Fig. 9). Generally, cultivated pastures mainly appeared in certain 

regions on the plateau: (1) in Qinghai Province, the regions are the Qinghai Lake area (the counties of Gangcha, Haiyan, 

Huangyuan, Gonghe, Guide, Dulan, and Wulan), the Qilian Mountain area (the counties of Qilian and Menyuan), the Three-

River Headwaters area (the counties of Guinan, Tongde, Xinghai, Maqin, Dari, and Jiuzhi), as well as the Yushu area; (2) in 310 

the Tibet Autonomous Region, the regions are northern Tibet (the counties of Bange, Nima, Dinqing, Naqu, and Gaize), 

southeastern Tibet (the counties of Longzi, Qunar, and Basu), and the watersheds of the rivers Yarlung Tsangpo, Lhasa, and 
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Nianchu (the counties of Gongga, Linzhou, Dangxiong, Kangma, Nanmuling, and Saga). The cultivated pastures in Qinghai 

were more clustered, while in Tibet they were more dispersed.  

Cultivated pastures in Qinghai Province existed longer than in the Tibet Autonomous Region (Fig. 10). In Qinghai Province, 315 

many cultivated pastures existed for more than 20 years from 1988 to 2021, especially around the Qinghai Lake. In the Tibet 

Autonomous Region, cultivated pastures were generally in existence for less than 10 years. Some of the cultivated pastures 

were established in very recent years, coinciding with the introduction of regional farming policies promoting the development 

of cultivated pastures (Fig. S4). 

There were government statistics data for cultivated pasture areas at the province level in Qinghai Province and the Tibet 320 

Autonomous Region from 2001 to 2021. But only in the years from 2010 to 2017 did the government’s statistical caliber of 

cultivated pastures roughly align with our definition of cultivated pastures, and the cultivated pasture areas reported by 

government statistics were reasonably close to those mapped using remote sensing from 2010 to 2017 (Fig. 11). Since the 

statistical criteria for cultivated pastures used by local governments do not fully align with our definition, we focused the 

comparison between our results and government statistics at the county level on correlation metrics rather than absolute or 325 

relative errors (Fig. 8 and Table S1). The coefficients of determination were 0.75 for Qinghai and 0.77 for Tibet, indicating 

the reliability of our results. 

The average area of cultivated pastures on the plateau from 1988 to 2021 was approximately 1.0 Mha, with ~ 0.7 Mha in 

Qinghai and ~ 0.3 Mha in Tibet. From 1988 to 2021, there had been an increasing trend in the area of cultivated pastures on 

the plateau based on our mapping results using remote sensing data (Fig. 11a), and the increasing trend was mostly due to the 330 

expansion of cultivated pastures in Qinghai (Fig. 11b and 11c). The increasing rate of the area of cultivated pastures on the 

Tibetan Plateau was 33.5 ± 2.5 Kha per year. In most counties of Qinghai Province and the Tibet Autonomous Region, 

cultivated pasture areas did not change much from 1988 to 2021 (Fig. 12). Cultivated pastures expanded substantially in 

Gonghe, Gangcha, Guinan, and Xinghai, while contracted notably in Karuo and Luolong (Table S2). 

 335 
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 Figure 9. The maps of cultivated pastures in Qinghai Province and the Tibet Autonomous Region on the Tibetan Plateau from 1988 to 2021 
(selected years are displayed for brevity, and the whole time series can be found in Fig. S3 of the supplementary material).  
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Figure 10. The number of years that cultivated pasture existed in each 30-m grid in Qinghai Province and the Tibet 340 
Autonomous Region from 1988 to 2021. 
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Figure 11. The time series of cultivated pasture areas based on remote sensing and the government statistics data for (a) the Tibetan Plateau, 345 
(b) Qinghai Province, and (c) the Tibet Autonomous Region. The red dots in the China Pratacultural Statistics time series correspond to the 
years when the cultivated pasture statistical caliber aligned with our definition of cultivated pasture in the remote sensing mapping efforts. 
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Figure 12. Trend of cultivated pasture areas from 1988 to 2021in each county of Qinghai Province and the Tibet Autonomous 
Region. Cultivated pastures expanded substantially in Gonghe, Gangcha, Guinan, and Xinghai, while contracted notably in 350 
Karuo and Luolong. 

5 Discussion 

In this study, with decent accuracy, we successfully mapped the distribution of cultivated pastures on the Tibetan Plateau for 

the first time. Compared to previous efforts aimed at mapping only certain types of cultivated pastures (Parente et al., 2019; 

Wang et al., 2022; Yang et al., 2021), this method could map general cultivated pastures.  355 

5.1 The method for cultivated pasture mapping 

 A distinctive feature of our mapping method is the use of spectral-temporal metrics derived from remote sensing time series 

data, rather than the complete time series of all valid observations during the growing season. While prior studies (e.g., Wang 

et al., 2022) have relied on dense time series data to characterize vegetation dynamics, our approach condenses these data into 

a set of statistical descriptors (e.g., median, maximum, minimum, standard deviation) of key vegetation indices. These spectral-360 

temporal metrics serve as compact representations of phenological patterns and temporal variability in vegetation reflectance, 

which are especially informative in distinguishing cultivated pastures from other land cover types. This strategy reduces data 
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dimensionality and computational load while retaining the essential temporal information relevant for classification, thereby 

enhancing both efficiency and accuracy. 

Another critical strength of our approach lies in the volume and structure of the training data. Our dataset was built from 365 

training polygons collected through extensive fieldwork, rather than from isolated training points. Polygons offer a more 

comprehensive sampling of spectral variability within each land cover type and provide more training samples to the classifier, 

improving generalization. In contrast, previous studies (e.g., Wang et al., 2022) often used sparse point-based training data, 

which may not adequately capture the heterogeneity of cultivated pasture across large regions. 

Furthermore, we chose to use remote sensing data from a single growing season rather than multi-year composite datasets 370 

(e.g., Potapov et al., 2022). This decision was informed by the unique land management practices on the Tibetan Plateau, 

where inter-annual crop rotation is prevalent among cultivated pastures. Although multi-year composites are useful in 

mitigating atmospheric noise such as cloud contamination, they risk introducing classification errors due to the temporal 

inconsistency of land cover resulting from rotation. By focusing on a single year, we ensure that the remote sensing signatures 

align with the actual land cover state at the time of classification. 375 

Finally, we implemented an independent validation strategy based on an external reference dataset (Yang et al., 2021) 

rather than relying on internal cross-validation. While cross-validation is common in remote sensing applications (Ashourloo 

et al., 2018; Wang et al., 2022), it can lead to over-optimistic accuracy estimates if the same spatial samples are used for both 

training and validation (Friedl et al., 2000; Foody, 2002). By separating the training and validation datasets, our assessment 

provides a more realistic and conservative estimate of classification performance, especially across diverse pasture types.  380 

5.2 Accuracy assessment of mapped cultivated pastures 

The accuracy assessment of the binary classification model is essential in the cultivated pasture mapping practice (Olofsson et 

al. 2014; Stehman et al. 2019). In this study, the RF binary classification model demonstrated a good ability to identify 

cultivated pastures, with an overall accuracy of 97.05% ± 0.4% and an F1 spatial consistency score of 0.83 ± 0.14. This was 

superior to a recent study mapping the spatial extents of green fodder lands in the northeastern Tibetan Plateau using Landsat 385 

data with overall accuracies of 94.2%, 93.1%, and 96.6% in 2010, 2015, and 2019 (Yang et al., 2021). The cultivated pasture 

mapping accuracy obtained in this study (overall accuracy of 97.05% ± 0.4%) was close to that reported by Wang et al. (2022). 

Wang et al. (2022) solely mapped oat pastures at the county scale in Shandan Racecourse in the northeastern Tibetan Plateau 

with an overall accuracy of 98%. Our results were also better than another effort mapping native and non-native grasslands 

using MODIS NDVI time series data in Canada, which achieved an overall accuracy of 73% (McInnes et al., 2015).  390 

We found that the differences in the spatial fragmentation of cultivated pastures in Qinghai Province and the Tibet 

Autonomous Region could affect the accuracy of the cultivated pasture maps. During our field visits, we noticed that the spatial 

distribution of cultivated pastures in the Tibet Autonomous Region was much more fragmented and dispersed than in Qinghai 

Province. In Qinghai Province, the cultivated pastures were sometimes in the shape of long stripes and next to conventional 

croplands, which might cause the mixed pixel problem and lower the identification accuracy of cultivated pastures (user’s 395 
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accuracy of 71.0% ± 4.6% in Qinghai vs. user’s accuracy of 95.6% ± 3.1% in Tibet), since the spectral characteristics of 

conventional croplands and cultivated pastures are very similar during the peak growing season (Yang et al., 2021; Wang et 

al., 2022). 

5.3 Comparison of the mapped cultivated pasture areas with government statistics 

We found that the areas of cultivated pastures identified through remote sensing were comparable to the areas of cultivated 400 

pastures reported in government statistics for Qinghai and Tibet (e.g. Li and Wang, 2017). For example, in 2021, the year for 

which we trained the RF binary classification model for cultivated pastures on the Tibetan Plateau, we mapped 1.57 Mha 

cultivated pastures in Qinghai and Tibet, while the area of cultivated pastures in 2017 reported in the government statistics 

was 1.640 Mha. We used the statistics data of cultivated pastures in 2017 because it was the closest year in which the statical 

caliber used by the annual China Pratacultural Statistics agreed with our definition of cultivated pastures.  405 

The time series of the area of cultivated pastures on the Tibetan Plateau mapped through remote sensing from 1988 to 2021 

was likely driven by the implementation of ecological and agricultural policies (Fig. S4; Schils et al. 2022; Zhou et al. 2020). 

However, the time series of the area of cultivated pastures on the Tibetan Plateau reported in the annual China Pratacultural 

Statistics did not exhibit any correlation with the implementation of ecological and agricultural policies, and was severely 

distorted by the shift of the statistical caliber of cultivated pastures in it. The areas of cultivated pastures reported in the annual 410 

China Pratacultural Statistics for the years from 2010 to 2017 were substantially higher than those for the remaining years 

(Fig. 9); nevertheless, they were close to the remote sensing estimates in the period from 2010 to 2017. The time series of the 

areas of cultivated pastures mapped by remote sensing from 1988 to 2021 on the Tibetan Plateau was more realistic than the 

government statistics data. A sharp increase in the area of cultivated pastures for Qinghai is reported in the 2013 government 

statistics (Fig. 11b), suggesting a potential shift in the statistical criteria for cultivated pastures that year. In contrast, our results 415 

show a more gradual increase, which likely reflects a more consistent and accurate representation of the actual expansion of 

cultivated pastures on the Plateau. Our findings indicate that government statistics warrant further scrutiny in future policy 

development related to cultivated pastures. 

The increasing trend in the area of cultivated pastures estimated through remote sensing in this study agrees with a previous 

relevant regional study of cultivated pasture mapping on the Tibetan Plateau. Yang et al. (2021) found a rapid expansion of 420 

green fodder lands in the northeastern Tibetan Plateau from 1.63 Kha in 2010 to 13.61 Kha in 2019.  

5.4 Limitations and future prospects 

The time series of cultivated pasture maps on the Tibetan Plateau were produced for the first time; nevertheless, the mapping 

method and the maps had several limitations and could be improved in future. 

(1) The remote sensing data used in this study were Landsat data with a spatial resolution of 30 m. While Landsat data 425 

have been widely utilized for land cover classification, the 30 m spatial resolution may be insufficient for accurately capturing 

small cultivated pastures with dimensions smaller than 30 m. Specifically, long and narrow cultivated pastures, often found on 
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the Tibetan Plateau, may not be well-represented in the 30-meter resolution map. In some cases, these small patches were 

adjacent to conventional croplands, leading to mixed pixel problems. When the proportion of cultivated pastures in these mixed 

pixels was less than 50%, the pixels were typically classified as croplands. This issue could potentially be alleviated with 430 

higher spatial resolution data, such as Sentinel-2 imagery, which has a spatial resolution of 10 m and became available in 2015 

(Phiri et al., 2020). However, we opted not to use Sentinel-2 data, as our focus was on the long-term spatial distribution of 

cultivated pastures on the Tibetan Plateau. 

(2) We employed quantile metrics of the remote sensing time series for cultivated pasture classification, a method that has 

proven successful in capturing cultivated pasture dynamics. The input features derived from these metrics were more effective 435 

compared to those used in previous studies, such as Wang et al. (2022), which relied on monthly NDVI, EVI, NDPI, SR, and 

SAVI data for select months. While the latter approach utilized limited spectral information, our method incorporated a broader 

range of spectral indices, thus enhancing the overall classification accuracy. 

(3) As with many optical remote sensing studies, our research was affected by atmospheric disturbances such as cloud 

cover and cloud shadows, which can reduce the number of valid observations, particularly in certain regions and time periods. 440 

While we incorporated all available Landsat data during the growing season, the quality and density of the time series varied 

spatially and temporally, which may have impacted the consistency of the analysis. 

(4) To manage the computational burden associated with processing extensive time series data, we utilized descriptive 

statistical metrics (i.e., 25%, 50%, and 75% quantiles) of the remote sensing data for the growing season. While this approach 

helped maintain classification accuracy while reducing computation time, it may have resulted in the loss of finer temporal 445 

phenological details that could be captured through the analysis of the full time series. 

(5) The Random Forest (RF) algorithm, which we employed for binary classification, is a powerful method known for its 

ability to handle complex relationships in the data. However, its performance heavily depends on the quality and 

representativeness of the training data. We are confident that the large volume of training data collected during extensive 

fieldwork, which encompassed a variety of cultivated pasture types, contributed significantly to model performance.  450 

(6) Although we validated the cultivated pasture maps for 2021 in two pilot study regions with different climates, 

landscapes, soil properties, and ecological conditions, and observed a good match with government statistics at both the county 

and provincial levels, the validation for maps spanning 1988 to 2021 could benefit from further feedback. Additional validation 

efforts by other researchers or practitioners in different regions and under varying local conditions could provide important 

insights for refining and improving the cultivated pasture mapping methodology.   455 

 

6 Data Availability 

The cultivated pasture maps generated in this study can be accessed at https://doi.org/10.5281/zenodo.14271782 (Han et al., 

2024). All maps are at the 30 m (∼ 0.00027°) spatial resolution under the EPSG:4326 (WGS84) spatial reference system. 
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7 Conclusions 460 

Cultivated pastures are crucial forage sources for livestock on the Tibetan Plateau. Additionally, they have significant 

implications for the region's ecological conservation and restoration efforts. In this study, we mapped cultivated pastures from 

1988 to 2021 on the Tibetan Plateau using satellite remote sensing data for the first time. The mapping method performed 

satisfactorily with an overall accuracy of 97.05% ± 0.4% and an F1 spatial consistency score of 82.51% ± 14.22% (Precision: 

90.04% ± 6.18%, Recall: 76.74% ± 9.91%). At both the province and county levels, the cultivated pasture area estimated in 465 

this study matched well with government statistics. The area of cultivated pastures on the Tibetan Plateau experienced a notable 

increasing trend from 1988 to 2021, at a rate of 33.5 ± 2.5 Kha per year. The cultivated pasture mapping method can be adopted 

to identify cultivated grasslands in other regions of the world. 
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