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Abstract. The turnover time (τ) of global soil organic carbon is central to the functioning of terrestrial ecosystems. Yet our 

spatially-explicit understanding of depth-dependent variations and environmental controls of τ at a global scale remain 

incomplete. In this study, we combine multiple state-of-the-art observation-based datasets, including over ninety thousand 20 

geo-referenced soil profiles, the latest root observations distributed globally, and large amounts of satellite-derived 

environmental variables, to generate global maps of apparent τ in topsoil (0–0.3 m) and subsoil (0.3–1 m) layers with a 

spatial resolution of 30 arcsec (~1 km at the Equator). We show that subsoil τ (385203485 years [mean with a variation range 

from 2.5th to 97.5th percentile]) is over eight times longer than topsoil τ (1511137 years). The cross-validation shows that the 

fitted machine learning models effectively captured the variabilities in τ, with R² values of 0.87 and 0.70 for topsoil and 25 

subsoil τ mapping, respectively. The prediction uncertainties of the τ maps were quantified for better user applications. The 

environmental controls on top- and subsoil τ were investigated at global, biome, and local scales. Our analyses illustrate that 

how temperature, water availability, physio-chemical properties and depth exert jointly impacts on τ. The data-driven 

approaches allow us to identify their interactions, thereby enriching our comprehension of mechanisms driving nonlinear τ–

environment relationships from global to local scales. The distributions of dominating factors of τ at local scales were 30 

mapped for identifying context-dependent controls on τ across different regions. We further reveal that the current Earth 

system models may underestimate τ by comparing model-derived maps with our observation-derived τ maps. The resulting 

maps with new insights demonstrated in this study facilitate the future modelling efforts of carbon cycle–climate feedbacks 

and supporting effective carbon management. The dataset is archived and freely available at 

https://doi.org/10.5281/zenodo.14560239 (Zhang, 2025). 35 
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1 Introduction 

As the largest active reservoir of organic carbon in terrestrial ecosystems, soils are integral to the global carbon cycle 

(Schimel, 1995; Batjes, 1996; Smith et al., 2024). Plants capture CO2 from the atmosphere through photosynthesis and 

transfer carbon into soils through litter fall and root exudates. This carbon is then cycled back to the atmosphere through 

heterotrophic respiration by organic-matter decomposers, a process governed by decomposition rates (Balesdent et al., 2018). 40 

The turnover time of soil organic carbon (SOC), denoted as τ (in years), is the average time that organic carbon molecules 

remain in the soil (Six and Jastrow, 2002; Sierra et al., 2017). This turnover time is a critical factor in determining the size of 

soil carbon pools (Sierra et al., 2017; Crowther et al., 2019b). Understanding the spatial variation in τ and the underlying 

environmental drivers is therefore crucial for comprehending the scale and dynamics of terrestrial carbon storage under 

current and future climate change scenarios (Torn et al., 2009; Field et al., 2014). 45 

Several studies have estimated the global apparent carbon turnover times in whole terrestrial ecosystems (Carvalhais et 

al., 2014; Fan et al., 2020). Nevertheless, the detailed patterns of τ in soil systems at the global scale remain to be elucidated. 

Much work has focused on shallow soil horizons as the higher carbon content and the greater availability of data in topsoils 

(e.g., Crowther et al., 2016; Luo et al., 2017; Viscarra Rossel et al., 2019; Wu et al., 2021). However, capturing the 

biogeographic variability of carbon dynamics in deeper soil layers is emerging as a critical area of research (Hicks Pries et al., 50 

2023), as the environmental sensitivities of SOC there can substantially differ from surface layers (Rumpel and Kögel-

Knabner, 2011; Hicks Pries et al., 2017; Luo et al., 2019; Soong et al., 2021; Zosso et al., 2023). To enhance our 

understanding of soil carbon turnover and address these issues, there is a clear need for a global analysis of τ that considers 

both top- and subsoil layers, and providing spatially-explicit τ maps. Such an analysis should leverage the latest and most 

comprehensive global soil profile datasets available, enabling more reliable assessments and insights into terrestrial carbon 55 

sink potential. 

The ensemble of latest datasets also supports a more nuanced understanding of the environmental controls on τ, 

particularly for their potentially non-linear or distinct effects across different spatial scales and soil depths. Previous studies 

showed evidence that the turnover time of SOC is negatively correlated with temperature and precipitation (Davidson and 

Janssens, 2006; Chen et al., 2013; Wang et al., 2018), and that subsoil carbon may be particularly sensitive to temperature 60 

fluctuations (Jia et al., 2019; Soong et al., 2021; Chen et al., 2023). Yet, other studies could not confirm this strong climatic 

dependency (Giardina and Ryan, 2000; Doetterl et al., 2015), suggesting a predominant influence of soil properties on 

subsoil carbon turnover times in certain regions or over decadal timescales (Luo et al., 2019). This inconsistency underscores 

the need for a multifaceted approach to quantify the effects of multiple factors on τ, particularly the interactions between 

climate and edaphic factors, across different spatial scales and soil depths (Schmidt et al., 2011). Comprehensive 65 

assessments at the global, biome, and local levels will be crucial to identify the primary controls of τ for both topsoil and 

subsoil layers. Moreover, observation-based global estimates of τ are essential for simulating the global carbon cycle (Todd-

Brown et al., 2013; Friend et al., 2014; Varney et al., 2022). An accurate representation and deeper understanding of the 
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environmental controls of τ – spanning diverse spatial scales and soil depths – will be integral to benchmarking current Earth 

system models (ESMs) and reducing bias in future carbon cycle projections. 70 

This study aims to develop a global estimation of τ by integrating the state-of-the-art soil and root profile databases 

with satellite-derived environmental observations. The collected datasets allow us to firstly estimate τ at over ninety 

thousand global sampling sites, and then we used machine learning methods to generate a spatially-explicit understanding of 

global SOC turnover times in the top- (0–0.3 m) and subsoil (0.3–1 m). To comprehend the interactive mechanisms among 

multiple environmental drivers that have shaped variations in top- and subsoil τ at the global, biome-level and local scales, 75 

we used data-driven approaches to characterized the directional contributions of climate, topography, physical and chemical 

properties of soil to explain τ patterns. We further quantified the uncertainty maps for better user applications, and compared 

our observation-derived τ with ESM-derived τ in both spatial variabilities and climatic dependencies. 

2 Materials and methods 

2.1 Estimation of τ in top- and subsoil layers 80 

The SOC turnover time (τ) we estimated in this study is the mean transit time that the newly entered carbon spends in soils 

until it leaves (Six and Jastrow, 2002; Sierra et al., 2017). When assuming a steady state and homogeneity of the system in 

which all particles have the same probability of leaving at any time, τ can be defined as the ratio between SOC stock (SOCS) 

to input or output flux of carbon (τ = SOCS/flux), which can be called the apparent turnover time (Carvalhais et al., 2014; Fan 

et al., 2020). We estimated SOC stock (see Section 2.1.1) and vertical allocation of carbon input in two soil layers (see 85 

Section 2.1.2), and then combined them to calculate top- and subsoil τ at all soil profile locations. We then adopted the point-

level estimates to map τ variation across the globe. 

2.1.1 Estimation of SOC stocks based on soil sample databases 

Soil sample data were mainly collected form the standardized soil profile database provided by World Soil Information 

Service (WoSIS) (Batjes et al., 2020). The Northern Circumpolar Soil Carbon Database (NCSCD) (Hugelius et al., 2013) 90 

was incorporated to supplement samples across the high latitudes of the Northern Hemisphere. In addition, the soil sample 

data from the project of National Soil Survey of China was incorporated (Zhang et al., 2013; Liu et al., 2022). To minimize 

bias due to erroneous and/or uncertain measurements, we removed samples i) with low accuracy of the geographical 

coordinates (i.e., the information of degree, minute and second is not fully provided in the source), ii) located in areas with 

exceptionally low NPP (below 10 gC m-2 yr-1), iii) with low quality of NPP estimates (if the quality control value is larger 95 

than 50%), and iv) layer observations flagged as surficial litter. Finally, a total number of 95,200 and 66,807 geo-referenced 

sampling locations providing topsoil and subsoil information were collected for this study (Fig. 1). The estimation of SOC 
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stock (SOCS, kgC m-2) for each soil sample site at a certain depth interval between the upper depth (𝐷𝐷𝑢𝑢, m) and lower depth 

(𝐷𝐷𝑙𝑙, m) can be computed as follows: 

SOCS𝐷𝐷𝑢𝑢−𝐷𝐷𝑙𝑙 = SOC𝐷𝐷𝑢𝑢−𝐷𝐷𝑙𝑙 ∙ BD ∙ �1 −
CF

100
� ∙ (𝐷𝐷𝑢𝑢 − 𝐷𝐷𝑙𝑙) (1) 

Were the BD is the soil bulk density (g cm-3), and CF is the percentage of coarse fragments in the whole soil (%). We 100 

adopted an approach described in Text S1 to fill the missing values by using a specific pedotransfer function depending on 

the SOC content and the considered layer. When CF was missing, we extracted the corresponding data at their locations 

from the latest version of SoilGrids maps (Poggio et al., 2021). The equal-area spline algorithm was employed to fit layers 

observations at different depth intervals (Bishop et al., 1999; Malone et al., 2009). The average of fitted values were adopted 

to estimate the SOCS at two layers for each profile (Figs. S1). The probability distributions of SOCS, BD, and CF in 105 

different biomes are shown in Figs. S2-S4. 

 

Figure 1: Spatial distributions of geo-referenced soil samples used in the study across global biomes. A total of 95,200 (a, for topsoil) 
and 66,807 (b, for subsoil) sampling sites were collected from multiple soil profile databases. The bar plots show the sample size within 
each biome. 110 

2.1.2 Estimation of carbon allocation belowground 

The flux of carbon at a certain soil layer needs to be obtained through vertical allocation of the amount of net primary 

productivity (NPP). This involves the estimations of above- and belowground NPP and NPP allocation into different soil 

layers. The annual NPP (kgC m-2 yr-1) produced by the moderate-resolution imaging spectroradiometer (MODIS) was 

collected at each sample location (Running and Zhao, 2019). The mean of annual NPP from 2001 to 2019 was computed for 115 

representing the general status of each sample location. Then, we used the biomass ratio between roots and shoots (root-to-

shoot ratio, RSR) as a proxy to estimate the amount of NPP allocated to soils, as it is generally a realistic estimation for the 

mean long-term NPP partitioning (Gower et al., 1999). The fraction of belowground NPP can be estimated as the root-mass 

fraction (RMF): 
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RMF =
RSR

RSR + 1
 (2) 

The RSR value at each sample location was collected from the harmonized global maps of above and belowground biomass 120 

carbon density (Spawn et al., 2020). The biome-specific variabilities of RMF are shown in Fig. S5. 

We used the vertical root biomass distribution to represent the belowground NPP partitioned into different soil depths 

(Luo et al., 2019; Xiao et al., 2022, 2023). The root distribution information was obtained from the global 564 root profiles 

complied by Schenk and Jackson (Schenk and Jackson, 2002). The logistic dose–response curve function was used to 

estimate the cumulative amount of root mass 𝑟𝑟(𝐷𝐷) above a certain soil depth 𝐷𝐷 (m): 125 

𝑟𝑟(𝐷𝐷) =
𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚

1 + � 𝐷𝐷𝐷𝐷50
�
𝑐𝑐 

(3) 

where 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚  represents the total amount of roots, 𝐷𝐷50 is the depth at which 𝑟𝑟(𝐷𝐷) equals to the half of 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 , and 𝑐𝑐 is a 

dimensionless shape-parameter which can refer to Schenk and Jackson (2002) for details. The fraction of roots in a certain 

soil layer between 𝐷𝐷𝑢𝑢 and 𝐷𝐷𝑙𝑙 (𝑓𝑓𝑟𝑟𝐷𝐷𝑢𝑢−𝐷𝐷𝑙𝑙) can be estimated as follows: 

𝑓𝑓𝑟𝑟𝐷𝐷𝑢𝑢−𝐷𝐷𝑙𝑙 =
𝑟𝑟𝐷𝐷𝑙𝑙
𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚

−
𝑟𝑟𝐷𝐷𝑢𝑢
𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚

=
1

1 + � 𝐷𝐷𝑙𝑙𝐷𝐷50
�
𝑐𝑐 −

1

1 + �𝐷𝐷𝑢𝑢𝐷𝐷50
�
𝑐𝑐 

(4) 

This root profile dataset has been used to analyze the belowground NPP allocation in several previous studies (Luo et 

al., 2019; Shi et al., 2021). In our study, we extended this data by collecting the latest Root Systems of Individual Plants 130 

(RSIP) database and the global root traits (GRooT) database that includes the information of the maximum belowground 

extents of terrestrial plants (Guerrero-Ramírez et al., 2021; Tumber‐Dávila et al., 2022). By assuming that the root 

distribution is proportional to its morphological distribution (Bardgett et al., 2014; Tumber‐Dávila et al., 2022), we used the 

form trait of root, the maximum rooting depth (𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚), to generate an alternative representation of the root distribution. A 

total of 1,732 geo-referenced measurements were collected with description of rooting depth from those two databases. The 135 

vertical root distribution can be estimated according to a commonly used asymptotic equation (Gale and Grigal, 1987; 

Jackson et al., 1996; Zeng, 2001): 

𝐶𝐶𝑅𝑅𝐶𝐶(𝐷𝐷) = 1 − 𝛽𝛽𝐷𝐷 (5) 

where CRF is the cumulative root fraction from the surface to soil depth 𝐷𝐷 in centimeters, 𝛽𝛽 is the estimated parameter 

which controls the decreasing rate of root mass with increasing soil depth (Gale and Grigal, 1987; Zeng, 2001). Finally, the 

fraction of roots in a certain soil layer between upper and lower depth (𝑓𝑓𝑟𝑟𝐷𝐷𝑢𝑢−𝐷𝐷𝑙𝑙) can be quantified as: 𝐶𝐶𝑅𝑅𝐶𝐶(𝐷𝐷𝑙𝑙) − 𝐶𝐶𝑅𝑅𝐶𝐶(𝐷𝐷𝑢𝑢). 140 

An illustration of the root distribution estimation through the above approach is shown in Fig. S6. 
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Hence, the global distributions of all root profiles that characterize the fraction of root in two layers were calculated and 

are shown in Fig. S7. Given that root distribution is generally related with the biome, vegetation type and soil conditions 

(Jackson et al., 1996; Schenk and Jackson, 2005), for each soil sample site, root profile observations within the same 

terrestrial ecoregions (Dinerstein et al., 2017) and the same soil type (FAO–Unesco, 1990) as that of the soil sample were 145 

selected. The corresponding mean 𝑓𝑓𝑟𝑟 of those selected root observations for each soil sample locations were finally collected 

(Figs. S8 and S9). 

The vertically physical transportation of organic carbon, such as leaching and/or bioturbation, is also necessary to be 

considered. We followed the function designed in previous model that includes vertical transport of SOC (Braakhekke et al., 

2011; Koven et al., 2013; Sierra et al., 2024): 150 

𝑉𝑉(𝐷𝐷) = 𝐷𝐷𝐷𝐷𝑓𝑓𝑓𝑓
𝜕𝜕2𝐶𝐶
𝜕𝜕𝐷𝐷2 

(6) 

where V is the transported SOC stock (V) in a certain layer; C is the organic carbon content, which is defined volumetrically 

(kg m-3), at the depth D; 𝐷𝐷𝐷𝐷𝑓𝑓𝑓𝑓 is the diffusivity which is constant and set to be 1×10-4 m2 year-1 according previous studies 

(Koven et al., 2013; Sierra et al., 2024). Thus, the belowground NPP (BNPP) in a certain soil layer can be estimated as 

follows: 

BNPP𝐷𝐷𝑢𝑢−𝐷𝐷𝑙𝑙 = NPP ∙ RMF ∙ 𝑓𝑓𝑟𝑟𝐷𝐷𝑢𝑢−𝐷𝐷𝑙𝑙 + 𝑉𝑉𝐷𝐷𝑢𝑢−𝐷𝐷𝑙𝑙 (7) 

For topsoil, carbon inputs also contain a portion of carbon from surface litterfall, which should be additionally 155 

considered. First, the RSR dataset was adopted to support us to obtain the aboveground NPP (ANPP). As a decent fraction of 

NPP was removed as the harvest products in croplands, we performed a specific calculation procedure to estimate the 

aboveground carbon input in this region as described in Text S2. Second, we used two databases including measurements of 

aboveground litterfall across the globe (Holland et al., 2015; Jia et al., 2016), to estimate the fraction of aboveground NPP 

(ANPP) converted into litterfall. Then, we determined the fraction of litterfall allocated as the carbon input to topsoil 160 

according to the decomposition processes described in Community Land Model (Oleson et al., 2013). The details of 

calculations related with the fraction of ANPP that transferred as carbon input into the topsoil (denoted as 𝑓𝑓𝑟𝑟𝑚𝑚) are described 

in Text S3. 

Therefore, the carbon input flux between upper (𝐷𝐷𝑢𝑢) and lower depth (𝐷𝐷𝑙𝑙) can be estimated as follows (the biome-

specific variabilities of this variable are shown in Fig. S10): 165 

flux𝐷𝐷𝑢𝑢−𝐷𝐷𝑙𝑙 = BNPP𝐷𝐷𝑢𝑢−𝐷𝐷𝑙𝑙 + 𝑓𝑓𝑟𝑟𝑚𝑚 ∙ ANPP (8) 

Combining the estimated SOC stock (Eq. 1) and carbon allocation belowground (Eq. 8) with the equation of apparent τ, 

the values of τ in top- and subsoil layers were calculated at all sample locations across the globe are shown in Fig. S11. 

Table S1 shows the details of datasets used to calculate τ for all samples. 
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2.2 Geospatial mapping of τ 

The machine learning-based method was adopted to generate the spatially explicit maps of τ at the two soil layers. As the 170 

procedure of geospatial predictive mapping illustrated in Fig. S12, we used the random forest (RF) model to establish the 

relationship between τ and it potentially related geographical variables (i.e., environmental covariates), for mapping the 

global distribution of τ with quantification of uncertainty. The advantage of RF is the incorporation of randomized feature 

selection and training sample selection (Breiman, 2001), so that it can reduce the overfitting risk and lead to a good ability 

for generalization. This model has been effectively applied on large datasets for geospatial mapping tasks at the global scale 175 

(van den Hoogen et al., 2019; Ma et al., 2021; Poggio et al., 2021). The covariates including climate, soil physical, soil 

chemical properties and topography were collected (Table S2 and Figs. S13-S18). These covariate maps were overlaid and 

thus allowed us to predict τ at the global scale with a spatial resolution of 30 arc-seconds (~1 km2 at the Equator). 

Considering some regions covered by organic soils, such as peatlands, cannot be well represented when using our method to 

generate estimations, therefore, we masked these regions according to the definition of organic soil in Brady & Weil (1999). 180 

2.3. Analysis of environmental controls 

To investigate the environmental controls of the spatial distribution of τ at two layers, the RF model was adopted based on 

all soil sample data to quantify the relative importance (RI) of each covariate at the global scale. We used permutation-based 

feature importance as the metric to assess RI (Altmann et al., 2010) (see Text S4). 

The directional effects of important environmental factors on τ was investigated by using the partial regression model 185 

to calculate the partial correlations of top- and subsoil τ with the six top ranked environmental variables from RF modelling 

mentioned above. The analyzed variables are mean annual temperature (MAT) and precipitation (MAP), the fine particle-

size fraction (CLAY+SILT), organic carbon to total nitrogen ratio (C:N), cation exchange capacity of the soil (CEC), and 

soil pH. The partial correlation of each influencing factor was calculated while controlling other factors. 

Given the potentially non-significant effects of a variable (e.g. the global impact of precipitation) on τ in a global-level 190 

linear model, it does not necessarily imply that the respective variable has no influence on τ. Instead, this lack of significance 

may arise from its divergent effects when interacting with other factors. This led to an interest in exploring the reasons 

behind such nonlinear and uncoherent driving mechanisms. Considering the extrinsic climate effects on soil carbon turnover 

can be interacted by regionally intrinsic soil characteristics (Doetterl et al., 2015), we used an approach (see Text S5) to 

exemplify the interactive effects of MAT and MAP on top- and subsoil τ in response to the changes of other factors (namely 195 

interactive factors). In addition to the overall importance of covariates analyzed at the large scale, the local-level importance 

for four categories of variables was also assessed (see Text S6). 
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2.4 Evaluation of mapping results 

2.4.1 Assessment of accuracy by cross-validation 

The mapping accuracy was assessed by using a 10-fold cross validation. The total sample data were divided into ten 200 

equally sized subsets, and this division was performed on each biome data to ensure that the ten split sets can keep a balance 

among biomes. Nine folds were used as the training data to fit the model, and the prediction was validated on the one 

remaining fold. This procedure was carried out ten times, and each time using a different fold for validation. The mean value 

of coefficient-of-determination (R2) and root mean squared error (RMSE) for all folds were computed as the final accuracy 

metrics for the assessment of mapping results. 205 

2.4.2 Quantification of uncertainty 

To evaluate the uncertainty of predictive maps of τ, we adopted quantile regression forests (QRF) (Meinshausen, 2006) to 

derive prediction intervals. QRF first fits a random forest model in the usual way. Next it computes quantiles of the 

conditional distribution of τ at each prediction location by replacing observations by indicator transforms. We used the R 

package ranger (Wright and Ziegler, 2017) with the function quantreg to build QRF models. Using this function, not only 210 

the prediction values at each location can be obtained, but also the 0.05 quantile (q0.05), 0.50 quantile (q0.50) and 0.95 quantile 

(q0.95) can be computed to derive the lower limit, median and upper limit of a symmetric 90% prediction interval. This 

interval has been also adopted for uncertainty assessment in GlobalSoilMap specifications (Arrouays et al., 2014) and 

SoilGrids product (Poggio et al., 2021). 

The uncertainty from the input data in calculation of τ was also considered. When calculating τ for each sample, four 215 

input variables (SOCS, NPP, RMF and 𝑓𝑓𝑟𝑟𝐷𝐷𝑢𝑢−𝐷𝐷𝑙𝑙) introduced uncertainty due to errors in soil measurements and estimation of 

carbon allocation belowground. Errors in these input variables will propagate to the output of τ estimation. To incorporate 

the error propagation from these inputs to the uncertainty evaluation, the standard deviation (SD) of each input at each 

sample location needs to be quantified. Here, as the calculation of τ is a simple arithmetic function, the SD of the estimated τ 

for each sample can be calculated as follows, when ignoring the cross-correlation among those inputs (Heuvelink, 1998): 220 

𝑆𝑆𝐷𝐷𝑓𝑓 = ��
𝜕𝜕𝑓𝑓
𝜕𝜕𝐼𝐼1

�
2

𝑆𝑆𝐷𝐷𝐼𝐼1
2 + �

𝜕𝜕𝑓𝑓
𝜕𝜕𝐼𝐼2

�
2

𝑆𝑆𝐷𝐷𝐼𝐼2
2 + ⋯+ �

𝜕𝜕𝑓𝑓
𝜕𝜕𝐼𝐼𝑚𝑚

�
2

𝑆𝑆𝐷𝐷𝐼𝐼𝑚𝑚
2 

(9) 

where 𝑆𝑆𝐷𝐷𝑓𝑓 represents the SD of the output value calculated by the function 𝑓𝑓; 𝐼𝐼1, 𝐼𝐼2 and 𝐼𝐼𝑚𝑚 represent the first, second, and 

𝑚𝑚-th input variables, respectively. For RMF, we directly used the uncertainty maps provided by ref. (Spawn et al., 2020). 

The SD of SOCS was obtained from Poggio et al. when SOCS was supplemented by extracting values from SoilGrids maps. 

For quantifying the SD of 𝑓𝑓𝑟𝑟𝐷𝐷𝑢𝑢−𝐷𝐷𝑙𝑙 , the SD of all selected root profile observation values for each soil sample site was 

adopted to represent its uncertainty. For NPP, considering that most MODIS NPP values are within mean ±1SD of the 225 
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respective values observed from the flux-tower (Reichstein et al., 2002), from which we define the uncertainty of NPP 

values. The relationships between the estimated values of τ and their corresponding SD for all samples are shown in Fig. S19. 

After quantifying the SD of the estimated τ at each sample location, a Monte Carlo approach was adopted to incorporate the 

SD in the estimated τ at each sample. That is, the value of τ at each sample location was randomly drawn 100 times from a 

normal distribution given the known mean and SD. Then, all generated samples were used to fit a QRF model and produce 230 

the uncertainty maps. 

To visualize the spatial distribution of the prediction uncertainty, we calculated the prediction interval ratio (PIR) 

defined as the ratio of the range between lower and upper limits over the median: 

PIR =
𝑞𝑞0.95 − 𝑞𝑞0.05

𝑞𝑞0.50
 (10) 

We also assessed the quality of the estimated prediction uncertainty through an accuracy plot approach by calculating 

the prediction interval coverage probability (PICP) (Goovaerts, 2001). 235 

3 Results and discussion 

3.1 Accuracy assessment 

The cross-validation demonstrated that the machine learning models can effectively capture a substantial proportion of τ 

variations, achieving R2 values of 0.87 and 0.70, and RMSE values of 14.60 yr and 175.05 yr for the top- and subsoil τ 

predictions, respectively (Fig. 2). The relatively higher model performance was found in boreal and tundra areas for topsoil 240 

and in grasslands and shrublands in warm regions for subsoil, while low model performance was found in temperate forests 

and subsoil layer in cropland and wetland areas (Figs. S20 and S21). This is probably because soils in those regions are 

among the most diverse soil landscapes, compared to pedogenetically similar and more climate driven soils in high latitude 

regions, and more weathered homogenous soils dominating many tropical lowland areas. 

 245 
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Figure 2: Validation plots for predictions of soil organic carbon turnover time (τ, yr) at top- (a) and subsoil (b) layer. Predictions 
were generated using random forest regression models. Grey dots are the estimated τ values based on observations at soil profiles and the 
predicted values for all validation samples using 10-fold cross-validation. Colored points represent biome-level validation plot. Error bars 
show 95% percentile intervals of τ in each biome. Black lines indicate the regression lines between predicted and measured values. The 
shaded grey area represents the. Axes are log10-transformed to account for high skewness of τ. 250 

3.2 Global distributions of τ in top- and subsoil 

The spatial-continuous maps of global top- and subsoil τ are shown in Fig. 3. On average, the global τ in the topsoil was 

45 yr, ranging from 11 yr (2.5th percentiles) to 137 yr (97.5th percentile). The average subsoil τ was 385 yr, ranging from 20 

yr to 3485 yr (Table 1). On a global scale, subsoil SOC turnover time was over eight times longer than that in topsoil. The 

values of τ generally increased from low to high latitudes, and this latitudinal pattern was more pronounced in the Northern 255 

than in the Southern Hemisphere, and it is more evident in the subsoil than in the topsoil layer (Fig. 3b,d). In tropical forests, 

the average turnover times were shortest, with approximately 25 yr and 74 yr in the top- and subsoil, respectively. The 

turnover times in temperate, desert and cropland areas for top- and subsoil layers were around 29–43 yr and 78–170 yr, 

respectively. The longest turnover times were found for tundra regions, with an average longer than 90 yr and 1900 yr for the 

top- and subsoil layers, respectively. Boreal forests and wetlands also show long carbon turnover times, with an average 260 

value of over 50 yr and 500 yr, respectively. As such, the differences in average turnover times between the warmest and 

coldest biomes were more than 60 years and 1800 years for top- and subsoil layers, respectively. 

 
Table 1. Global- and biome-level statistics of the soil organic carbon turnover time (τ, yr) in top- (0–0.3 m) and subsoil (0.3–1 m) 
layers. 265 

Global/Biome type 
Topsoil τ Subsoil τ 

P 2.5 Mean P 97.5 P 2.5 Mean P 97.5 

Global 11 45 137 20 385 3485 
Tropical forests 12 25 46 27 74 155 
Temperate forests 15 36 69 17 95 322 
Boreal forests 27 58 123 47 530 2569 
Tropical savannahs and grasslands 8 31 116 14 101 628 
Temperate grasslands and shrublands 10 43 130 18 120 403 
Deserts and xeric shrublands 16 43 100 30 170 1250 
Tundra 44 91 220 117 1920 7505 
Croplands 4 29 64 8 78 204 
Wetlands 12 50 187 22 510 5304 
Non-permafrost 9 33 82 17 98 377 
Permafrost 33 75 188 63 1111 5836 
Note: P 2.5 and P 97.5 represent the range of τ in each biome between the 2.5th and 97.5th percentiles from the aggregation of all estimated 
τ at pixel-level. 
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Figure 3: Global patterns of top- and subsoil organic carbon turnover times (τ, yr). Global distributions of τ at top- (0–0.3 m) (a) and 270 
subsoil (0.3–1 m) (c) layers. The predicted maps with a spatial resolution of 30 arcsec (~1 km at the Equator) were generated τ-
environment relationships using a machine learning model trained from global soil profile observations and their environmental covariates. 
b, d, Latitudinal patterns of top- and subsoil τ. Orange and blue lines represent the average τ at top- and subsoil over latitudes, respectively. 
The shaded grey areas represent the variations of τ between 2.5th and 97.5th percentiles along latitudes. e, f, Average τ at two layers in 
different main biomes. Error bars show the 95% percentile intervals of the spatial predictions within each biome. 275 
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The uncertainty maps quantified for the top- and subsoil are shown in Fig. 4. Uncertainties of subsoil τ predictions were 

generally higher than that of topsoil τ, likely due to the fewer horizontal observations in the deep layers. Wide prediction 

intervals were mostly found in areas with low sampling density, such as deserts and permafrost regions. According to the 

PICP calculation results, the accuracy plots (Fig. S22) show that the proportion of observed τ values in validation set covered 280 

in a certain prediction interval approximately equals the size of that probability interval, which validates the unbiased 

quantification of uncertainty. 

 

Figure 4: Uncertainty maps of predicted soil organic carbon turnover time (τ) at top- (a) and subsoil (b) layer. The uncertainty was 
quantified by using quantile regression forests. The values shown in the maps represent the prediction interval ratio (PIR), which is the 285 
ratio of the range between lower and upper limit (90% prediction interval bounded by the lower [0.05 quantile] and upper [0.95 quantile] 
limits) over the median (0.50 quantile) of the predictions. 

3.3 Environmental controls of top- and subsoil τ 

3.3.1 Global- and biome-level analyses 

The relative importance and directional effects of climate, soil (divided into physical and chemical properties) and 290 

topographic factors on τ variation at global and biome scales were analyzed (Fig. 5 and Figs. S23, S24). The results suggest 

scale- and depth-dependency in the drivers of soil turnover times. While climate was found to be the primary driver 

(explaining nearly half of the total explained variation) of topsoil τ at the global scale, the intrinsic soil characteristics (61%) 

were more important than climate (32%) for the subsoil τ (Figs. S23a and S24a). This supports recent studies suggesting that 

soil turnover in deeper layers is less controlled by climatic factors (Luo et al., 2019; Chen et al., 2021; Han et al., 2022) and 295 

more by soil properties (Mathieu et al., 2015; Luo et al., 2019). Importantly, by separating soil factors into soil physical 

(represented by the fine particle-size fraction [CLAY+SILT]) and chemical categories (including C:N, CEC, and soil pH), 

our study revealed that the topsoil τ is more influenced by soil physical properties than chemical properties (33% versus 

15%). However, for subsoil τ, soil physical properties are less important than soil chemical properties (27% versus 39%). 

These results support that, in addition to the direct control of climate, pedologic traits and geochemistry of soils exert 300 

equivalent or even stronger control on τ at the global scale (Davidson and Janssens, 2006; Doetterl et al., 2015, 2016). 
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Figure 5: Relationships between environmental variables and soil organic carbon turnover time (τ) in top- and subsoil layers. 
Effects of six important variables on τ are shown at global and biome levels. Values on bar plots represent coefficients between τ and each 305 
variable from partial-regression model, where positive or negative values indicate a positive or negative effect on τ, respectively. MAT: 
mean annual temperature; MAP: mean annual precipitation; CLAY+SILT: fine particle-size fraction (the sum of clay and silt content); 
C:N: organic carbon to total nitrogen ratio; CEC: cation exchange capacity of the soil; pH: soil pH. *P < 0.001. 

In different biomes and soil depths, the effects of MAT and MAP show different magnitudes or even opposite directions 

(Fig. 5a,b). Although a general negative effect of MAT on τ has been found in a previous meta-analysis (Chen et al., 2013), 310 

our results show that such effect was reduced and even changed to be positive in tropical regions (Fig. 5a). This can be 

attributed to the contrasting in relationship of NPP with temperature between tropical and extratropical regions, which stem 

from their distinct limiting factors affecting plant growth (Fig. S25) (Chapin et al., 2011; Slot and Winter, 2016). In addition, 

the effect of MAP on τ was not significantly linear at the global scale. This is inconsistent with a previously detected 

negative relationship (Schimel et al., 1994; Chen et al., 2013), but supports a recent global study that detected a nonlinear 315 

relationship between τ and hydrometeorological conditions (Fan et al., 2022). Such previous discrepancies can be explained 

by contrasting the effects of MAP across different biomes (Fig. 5b). While warm forests and croplands exhibit significant 
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positive effects, the notable negative effects are shown in tropical savannahs and grasslands, and arid regions. Additionally, 

it shows MAP negatively impacted subsoil τ in both boreal forests and temperate grassland and shrublands, but this effect 

was not significant for topsoil. These τ–climate patterns highlight the nonlinear effects of temperature and water availability 320 

on τ globally and the different driving mechanisms across biomes. 

Our analyses further revealed that soil physical and chemical properties have comparable or greater effects on τ than 

climatic effects at global and biome scales (Fig. 5c-f). For soil physical properties as represented by the CLAY+SILT, the 

fraction of fine particle-size in soils was positively related with τ in general (Fig. 5c). This is mainly because that soils 

dominated by finer particles tend to stabilize SOC by physical and organo-mineral stabilization mechanisms, while the well-325 

drained sandy soils generally providing limited protection of SOC against microbial decomposition (Krull et al., 2003; 

Lützow et al., 2006; Cotrufo et al., 2019). The relatively higher effects of CLAY+SILT on subsoil τ than that on topsoil τ 

(except for croplands) further indicate that mineral-associated and physically protected SOC in deep layer may plays a 

crucial role in stabilizing SOC stocks, and consequently decrease its climate sensitivity (Gillabel et al., 2010; Qin et al., 

2019). 330 

Among the effects of soil chemical properties, the C:N ratio plays a key role in regulating subsoil τ, ranking as the most 

influential soil factor (Fig. S24a). The positive impact of C:N was observed in all biomes for subsoil and specifically in 

boreal forests, temperate grasslands, deserts, and tundra for topsoil (Fig. 5d). However, the effects of C:N were not found 

significant for topsoil τ, and it even shows a negative impact in tropical and cropland regions. This finding implies that, in 

general, nutrient limitations decrease soil respiration and extend carbon residence time by favouring the establishment of 335 

slow-decomposing organisms or reducing organic matter quality (Crowther et al., 2019b; Li et al., 2012; Zhou et al., 2007). 

Whilst this effect is pronounced in the subsoil layer, it cannot be straightforwardly generalized to the topsoil in tropics and 

human-impacted regions. The factor of CEC showed a generally positive impact on τ in forests and croplands, but its effect 

was weaker in other biomes (Fig. 5e). Soil pH shows a non-significant linear correlation with τ globally, yet it exhibits 

divergent influences across different biomes and soil depths (Fig. 5f). It has a positive impact on τ in warm forests and on 340 

subsoil τ in temperate grasslands and croplands. Conversely, in boreal forests, tropical grasslands, and arid regions, it more 

negatively impacts τ in topsoil. 

3.3.2 Interactive effects of climatic and edaphic factors on τ 

The detected relationships between environmental factors and τ prompted us to delve deeper into the nonlinear driving 

mechanisms. We aimed to uncover potential interactions among the primary climatic and edaphic drivers that might be 345 

masked by analyzing the directional effects of only a single variable. We illustrate how fluctuations in one climatic variable 

(MAT or MAP) related with changes in another climatic variable (Fig. 6a,f) and four key soil properties (Fig. 6b-e, g-j). We 

found that the negative effect of MAT on τ was magnified with decreasing MAP (when MAP < 1500 mm). Meanwhile, it 

also shows that MAT effect on τ changed to be smaller, even can be positive for subsoil, with increasing MAP (when MAP > 
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2000 mm) (Fig. 6a). Notably, the MAP effect transitioned from negative to positive with increasing MAT from colder 350 

environments. Its effect then diminished after a critical point around 15°C (Fig. 6f). 

 
Figure 6: The climatic effects on top- and subsoil organic carbon turnover time (τ) interacted by other factors. The lines show the 
mean annual temperature (MAT) effect and mean annual precipitation (MAP) effect on τ in response to another climatic variable and four 
important soil physio-chemical (including the fine particle-size fraction [CLAY+SILT], carbon-to-nitrogen ratio [C:N], cation exchange 355 
capacity [CEC] and soil pH) variables. The variables on the x-axis can be considered as “interactive factors”, which influence the MAT 
and MAP effect on τ. The values on the lines above or below dashed horizontal lines indicate the positive or negative climatic effect on 
top- or subsoil τ in response to the corresponding values of interactive factors. The shaded areas on the lines represent confidence intervals 
for the results of partial correlation analysis. 

Beyond the interplay of climatic factors, soil property values significantly modulated the effects of MAT and MAP on τ. 360 

For instance, as CLAY+SILT content decreased, the negative impact of MAT was pronounced (Fig. 6b). The MAP effect 

was also accentuated in sandy soils but it is restricted to the topsoil layer (Fig. 6g). This result suggests that the finer soil 

texture may reduce carbon turnover sensitivity to temperature or water fluctuations (Krull et al., 2003). Among the 

interactions of soil chemical properties with climatic impacts on τ, it is evident that extremely low or high C:N ratios in soils 

lead to smaller climatic effects on τ (Fig. 6c,h), suggesting that the sensitivity of τ to climate is strongly influenced by 365 

whether the C:N ratio falls within an optimal range. The negative impacts of temperature was intensified with rising CEC 

(when CEC < 40 cmolc kg-1) (Fig. 6d), mainly because higher CEC typically enhances the nutrient-supplying capacity of 

soils, thus quickening carbon turnover in warm conditions (Crowther et al., 2019a). The influence of soil pH on MAT effects 

on τ demonstrated a strong nonlinear trend. A more pronounced negative MAT effect was found when soil pH is neutral for 

topsoil and mildly alkaline for subsoil (Fig. 6e). This is related to that microorganism has a physiologic optimum pH (Rousk 370 

et al., 2010; Don et al., 2017), and results in the warmer temperature significantly accelerate SOC turnover rate when pH is 

within an optimum range (Frostegård et al., 2022; Xiang et al., 2023). Nevertheless, there is currently a need to further 

explore reasons explaining these pH ranges are different with soil depth, as well as its species-specificity (Bahram et al., 

2018). The impact of MAP appears to be more positive in acidic soils, but becomes negative when soil pH exceeds 8 and 9 
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for topsoil and subsoil, respectively (Fig. 6j). The positive MAP effect on turnover time under acidic conditions could be 375 

partly explained by the enhanced effect of increased moisture on soil weathering processes (Porras et al., 2017). Under 

alkaline conditions, which are mostly in dry climates (Slessarev et al., 2016), the negative MAP effect may arise from the 

intensified microbial transformation of plant-derived organic matter as these soils provide the favorable pH and moisture to 

microorganisms (Yang et al., 2022). 

3.3.3 Distributions of dominating factors of τ at local scales over the world 380 

We further analyzed the effects of these covariates by generating τ–environment models from data at sampling locations 

within different local areas to assess the deviation of regional patterns from that in the large scale. Overall, we find that the 

dominant factors controlling τ vary across different local areas (Fig. 7a,b). Across approximately 41% of the land surface 

area, climatic factors are the predominant controller of topsoil τ (Table 2). However, for subsoil τ, climatic factors 

predominantly mediate the variation of τ in only 29% of global areas. It is noteworthy that, in 57% of the global area, soil 385 

characteristics were the dominant driver of subsoil τ. Overall, soil chemical properties had a larger effect than soil physical 

properties. It is particularly notable in parts of tropical forests of the Amazon, the broadleaf forests spanning from eastern 

Indian to southeast Asia, the most parts of North America, central European, and the grasslands, deserts and xeric shrublands 

scattered across Africa and Australia (Fig. 7b). This phenomenon is related with previous studies suggesting that nutrient 

availability for soils and vegetation greatly affects τ (Cleveland and Townsend, 2006; Carvalhais et al., 2014). The 390 

contributions of four categories of environmental factors from the local-scale analysis differed less in subsoil compared to 

that in topsoil (Fig. 7c,d and Table 2). 

 
Table 2. Statistical summary of the local-scale analytical results of variable (classified into four categories) importance on 
influencing top- and subsoil organic carbon turnover time (τ) at the local scales. 395 

Category of variables influencing τ 

Mean importance of a certain 
category of variables influencing 
τ at the local scale 

Percentage of global areas that τ 
dominated by a certain category 
of variables at the local scale 

Topsoil Subsoil Topsoil Subsoil 

Climate 0.37 0.20 41% 29% 

Soil physical properties 0.21 0.29 18% 16% 

Soil chemical properties 0.28 0.17 29% 41% 

Topography 0.17 0.18 12% 14% 
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Figure 7: Local-level analysis of dominating factors of top- and subsoil organic carbon turnover time (τ). Global maps of dominant 
factors controlling τ in top- (a) and subsoil (b) at the local scales. Maps were created by interpolating all results of factor importance from 
modelling using the sample data within each local area stratified by the ecoregion map. The lighter color would be displayed if the 400 
reliability of the local result is low with a smaller number of available samples for analysis. Histograms of the local-level percentage 
contribution of each variable category in controlling top- (c) and subsoil (d) τ across all local areas, respectively. Dashed lines represent 
the mean values. 

3.4 Comparison with τ from Earth system models 

Our observation-based τ estimates can help constrain biogeochemical simulations by ESMs, and will be useful to improve 405 

predictions of current and future carbon cycle dynamics. While the comparison of our empirical estimates with τ estimates 

from ESM projections based on CMIP6 showed broad agreement in the spatial patterns of τ (Pearson’r = 0.53, P < 0.001), it 

highlighted that ESMs likely underestimate τ across the majority of the globe (Fig. 8a). The soil carbon turnover times 

estimated from ESMs were on average more than two times shorter than our data-derived (using ground-sourced samples 

integrated with remote sensing observations) τ estimates (Table S3). This discrepancy was particularly pronounced in 410 

tropical forests, grasslands and tundra areas (Table S4). In ~30% of the global land grids, the τ estimates from ESMs did not 

fall into the 90% estimation intervals of our data-driven estimates, and ~92% of global land area with a mean 

underestimation bias (ESM-derived τ < data-derived τ) (Fig. 8a, Table S3). 

The discrepancies between τ from observations and from ESMs are also reflected in their associations with climate 

variables. The ESMs predicted stronger correlations with temperature and precipitation compared to our τ estimates (Fig. 415 
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8b,c). Additionally, there were notable differences in the climate correlations between topsoil and subsoil, which ESMs do 

not yet capture. These findings emphasize that other factors, such as soil physico-chemical properties and soil depth, need to 

be accounted for in models to accurately project global soil carbon dynamics. 

 

Figure 8: Comparisons of soil organic carbon turnover times (τ) from our data-derived estimates and from Earth system models 420 
(ESMs). a, Biases in τ represented by ratios of between data-derived to model-derived values across the global grid cells. Black points 
indicate locations where τ from ESMs are outside the 0.05 and 0.95 quantiles from the prediction uncertainty in our data-derived 
estimations. b, c, Comparisons of associations of data- and models (ESMs)-derived τ to mean annual temperature (MAT) (b) and mean 
annual precipitation (MAP) (c) along latitude gradients. The y-axis shows partial correlations (r) of τ with two climate factors, controlling 
for precipitation when calculating the correlation between τ and temperature (and vice versa). 425 

3.5 Implications and future perspective 

Our quantitative maps of SOC turnover times in top- and subsoil layers based on an extensive soil profile dataset represents a 

key step towards a better understanding of global soil carbon stocks and dynamics. Our research illustrates how global 

variations in τ for both top- and subsoil layers are influenced by the interplay of climatic and edaphic factors, and 

demonstrates their pronounced heterogeneity within and across biogeographic zones. These analyses revealed complex 430 

interactions between temperature, water availability and soil physio-chemical properties, thereby enriching our 

comprehension of the complex mechanisms driving spatial variability and nonlinearity in τ–environment relationships from 

global to local scales. The distinct factors driving τ in topsoil versus subsoil underscore the importance of incorporating soil 

depth when assessing large-scale τ patterns. 

The findings in this study also have the potential to improve the parameterization and future projections of ESMs by 435 

integrating more accurate global τ data. Our results support several previous studies that also identified an underestimation of 

SOC turnover times in ESMs through 14C observations (He et al., 2016; Shi et al., 2020). This discrepancy between data- and 

model-derived τ emphasizes the need to incorporate more detailed edaphic-climate dependent and depth-specific τ estimates 

into biogeochemical models to enhance predictive accuracy. Furthermore, there is evidence that the most exchange of soil 

carbon with the atmosphere occurs through relatively small and fast soil carbon pools on a short timescale, which can result 440 

in a “leaky sink” response when carbon input is elevated (Bradford, 2017; van Groenigen et al., 2017). This response may 
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conceal the longer turnover times in inert pools that are not precisely captured by models. Adjusting turnover rates and 

carbon transfer parameters in ESMs to align with the longer τ values we report here may extend the turnover time of “slow” 

or “passive” pools in models (especially for deep layers) that constitute the majority of soil carbon (Torn et al., 2009; He et 

al., 2016). 445 

To improve the accuracy of carbon cycle models and enhance the projections of future soil carbon sequestration rate 

and magnitude, it is essential to incorporate edaphic-climatic dependent and depth-resolved estimates of turnover times into 

these models. These insights across various climate zones, biomes, terrains, and soil properties contribute to reducing 

uncertainties related to context-dependent effects governing soil carbon stocks and dynamics, thus helping to inform 

strategies that enhance sustainable soil management and mitigate the impacts of climate change. 450 

4 Data availability 

The global maps of top- and subsoil organic carbon turnover times are available online at: 

https://doi.org/10.5281/zenodo.14560239 (Zhang, 2025). 

5 Code availability 

The code used for this study is publicly available at: https://github.com/leizhang-geo/global_soil_carbon_turnover_time.git. 455 

6 Conclusions 

This study provides a comprehensive assessment of global apparent SOC turnover times in both top- and subsoil layers. By 

integrating state-of-the-art datasets of soil profiles, plant roots, satellite observations, we employed machine learning models 

to produce the spatially-explicit maps of τ with quantified uncertainties. The results reveal pronounced spatial heterogeneity 

and non-linearity in τ–environment relationships within and among different biomes and climatic zones. Our findings 460 

demonstrate the context-dependent effects of temperature and water availability on τ, which vary depending on soil attributes, 

mainly including soil texture, carbon-to-nitrogen ratio, cation exchange capacity and soil pH. Considering the potentially 

large differences in the driving factors of τ from large to small scales, we further mapped the dominating factors of τ in two 

soil layers at local scales. Overall, this study synthesizes the multiple observation-based datasets that currently available, and 

provides new global maps of top- and subsoil organic carbon turnover times. The dataset and new insights of this study are 465 

expected to serve as a foundation for benchmarking biogeochemical models and supporting effective carbon management. 
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