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Response to Reviewer 1 
 

This study creates global maps of soil organic carbon turnover times (τ) at both topsoil and subsoil 

depths with observation-based datasets and machine learning methods. It addresses an important 

knowledge gap regarding the global maps related to the depth-dependent variations and 

environmental controls of soil carbon turnover, which is essential for understanding terrestrial 

carbon storage and dynamics, especially in the context of climate change. The methods used are 

well-suited to the scale and complexity of the question being addressed. The use of over ninety 

thousand geo-referenced soil profiles, satellite-derived environmental variables, and machine 

learning models, provides a robust framework for mapping and analyzing τ across a wide range of 

environmental conditions and different biomes. The authors’ approach to quantify the uncertainty 

of their maps also adds considerable value, making their results more applicable to future carbon 

cycle modelling and land management efforts. In conclusion, I recommend the acceptance of this 

manuscript after revisions following several suggestions I listed below. 

AC: Thank you for your kind words. We are delighted that you acknowledge the importance of our 

work and recognize that the findings in our work could bridge the gap and help producing a qualified 

τ map dataset. 

 

(1) Organic carbon turnover times can be calculated from influencing factors, such as carbon 

allocation belowground, SOC stocks. Why not first generate the spatial distribution data of those 

factors based on sampling data with machine learning method, then calculate organic carbon 

turnover times with the physical equations. 

AC: Our approach prioritizes direct estimation of τ using a combination of soil profile observations, 

root distribution data, and machine learning-based spatial predictions. However, we acknowledge 

the alternative approach suggested by the reviewer — first predicting the spatial distribution of 

influencing factors (e.g., carbon input and SOC stocks) and then computing τ using physical 

equations. We chose our approach for the following reasons: 

1) Uncertainty propagation and data constraints: many of the influencing factors (e.g., 

belowground carbon allocation, root distribution) have limited global observations and high 

spatial variability. If we were to separately predict these variables before calculating τ, errors 

from each step would compound, potentially increasing overall uncertainty. By training the 

machine learning model directly at sample locations, we reduce the risk of error propagation 

from multiple independent modeling steps. 

2) Machine learning model ability to capture complex relationships: The turnover time of SOC is 

influenced by nonlinear interactions between climate, soil properties, and vegetation. Machine 

learning can capture the feature importance and their interactions effectively from modelling τ–

environment relationships at sample locations. In contrast, if using all grid values to fit a model 

and then analyze the driving mechanisms, attributing variations in τ to multiple environmental 

variables suffer from a circularity issue. 

Therefore, we reckon that using the independent soil sample data to calculate τ at sample locations 

firstly, and then using a model to make the global τ maps should be a more reasonable choice from 

both mapping and driving analysis aspects. 
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(2) From the physical equations 1 to 8, the importance of different factors could be derived. Do the 

importance results of RF coincide with those equations? 

AC: After using those equations to calculate τ at sample locations, we used RF model to analyze the 

driving factors (e.g., feature importance) on τ at global, biome, and local scales. The above two steps 

have different purpose. The RF model was not used to directly compute τ but rather assesses how 

various environmental factors (we focused on climate, soil physio-chemical properties, and 

topography) correlate with the observed spatial variation in τ. 

 

(3) While the methods section is thorough, some readers may benefit from further clarification on 

the choice of specific methods, particularly regarding the machine learning model calibration. A 

more explicit discussion of how the model’s hyper-parameters were tuned would help readers better 

appreciate the methodology’s rigor. 

AC: We appreciate the reviewer’s suggestion to clarify the details of our machine learning model 

calibration, particularly regarding hyper-parameter selection. When using RF model, there are two 

important user-defined parameters in the RF. The first is the number of covariates that randomly 

selected for each tree building process. We used the rounded down square root of the total number 

of covariates as this parameter value by default (Breiman, 2001). The second parameter is ntree, 

which is defined as the number of trees to be learned in the forest. We set ntree = 200, for the 

previous soil mapping studies showed that it is sufficient to obtain stable results when the number 

of trees is larger than 150 (Lopes, 2015; Wadoux et al., 2019; Zhang et al., 2021). We added some 

sentences in Section 2.2 to describe above content. 

References: 

Lopes, M.E., 2015. Measuring the algorithmic convergence of random forests via bootstrap extrapolation. 

Technical Report. Department of Statistics. University of California, Davis CA. 

Wadoux, A.M.J.C., Brus, D.J., Heuvelink, G.B.M., 2019. Sampling design optimization for soil mapping with 

random forest. Geoderma 355, 113913. https://doi.org/10.1016/j.geoderma.2019.113913. 

Zhang, L., Yang, L., Ma, T., Shen, F., Cai, Y., Zhou, C., 2021. A self-training semi-supervised machine learning 

method for predictive mapping of soil classes with limited sample data. Geoderma 384, 114809. 

https://doi.org/10.1016/j.geoderma.2020.114809 

 

(4) The cross-validation procedure is well-executed, but it would be helpful to provide more specific 

details on how the biome-specific samples were handled during the 10-fold validation process. 

Ensuring that the sample division properly accounts for the geographical and ecological variation 

across biomes could further strengthen the model’s credibility. 

AC: We appreciate the reviewer’s request for further clarification on how biome-specific samples 

were handled during the 10-fold cross-validation process. To ensure that our validation approach 

accounted for geographical and ecological variation across biomes, we implemented a biome-

stratified cross-validation strategy as follows: We stratified the dataset based on biome 

classifications before performing cross-validation. Each biome was treated as a separate category to 

ensure that the sample distribution was maintained across all folds. Instead of randomly splitting 

the entire dataset, we ensured that each fold contained a proportional representation of samples from 
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each biome. This approach prevented certain biomes (e.g., tundra, boreal forests) from being 

underrepresented in the validation sets, thereby improving model generalization across diverse 

ecosystems. When calibrating the model, the method of over-sampling was adopted to increase 

training data in biomes with smaller sample size, this way can alleviate the imbalance in data when 

training the model (Chawla, 2010). We clarified these details in the revised manuscript. 

Reference: 

Chawla, N.V., 2010. Data Mining for Imbalanced Datasets: An Overview, in: Maimon, O., Rokach, L. (Eds.), Data 

Mining and Knowledge Discovery Handbook. Springer US, Boston, MA, pp. 875–886. 

https://doi.org/10.1007/978-0-387-09823-4_45 

 

(5) The paper requires careful attention to language for clarity and readability. I would recommend 

reviewing some descriptions for possible simplifications in sentence structure and corrections in 

grammar. Some examples are listed below. 

18: “… is central to …” -> “… plays a crucial role in …”. 

AC: Corrected. Thank you. 

 

19: “remain” -> “remains”. 

AC: Corrected. Thank you. 

 

92: it is better to change the word “minimize” to “reduce”. 

AC: Corrected. Thank you. 

 

103: “layers observations” -> “layer observations”. 

AC: Corrected. Thank you. 

 

465: “insights of this study -> “insights from this study”. 

AC: Corrected. Thank you. 

We further made a great effort in polishing the paper so that it is more explicit and clearer. 

 


