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Abstract.

We introduce the new ESA Climate Change Initiative TROPOspheric Monitoring Instrument (TROPOMI) global monthly

Level 3 (L3) dataset of tropospheric nitrogen dioxide (NO2) for May 2018 to December 2021. The dataset provides spatiotem-

porally averaged tropospheric (NO2) columns, associated averaging kernels and L3 uncertainties at spatial resolutions of 0.2o,

0.5o, and 1.0o on a monthly timescale (https://doi.org/10.21944/CCI-NO2-TROPOMI-L3). To improve our understanding of5

what fraction of the L2 uncertainty cancels when averaging over space or time (i.e. the random component of the L2 uncer-

tainty) and what fraction persists despite the averaging (systematic component), we first determine spatial and temporal error

correlations for all sources of uncertainty in the L2 retrieval. Spatial error correlations arise from the stratosphere-troposphere

correction, and from coarse-gridded albedo climatologies used in the L2 air mass factor calculation. We find the temporal error

correlation in both the stratospheric uncertainty and the air-mass factor uncertainty to be 30%. Using these estimates, the L310

uncertainty budget has been established for every grid cell based on input L2 uncertainties and new methods to estimate spatial

and temporal representativeness uncertainties and to propagate measurement uncertainties through space and time. The total

relative uncertainty in the resulting Level 3 dataset is in the range of 15-20% in polluted areas, which is significantly lower

than in separate Level 2 orbit retrievals, and brings the tropospheric NO2 data to within the GCOS ‘goal‘ and ‘breakthrough‘

requirements. Validation of the (sub-)columns confirms better correlation and reduced dispersion in the differences between15

satellite and ground-based reference data for the L3 data w.r.t. the underlying L2, albeit with a more pronounced negative bias

in the tropospheric columns at pollution hot spots, most probably related to stronger spatial smearing.

1 Introduction

Long-term monitoring of nitrogen oxides (NOx = NO + NO2) in the atmosphere is crucial for several reasons. Nitrogen oxides

are harmful air pollutants and long-term exposure is causally linked to chronic respiratory diseases and mortality in humans20

(Faustini et al., 2014; Fischer et al., 2015). When nitrogen dioxide (NO2) is oxidized in the atmosphere, it forms nitric acid
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(HNO3), which readily dissolves in airborne droplets, and subsequently comes down as acid rain. Excessive deposition of

HNO3 has been shown to lead to adverse feedbacks on land- and water ecosystems (Tan et al., 2020), and changes in N-

deposition influence ecosystem carbon sinks, affecting the biosphere’s capacity to capture carbon from the atmosphere in the

long run (Liu et al., 2022). Moreover, the monitoring of NOx concentrations helps to identify major sources of CO2, because25

both species are co-emitted upon combustion of fossil fuels by vehicles, industrial activities, and power plants (e.g. Zhang

et al., 2023). Finally, NOx play a significant role in the formation of ozone smog (Zhang et al., 2021) and fine particulate matter

(Zhang et al., 2015), and both these secondary pollutants further harm human health and the environment. The importance of

compounds and their indirect impact on methane, ozone, and aerosol is an important reason why tropospheric columns NO2

along with other trace gases have been selected as the so-called Essential Climate Variable (ECV) Precursors for Aerosols and30

Ozone (Zemp et al., 2022).

To allow for policy development and air pollution and climate change assessments, inter-annual changes and trends in

recent decades need to be calculated. For this, long-term, robust, sustainable, and scientifically sound Climate Data Records

(CDRs) are needed to provide trustworthy information on how, where, and to what extent nitrogen oxide concentrations are

changing. Atmospheric monitoring of NOx involves application of in situ measurement techniques from ground-based or35

airborne platforms, but these measurement techniques are limited in their spatio-temporal coverage. Satellite remote sensing

with UV/Vis sensors, by contrast, provides global measurements of tropospheric NO2 columns since the mid-nineties. The

wide spatial coverage and continuity of satellite measurements make them fit for purpose for climate monitoring.

Level 2 (L2) retrieval algorithms to derive NO2 columns from raw satellite measurements (Level 1 data) have received a

lot of attention (e.g. Van Geffen et al., 2022). In comparison, Level 3 (L3) data, spatially and/or temporally averaged products40

on a consistent grid derived from L2 data (e.g. Wei et al., 2022), have been less considered by the scientific community,

despite the relevance of L3 data for model evaluation (Visser et al., 2019; Eskes et al., 2024), data assimilation (Inness et al.,

2019; Sekiya et al., 2022), and climate (trend) studies (e.g. Zara et al., 2021). This emphasis on L2 retrieval algorithms is

understandable, as it reflects the need to ensure the foundational accuracy of the L2 data, which is the starting point for

creating high-quality L3 products. However, the quality of L3 products does not solely depend on reliable input data, but also45

requires a good understanding of best methods for averaging both spatially and temporally, and assessing the propagation of

existing measurement uncertainties and the quantification of additional sampling uncertainties.

Including rigorous uncertainty information in L3 CDRs is important to support the application of the data (Merchant et al.,

2017). This is necessary to avoid misinterpretation of artefacts arising from system limitations as real geophysical changes

or trends (e.g Labzovskii et al., 2024), for modellers to get confidence in discriminating model–data discrepancies that un-50

ambiguously indicate model deficiencies from those where observational errors are significant, and to contribute appropriate

weighting to different observations in data assimilation and reanalyses (Merchant et al., 2017). An accurate quantification of

L3 uncertainties includes both the assessment of the magnitude of error sources, as well as a propagation of these uncertainties

to the L3 data product, including a treatment of spatio-temporal error correlations between individual satellite observations and

of aspects of spatiotemporal representativity.55
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Measurement uncertainties are often assumed to be either fully systematic or fully random in space and time when deter-

mining gridded datasets (e.g., Wenig et al., 2008; Chan et al., 2023). In reality, there will be spatial and temporal correlations

between multiple error sources, depending on length and time scales. There are datasets where uncertainties are determined

using partial error correlations, but until now the correlation coefficients used have been determined using expert opinion,

introducing subjectivity (Miyazaki et al., 2012; Boersma et al., 2016, 2018). A more quantitative treatment of spatial error60

correlations and representativeness errors in case of incomplete coverage of a grid cell has been presented in Rijsdijk et al.

(2024). In this paper we extend this approach to temporally-averaged L3 products (gridded monthly means). This brings us

to the following research questions for this study: (1) Can we improve our understanding of how uncertainties in satellite-

derived tropospheric NO2 columns are correlated in space and in time? (2) Can we use this understanding of correlations in

uncertainties to better characterise how these uncertainties propagate in to gridded, monthly mean uncertainty estimates? (3)65

What is the monthly mean uncertainty budget for TROPOMI NO2 L3 data, and how do these L3 uncertainties vary in space

and time? (4) To what extent does the validation of with independent reference measurements help to assess the quality and

fitness-for-purpose of the TROPOMI NO2 L3 data? We present the ESA CCI+ L3 TROPOMI atmospheric NO2 dataset with

a thorough assessment of the L3 uncertainty, combining measurement uncertainties, sampling uncertainties, and a proper as-

sessment of local error correlations for the uncertainty propagation. This includes, for the first time, an empirical quantification70

of correlation coefficients for multiple error sources.

2 Instrument and dataset

2.1 TROPOMI instrument

The TROPOspheric Monitoring Instrument (TROPOMI) (Veefkind et al., 2012) provides observations of tropospheric NO2

columns with daily global coverage at spatial resolution of 7 x 3.5 km2 and, since 6 August 2019, of 5.5 x 3.5 km2 at nadir.75

TROPOMI is aboard the European Space Agency (ESA) Sentinel-5 Precursor (S5P) satellite, which was launched on 13

October 2017 and has been providing nominal observations since May 2018. The near-polar sun-synchronous orbit provides

afternoon observations with an equator local overpass time of 13:30 h and a nearly daily global coverage.

2.2 TROPOMI Level 2 tropospheric NO2 columns and uncertainties

The starting point for the generation of L3 data are the L2 TROPOMI satellite observations of the NO2 tropospheric column on80

an orbital basis (Copernicus Sentinel-5P, 2021). The aim of the ESA CCI+ project is to generate long-term climate data records

and therefore we use the v2.3.1 L2 data, which are the most consistent with the OMI (QA4ECV v1.1 product (Boersma et al.,

2018)) because these OMI and TROPOMI data products are based on strongly consistent algorithms that use the same OMI

surface albedo climatology (the so-called MINLER (Kleipool et al., 2008)), which allows for better merging of the datasets.

Still, the methods described in this paper are applicable on the operational dataset or any other version of the L2 data as well.85

TROPOMI retrievals with qa-values of >0.75 were used, which corresponds to good-quality retrievals over (nearly) cloud-free
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scenes. Retrievals made in the descending part of the orbit are removed because high latitude retrievals in the descending part

of the orbit are not being used in the stratospheric correction procedure, leading to high-biased stratospheric NO2 columns,

and, on average, negative tropospheric NO2 columns for the descending part of the orbit (see Appendix A). A small bug with

respect to the quality assurance (qa) value over snow and ice present in this version was corrected (see Eskes and Eichmann90

(2023)).

The NO2 retrieval procedure consists of three steps, the spectral fitting, the stratospheric correction, and the conversion of

the tropospheric slant column density into a tropospheric vertical column density using the air-mass factor. Each of these three

steps introduces potential errors and contributes to the overall uncertainty. The single tropospheric column uncertainty (σi) is

quantified as in Boersma et al. (2004): σi =
√

(σNs)
2 +

(
σNstrat

s

)2 + (σMtr )295

where the tropospheric column uncertainty sources are

σNs
=

σ′Ns

M tr
; σNstrat

s
=

σ′Nstrat
s

M tr
; σMtr =

(Ns−Nstrat
s ) ·σ′Mtr

(M tr)2

with Ns the slant column density, Nstrat
s the stratospheric slant column density, and M tr the tropospheric air-mass factor and

σ′Ns
, σ′Nstrat

s
, and σ′Mtr their respective uncertainties.

The slant column density (SCD) uncertainty σ′Ns
is estimated on a per-pixel basis during the spectral fitting and is obtained100

from the diagonal of the covariance matrix of the standard errors (Van Geffen et al., 2020) and has typical values of∼ 0.6×1015

molecules cm−2 (Van Geffen et al., 2020, 2022) which compares well with estimates provided by alternative processors.

The stratospheric slant column uncertainty σ′Nstrat
s

is based on a global statistical analysis of results from the data assimila-

tion procedure used to separate the tropospheric and stratospheric columns. The data assimilation procedure uses observational

start fields and TM5-MP 24-hr forecast stratospheric NO2 fields (after modelled transport and chemistry). The difference be-105

tween modelled forecasts and the actual observations (O-F) over unpolluted scenes is taken as an upper limit of the uncertainty

in stratospheric NO2 columns and has a statistical global-mean value of 0.2× 1015 molecules cm−2 (Dirksen et al., 2011),

which is applied in the L2 algorithm. Here, we apply a more detailed latitude- and time-dependent L2 stratospheric uncer-

tainty as derived by Rijsdijk et al. (2024). A recent comparison of stratospheric NO2 columns obtained with data assimilation

in TM5-MP and the STREAM approach (Beirle et al., 2016), an alternative method to separate the stratosphere and tropo-110

sphere columns, for GOME-2A showed consistency to within 0.2×1015 molecules cm−2 (Richter et al., 2024). Similar results

were found in a comparison of stratospheric NO2 columns from the data assimilation method and STREAM for the Ozone

Monitoring Instrument (OMI) of the QA4ECV data set (Boersma et al., 2018; Compernolle et al., 2020).

The air-mass factor uncertainty σ′Mtr consists of uncertainty contributions from the cloud pressure, cloud fraction, surface

albedo, and a priori NO2 profile shape. The theoretical error propagation framework in Boersma et al. (2004) is used to estimate115

the overall AMF uncertainty. The overall tropospheric AMF uncertainties are estimated to be 30-50% (Boersma et al., 2018)

for individual retrievals.

The overall uncertainty for an individual retrieval therefore depends on details in the retrieval and is pixel specific. Over

oceans and remote areas, with low tropospheric vertical columns, the relative overall uncertainty is typically more than 100%

and is dominated by uncertainty in the spectral fit (σNs ) and the stratospheric column (σNstrat
s

) (van Geffen et al., 2022b). For120
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more polluted regions over continental areas, the relative uncertainty reduces to 25-50% and is dominated by uncertainty in the

tropospheric air mass factor (σMtr ) (van Geffen et al., 2022b). The overall uncertainty for individual TROPOMI tropospheric

column NO2 retrievals is sometimes approximated as: σi ≈ 0.5× 1015 molecules cm−2 + [0.2 to 0.5]×N trop
v (van Geffen

et al., 2022b).

3 Methodology125

3.1 L3 algorithm overview

Our starting point is individual L2 tropospheric column retrievals with a retrieved column value xi (molecules cm−2) and

the associated individual retrieval uncertainty σi (molecules cm−2). To compute L3 spatial and temporal gridded means, we

developed a two-step procedure, in which we:

1. calculate spatially averaged (gridded) column values (xo,t) – where t stands for an instantaneous column value not aver-130

aged in time – along with their associated L2 measurement uncertainties (σm,s) and spatial representativeness uncertainty

(σrs), and then

2. provide temporal averaged estimates of the column values (x̄) and their total uncertainty (σ̄total), including associated

temporal representativeness uncertainty (σ̄rt) and measurement uncertainties (σ̄m).

Figure 1 provides a schematic picture of the above procedure. After collecting the individual values of the retrieved column135

and its uncertainty (xi, σi), their spatially averaged (instantaneous) counterparts (xo,t, σo,t) are calculated for a L3 grid cell.

Then, in step 2, these spatial averages are aggregated over time and averaged, leading to the desired L3 product. This two-step

method allows us to assess and apply different error correlation factors when propagating uncertainties spatially and temporally.

Figure 1. Schematic example of the procedure to calculate spatio-temporal (gridded) averages of retrieved columns and their associated

uncertainties. The irregular grey rectangles indicate an ensemble of individual L2 retrievals in a satellite orbit, the black rectangle shows a

regular grid to which the individual retrievals are averaged and gridded in Step 1. In Step 2, this procedure is repeated to obtain multiple

spatial averages along with their associated uncertainties, which are then averaged over a period to produce a temporal mean and its associated

L3 uncertainty.
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3.2 Spatial averaging

3.2.1 Averaging of variables140

Step 1 concerns the spatial averaging of valid retrieved values of the individual pixels (xi) with weights (wi). Following

Miyazaki et al. (2012); Boersma et al. (2016); Rijsdijk et al. (2024) the weight wi of each measurement is taken equal to the

spatial overlap area between the footprint of observation i and the L3 grid cell. This tiling approach results in the following

estimate of the gridded L3 column,

xo,t =
∑N

i=1(wixi)∑N
i=1 wi

(1)145

with N the number of valid L2 observations in the L3 cell.

The spatial average is determined on a (regular) grid on a per-orbit basis. This is possible for any given grid, we provide

spatial the here created dataset at resolutions 0.2ox0.2o, 0.5ox0.5o, and 1ox1o. The spatial average for a grid cell is only

determined if the combined valid individual retrievals xi cover at least 30% of the grid cell, to avoid unrealistic uncertainty

estimates in small data samples, following Rijsdijk et al. (2024).150

3.2.2 Uncertainty estimate

To assess the overall uncertainty (σo,t) in xo,t of these spatial averages we follow the procedure in Rijsdijk et al. (2024), and

combine the propagated measurement uncertainties (σm) and the spatial representativeness uncertainty (σrs) in quadrature:

σo,t =
√

(σm)2 + (σrs)2 (2)

This reflects that the uncertainty in the spatial average is composed of propagated L2 uncertainties, and may also contain155

uncertainty from incomplete coverage of the grid cell.

Measurement uncertainty

The measurement uncertainty σm is the combined tropospheric column uncertainty from error sources (σm,s) in the L2

retrieval, including the uncertainty due to the slant column density measurements (σNs
), the uncertainty resulting from errors

in the stratospheric column (σNstrat
s

), and the uncertainty from the air mass factor (σMtr ) (Boersma et al., 2004).160

σm =
√

(σNs
)2 + (σNstrat

s
)2 + (σMtr )2 (3)

Note that these are the contributions of each uncertainty source to the tropospheric column uncertainty, not the source uncer-

tainties themselves. Each of these are represented by equation 4 (Sekiya et al., 2022; Rijsdijk et al., 2024) which considers that

the random component of the individual uncertainties σi tends to cancel out when averaging over many observations (first term

on the right hand side), while a fraction ϕs of the individual uncertainties σi persists after averaging because they come from165

systematic spatially correlated contributions to the uncertainties (second term):

σm,s =

√√√√(1−ϕs)

∑N
i=1(w

2
i σ2

i,s)∑N
i=1 w2

i

+ ϕs
(
∑N

i=1(wiσi,s))2∑N
i=1 w2

i

(4)
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The spatial error correlation factor ϕs in equation 4 quantifies the portion of the error that is systematic and here we determine

its value for each of the measurement error contributions s (slant column density, stratospheric column, and air-mass factor)

separately. We apply the spatial error correlations as determined by Rijsdijk et al. (2024).170

The slant column error is largely uncorrelated over space as it is dominated by measurement noise (Van Geffen et al., 2020;

Rijsdijk et al., 2024). There will be a systematic error component in the slant column density due to gaps in knowledge, such

as offsets in absorption cross sections, inaccurate Ring coefficients in the spectral fit or the lack of a correction for vibrational

Raman scattering (Richter et al., 2011; Zara et al., 2018; Rijsdijk et al., 2024). In Van Geffen et al. (2020) the slant column

retrieval noise estimated over a Pacific sector was found to match the DOAS uncertainty estimate to within 15% for clear-sky175

pixels, suggesting systematic retrieval errors are roughly a factor 2 smaller than the random errors. However, the effect of these

systematic errors is absorbed in the stratospheric column estimate (as discussed below). Therefore, the uncertainty in slant

column density is assumed to be fully random (ϕNs = 0) (Rijsdijk et al., 2024).

In the retrieval method the stratospheric column is determined by assimilating slant column superobservations in the chem-

ical transport model TM5-MP (Dirksen et al., 2011). The resolution of the TM5-MP model is 1ox1o, and the horizontal corre-180

lation length scale used in the assimilation is about 500 km. This is coarser than the spatial average grid sizes considered here.

Therefore, it is assumed that the error in the stratospheric column is fully correlated in space with the L3 grid resolution of 0.2o

- 1.0o introduced before (ϕNstrat
s

= 1). A spatially correlated error in the slant column would lead to an increased bias in the

O-F, increasing the L2 stratospheric column uncertainty. The spatial mean of the stratospheric column uncertainty in Equation

3 will thus include the contribution from the systematic slant column uncertainty.185

The AMF uncertainty is predominantly caused by uncertainties in surface albedo and cloud parameters (cloud fraction and

cloud pressure). All three of these variables depend on the quality of the climatological surface albedo dataset. Rijsdijk et al.

(2024) review the AMF uncertainty by comparing versions 2.3.1 and 2.4 of the NO2 L2 datasets. The main difference between

these two versions is that they apply different surface albedo climatologies. We argue that the differences between albedo

estimates from these state-of-science climatologies are indicative of realistic albedo uncertainties. The albedo values directly190

affect the clear-sky AMF calculations, but also drive the retrieved values for the cloud fraction and cloud pressure (see e.g.

Riess et al. (2021)). Differences between albedo values thus propagate to different values of cloud fraction and cloud pressure,

which impact the cloudy-sky AMF values. Albedo differences thus impact the overall AMF calculation, and spatio-temporal

characteristics in the albedo differences are expected to lead to spatio-temporal patterns in AMF differences, allowing us to

analyse how the AMF uncertainty patterns are correlated in time and space. The effects of changing the surface albedo clima-195

tology on the results of the tropospheric NO2 retrieval are expressed as differences between v2.3.1 and v2.4 tropospheric NO2

columns. The error in the AMF is shown by Rijsdijk et al. (2024) to be partly correlated depending on the size of the grid cells

(ϕMtr = e−d/l, where d is a distance between observations depending on the grid cell size and l = 35 km is a typical average

correlation length over polluted regions). This spatial correlation is partly due to the low resolution of surface albedo datasets

(0.5o), but also because surface modifying conditions are often spatially extensive. For example, droughts impact the surface200

albedo not just in one grid cell, but typically over a larger area. Table 1 provides typical values of the spatial error correlation
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coefficients for TROPOMI spatial averages at different grid resolutions.

Table 1. Spatial error correlation sources and their random and systematic fractions for TROPOMI NO2 tropospheric column spatial aver-

ages at different spatial resolutions. For the calculation of the AMF coefficients, ϕMtr = e−d/l has been used with l = 35 km the typical

correlation length over polluted regions (Rijsdijk et al., 2024) and d the typical grid cell dimension in km.

Spatial error correlation source Random fraction (averages out) Systematic fraction (persists)

Slant column density (1−ϕNs) = 1.00 ϕNs = 0.00†

Stratospheric correction (1−ϕNstr
s

) = 0.00 ϕNstr
s

= 1.00

AMF (0.2◦ x 0.2◦) (1−ϕMtr ) = 0.44 ϕMtr = 0.56

AMF (0.5◦ x 0.5◦) (1−ϕMtr ) = 0.75 ϕMtr = 0.25

AMF (1.0◦ x 1.0◦) (1−ϕMtr ) = 0.94 ϕMtr = 0.06

† Note: the systematic component of the SCD uncertainty is included in the stratospheric uncertainty.

Spatial representativeness uncertainty

The spatial representativeness uncertainty σrs (molecules cm−2) accounts for incomplete sampling (mainly due to cloud205

covered pixels not being included in the spatial averaging) of the cell by the observations available to calculate xo,t (Rijsdijk

et al., 2024). If the entire area of the L3 cell is covered by valid observations then the representativeness uncertainty is 0.

If only a small fraction of the L3 cell is covered, the representativeness uncertainty is equal to the standard deviation of the

tropospheric columns within the cell: large for areas with strong spatial variability in xi (such as over polluted regions), and

smaller for regions with similar values of xi (such as over clean, background regions).210

σrs = fσxi (5)

where σxi
is the standard deviation in retrievals within the grid cell (xi). The unitless fraction f is calculated as the represen-

tativeness of the retrieved observations for the fully covered grid cell:

f =
1√

Neff αo,t + 1

√
1−αo,t (6)

where the degree of coverage αo,t is calculated as the fraction of the total valid pixel area (A, in km2)215

αo,t =
∑N

i=1 wi

A
(7)

and Neff is the number of effective observations, which is dependent on the number of available observations, the sensor,

the trace gas, the L3 resolution gridding to, and whether a grid cell is sensitive to systematic sampling (due to, e.g., a cloud

field covering part of a grid cell) or not (Rijsdijk et al., 2024). The lower the value for Neff , the more sensitive a region is to

systematic sampling. Neff has been determined empirically by Rijsdijk et al. (2024), and a summary of the methods used to220

quantify Neff can be found in Appendix B.
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3.3 Temporal averaging

3.3.1 Averaging of variables

The second step in the generation of the L3 dataset consists of temporal averaging. We average the spatial-mean values xo,t

obtained in step 1 over time (e.g. a period of one month), again in a weighted fashion to account for different degrees of repre-225

sentativity (wo,t = 1−g). g is high for grid cells with a large representativeness uncertainty and low for superobservations with

almost no representativeness uncertainty. This value depends on coverage - higher coverage results in a lower representative-

ness error - but also other factors such as sensitivity to systematic sampling. Taking a weighted average like this implies that

superobservations with a low representativeness uncertainty obtain more weight in the temporal average than superobserva-

tions with a high representativeness uncertainty. This results in the following estimate of the spatially and temporally averaged230

L3 column x̄:

x̄ =
∑T

t=1(wo,txo,t)∑T
t=1 wo,t

(8)

with T the total number of valid superobservations in the period over which the averaging is performed.

3.3.2 Uncertainty estimate

Next, the uncertainty associated with x̄, i.e. the monthly mean L3 uncertainty, is determined. We calculate a total spatio-235

temporal averaged uncertainty which combines the propagated measurement uncertainty (σ̄m, including the spatial represen-

tativeness uncertainty) and a temporal representativeness uncertainty (σ̄rt) in quadrature:

σ̄total =
√

(σ̄m)2 + (σ̄rt)2 (9)

Propagated measurement uncertainty

The spatio-temporally averaged measurement uncertainty σ̄m is the combined uncertainty of the measurement error sources240

σ̄m,s including the spatial representativeness uncertainty:

σ̄m =
√

(σ̄Ns
)2 + (σ̄Nstrat

s
)2 + (σ̄Mtr )2 + (σ̄rs)2 + (σ̄apriori)2 (10)

The propagated slant column density uncertainty (σ̄Ns ), stratospheric column uncertainty (σ̄Nstrat
s

), air-mass factor uncertainty

(σ̄Mtr ) and spatial representativeness uncertainty (σ̄rs) are each determined using:

σ̄m,s =

√√√√(1− τs)
∑T

t=1(wo,t
2σm,st

2)

(
∑T

t=1 wo,t)2
+ τs

(
∑T

t=1(wo,tσm,st))
2

(
∑T

t=1 wo,t)2
(11)245

where τs is the temporal correlation factor of the uncertainty sources s (not the same as the spatial correlation factor applied

in equation 4). The last term in equation 10 represents the contribution from the uncertainty in the a priori profile shapes, and

is approximated as 10% of the tropospheric AMF. 10% of the AMF is deemed appropriate for the a priori profile uncertainty,
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as the spatial resolution of the spatial means (0.2ox0.2o to 1ox1o) is low compared to the TROPOMI pixel resolution. Earlier

studies (gridding OMI to 0.5o) also used an estimate of 10% (Boersma et al., 2018). σ̄apriori is not included in the uncertainty250

calculation when using the averaging kernel in data applications, which removes the dependence on the a priori profile (Eskes

and Boersma, 2003).

The temporal correlation factor τ is determined for each of the sources of measurement uncertainty (slant column density,

stratospheric, and AMF) separately. We do so by evaluating to what extent discrepancies in the stratospheric NO2 column and255

in the AMF calculation vanish over time.

(a) (b)

Figure 2. Temporal correlation in (a) difference of tropospheric NO2 column for v2.3.1 and v2.4 for polluted areas (AMF uncertainty)

and (b) observation-forecast for unpolluted areas (stratospheric column uncertainty) between each combination of two days within the same

month for the period 1 Jan - 31 Mar 2019. Larger points are the mean of correlations with the same time difference.

Firstly, the temporal error correlation factor for the AMF uncertainty is determined. The a priori NO2 profile is a large

contribution to the uncertainty in the AMF, but is shown to become irrelevant when the averaging kernel is used when com-

paring with three-dimensional model output (Eskes and Boersma, 2003). Other large sources of uncertainty in the AMF are260

the effective cloud cover, the effective cloud height, and the surface albedo. All three of these variables depend on a monthly

climatological surface albedo dataset. This introduces a temporal error correlation between the daily observations.

Assuming the AMF error is fully correlated in time would result in an overestimation of the AMF uncertainty in level 3

products, as in reality the AMF error is only partly systematic and the random part averages out with many observations.

Here, we empirically evaluate the systematic character of the AMF uncertainty on different temporal scales, by determining265

the degree of temporal correlation between AMF errors.
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We estimate the temporal error correlation required to determine the AMF uncertainty in spatio-temporal averaged L3 data by

comparing versions 2.3.1 and 2.4 of the L2 retrieval, as was done for the spatial error correlation (section 3.2.2). These versions

apply different climatological surface albedo datasets, with v2.3.1 applying albedo derived from OMI and GOME-2 and v2.4

applying albedo derived from TROPOMI spectra (Tilstra et al., 2024). As the albedo is a key input for the cloud retrieval, this270

replacement of climatological albedo dataset also generates cloud fraction and cloud pressure retrieval differences. Because the

change of albedo climatology is the largest change between the two L2 versions, the difference in tropospheric NO2 between

the versions should be indicative of uncertainty in tropospheric NO2 resulting from the climatological surface albedo.

We determine the difference in tropospheric NO2 column in 0.2◦×0.2◦ superobservations between v2.3.1 and v2.4 L2 data

for each day in the period 1 January - 31 March and the period 1 June - 31 August 2019. For each combination of two days275

within the same period, we determine the Pearson correlation coefficient in tropospheric NO2 for polluted areas (tropospheric

column from both versions > 1.8 molecules cm−2) (Figure 2a):

r∆t =
∑I

i=1 (∆Nt1i−∆Nt1)(∆Nt2i−∆Nt2)√∑I
i=1 (∆Nt1i−∆Nt1)2

∑I
i=1 (∆Nt2i−∆Nt2)2

(12)

where r∆t is the Pearson correlation coefficient between tropospheric NO2 differences due to albedo differences and re-

trieval discrepancies on any two days in the time period (blue points in Figure 2a), ∆t = t2− t1 the time difference, ∆Nt1 =280

Nv2.4
t1 −Nv2.3.1

t1 and ∆Nt2 = Nv2.4
t2 −Nv2.3.1

t2 the difference in tropospheric NO2 between v2.3.1 and v2.4 for the first day

and second day respectively, and I the number of valid superobservation grid cells for both days. For each ‘time difference‘

between daily superobservations, we determine the mean correlation (r∆t, black points in Figure 2a). Then we take the mean

of the r∆t for the time differences 1-30 days. This results in τ = 0.29 for 1 January to 31 March and τ = 0.30 for 1 June to 31

August, suggesting that tropospheric column errors only partially persist in time. The temporal error correlation in the AMF is285

set to be τMtr = 0.30 for both the NH winter and summer period. When analysing longer time differences than a month, the

correlation disappears. The method was repeated for 1◦x1◦ superobservations, resulting in similar results, giving us confidence

that the temporal AMF error correlation coefficient is not grid-size dependent.

Next, we estimated temporal correlation factors for the stratospheric uncertainty. In the retrieval of the NO2 columns the290

observed slant column is split into its tropospheric and stratospheric parts using data-assimilation in the TM5-MP model. We

can assess uncertainty and bias in this model by investigating the difference between the forecasted column and the observed

column (O-F) over unpolluted regions, see e.g. Dirksen et al. (2011). We take the values for O-F for the period 1 January

to 31 March 2019. For each combination of two days within the same month, we determine the Pearson correlation coeffi-

cient in stratosphere O-F for clean areas (tropospheric column < 0.6 molecules cm−2) (Figure 2b). This is again done with295

equation 12 but now with ∆Nt1 = N observation
t1 −N forecast

t1 and ∆Nt2 = N observation
t2 −N forecast

t2 the difference in stratospheric NO2

between observation and forecast for the first day and second day respectively. For each ‘time difference‘ between daily O-F

maps, we determine the mean correlation (r∆t). Then we take the mean of r∆t for the time differences 1-30 days. This results

in τ = 0.30. The same method is carried out for the NH summer period 1 June-31 August, which showed a slightly lower

correlation coefficient of τ = 0.21. We take the higher value of τNstrat
s

= 0.30 as the temporal uncertainty correlation in the300
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stratospheric uncertainty for both the NH winter and summer period, as a conservative uncertainty estimate. The correlation

decreases slightly for longer periods and only disappears altogether for periods longer than 3 months.

The uncertainty in the slant column density is assumed to be fully uncorrelated in time (τNs = 0), following the same

arguments as in the spatial uncertainty correlation (see Section 3.2.2).305

The temporal correlation coefficient of the spatial representativeness uncertainty is set at fully random (τrs = 0). The repre-

sentativity can be correlated through time due to the effect of persistent cloud cover, but this will be assessed separately in the

temporal representativeness uncertainty.

Table 2. Temporal error correlation sources and their random and systematic fractions for TROPOMI NO2 tropospheric column spatio-

temporal averages.

Temporal error correlation source Random fraction (averages out) Systematic fraction (persists)

Slant column density (1 - τNs ) = 1.00 τNs = 0.00†

Stratospheric correction (1 - τNstr
s

) = 0.70 τNstr
s

= 0.30

AMF (1 - τNMtr
) = 0.70 τNMtr

= 0.30

† Note: the systematic component of the SCD uncertainty is included in the stratospheric uncertainty.

The monthly mean L3 NO2 columns are only representative when sufficient observations are available for calculating the

means. The L3 qa-value is set to equal 1 when the data is representative as a monthly mean and equal 0 when it is not. This310

deviation is made using the count variable, which is the sum of the fractional coverages from the spatial averages αo,t divided

by the number of days in the month. If this value is below 0.1 (meaning less than 10% of the month is sampled), the L3 qa-value

is set at 0 and the L3 NO2 columns are advised not to be used for further analyses, as these would not be a good representation

of the given month.

315

Temporal representativeness uncertainty

The temporal representativeness uncertainty (σ̄rt) can be interpreted as the standard error of the superobservations (spatial

means) used to determine the monthly mean. We state that the number of possible observations within a month is finite and a

true monthly mean is obtained with at least one observation (note that the TROPOMI orbits overlap at higher latitudes, where

multiple observations per day are possible) each day. A correction factor is applied to the method of calculating the standard320

error to correct for this (Bondy and Zlot, 1976; Isserlis, 1918; Rijsdijk et al., 2024). This results in the following theoretical

formula for the temporal representativeness uncertainty:

σ̄rt =
σxo,t√

n

√
N −n

N − 1
(13)
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where N is the length of the month in days and n is the number of days with at least one valid superobservation. The weighted

standard deviation around the temporal mean σxo,t
is determined using:325

σxo,t
=

√√√√
∑T

t=1(wo,t(xo,t− x̄)2)

(T − 1)
∑T

t=1 wo,t

(14)

with T the total number of valid orbits in the period over which the averaging is performed, and wo,t = 1− f .

We apply the method also used in Rijsdijk et al. (2024) and Appendix B to assess whether Equation 14 is suitable for

assessing the temporal representativeness uncertainty. We start by taking a completely covered grid cell, which means that at

least one spatial mean/superobservation was produced for this grid cell for every day of the month. The representativeness330

uncertainty can be quantified by comparing the mean of this completely covered grid cell to the mean of several samples (a

subset of days) taken from that grid cell. We start by sampling a single day, which we use to estimate the temporal mean

of the grid cell. Then we repeatedly add random days of the month and estimate the mean using the available observations.

We perform multiple iterations (200) of this process on the same grid cell and find the relation between representativeness

uncertainty ft and temporal coverage of the grid cell (Figure 3a). This process is then repeated for 100 grid cells in polluted335

areas (Figure 3b). We only take polluted grid cells into account (mean NO2 tropospheric column of ≥ 2× 1015 molecules

cm−2), as these are expected to have the highest temporal variability and thus are more likely to be sensitive to a sampling

bias. The mean of the experiments (green) is almost identical to the theoretical solution of equation 13 (blue), showing that the

formula is a suitable method for quantifying the temporal representativeness uncertainty for random sampling. Similar results

are found for June 2019.340

As with the spatial representativeness (cloud masking one part of the grid cell), there might be a sensitivity to systematic

sampling temporally. This could for example be the case if large weather systems give persistent cloud cover in a given location

for part of the month. The occurrence of systematic sampling was tested for the spatial means of January and June 2019. We

selected grid cells in the spatial mean that had valid superobservations for ∼50% of the given month. On these grid cells we

applied a Wald-Wolfowitz test to determine whether the cloudiness was random or systematic (Wald and Wolfowitz, 1943). The345

Wald-Wolfowitz test is a non-parametric statistical test that checks a randomness hypothesis for a two-valued data sequence,

in our case cloudy (no data) or not-cloudy (superobservation available, can be partly cloudy). For both January and June about

two-thirds of the grid cells show systematic sampling due to continuous cloud cover for part of the month.

This shows that systematic sampling of observations for the temporal mean is relevant. Next, we will look into whether

the temporal variability in the observations makes it sensitive to this systematic sampling. We repeat the method of repeated350

sampling of a grid cell as outlined above, but now by sampling the grid cell systematically (start by taking the observation of

one random day and then repeatedly add adjacent days). Figure 3d shows that systematic sampling produces more variability of

grid cells around the theoretical solution (blue line, equation 13) than with random sampling (Figure 3b), but that the mean of

the experiments (green line) is close to the theoretical solution. Comparing with the spatial representativeness curve in Figure

B1b shows that the experimental curves in Figure 3d are closer to the theoretical solution. The fit from equation 6 in purple355

does not show a better fit to the experimental mean than the theoretical solution does. This shows that the temporal mean is not
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very sensitive to systematic sampling and the uncertainty can be assessed with the theoretical solution suggested in equation

13.

It should be noted that this method can only be applied to grid cells that provide coverage for all days of the month. This is

essentially only true for arid areas with almost no cloud cover. The question arises how representative these regions are. We360

filter for relatively polluted regions (≥ 2×1015 molecules cm−2) and find more than 100 grid cells to which we can apply this

method. These are found mostly in cities in the Middle-East and western India, where January is in the dry season. We assume

these polluted areas are representative for polluted areas in other parts of the world and the theoretical solution can be applied

globally.

4 TROPOMI NO2 Level 3 dataset365

4.1 Dataset

The here presented ESA CCI+ TROPOMI Level 3 dataset is available for the period May 2018 to December 2021 at a monthly

resolution. The dataset is available on a global regular grid at different spatial resolutions: 0.2ox0.2o, 0.5ox0.5o, and 1ox1o.

The datasets are organised into a user-friendly and self-describing netCDF-4 format, following CF metadata conventions. The

dataset represents the NO2 columns at satellite overpass time (∼13:30h) under mostly clear-sky conditions.370

The dataset contains both the tropospheric and stratospheric vertical column density (see Appendix C for all variables). The

dataset contains two estimates of the total uncertainty for the tropospheric column σ̄total, one including the a priori uncertainty

and one version excluding the a priori uncertainty which can be used when applying the averaging kernel. A spatio-temporal

average of the tropospheric averaging kernel from the L2 dataset is also available in the L3 dataset. For assessing the L3 data

quality the L3 qa-value, count variable, and average cloud radiance fraction are also available. This dataset can be used for,375

e.g., temporal analysis, emission monitoring, data assimilation and model validation, and atmospheric chemistry studies.

4.2 Analysis of dataset

The results of the spatio-temporal average monthly mean and uncertainties for NO2 for January and June 2019 are shown

in Figure 4, with local values given in Table 3. Missing data are mainly due to polar night at high latitudes and filtering of

low-quality L2 data, due to, e.g., consistent cloud or snow cover. All results presented in this section are from the 0.2ox0.2o380

spatial resolution dataset.

In June the tropospheric NO2 columns are high in Africa due to wildfires and biomass burning in the dry season. In the

urbanised areas in the Northern Hemisphere, tropospheric NO2 columns have higher values during the winter season reflecting

longer lifetimes, and thus we see higher values over Amsterdam and Beijing in January than in June (Table 3, Figure 6). The

opposite is true for urbanised areas in the Southern Hemisphere, for example Rio de Janeiro (Table 3, Figure 6). The total385

uncertainty in winter when not applying the averaging kernel attributes to 21% and 17% of the total tropospheric column for

Amsterdam and Beijing respectively. These percentages are 19 and 14% respectively when applying the averaging kernel. Due
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(a) one grid cell random sampling (b) randomly sampling 100 cells

(c) one grid cell systematic sampling (d) systematically sampling 100 cells

Figure 3. Results of repeatedly sampling grid cells to calculate σ̄rt. (a) Repeated random sampling of 31 days of a single grid cell with

values xo,t. Daily observations in the grid cell are randomly sampled 200 times. The thin grey lines represent the difference between the

sampled mean and the actual mean from individual random experiments. The green line is the mean of the samples and the blue line the

theoretical result from equation 13. (b) Results of randomly sampling 100 grid cells. The grey lines are the green line from panel a. The green

line (overlapping the blue theoretical result) is the mean of the results of 100 grid cells. (c) Systematic sampling of a single grid cell. (d)

Results of systematically sampling 100 grid cells. Observations in all panels are from January 2019 and have a mean tropospheric column of

≥ 2× 1015 molecules cm−2. Only grid cells with observation available every day are sampled.
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Figure 4. Example of results of the monthly (a) tropospheric NO2 column with its (b) total uncertainty (σ̄total) for January 2019 and the

same (c,d) for June 2019. Hatched where qa=0.

Table 3. Example values for monthly mean tropospheric NO2 column and uncertainties (with percentage of mean tropospheric column) for

a few selected locations for January and June 2019 (units: 1015 molecules cm−2). The values for Amsterdam, Beijing, and Rio de Janeiro

were taken from one grid cell in the city centre location (52.3N 4.9E for Amsterdam, 39.9N 116.3E for Beijing, and 22.9S 43.1W for Rio de

Janeiro). The value for Africa biomass burning represents the location with the highest observed monthly mean value in the sub-equatorial

region on the continent of Africa (in a box between latitudes 16S and 16N and longitudes 17.5W and 42E). The uncertainty estimates are

with the a priori uncertainty, which does not need to be included when using the averaging kernel.

Amsterdam Beijing Rio de Janeiro
Africa biomass

burning

x̄ Jan 5.45 32.28 2.87 7.20

Jun 4.58 11.04 4.54 14.63

σ̄total Jan 1.15 (21%) 5.50 (17%) 0.38 (13%) 1.03 (14%)

Jun 0.78 (17%) 1.72 (16%) 0.59 (13%) 2.10 (14%)

to the averaging of random errors the L3 uncertainty is lower than the uncertainty in L2 orbits, despite the introduction of

representativeness errors. The average relative uncertainty in valid L2 pixels in January 2019 in Amsterdam is 52%, compared

to the 21% in the L3 dataset. In Beijing the average relative L2 uncertainty is 28%, compared to the 17% in L3 in January390

2019.

The separate uncertainty sources are shown in Figure 5 for January 2019. Over unpolluted areas the largest source of

uncertainty comes from the estimation of the stratospheric column concentration (Fig. 5b). In polluted regions the largest error
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Figure 5. All components of tropospheric column density uncertainty using the discussed spatial and temporal correlations for January 2019

(total uncertainty in Figure 4b).

source is the AMF uncertainty (Fig. 5c). Because the slant column density uncertainty is assumed random over both space

and time, the uncertainty averages out over a large number of observations and is very small in the L3 dataset (Fig. 5a), but395

it should be noted that the systematic component of the SCD uncertainty is included in the stratospheric uncertainty estimate.

The spatial and temporal representativeness uncertainty is largest in Europe and East Asia, where the standard deviation of the

tropospheric column is largest, but a minor component in the total uncertainty budget.

Time series of the tropospheric NO2 column for four polluted locations are shown in Figure 6. The available time series is too

short to show long-term changes. The time series in Beijing and Amsterdam show features linked to the pandemic lockdowns400

(2020-2021) (Bauwens et al., 2020) and indicate an overall reduction of tropospheric NO2 columns over the 5 years, although

Amsterdam displays a large variability and the decrease may not be significant.

The Global Climate Observing System (GCOS) states requirements for observational datasets of the ECVs, including the

precursors for aerosol and ozone variable NO2 tropospheric column (World Meteorological Organization (WMO) et al.,

2022a). We examine the uncertainties in the NO2 tropospheric column against the GCOS required measurement uncertainty405

(Figure 7), which is formulated as a threshold, breakthrough, and goal value (World Meteorological Organization (WMO)

et al., 2022b). The threshold requirement, the minimum requirement to be met to ensure that data are useful, requires the rela-
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Figure 6. Time series of the monthly mean tropospheric column NO2 with the total uncertainty (σ̄total) for the same locations as in Table 3.

The values in the time series represent a single L3 grid cell value and the associated total uncertainty is given as the shaded area.

tive uncertainty to be lower than 100% and the absolute uncertainty to be less than 5×1015 molecules cm−2. The breakthrough

requirement represents a significant improvement, and requires the relative uncertainty to be lower than 40% and the absolute

uncertainty to be less than 2×1015 molecules cm−2. Lastly, the goal is reached when the relative uncertainty is lower than 20%410

and the absolute uncertainty is less than 1×1015 molecules cm−2 (World Meteorological Organization (WMO) et al., 2022b).

Due to the averaging of uncorrelated uncertainties in creating the L3 dataset, the GCOS requirements are met more frequently

in L3 than in L2 (Figure 7), suggesting L3 data are useful for climate monitoring. In June 2019 over Beijing the absolute uncer-

tainty (and relative uncertainty) drops from an average of 2.81×1015 molecules cm−2 (27.9%) in L2, with most pixels reaching

the threshold requirement, to 1.72×1015 molecules cm−2 (15.5%) in L3, well within the breakthrough requirement (Figure415

7c). Over Amsterdam the absolute uncertainty (and relative uncertainty) drops from an average of 1.44×1015 molecules cm−2

(32.9%) in L2, with most pixels reaching the breakthrough requirement, to 0.78×1015 molecules cm−2 (16.9%) in L3, within

the goal requirement (Figure 7d).
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Figure 7. June 2019 (a) L2 and (b) L3 dataset as reviewed by the GCOS requirements for measurement uncertainty. Black regions do not

fulfil the GCOS requirements, red regions fulfil ‘threshold‘ requirements, blue regions fulfil ‘breakthrough‘ requirements, and green regions

fulfil ‘goal‘ requirements. The histograms show the L2 pixel uncertainties that fall in a single 0.2ox0.2o L3 grid cell for (c) Beijing and (d)

Amsterdam and the grid cell L3 total uncertainty (vertical line).

5 Validation

As independent validation, the ESA CCI+ TROPOMI Level 3 NO2 dataset was compared to ground-based remote sensing420

using the same reference data and methodologies used for the validation of the underlying Level-2 data reported in Verhoelst

et al. (2021), in van Geffen et al. (2022a), and in the S5P ATM-MPC quarterly Routine Operations Consolidated Validation

Reports (ROCVR, available at https://mpc-vdaf.tropomi.eu/). However, the monthly gridded nature of the L3 data does imply

a need for some adaptations in the comparison methodology. The specific aspects and validation results are reported below, per

(sub-)column. The L3 TROPOMI data were all filtered using the L3_qa value.425

5.1 Stratospheric-column validation

The L3 TROPOMI stratospheric NO2 columns were compared to the consolidated LATMOS_v3 sunset SAOZ measurements

obtained at 10 sites covering mostly clean sites distributed globally from the Southern high latitudes up to the Northern high

latitudes (Pommereau and Goutail, 1988). These twilight zenith-sky measurements (Solomon et al., 1987) have an estimated
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uncertainty of about 10-14% (Yela et al., 2017; Bognar et al., 2019) and they were adjusted to the average TROPOMI overpass430

time of the monthly averages (represented in the file as eff_frac_day) using a model-based photochemical adjustment (Hen-

drick et al., 2004). For optimal spatial co-location, we compared the SAOZ measurements to the S5P 1.0◦×1.0◦ L3 grid cell

covering the center of the SAOZ observation operator. This procedure accounts for the large horizontal smoothing and offset

in the SAOZ measurement sensitivity towards the setting sun (Lambert et al., 1997; Verhoelst et al., 2015). An illustration

of such a comparison, at the Observatoire de Haute Provence in France, is shown in Fig. 8. This comparison shows excellent435

agreement, within the uncertainties of each product.

Figure 8. Time series of co-located L3 TROPOMI and photochemically-adjusted sunset SAOZ stratospheric NO2 column measurements at

the Observatoire de Haute Provence (France).

The network-wide results are summarized in Fig. 9. Overall, these stratospheric column comparisons yield results very

similar to those for the underlying L2 (Verhoelst et al., 2021), with a virtually insignificant network-mean bias and a dispersion

of typically around 0.2×1015 molecules cm−2. The somewhat larger bias and dispersion over Paris is probably related to

tropospheric contamination in the SAOZ measurements.440

5.2 Tropospheric column

The L3 TROPOMI tropospheric NO2 columns were compared to the MAX-DOAS tropospheric column data (Hönninger and

Platt, 2002) collected from various sources and harmonized (in terms of file format) through the NIDFORVAL project for

the operational S5P L2 validation. Total uncertainty estimates on these tropospheric VCD measurements are of the order of

7%–17% in polluted conditions, including both random (around 3% to 10%, depending on the instrument) and systematic (11%445

to 14%) contributions (e.g., Hendrick et al., 2014). MAX-DOAS data obtained within 30 minutes of the underlying L2 S5P

data were compared to 0.2◦×0.2◦ L3 grid cells covering the station location. To ensure good temporal representativeness, only

those sites at which at least a full year of comparisons could be made, were retained. This yielded 8 sites, covering moderately

to severely polluted conditions. The most polluted case (e.g., Pinardi et al., 2020), Xianghe in China, is analysed in Fig. 10,

20

https://doi.org/10.5194/essd-2024-616
Preprint. Discussion started: 12 February 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 9. Box-and-whisker plots summarizing from pole to pole the bias and spread of the difference between the L3 TROPOMI and ground-

based SAOZ data. The median difference is represented by a vertical solid line inside the box that marks the 25% and 75% quantiles. The

whiskers cover the 9%–91% range of the differences. Values between brackets in the labels denote the latitude of the station.

revealing a slightly better correlation and smaller dispersion of the differences than observed in the validation of the underlying450

L2 data. This is most likely a due to the reduced measurement and atmospheric noise in the monthly averages. The mean and

median difference are however more negatively biased, which canb be attributed the poorer spatial resolution of the L3 data set

compared to the constituent L2 data.

The network-wide results for the MAX-DOAS comparisons are visualized in Fig. 11. These confirm the relatively small

dispersion of the differences, typically about 12%, which is well within the combined prognostic uncertainty budget (quadratic455

sum of 20% uncertainty on the TROPOMI L3 data and probably at least 10% on the monthly averaged MAX-DOAS data,

depending on how one propagates the systematic and random components of the MAX-DOAS uncertainty). Also confirmed is

the strong negative bias in TROPOMI NO2, to be understood as a combination of the L2 negative bias and additional systematic

differences related to the spatial smearing in the L3 data. Unexpected is the more pronounced negative bias at the relatively

clean sites, which is opposite to the behaviour observed for the underlying L2 data. This result is not confirmed by the total460

column comparisons described in Sect. 5.3 and may be a case of small-number statistics or peculiarities at these individual

sites.
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Figure 10. Time series of co-located TROPOMI and MAX-DOAS tropospheric NO2 column measurements at Xianghe (China). Light

markers represent the co-located L2 data from the current operational processor (v2.4 RPRO, as used for ROCVR #24), the solid lines

represent the L3 data.

Figure 11. Similar to Fig. 9 but representing the agreement between the S5P-TROPOMI and MAX-DOAS tropospheric NO2 column mea-

surements, limited to those sites for which a full year of comparisons is available. Sites are ordered by mean tropospheric NO2 VCD, cleaner

sites at the bottom, more polluted sites at the top.

5.3 Total-column validation

The TROPOMI L3 total NO2 columns, calculated as the sum of the tropospheric and stratospheric columns provided in

the data files, were compared to Pandora direct-sun measurements (v1.8) from the Pandonia Global Network (PGN, https:465
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//pandonia-global-network.org/). These measurements have a random error uncertainty of about 0.27× 1015molecules cm−2

and a systematic error uncertainty of 2.7×1015molecules cm−2 (Herman et al., 2009). All Pandora measurements satisfying the

recommended PGN quality filtering and obtained within 30 minutes from the satellite effective fractional day (eff_frac_day

in the data files) were averaged and only the 0.2◦×0.2◦ L3 grid cell covering the instrument location was used. To ensure good

temporal representativeness, only those sites at which at least a full year of comparisons could be made, were retained. This470

yielded 8 sites, covering both unpolluted rural conditions and severe pollution, e.g., in the megacity of Mexico City. Figure 12

demonstrates the agreement at this most polluted site for both the L3 product and the current operational L2 product, which is

the v2.4 full mission reprocessed (RPRO) data set for this period of S5P measurements.

Figure 12. Time series of co-located TROPOMI and PGN total NO2 column measurements at Vallejo (Mexico City). Light markers represent

the co-located L2 data from the current operational processor (as available on the ATM-MPC VDAF AVS), the solid lines represent the L3

data.

As for the tropospheric VCD comparisons, the correlation between TROPOMI L3 and Pandora data is excellent (r ∼ 0.9)

for these comparisons in a highly polluted environment, and even better than at L2. Again, as for the tropospheric column475

comparisons, the NO2 underestimation already seen in L2 is more pronounced for the L3 NO2 product with a median diff

of about -35% (versus -17% for L2) and a regression slope of 0.54 (versus 0.62 for L2). For a pollution hot spot such as

Mexico city, this is most likely due to the coarse L3 product resolution (0.2◦), which tends to spatially smear out gradients

compared to the pixel-resolution L2 data (0.05◦). On the other hand, thanks to the temporal averaging, the dispersion of the

differences between L3 and PANDORA NO2 is significantly reduced, from more than 15% down to about 10%. The network-480

wide results are summarized in Fig. 13. The tendency that TROPOMI NO2 show a more pronounced underestimation for

larger total NO2 column values is in line with the L2 validation results which show virtually no underestimation (or even a

very slight overestimation) at the cleanest sites, where the NO2 column is dominated by the stratospheric contribution, and

an underestimation up to 20-30% at the most polluted sites (Verhoelst et al., 2021, and updates in the ROCVR). These total

column results therefore do not confirm the more pronounced negative biases observed in the MAX-DOAS comparisons at485

sites with only moderate pollution (when compared to more polluted sites).
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Figure 13. Similar to Fig. 9 but representing the agreement between the S5P-TROPOMI and PGN total NO2 column measurements, limited

to those sites for which a full year of comparisons is available. Sites are ordered by mean total NO2 VCD, cleaner sites at the bottom, more

polluted sites at the top.

6 Conclusions

We developed a comprehensive level-3 (L3) dataset of gridded and averaged tropospheric NO2 column retrievals (v2.3.1) from

the TROPOMI sensor, covering the period from May 2018 to December 2021. The dataset is available at multiple spatial

resolutions (0.2◦ × 0.2◦, 0.5◦ × 0.5◦, and 1◦ × 1◦) on a monthly timescale. Using a tiling (superobservation) approach, we490

ensured that (1) valid NO2 retrievals are gridded according to pixel area, and (2) temporal averages are calculated as weighted

means, with weights reflecting the representativeness of superobservations for specific days. This L3 dataset is applicable for

clear-sky or low-cloud conditions at TROPOMI’s overpass time of 13:30.

Realistic uncertainties were derived by propagating L2 retrieval uncertainties. To address spatial and temporal error cor-

relations, we considered errors in the stratosphere-troposphere separation and air mass factor calculations, which are partly495

spatially correlated. Representativeness uncertainty, stemming from incomplete coverage of grid cells by valid L2 retrievals

(e.g., due to cloud cover), was found to be more significant in polluted regions. The combined L3 uncertainty accounts for both

measurement uncertainties (including spatial representativeness errors) and temporal representativeness uncertainties. Analy-

sis showed that 30% of retrieval uncertainties persist over a month due to error correlations in the stratosphere-troposphere

separation and air mass factor calculations.500
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Over polluted areas, the L3 dataset showed reduced uncertainties compared to averaged L2 retrievals, demonstrating the

effectiveness of averaging large numbers of observations. For example, while monthly average L2 uncertainties are 30–50%

over Beijing and Amsterdam, they drop to 20% or less in the L3 dataset, meeting the GCOS ‘breakthrough‘ and even ‘goal‘

requirements. Validation against ground-based PANDORA measurements revealed a consistent temporal correlation but with

a low bias of 20%, partly attributed to more pronounced spatial smearing in the L3 product.505

This monthly mean L3 TROPOMI tropospheric NO2 dataset offers a coherent and much-reduced (in size) data record,

making it suitable for atmospheric chemistry studies, for evaluating atmospheric models and analyzing spatiotemporal NO2

trends. The methods presented here can be replicated when creating L3 datasets for other atmospheric gases and other Earth

Observation L3 datasets. Future work will include applying the presented methods on NO2 retrievals from OMI and combine

TROPOMI and OMI observations to create a decades-long consistent CDR.510

7 Code and data availability

Data described in this manuscript can be accessed at repository under data doi https://doi.org/10.21944/CCI-NO2-TROPOMI-L3.

(KNMI, 2025). The generated L3 dataset will be made available on the ESA Climate Change Initiative Open Data portal.

The software to create the spatial average is available at https://doi.org/10.5281/zenodo.10726644. Software to generate the

temporal-spatial mean resulting in the L3 dataset is available at https://doi.org/10.5281/zenodo.14505524. The TROPOMI L2515

v2.3.1 NO2 dataset which is the input for the generated dataset is not the operational version and thus no longer publicly avail-

able. A sample of the data can be shared upon request. TROPOMI NO2 L2 v2.4 is available on the Copernicus Data Space

Ecosystem (https://doi.org/10.5270/S5P-9bnp8q8). The reference data used for the ground-based validation are available from

the NDACC Data Host Facility at www.ndacc.org (SAOZ and selected MAX-DOAS data) and from both the PGN website

(https://www.pandonia-global-network.org/) and ESA’s Validation Data Center (EVDC, https://evdc.esa.int/) for the Pandora520

data.

Appendix A: L2 observations in the descending node

During polar summer, the polar regions are marked by 24 hours daylight. In the Northern Hemisphere, this means that the polar

region on the ‘backside’ of the Earth is experiencing daylight from May to August, and observations are made in the descending

node of the satellite. These observations in the descending node are included in the L2 NO2 product and not quality-flagged in525

the qa-value before version 2.7.

However, we find that the observations in the descending node of the orbit show structurally different retrieval results for

the tropospheric vertical NO2 column in the Arctic region (north of 60◦ latitude) than the observations from the ascending

node in June (Figure A1a). While retrievals in the ascending part of the orbit show a median value of 0.2×10 molecules cm−2,

retrievals in the descending part show a long tail of negative tropospheric NO2 values and the mode of the probability density530
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curve is negative. This difference between results from the ascending and descending part of the orbits is less obvious in the

Antarctic region in December (Figure A1b).

A TROPOMI validation report (Lambert et al., 2023) has shown that TROPOMI underestimates tropospheric NO2 columns

compared to ground-based Pandora instruments at the high-latitude locations of Ny-Ålesund and Eureka by about 15%. The

discrepancy between tropospheric NO2 column observations from the descending node and ascending node could play a role535

in this underestimation.

The discrepancy between retrievals done in the descending and ascending node is caused because the descending node

observations are not included in the data assimilation in TM5-MP and thus the stratospheric columns are more uncertain and

often overestimated (Figure A1c). Based on these results, we recommend to not use retrievals from the descending part of the

orbit. From TROPOMI L2 version 2.7 onwards, the qa-value is adjusted to include flags for the descending orbital observations.540
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(a) (b)

(c) (d)

Figure A1. NO2 vertical column observations (qa>0.75) in ascending and descending mode for the troposphere (a) and stratosphere (c)

north of 60° latitude from orbits in June 2019 and for the troposphere (b) and stratosphere (d) south of -60° latitude from orbits in December

2019.
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(a) (b)

Figure B1. Results of repeatedly sampling grid cells in a systematic way to calculate the representativeness function f . (a) One single grid

cell (polluted, xo,t ≥ 1.8× 1015 molecules cm−2) sampled 200 times. The grey lines represent 200 individual experiments sampling the same

superobservation grid cell. The green line is the mean of the individual experiments and the purple curve is the representativeness function

in equation 6 fitted to the green line. The blue curve shows the theoretical representativeness function in the case of random sampling (result

if grid cell is not sensitive to systematic sampling). (b) Results of sampling 100 grid cells in polluted regions. The grey lines is a collection

of purple lines from (a), the purple curve is the mean of the grey curves. The blue line again shows the theoretical random solution.

Appendix B: The number of effective observations

The number of effective observations Neff characterizes how sensitive a region is to systematic sampling, which can occur due

to for example a cloud field covering part of a grid cell. The lower the value for Neff , the more sensitive a region is to systematic

sampling. In a region where the uncertainty in NO2 columns is dominated by noise, usually a relatively unpolluted region, the

Neff is high. In such a region, the draw of one retrieval can be enough to characterize the spatial ensemble on a whole. In545

an area with strong pollution gradients, usually a polliuted area, multiple draws are needed for proper characterization. For

example, a grid cell covering a city, effectively consists of two types of NO2 observations: those over the polluted city and

those over the unpolluted nearby rural area, and such areas are thus sensitive to systematic sampling.

The value for Neff was estimated by Rijsdijk et al. (2024) by repeatedly sampling a fully-covered grid cell in a systematic

way (starting with one random pixel and then adding neighbouring pixels) and calculating the representativeness (the absolute550

difference between the mean of observed pixels and the true mean of the fully covered grid cell when including all pixels). The

representativeness function f in equation 6 was then fitted to the mean of these experiments, providing the number of effective

observations Neff for this superobservation grid cell (Figure B1a). For this polluted grid cell, with resolution 0.2o × 0.2o and

TROPOMI pixels of 5.5 × 3.5 km2, the number of effective observations Neff is somewhat smaller than 13.

This method was repeated for multiple superobservation grid cells. The results showed that polluted regions (xo,t ≥ 1.8555

molecules cm−2) have a lower value for Neff than unpolluted regions (xo,t < 1.8 molecules cm−2), making it more sensitive
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Table B1. The ratio N/Neff for TROPOMI NO2 in unpolluted and polluted (xo,t > 1.8× 1015 molecules cm−2) regions for different spatial

resolutions of the superobservation grid. The ratio increases with superobservation area (degree2).

N/Neff unpolluted areas N/Neff polluted areas

0.2◦x0.2◦ 1.376 3.933

0.5◦x0.5◦ 1.890 7.392

1.0◦x1.0◦ 3.724 19.746

2.0◦x2.5◦ 13.508 85.634

to systematic sampling (Rijsdijk et al., 2024). The ratio N/Neff , where N is the number of pixels (valid or not) in a super-

observation, was determined for NO2 retrievals from TROPOMI in Rijsdijk et al. (2024) to be linearly dependent on the grid

resolution. This linear relationship was determined for both polluted and unpolluted superobservations by Rijsdijk et al. (2024).

For a superobservation resolution of 0.2°x0.2° this results in N/Neff = 1.376 for unpolluted areas which are not sensitive to560

systematic sampling and N/Neff = 3.933 for polluted areas which are more sensitive to systematic sampling (Table B1). These

ratios are used to determine the number of effective observations Neff for each grid cell in the superobservation. When the Neff

is equal to the number of pixels N , and thus the ratio N/Neff equals 1, systematic sampling has no effect. The ratios N/Neff

would need to be redetermined for another substance or sensor (with a different pixel resolution) following the methods in

Rijsdijk et al. (2024).565
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Appendix C: Contents of L3 dataset

Table C1. Overview of the variables, units and types in the main L3 data output product file.

name/data symbol unit data set name

air-mass factor M trop 1 tropospheric_NO2_column_number_density_amf

M 1 total_NO2_column_number_density_amf

averaging kernel A 1 NO2_averaging_kernel

cloud radiance fraction wNO2 1 cloud_fraction

cloud pressure pc hPa cloud_pressure

grid cell coordinates δgeo
o latitude

ϑgeo
o longitude

grid cell corners δgeo
o latitude_bounds

ϑgeo
o longitude_bounds

land/water classification - 1 land_water_mask

number of pixels used - 1 no_observations

in averaging - 1 tropospheric_NO2_column_number_density_count

profile layers Nl 1 layer

quality assurance value - 1 qa_L3

slant column density Ns,NO2 molecules cm−2 NO2_slant_column_number_density

N trop
s,NO2

molecules cm−2 NO2_slant_column_number_density_troposphere

σNs,NO2
molecules cm−2 NO2_slant_column_density_uncertainty

surface albedo As 1 surface_albedo

surface pressure ps hPa surface_pressure

time - days eff_date

- 1 eff_frac_day

t date time

TM5 pressure level ATM5
l hPa tm5_sigma_a

coefficients BTM5
l 1 tm5_sigma_b

vertical column density N trop
v,NO2

molecules cm−2 tropospheric_NO2_column_number_density

N strat
v,NO2

molecules cm−2 stratospheric_NO2_column_number_density

vertical column uncertainty σ̄ molecules cm−2 tropospheric_NO2_column_number_density_temporal_std

σ̄total molecules cm−2 tropospheric_NO2_column_number_density_total_uncertainty

σ̄total,kernel molecules cm−2 tropospheric_NO2_column_number_density_total_uncertainty_kernel
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