The JapanFlux2024 dataset for eddy covariance observations covering Japan and East Asia from 1990 to 2023 Masahito Ueyama¹, Yuta Takao¹, Hiromi Yazawa², Makiko Tanaka², Hironori Yabuki³, Tomo'omi Kumagai⁴, Hiroki Iwata⁵, Md. Abdul Awal⁶, Mingyuan Du⁷, Yoshinobu Harazono⁸, Yoshiaki Hata⁴, Takashi Hirano⁹, Tsutom Hiura⁴, Reiko Ide¹⁰, Sachinobu Ishida¹¹, Mamoru Ishikawa¹², Kenzo Kitamura¹³, Yuji Kominami¹⁴, Shujiro Komiya¹⁵, Ayumi Kotani¹⁶, Yuta Inoue¹⁴, Takashi Machimura¹⁷, Kazuho Matsumoto¹⁸, Yojiro Matsuura¹⁴, Yasuko Mizoguchi¹⁹, Shohei Murayama²⁰, Hirohiko Nagano²¹, Taro Nakai²², Tatsuro Nakaji²³, Ko Nakaya²⁴, Shinjiro Ohkubo²⁵, Takeshi Ohta²⁶, Keisuke Ono²⁷, Taku M. Saitoh²⁸, Ayaka Sakabe²⁹, Takanori Shimizu¹⁴, Seiji Shimoda³⁰, Michiaki Sugita³¹, Kentaro Takagi³², Yoshiyuki Takahashi¹⁰, Naoya Takamura⁴, Satoru Takanashi¹⁹, Takahiro Takimoto²⁷, Yukio Yasuda¹⁴, Qinxue Wang¹⁰, Jun Asanuma³³, Hideo Hasegawa²¹, Tetsuya Hiyama³⁴, Yoshihiro Iijima³⁵, Shigeyuki Ishidoya²⁰, Masayuki Itoh³⁶, Tomomichi Kato⁹, Hiroaki Kondo²⁰, Yoshiko Kosugi²⁹, Tomonori Kume³⁷, Takahisa Maeda²⁰, Shoji Matsuura²⁷, Trofim Maximov³⁸, Takafumi Miyama¹⁴, Ryo Moriwaki³⁹, Hiroyuki Muraoka⁴, Roman Petrov³⁸, Jun Suzuki⁴⁰, Shingo Taniguchi⁴¹, & Kazuhito Ichii² - ¹Graduate School of Agriculture, Osaka Metropolitan University, Sakai 599-8531, Japan ²Center for Environmental Remote Sensing (CEReS), Chiba University, Chiba 263-8522, Japan ³National Institute of Polar Research (NIPR), Tokyo 190-8518, Japan - ⁴Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan - ⁵Department of Environmental Science, Faculty of Science, Shinshu University, Matsumoto 390-8621, Japan - ⁶Department of Crop Botany, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh - ⁷Xingjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Xinjiang 830011, China - ⁸International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775, USA - ⁹Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan - ¹⁰National Institute for Environmental Studies, Tsukuba 305-8506, Japan - 25 ¹¹Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan - ¹²Faculty of Earth Environmental Science, Hokkaido University, Sapporo 060-0810 Japan - ¹³Kyushu Research Center, Forestry and Forest Products Research Institute, Kumamoto 860-0862, Japan - ¹⁴Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan - ¹⁵Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena 07745, Germany - 30 ¹⁶Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan - ¹⁷Graduate School of Engineering, Osaka University, Suita 565-0871, Japan - ¹⁸Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan - ¹⁹Kansai Research Center, Forestry and Forest Products Research Institute, Kyoto 612-0855, Japan - ²⁰National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8569, Japan - 35 ²¹Institute of Science and Technology, Niigata University, Niigata 950-2181, Japan - ²²School of Forestry and Resource Conservation, National Taiwan University, Taipei 106319, Taiwan - ²³Sapporo Experimental Forest, Hokkaido University, Sapporo 060-0809, Japan - ²⁴Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry, Abiko 270-1194, Japan - ²⁵Forestry Research Institute, Forest Research Department, Hokkaido Research Organization, Bibai 079-0198, Japan - 40 ²⁶Professor emeritus, Nagoya University, Nagoya 464-8601 Japan - ²⁷Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8604 Japan - ²⁸Center for Environmental and Societal Sustainability, Gifu University, Gifu 501-1193, Japan Correspondence to: Masahito Ueyama (mueyama@omu.ac.jp) Abstract. Eddy covariance observations play a pivotal role in understanding the land-atmosphere exchange of energy, water, carbon dioxide (CO₂), and other trace gases, as well as the global carbon cycle and earth system. To promote the networking of individual measurements and the sharing of data, FLUXNET links regional networks of researchers studying land-atmosphere processes. JapanFlux was established in 2006 as a country branch of AsiaFlux. Despite the growing number of shared data globally, the availability in Asia is currently limited. In this study, we developed an open dataset of the eddy covariance observations for Japan and East Asia, called JapanFlux2024, that was conducted by researchers affiliated with Japanese research institutions. The data was processed using selected standard methods from the FLUXNET community, with adaptations specific to the JapanFlux2024 dataset. Here, we present the data description and data processing and show the value of processed fluxes of sensible heat, latent heat, and CO₂. The dataset will facilitate important studies for Japan and East Asia, such as land-atmosphere interactions, improvement of process models, and upscaling fluxes using machine learning and remote sensing technology as well as bridge collaborations between Asia and FLUXNET. # 1 Introduction 70 The global network of micrometeorological flux observations, FLUXNET (Delwiche et al., 2024; https://fluxnet.org/), plays a pivotal role in multi-disciplinary fields, such as land-atmosphere interactions, global biogeochemical cycles, and earth system science (Baldocchi et al., 2024; Bonan et al., 2012). FLUXNET started in 1997 as a global network of eddy covariance observations that provides data on land-atmosphere exchanges of energy, water, carbon dioxide (CO₂), methane (CH₄), and other trace gases by measuring direct turbulent transfer. The quasi-continuous eddy covariance observations revealed variations of land-atmosphere exchange at the diurnal, seasonal, interannual, and decadal scales, ranging from site (Takamura et al., 2023; Ueyama et al., 2024f) to global scales (Beer et al., 2010; Keenan et al., 2023; Ueyama et al., 2020a). ²⁹Graduate School of Agriculture, Kyoto University, Kyoto 606-8501 Japan H5 ³⁰Memuro Research Station, Hokkaido Agricultural Research Center, NARO, (HARC/M /NARO), Memuro 082-0081, Japan ³¹Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan ³²Field Science Center for Northern Biosphere, Hokkaido University, Toikanbetsu, 098-2943, Japan ³³Center for Research in Isotopes and Environmental Dynamics (CRiED), University of Tsukuba, Tsukuba 305-8572, Japan ³⁴Institute for Space-Earth Environmental Research, Nagoya University, Nagoya 464-8601, Japan ³⁵Department of Geography, Tokyo Metropolitan University, Tokyo 192-0397 Japan ³⁶Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan ³⁷Kasuya Research Forest, Kyushu University, Fukuoka 811-2415, Japan ³⁸Institute for Biological Problems of Cryolithozone, Yakutsk 677980, Russia ³⁹Faculty of Engineering, Ehime University, Matsuyama 790-8577, Japan ⁴⁰Faculty of Agriculture, Shinshu University, Nagano 399-4598, Japan ⁴¹Faculty of Agriculture, University of the Ryukyus, Okinawa 903-0213, Japan The eddy flux communities have developed publicly open databases to promote the multidisciplinary sciences. FLUXNET has periodically released the open datasets for eddy covariance observations: La Thuile Database (252 sites in 2007; Verma et al., 2014; https://fluxnet.org/data/la-thuile-dataset/), and FLUXNET2015 (212 sites in 2015; Pastorello et al., 2020). Together with the global carbon project (Friedlingstein et al., 2023; www.globalcarbonproject.org), FLUXNET also provided a topical dataset, FLUXNET-CH4 (Delwiche et al., 2021), which promotes understanding of wetland CH4 emissions across the globe (Knox et al., 2019; Ueyama et al., 2023). Multiple open databases for the environmental sciences have also been developed for understanding CO2 fluxes in high-latitude ecosystems (Virkkala et al., 2021) and soil respiration (Bond-Lamberty et al., 2020). Asia has ca. ~60% of the total world population, and thus humans have been intensively modifying forest land cover in this region for food and energy production. Such land use changes in combination with climate change are likely to impact the regional and global carbon and water cycling. These issues are the greatest environmental concerns for the survival of the human population. Flux studies using eddy covariance observations were conducted since the early 1990s for agricultural fields, wetlands, lakes, plantations, primary and secondary forests, disturbed ecosystems, and urban areas. In Asia, although private databases for eddy covariance measurements were developed (Hirata et al., 2008; Ichii et al., 2017; Saigusa et al., 2013), no open databases have yet been developed except the AsiaFlux database (https://asiaflux.net/), which does not provide consistent gap-filling and flux partitioning. JapanFlux (https://www.japanflux.org/) was established in 2006 as a national branch of AsiaFlux (Kang and Cho, 2021; Mizoguchi et al., 2009) for the promotion of a network of micrometeorological measurements by researchers affiliated with Japanese research institutions. The mission of JapanFlux is to promote micrometeorological measurements and their collaborations with each other, researchers from other countries, and other research fields (e.g., remote sensing and modeling). Measurements by Japanese institutions have been conducted in Japan and other regions of East Asia (Mizoguchi et al., 2009; Saigusa et al., 2013) since the early 1990s for understanding energy, water, carbon, and greenhouse gas exchanges at various land surfaces. In this study, we developed JapanFlux2024, the first publicly open dataset by JapanFlux that
consists of micrometeorological data measured since the early 1990s. The data is processed with the selected standard methods employed by the FLUXNET community. The dataset is prepared with consistent post–processing, such as gap-filling and flux partitioning, and provides data at various temporal resolutions of half-hourly/hourly, daily, weekly, monthly, and annual intervals. The dataset consists of data collected at 83 sites with 683 site-years. The dataset promotes collaborations between researchers in Japan and other countries and improves our understanding of land-atmosphere interactions. ### 2 Data and methods 100 105 The JapanFlux2024 dataset is processed using selected standard methods from the FLUXNET community, with adaptations specific to the JapanFlux2024 dataset. According to the processing strategy of Pastorello et al., (2020), the JapanFlux2024 dataset was developed in four steps: (1) data submission by site teams, (2) formatting data in a FLUXNET format, (3) gap-filling and flux partitioning, and (4) preparing subsets and complete datasets (Fig. 1). Meta data files, so-called Biological, Ancillary, Disturbance, and Metadata (BADM), were also prepared. The data are available from the data portal (https://ads.nipr.ac.jp/japan-flux2024/) under the data management system, Arctic and Antarctic Data archive System (ADS). Under the ADS, a digital object identifier (DOI) was provided for each site (Table 1). The processing pipeline mentioned in this data paper represent steps downstream of "Filling gaps in meteorology with ERA5" in Fig. 1. Figure 1. Flow chart of data processing in the JapanFlux2024 dataset. Details in each step and meaning of abbreviations are shown in the text. Table 1. Information about sites included in the JapanFlux2024 dataset. | Site | Asia | Country | Cou | Site Name | Latit | Longit | Elev | Köppe | IGBP | Status | Years | Referenc | doi | |------|------|----------|------|--------------|-------|--------|-------|--------|-------|--------|-------|------------|---------------| | Code | Flux | | ntry | | ude | ude | ation | n | (land | | | e | | | (BAD | ID | | ID | | (deg | (degre | (m) | climat | use) | | | | | | M) | | | | | ree) | e) | | e | | | | | | | RU- | TUR | Russia | RU | Tura | 64.2 | 100.46 | 250 | Dfc | DNF | Ongoin | 04 | Nakai et | Matsuura and | | Tur | | | | | 0888 | 3555 | | | | g | | al. (2008) | Morishita | | | | | | | 8 | | | | | | | | (2025) | | RU- | | Russia | RU | Neleger | 62.3 | 129.48 | 221 | Dfd | GRA | Compl | 99-00 | Iwahana | Machimura | | NeB | | | | Burnt | 2593 | 7342 | | | | eted | | et al. | (2025a) | | | | | | Forest | 7 | | | | | | | (2005) | | | RU- | | Russia | RU | Neleger | 62.3 | 129.49 | 223 | Dfd | DNF | Compl | 99-06 | Iwahana | Machimura | | NeF | | | | larch forest | 1561 | 9964 | | | | eted | | et al. | (2025b) | | | | | | | 5 | | | | | | | (2005) | | | RU- | | Russia | RU | Neleger | 62.3 | 129.50 | 221 | Dfd | OSH | Compl | 01-06 | Iwahana | Machimura | | NeC | | | | Cutover | 1484 | 0075 | | | | eted | | et al. | (2025c) | | | | | | | 4 | | | | | | | (2005) | | | RU- | YLF | Russia | RU | Yakutsk | 62.2 | 129.61 | 217 | Dfc | DNF | Ongoin | 04-14 | Ohta et | Maximov et | | SkP | | | | Spasskaya | 5471 | 8543 | | | | g | | al. (2008) | al. (2025b) | | | | | | Pad larch | | | | | | | | | | | RU- | YPF | Russia | RU | Yakutsk | 62.2 | 129.65 | 216 | Dfc | ENF | Compl | 04-08 | Hamada | Kotani et al. | | Sk2 | | | | Spasskaya | 4129 | 1336 | | | | eted | | et al. | (2025) | | | | | | Pad Pine | 1 | | | | | | | (2004) | | | RU- | | Russia | RU | Ulakhan | 62.1 | 130.52 | 143 | | GRA | Compl | 00 | Yabuki et | Yabuki et al. | | USk | | | | Sykkhan | 5099 | 7517 | | | | eted | | al. (2004) | (2025) | | | | | | Alas | 5 | | | | | | | | | | RU- | | Russia | RU | Elgeeii | 60.0 | 133.82 | 203 | Dfd | DNF | Ongoin | 10-18 | Kotani et | Maximov et | | Ege | | | | forest | 1551 | 40123 | | | | g | | al. (2014) | al. (2025a) | | | | | | station | 563 | | | | | | | | | | MN- | SKT | Mongolia | MN | Southern | 48.3 | 108.65 | 1630 | Dwc | DNF | Compl | 03-06 | Li et al. | Asanuma | | Skt | | | | Khentei | 5186 | 4333 | | | | eted | | (2005b) | (2025b) | | | | | | Taiga | 1 | | | | | | | | | | MN- | | Mongolia | MN | Udleg | 48.2 | 106.85 | 1342 | Dwc | DNF | Ongoin | 10-12 | Miyazaki | Ishikawa | | Udg | | | | practice | 5638 | 11111 | | | | g | | et al. | (2025) | | | | | | forest | 888 | | | | | | | (2014) | | | MN- | | Mongolia | MN | Nalaikh | 47.6 | 107.48 | 1531 | BSk | GRA | Compl | 15-20 | Wang et | Wang et al. | | Nkh | | | | grassland | 9359 | 9342 | | | | eted | | al. (2023) | (2025b) | | | | | | | 2 | | | | | | | | | | MN- | | Mongolia | MN | Hustai | 47.5 | 105.85 | 1227 | BSk | GRA | Compl | 15-20 | Wang et | Wang et al. | | Hst | | | | grassland | 9413 | 6439 | | | | eted | | al. (2023) | (2025a) | | | | | | | 1 | | | | | | | | | | | | 1 | | 1 | 1 | | | | | 1 | | 1 | | | MN- | KBU | Mongolia | MN | Kherlenbay | 47.2 | 108.73 | 1235 | Bsk | GRA | Compl | 03-09 | Li et al. | Asanuma | |--------|-----|----------|----|-------------|------|--------|------|-----|-----|--------|--------|------------|---------------| | Kbu | | | | an Ulaan | 1397 | 7333 | | | | eted | | (2005a) | (2025a) | | | | | | | 2 | | | | | | | | | | CN- | LSH | China | CN | Laoshan | 45.2 | 127.57 | 340 | Cfc | DNF | Ongoin | 02-06 | Wang et | Saigusa and | | Lsh | | | | | 7983 | 8206 | | | | g | | al. (2005) | Wang (2025) | | | | | | | 9 | | | | | | | | | | JP-Sb1 | | Japan | JP | Sarobetsu | 45.1 | 141.68 | 6 | Dfb | WET | Compl | 07-10 | Hirano et | Hirano | | | | | | Mire Moss | 0472 | 8194 | | | | eted | | al. (2016) | (2025a) | | | | | | | 2 | | | | | | | | | | JP-Sb2 | | Japan | JP | Sarobetsu | 45.1 | 141.68 | 4 | Dfb | WET | Compl | 07-10 | Hirano et | Hirano | | | | | | Mire Sasa | 0361 | 0833 | | | | eted | | al. (2016) | (2025b) | | | | | | | 1 | | | | | | | | | | JP-Tef | TSE | Japan | JP | CC-LaG | 45.0 | 142.10 | 79.4 | Dfb | DNF | Ongoin | 01-23 | Takagi et | Takagi and | | | | | | Teshio | 5580 | 7122 | 7 | | | g | | al. (2009) | Takahashi | | | | | | Experiment | 8 | | | | | | | | (2025) | | | | | | al Forest | | | | | | | | | | | JP- | MBF | Japan | JP | Moshiri | 44.3 | 142.31 | 596 | Af | DBF | Compl | 03-11 | Nakai et | Nakai et al | | MBF | | | | Birch | 8416 | 86111 | | | | eted | | al. (2006) | (2025a) | | | | | | Forest Site | 667 | | | | | | | | | | JP- | MM | Japan | JP | Moshiri | 44.3 | 142.26 | 343 | Af | MF | Compl | 03-11 | Nakai et | Nakai et al | | MMF | F | | | Mixd | 2194 | 13889 | | | | eted | | al. (2006) | (2025b) | | | | | | Forest Site | 444 | | | | | | | | | | JP- | BBY | Japan | JP | Bibai bog | 43.3 | 141.81 | 17 | Dfb | WET | Compl | 12-21 | Ueyama | Ueyama et al. | | BBY | | | | | 2296 | 079 | | | | eted | | et al. | (2025a) | | | | | | | | | | | | | | (2020c) | | | JP- | | Japan | JP | Kushiro | 43.1 | 144.33 | 4.9 | Dfb | WET | Compl | 94-96, | Miyata et | Harazono | | Km1 | | | | Mire: | 0751 | 0906 | | | | eted | 98 | al. (2001) | and Miyata | | | | | | Onnenai | 1 | | | | | | | | (2025a) | | | | | | Fen | | | | | | | | | | | JP- | | Japan | JP | Kushiro | 43.1 | 144.35 | 7 | Dfb | WET | Compl | 98-99 | Miyata et | Harazono | | Km2 | | | | Mire: | | | | | | eted | | al. (2001) | and Miyata | | | | | | Akanuma | | | | | | | | | (2025b) | | | | | | Bog | | | | | | | | | | | JP-Spp | SAP | Japan | JP | Sapporo | 42.9 | 141.38 | 174 | Dfb | DBF | Ongoin | 00-18 | Yamanoi | Mizoguchi | | | | | | forest | 8684 | 53305 | | | | g | | et al. | and Kitamura | | | | | | meteorolog | 31 | | | | | | | (2015) | (2025) | | | | | | y research | | | | | | | | | | | | | | | site | | | | | | | | | | | CN-In4 | | China | CN | Inner | 42.9 | 120.72 | 354 | Bsk | CRO | Compl | 94 | Li et al. | Harazono | | | | | | Mongolia | 4413 | 66222 | | | | eted | | (2000) | and Takagi | | | | | | maize | 333 | | | | | | | | (2025d) | | CN-In5 | | China | CN | Inner | 42.9 | 120.70 | 355 | Bsk | GRA | Compl | 92-94 | Li et al. | Harazono | |--------|-----|-------|----|------------|------|--------|----------|-----|-----|--------|--------|------------|---------------| | | | | | Mongolia | 3415 | 90778 | | | | eted | | (2000) | and Takagi | | | | | | no grazing | 833 | | | | | | | | (2025e) | | CN-In6 | | China | CN | Inner | 42.9 | 120.71 | 355 | Bsk | GRA | Compl | 92-94 | Li et al. | Harazono | | | | | | Mongolia | 3401 | 15472 | | | | eted | | (2000) | and Takagi | | | | | | heavy | 389 | | | | | | | | (2025f) | | | | | | grazing | | | | | | | | | | | CN-In8 | | China | CN | Inner | 42.9 | 120.71 | 355 | Bsk | GRA | Compl | 92, 94 | Li et al. | Harazono | | | | | | Mongolia | 3396 | 05306 | | | | eted | | (2000) | and Takagi | | | | | | medium | 667 | | | | | | | | (2025h) | | | | | | grazing | | | | | | | | | | | CN-In2 | | China | CN | Inner | 42.9 | 120.71 | 355 | Bsk | GRA | Compl | 91 | Li et al. | Harazono | | | | | | Mongolia | 3396 | 09639 | | | | eted | | (2000) | and Takagi | | | | | | grassland | 389 | | | | | | | | (2025b) | | CN-In7 | | China | CN | Inner | 42.9 | 120.70 | 355 | Bsk | GRA | Compl | 92-94 | Li et al. | Harazono | | | | | | Mongolia | 3391 | 96056 | | | | eted | | (2000) | and Takagi | | | | | | light | 944 | | | | | | | | (2025g) | | | | | | grazing | | | | | | | | | | | CN-In1 | | China | CN | Inner | 42.9 | 120.70 | 356 | Bsk | BSV | Compl | 90-91 | Li et al. | Harazono | | | | | | Mongolia | 2970 | 735 | | | | eted | | (2000) | and Takagi | | | | | | dune | 833 | | | | | | | | (2025a) | | CN-In4 | | China | CN | Inner | 42.9 | 120.72 | 354 | Bsk | CRO | Compl | 94 | Li et al. | Harazono | | | | | | Mongolia | 4413 | 66222 | | | | eted | | (2000) | and Takagi | | | | | | maize | 333 | | | | | | | | (2025d) | | JP- | TM | Japan | JP | Tomakomai | 42.7 | 141.51 | 140 | Dfb | DNF | Compl | 01-03 | Hirano et | Hirata and | | Tmk | K | | | Flux | 3697 | 6944 | | | |
eted | | al. (2003) | Hirano | | | | | | Research | 2 | | | | | | | | (2025) | | | | | | Site | | | | | | | | | | | JP- | TM | Japan | JP | Tomakomai | 42.7 | 141.52 | 117 | Dfb | DBF | Ongoin | 05-23 | Hirano et | Hirano and | | Tmd | K | | | Flux | 3591 | 3147 | | | | g | | al. (2017) | Hirata (2025) | | | | | | Research | 1 | | | | | | | | | | | | | | Site | | | | | | | | | | | | | | | Disturbed | | | | | | | | | | | JP-Toc | | Japan | JP | Tomakomai | 42.7 | 141.56 | 96 | Dfb | DBF | Ongoin | 10-14 | Nakamur | Nakaji et al. | | | | | | Crane site | 0972 | 5898 | | | | g | | a et al. | (2025) | | | | | | | 7 | | | | | | | (2014) | | | JP- | TOE | Japan | JP | Tomakomai | 42.6 | 141.57 | 90 | Dfb | DBF | Compl | 99-13 | Shibata et | Nakaji | | Tom | | _ | | Experiment | 9890 | 1488 | | | | eted | | al. (2005) | (2025) | | | | | | al Forest | 6 | | | | | | | | · | | | | | | 1 | _ |] | <u> </u> | J | | | l | | | | JP-Srk | SRK | Japan | JP | Shirakami | 40.5 | 140.12 | 340 | Dfa | DBF | Ongoin | 10-16 | Ishida et | Ishida (2025) | |---------|------|-------|----|-------------|------|--------|------|------|-----|--------|---------|---------------------|------------------------| | | | | | Beech | 6548 | 7794 | | | | g | | al. (2009) | | | | | | | Forest Site | 5 | | | | | | | (====) | | | JP-Api | API | Japan | JP | Appi forest | 40.0 | 140.93 | 831 | Dfa | DBF | Ongoin | 00-22 | Yasuda et | Yasuda | | эт гърг | 1111 | Jupun | 31 | meteorolog | 0135 | 658591 | 031 | Dia | DDI | g | 00 22 | al. (2012) | (2025a) | | | | | | y research | 8581 | 8296 | | | | 5 | | an. (2012) | (20234) | | | | | | site | 5243 | 0270 | | | | | | | | | JP-Mra | MR | Tomon | JP | Muramatsu | 37.6 | 139.19 | 43 | Cfa | CRO | Ongoin | 23 | Boiarskii | Nagana and | | JP-MII | | Japan | JP | | 9027 | 4429 | 43 | Cia | CKO | | 23 | | Nagano and
Hasegawa | | | A | | | Agricultura | | 4429 | | | | g | | and | | | | | | | 1 Field | 5 | | | | | | | Hasegaw
a (2019) | (2025) | | CN- | QHB | China | CN | Qinghai | 37.6 | 101.33 | 3250 | BSk | GRA | Ongoin | 01-14 | Du et al. | Du et al. | | HaM | | | | Flux | 0743 | 2 | | | | g | | (2021) | (2025) | | | | | | Research | 2 | | | | | | | | | | | | | | Site | | | | | | | | | | | | | | | Nasu | | | | | | + | | | | | | | | | Research | | | | | | | | | | | JP- | | | | Station, | 36.9 | 139.93 | | | | Compl | | Matsuura | Matsuura | | NsM | NSS | Japan | JP | Manure | 1583 | 58333 | 320 | Cfa | GRA | eted | 04-15 | et al. | (2025a) | | 143141 | | | | Application | 333 | 30333 | | | | Cica | | (2023) | (20234) | | | | | | Plot | | | | | | | | | | | | | | | Nasu | | | | | | | | | | | | | | | Research | | | | | | | | | | | | | | | | 26.0 | 120.02 | | | | C1 | | Matsuura | M-4 | | JP-NsC | NSS | Japan | JP | Station, | 36.9 | 139.93 | 320 | Cfa | GRA | Compl | 04-15 | et al. | Matsuura | | | | | | Chemical | 15 | 66667 | | | | eted | | (2023) | (2025b) | | | | | | Fertilizer | | | | | | | | | | | *** | **** | | ** | Plot | 25.4 | 100 77 | 1205 | D. 0 | | | 04.00 | | | | JP- | KZ | Japan | JP | Karuizawa | 36.4 | 138.57 | 1385 | Dfb | DBF | Compl | 01-08 | Nakaya | Nakaya et al. | | Kzw | W | | | | 0666 | 25 | | | | eted | | et al. | (2025) | | | | | | | 7 | | | | | | | (2006) | | | JP-Tkb | | Japan | JP | Tsukuba | 36.1 | 140.17 | 341 | Cfa | ENF | Ongoin | 14, 18- | Iida et al. | Shimizu et al. | | | | | | Experiment | 7337 | 6634 | | | | g | 21 | (2020) | (2025b) | | | | | | al | 9 | | | | | | | | | | | | | | Watershed | | | | | | | | | | | JP-Tak | TKY | Japan | JP | Takayama | 36.1 | 137.42 | 1425 | Dfb | DBF | Ongoin | 98-21 | Murayam | Murayama et | | | | | | deciduous | 4616 | 31111 | | | | g | | a et al. | al. (2025b) | | | | | | broadleaf | 667 | | | | | | | (2024a) | | | | | | | forest site | | | | | | | | | | | JP-Ta2 | TKC | Japan | JP | Takayama | 36.1 | 137.37 | 800 | Dfb | ENF | Ongoin | 05-22 | Saitoh et | Saitoh and | | | | | | evergreen | 3972 | 0833 | | | | g | | al. (2010) | Tamagawa | | | | | | coniferous | 2 | | | | | | | | (2025) | | | | | | forest site | | | | | | | | | | | JP-Tgf | TGF | Japan | JP | Terrestrial | 36.1 | 140.09 | 27 | Cfa | GRA | Compl | 02-22 | Shimoda | Asanuma and | |-----------|-----|-------|-----|-------------|------|--------|--------|-----|-------|--------|-------|------------|---------------| | 11 181 | | | | Environme | 1353 | 488 | | | | eted | | et al. | Shimoda | | | | | | nt Research | 1000 | | | | | | | (2005) | (2025) | | | | | | Center, | | | | | | | | (2003) | (2023) | | | | | | University | | | | | | | | | | | | | | | of Tsukuba | | | | | | | | | | | JP-KaP | | Japan | | Kasumigau | 36.0 | 140.24 | 3 | Cfa | CRO | Compl | 97-98 | Takagi et | Harazono | | JP-KaP | | Japan | | ra lotus | 8 | 140.24 | 3 | Cia | CKO | eted | 97-98 | al. (2003) | and Takagi | | | | | | | ٥ | | | | | eted | | al. (2003) | | | TD 14 | MOD | | TD. | paddy | 26.0 | 140.02 | 11 | GS | CDO | | 01.00 | G : | (2025) | | JP-Mse | MSE | Japan | JP | Mase paddy | 36.0 | 140.02 | 11 | Cfa | CRO | Ongoin | 01-09 | Saito et | Ono (2025) | | | | _ | | flux site | 5393 | 693 | | | | g | | al. (2005) | | | JP- | SWL | Japan | JP | Suwa Lake | 36.0 | 138.10 | 758 | Dfc | WAT | Ongoin | 15-23 | Iwata et | Iwata | | SwL | | | | Site | 4657 | 83528 | | | | g | | al. (2018) | (2025b) | | | | | | | 222 | | | | | | | | | | JP-KaL | | Japan | JP | Koshin, | 36.0 | 140.40 | 0.26(| Cfa | WAT | Ongoin | 07-22 | Sugita et | Sugita (2025) | | | | | | Lake | 3777 | 4167 | at the | | | g | | al. (2020) | | | | | | | Kasumigau | 8 | | wate | | | | | | | | | | | | ra | | | r | | | | | | | | | | | | | | | level | | | | | | | | | | | | | | | of | | | | | | | | | | | | | | | Y.P. | | | | | | | | | | | | | | | 1.1 | | | | | | | | | | | | | | | m) | | | | | | | | JP-Nsb | | Japan | JP | NIAES | 36.0 | 140.11 | 24 | Cfa | CRO | Compl | 90 | Harazono | Harazono | | | | | | Soybean | 2430 | 4975 | | | | eted | | et al. | (2025a) | | | | | | | 3 | | | | | | | (1992) | | | JP-Yrp | | Japan | JP | Yawara | 36.0 | 140.03 | 23 | Cfa | CRO | Compl | 93-95 | NA | Harazono | | • | | | | Rice paddy | 0766 | 01752 | | | | eted | | | (2025b) | | | | | | | 667 | | | | | | | | | | JP- | KW | Japan | JP | Kawagoe | 35.8 | 139.48 | 41 | Cfa | DBF | Compl | 97-02 | Yasuda et | Yasuda | | Kwg | G | | | forest | 725 | 69 | | | | eted | | al. (1998) | (2025b) | | 118 | | | | meteorolog | , 20 | 0) | | | | - | | un (1>>0) | (20200) | | | | | | y research | | | | | | | | | | | | | | | site | | | | | | | | | | | JP-Shn | | Japan | JP | Shinshu | 35.8 | 137.93 | 775 | Dfa | MF | Ongoin | 14-19 | NA | Iwata and | | 31 -SIIII | | Japan | Jr | University | 6575 | 2563 | 113 | Dia | IVII' | _ | 14-17 | INA | Suzuki | | | | | | Ī | | 2303 | | | | g | | | | | | | | | Experiment | 5 | | | | | | | | (2025) | | | | | | al Forest | | | | | | | | | | | | | | | Site | | | | | | 1 | | | | | JP- | NK | Japan | JP | Nishikoma | 35.8 | 137.83 | 2641 | Dfb | ENF | Ongoin | 18-23 | NA | Iwata | | Nkm | M | | | Site | 0806 | 3883 | | | | g | | | (2025a) | | | | | | | 4 | | | | | | | | | | JP-Fmt | | Japan | JP | Field | 35.6 | 139.37 | 168 | Cfa | MF | Ongoin | 13-23 | Matsuda | Takagi and | |--------|-----|-------|----|-------------|------|--------|------|-----|-----|--------|-------|------------|--------------| | | | | | Museum | 3874 | 9748 | | | | g | | et al. | Matsuda | | | | | | Tama Hills | 5 | | | | | | | (2015) | (2025) | | JP-Kgu | | Japan | JP | Kugahara | 35.5 | 139.69 | 18.5 | Cfa | URB | Compl | 01-02 | Moriwaki | Kanda and | | | | | | urban | 8285 | 3543 | | | | eted | | and | Moriwaki | | | | | | residensial | 9 | | | | | | | Kanda | (2025) | | | | | | area | | | | | | | | (2004) | | | JP-Fjy | FJY | Japan | JP | Fujiyoshida | 35.4 | 138.76 | 1043 | Cfa | ENF | Ongoin | 00-21 | Mizoguc | Takanashi et | | | | | | forest | 5454 | 225 | | | | g | | hi et al. | al. (2025a) | | | | | | meteorolog | | | | | | | | (2012) | | | | | | | y research | | | | | | | | | | | | | | | site | | | | | | | | | | | JP-Fhk | FHK | Japan | JP | Fuji | 35.4 | 138.76 | 1100 | Cfa | DNF | Ongoin | 06-23 | Takahash | Takahashi et | | | | | | Hokuroku | 4355 | 46931 | | | | g | | i et al. | al (2025) | | | | | | Flux | 577 | | | | | | | (2015) | | | | | | | Observatio | | | | | | | | | | | | | | | n Site | | | | | | | | | | | JP-Hrt | | Japan | JP | Hiratsuka | 35.3 | 139.33 | 6.98 | Cfa | CRO | Compl | 13 | Komiya | Komiya | | | | | | Rice Paddy | 6277 | 8056 | | | | eted | | (2015) | (2025a) | | | | | | | 8 | | | | | | | | | | JP- | SMF | Japan | JP | Seto Mixed | 35.2 | 137.07 | 212 | Cfa | MF | Compl | 02-16 | Matsumo | Kotani and | | SMF | | | | Forest Site | 6152 | 875 | | | | eted | | to et al. | Ohta (2025) | | | | | | | 8 | | | | | | | (2008) | | | JP-Nuf | | Japan | JP | Nagoya | 35.1 | 136.97 | 66 | Cfa | DBF | Compl | 00-01 | Hiyama | Awal and | | | | | | University | 5241 | 18889 | | | | eted | | et al. | Ohta (2025a) | | | | | | Forest | 667 | | | | | | | (2005) | | | JP-Tdf | | Japan | JP | Toyota | 35.0 | 137.18 | 104 | Cfa | DBF | Compl | 02-04 | Awal et | Awal and | | | | | | Deciduous | 3588 | 57778 | | | | eted | | al. (2010) | Ohta (2025b) | | | | | | Forest | 889 | | | | | | | | | | JP- | YMS | Japan | JP | Yamashiro | 34.7 | 135.84 | 220 | Cfa | DBF | Ongoin | 00-23 | Komina | Takanashi et | | Yms | | | | forest | 9027 | 0939 | | | | g | | mi et al. | al. (2025b) | | | | | | meteorolog | 8 | | | | | | | (2008) | | | | | | | y research | | | | | | | | | | | | | | | site | | | | | | | | | | | JP-Nap | | Japan | JP | Nunoike | 34.7 | 134.89 | 40 | Cfa | WAT | Compl | 21-23 | NA | Sakabe and | | | | | | Agricultura | 7485 | 2442 | | | 1 | eted | | | Itoh (2025) | | | | | | 1 Pond | | | | | | | | | | | JP-Ako | AKO | Japan | JP | Akou green | 34.7 | 134.37 | 10.5 | Cfa | EBF | Compl | 00-03 | Kosugi et | Kosugi and | | | | | | belt | 3519 | 4798 | | | 1 | eted | | al. (2005) | Takanashi | | | | | | | 2 | | | | 1 | | | | (2025) | | JP-Sac
 SAC | Japan | JP | Sakai City | 34.5 | 135.48 | 17 | Cfa | URB | Ongoin | 08-23 | Ueyama | Ueyama | |---------|-------|----------|-----|-------------|------|--------|-------|-----|-----|--------|--------|------------|---------------| | | | • | | Office | 7391 | 28889 | | | | g | | and | (2025d) | | | | | | | 389 | | | | | | | Takano | | | | | | | | | | | | | | | (2022) | | | JP- | IZM | Japan | JP | Oizumi | 34.5 | 135.53 | 22 | Cfa | URB | Compl | 15-16 | Ueyama | Ueyama | | Ozm | | | | Urban Park | 6346 | 3483 | | | | eted | | and Ando | (2025a) | | | | | | | 9 | | | | | | | (2016) | (= === =) | | JP- | OM1 | Japan | JP | B11 | 34.5 | 135.50 | 27 | Cfa | URB | Ongoin | 14-23 | Ueyama | Ueyama | | Om1 | 01.11 | vapan | | building in | 4717 | 2861 | | 014 | | g | 1.20 | and Ando | (2025b) | | 0 | | | | Osaka | 7 | 2001 | | | | 8 | | (2016) | (20200) | | | | | | Metropolita | , | | | | | | | (2010) | | | | | | | n | | | | | | | | | | | | | | | University | | | | | | | | | | | JP- | OM2 | Japan | JP | Farm field | 34.5 | 135.50 | 50 | Cfa | GRA | Ongoin | 22-23 | NA | Ueyama | | Om2 | OMZ | Japan | JF | in Osaka | 4245 | 8227 | 30 | Cia | UKA | _ | 22-23 | INA | (2025c) | | OIII2 | | | | Metropolita | 2 | 8221 | | | | g | | | (20230) | | | | | | _ | 2 | | | | | | | | | | | | | | n
 | | | | | | | | | | | ID II 2 | | | TD. | University | 24.5 | 133.91 | 0.25 | GC. | CDO | G 1 | 05.00 | m 1 | m 11 | | JP-Hc3 | | Japan | JP | Hachihama | 34.5 | | -0.25 | Cfa | CRO | Compl | 05-09 | Takimoto | Takimoto | | | | | | Experiment | 3967 | 1731 | | | | eted | | et al. | and Iwata | | | | | | al Farm: | 2 | | | | | | | (2010) | (2025b) | | | | | | Double | | | | | | | | | | | | | | | Crop | | | | | | | | | | | JP-Hc1 | | Japan | JP | Hachihama | 34.5 | 133.92 | 0 | Cfa | CRO | Compl | 96 | Harazono | Harazono | | | | | | Experiment | 3789 | 67972 | | | | eted | | et al. | (2025i) | | | | | | al Farm | 167 | | | | | | | (1998) | | | JP-Hc2 | HCH | Japan | JP | Hachihama | 34.5 | 133.92 | -1 | Cfa | CRO | Compl | 99-08 | Ohtaki | Takimoto | | | | | | Experiment | 3751 | 7545 | | | | eted | | (1984) | and Iwata | | | | | | al Farm | 8 | | | | | | | | (2025a) | | JP- | KH | Japan | JP | Kahoku | 33.1 | 130.70 | 196 | Cfa | ENF | Ongoin | 00-03, | Shimizu | Kitamura et | | Khw | W | | | Experiment | 3658 | 834 | | | | g | 07-21 | et al. | al (2025) | | | | | | watershed | | | | | | | | (2015) | | | JP-Ynf | YNF | Japan | JP | Yona-Field | 26.7 | 128.21 | 213 | Cfa | EBF | Ongoin | 13-22 | Matsumo | Matsumoto | | | | | | Tower Site | 51 | 2667 | | | | g | | to et al. | et al. (2025) | | | | | | | | | | | | | | (2023) | | | TH- | | Thailand | TH | Kog-Ma | 18.8 | 98.9 | 1265 | Af | EBF | Compl | 05-13 | Kume et | Kumagai and | | Kog | | | | Wateshed | | | | | | eted | | al. (2007) | Takamura | | | | | | | | | | | | | | | (2025a) | | TH- | | Thailand | TH | Mae Moh | 18.3 | 99.716 | 380 | Aw | DBF | Compl | 05-16 | Igarashi | Kumagai and | | Mae | | | | plantation | 8333 | 66667 | | | | eted | | et al. | Takamura | | | | | | | 333 | İ | 1 | | | 1 | I | (2015) | (2025b) | | TH- | | Thailand | TH | Kamphaeng | 14.0 | 99.984 | 4.74 | Aw | CRO | Compl | 14 | Komiya | Komiya | |--------|-----|-----------|----|--------------|------|--------|------|----|-----|--------|-------|------------|----------------| | Kms | | | | Saen Rice | 0916 | 167 | | | | eted | | (2015) | (2025b) | | | | | | Paddy | 7 | | | | | | | | | | KH- | | Cambodi | KH | Kampong | 12.7 | 105.47 | 95 | Am | EBF | Ongoin | 11-14 | Kabeya | Shimizu et al. | | Kmp | | a | | Thom | 4457 | 85661 | | | | g | | et al. | (2025a) | | | | | | Lowland | 978 | | | | | | | (2021) | | | | | | | Dry | | | | | | | | | | | | | | | Evergreen | | | | | | | | | | | | | | | Forest | | | | | | | | | | | MY- | LHP | Malaysia | MY | Lambir | 4.20 | 114.03 | 140 | Af | EBF | Compl | 09-19 | Takamur | Kumagai et | | LHP | | | | Hills | 1007 | 9079 | | | | eted | | a et al. | al. (2025) | | | | | | National | | | | | | | | (2023) | | | | | | | Park | | | | | | | | | | | ID-Pag | | Indonesia | ID | Palangkara | - | 113.90 | 22 | Am | EBF | Ongoin | 04-19 | Hirano et | Hirano and | | | | | | ya | 2.32 | 43917 | | | | g | | al. (2024) | Ohkubo | | | | | | Undrained | 3916 | | | | | | | | (2025c) | | | | | | Forest | 667 | | | | | | | | | | ID-PaB | | Indonesia | ID | Palangkara | - | 114.03 | 14 | Am | OSH | Compl | 04-17 | Ohkubo | Hirano and | | | | | | ya Drained | 2.34 | 79 | | | | eted | | et al. | Ohkubo | | | | | | Burnt forest | 0796 | | | | | | | (2021) | (2025a) | | ID- | PDF | Indonesia | ID | Palangkara | - | 114.03 | 26 | Am | EBF | Compl | 01-17 | Hirano et | Hirano and | | PaD | | | | ya Drained | 2.34 | 6408 | | | | eted | | al. (2024) | Ohkubo | | | | | | forest | 6070 | | | | | | | | (2025b) | | | | | | | 697 | | | | | | | | | ### 2.1 Data collections We collected the micrometeorological measurement data from the site teams, which were identified using the web pages for AsiaFlux (https://www.asiaflux.net/, last access: 11 July 2024) and JapanFlux (https://www.japanflux.org/, last access: 11 July 2024). We also collected information on previous studies that reported micrometeorological measurements from domestic researcher connections and literature surveys. The collected data were from eddy covariance observations that were operated by the site teams affiliated with Japanese research institutes and universities. By this criterion, the dataset covers not only Japan but also other countries, such as Russia, China, Mongolia, Cambodia, Thailand, Malaysia, and Indonesia. Most of the sites were established for long-term monitoring of CO₂ fluxes, but intensive observations for about a week in the 1990s were also included in the dataset. Since the data format differed in each team, we reformatted the file to the FLUXNET format (https://ameriflux.lbl.gov/data/aboutdata/data-variables/, last access: 11 July 2024) after consultation with each site team. Generally, non-gap-filled data were provided by the site teams, but some teams provided gap-filled meteorological and flux data in addition to the non-gap-filled data. The JapanFlux2024 dataset differs from datasets such as FLUXNET2015 in that it provided site principal investigators (PIs) with increased flexibility in data screening. When clear anomalies were identified, quality control procedures were applied by the management team in collaboration with the respective site PI. The dataset consists of data from 83 sites with 683 site-years, of which 52 sites are located in Japan (Fig. 2; Table 1). The dataset includes 43 forest sites, 15 grassland sites, 5 wetland sites, 10 cropland sites, 3 lake and pond sites, and 4 sites in urban landscapes. Sites that suffered from various types of disturbance are also included: wind damage by typhoon (JP-Tmd, JP-Spp), fire (RU-NeB, ID-PaB), harvesting (RU-NeC, JP-Tef), thinning (JP-Fhk), insect outbreak (JP-Api), drainage (ID-Pag), and mowing (JP-NsC, JP-NsM, JP-Tgf, JP-Om2). The data records started in 1990 at a soybean cropland in Japan (Harazono et al., 1992), their number increased in the early 2000s, and peaked at 34 sites in 2008, 2014 and 2015 (Fig. 3). More recently, the number of data records gradually declined owing to site closured or the fact that the data have not been processed yet. The longest record was 24 years (JP-Tak and JP-Yms; both deciduous broadleaf forests) (Fig. 4). There are 26 sites with observation records of CO₂ flux for more than 10 years and 6 sites with those for more than 20 years (JP-Tef, JP-Tmk/JP-Tmd, JP-Api, JP-Fjy, JP-Tak, JP-Yms). Note that JP-Tmk and JP-Tmd represent a continuous observation series, although they are assigned different site IDs. At 12 sites, data records are available for less than one year. Data for CH₄ flux are available at six sites (JP-BBY, JP-SwL, JP-Nap, JP-Hrt, JP-Sac, JP-Om1). Figure 2. Distributions of the sites that constitute the JapanFlux2024 database on a land cover map provided by the MOD12 product (version 6.1; Sulla-Menashe et al., 2019): a map of Asia region (a) and an enlarged map showing Japan (b). Figure 3. Number of site data records in each year. Land cover types: evergreen broadleaf forest (EBF), evergreen needleleaf forest (ENF), deciduous broadleaf forest (DBF), deciduous needleleaf forest (DNF), mixed forest (MF), grassland (GRA), open shrubland (OSH), cropland (CRO), wetland (WET), urban (URB), lake (WAT), and barren sparse vegetation (BSV). Fig. 4. The number of site records with different durations of data records. Sites affected by disturbance that changed the vegetation type during the observational period were classified according to the dominant land cover type: JP-Tef as DNF, JP-Tmd as DBF, and ID-PaB as OSH. Land cover type abbreviations are as in Fig. 3. ### 2.2 Gap-filling meteorological variables 175 180 185 190 195 200 As with the FLUXNET2015 dataset (Pastorello et al., 2020; Vuichard and Papale, 2015), the meteorological variables were filled using the European Center for Medium-Range Weather Forecasts Reanalysis v5 (ERA5) data (Hersbach et al., 2020). Instead of using ERA5, we used the gap-filled meteorology if the site teams had filled the gaps. If meteorological variables for multiple sensors or positions were available, these variables were prioritized and aggregated; if data were missing in the highest priority dataset, they were filled with values from the second-highest priority dataset, or, if that were also unavailable, based on the priority order. The gaps in the aggregated meteorological variables were then filled with ERA5 data because measured variables were less biased than ERA5, even when measured at different locations within a site. Air temperature, relative humidity, wind speed, downward shortwave radiation, downward longwave radiation,
precipitation, and barometric pressure were filled using ERA5 after correcting biases at each site each year. Linear regression for meteorological variables (except precipitation) between observations and ERA5 was determined and then applied to correct site-specific biases in ERA5 to fill the data gaps. Water vapor pressure was calculated from the relative humidity, and the gaps in relative humidity were filled using the gap-filled water vapor pressure and air temperature, rather than directly filling the relative humidity. If all meteorological variables were missing in some years when constructing the linear regression, the bias was corrected using a regression for the entire multi-year data record. For precipitation (denoting rainfall plus snowfall), we determined the ratio of the annual precipitation between observations and ERA5 during the period when observed precipitation were available, and then filled hourly or half-hourly precipitation after multiplying the ratio to ERA5-based precipitation. If only the rainfall was measured, the correction ratio was determined using liquid precipitation which was defined as precipitation when relative humidity was below the critical relative humidity $(RH_{cri}; \%)$: $RH_{cri} = 92.5 - 7.5T$, where T is the air temperature (Matsuo and Sasvo, 1981). ### 2.3 Gap-filling and flux partitioning Gap-filling and flux partitioning were conducted based on REddyProc (version 1.3.2; Wutzler et al., 2018). First, the friction velocity (u*) threshold was determined for the identified low-turbulence conditions during the nighttime using the moving-point method (Papale et al., 2006). The u* threshold was determined from the temperature sensitivity of nighttime net ecosystem exchange (NEE) by seasonal clustering, an approach that is widely used in the FLUXNET community. In the moving point method, the u* threshold was first determined for each of the four seasons, and the maximum value among them was used for the entire year. Thus, the determined u* threshold was conservative (Papale et al., 2006). In this dataset, we determined the u* threshold each year to consider its potential shift over the years, which is termed as a Variable u* Threshold (vUT). The vUT differs slightly from the definition of the Variable u* Threshold (VUT) in FLUXNET2015 (Pastorello et al., 2020) (Table 2), where VUT in FLUXNET2015 was determined by pooling data from each year along with data from the immediately preceding and following years (if available). The u* threshold was determined with 100 bootstrap replicates, where reference (original data obtained without using a bootstrapped sample), the 5th, 50th, and 95th percentiles of the estimated u* threshold were used for subsequent data filtering, gap-filling, and flux partitioning. Here, the nighttime was defined as downward shortwave radiation < than 10 W m⁻², and was further confirmed using exact solar time at the site location. On the basis of the estimated u* threshold, nighttime CO₂ fluxes and/or NEE were eliminated. This dataset does not include the estimation of NEE using the constant u* threshold (CUT), nor the advanced uncertainty estimation provided with the _REF suffix, as implemented in the ONEFLUX pipeline (Pastorello et al., 2020). For urban sites, the threshold was generally not used for two reasons (e.g., Liu et al., 2012; Ueyama and Ando, 2016): 1) nighttime CO₂ fluxes were not expected to correlate with air temperature, making it difficult to evaluate the correct u* threshold, and 2) the surface layer was often unstable even at night. Consequently, the u* filtering was not applied for highly urbanized sites (JP-Sac and JP-Kgu). Table 2 List of variable basenames not used in FLUXNET2015, along with their descriptions and related sites. | Basename | Description | Sites | |------------------|--|---| | pre-processing v | rariables | , | | SW_IN_SLOP | Slope-normal incoming shortwave radiation | JP-Nkm | | E_PI | | | | NETRAD_SL | Slope- normal net radiation | JP-Nkm | | OPE_PI | | | | USTAR_QC_ | Friction velocity qualified with footprint | JP-Ozm | | FP | | | | H_QC_FP | Sensible heat flux qualified with footprint | JP-Ozm, JP-Khw | | LE_QC_FP | Latent heat flux qualified with footprint | JP-Ozm, JP-Khw | | FC_QC_FP | CO ₂ flux qualified with footprint | JP-Ozm, JP-Khw, JP-Sac | | NEE_QC_FP | NEE flux qualified with footprint | JP-Khw | | | | | | post-processing | | | | TA_multiple | Air temperature by multiple sensors or positions | CN-In1, CN-In2, CN-In3, CN-In4, CN-In5, | | | | CN-In6, CN-In7, CN-In8, CN-Lsh, JP-BBY, | | | | JP-Fhk, JP-Fjy, JP-Hc1, JP-Ozm, JP-Khw, JP- | | | | KaP, JP-Km1, JP-Km2, JP-Kzw, JP-MBF, JP- | | | | MMF, JP-Nsb, JP-Nuf, JP-Spp, JP-Tgf, JP- | | | | Tak, JP-Tmk, JP-Tef, JP-Ynf, JP-Yrp, MN- | | | | Udg, MY-LHP, RU-Ege, RU-SkP, RU-Sk2, | | | | TH-Kog, TH-Mae, RU-USk | | RH_multiple | Relative humidity by multiple sensors or positions | CN-In1, CN-In2, CN-In3, CN-In4, CN-In5, | |-------------|---|---| | | | CN-In6, CN-In7, CN-In8, CN-Lsh, JP-BBY, | | | | JP-Fhk, JP-Fjy, JP-Hc1, JP-KaP, JP-Km1, JP- | | | | Km2, JP-Kzw, JP-MBF, JP-MMF, JP-Nsb, | | | | JP-Nuf, JP-Spp, JP-Tgf, JP-Tak, JP-Tmk, JP- | | | | Tef, JP-Ynf, JP-Yrp, MN-Udg, MY-LHP, RU- | | | | Ege, RU-SkP, RU-Sk2, TH-Mae, RU-USk | | SW_IN_multi | Incoming shortwave radiation by multiple sensors or | JP-Fhk, JP-Spp, JP-Tgf, JP-Tmk, JP-Tef, JP- | | ple | positions | Ynf | | P_multiple | Precipitation by multiple sensors or positions | JP-BBY, JP-Khw | | WS_IN_multi | Wind speed by multiple sensors or positions | CN-In1, CN-In2, CN-In3, CN-In4, CN-In5, | | ple | | CN-In6, CN-In7, CN-In8, CN-HaM, JP-Fhk, | | | | JP-Hc1, JP-KaP, JP-Km1, JP-Km2, JP-Kzw, | | | | JP-MBF, JP-MMF, JP-Nsb, JP-Spp, JP-SMF, | | | | JP-Tgf, JP-Tef, JP-Yms, JP-Ynf, JP-Yrp, MN- | | | | Udg, TH-Kog, TH-Mae, RU-USk | | G_multiple | Ground heat flux by multiple sensors or positions | JP-Sac, JP-Spp, JP-Ynf, MN-Udg | | NETRAD_F_ | Net radiation filled with MDS | JP-Tef | | MDS | | | | PPFD_IN_F_ | PPFD filled with MDS | CN-Lsh, CN-HaM, JP-Km2, JP-MBF, JP- | | MDS | | MMF, JP-Nkm, JP-Tgf, RU-SkP, TH-Kog | | NEE_vUT | Gap-filled NEE with the variable u* threshold | ALL sites | | RECO_NT_v | RECO with the variable u* threshold based on the | ALL sites | | UT | nighttime approach | | | GPP_NT_vUT | GPP with the variable u* threshold based on the | ALL sites | | | nighttime approach | | | RECO_DT_v | RECO with the variable u* threshold based on the | ALL sites | | UT | daytime approach | | | GPP_DT_vUT | GPP with the variable u* threshold based on the daytime | ALL sites | | | approach | | Gaps in sensible heat flux (H), latent heat flux (LE), and NEE were filled using marginal distribution sampling (MDS) based on REddyProc. In MDS, a look-up-table (LUT) with air temperature, downward shortwave radiation, and vapor pressure deficit (VPD) was created for a 7-day window. When data gaps could not be filled with this window, they were filled in the following order: (1) LUT was applied with a 14-day window, (2) the mean diurnal variation method (Falge et al., 2001) was applied with a 1- or 2-day window, and (3) LUT was applied with a 21-day window, which was increased with a 7-day step until 70-day window if not enough data points were available. NEE were filled using MDS with the four different u* thresholds (reference, 5th, 50th, and 90th percentiles values), whereas H and LE were filled without applying the u* threshold. In addition to the fluxes, net radiation, soil temperature, ground heat flux, and photosynthetically photon flux density (PPFD) were also filled using MDS. In the data collected from the site teams, energy imbalance correction (Twine et al., 2000) was not applied for H and LE at any sites; thus, the gap-filled H and LE were not corrected for the energy balance closure. Using REddyProc, NEE was partitioned into gross primary productivity (GPP) and ecosystem respiration (RECO) using two methods: nighttime flux partitioning and daytime flux partitioning. In the nighttime partitioning method, nighttime NEE was parameterized on the basis of the temperature response function (Lloyd and Taylor, 1994) with a 7-day window, and then this function was used to calculate daytime and nighttime RECO. GPP was determined by subtracting RECO from NEE. In the daytime partitioning method (Lasslop et al., 2010), the common rectangular hyperbolic light-response curve was determined with a 4-day window, where the function accounted for the VPD effect on the initial slope of the light-response curve and the temperature effect of respiration. GPP and RECO using the daytime partitioning method were calculated based on a fitted model that combines a light-response curve and a temperature-dependent respiration model; thus, the daytime method did not directly add up observed NEE (Wutzler et al., 2018). Using the two methods, fluxes were partitioned for NEE with different u* thresholds. ### 2.4 Site-specific considerations For the sites with heterogeneous land surfaces—JP-Khw and JP-Ozm—the dominant land surface fluxes were extracted using wind sectors. JP-Khw is an evergreen needleleaf plantation forest consisting of *Cryptomeria japonica* (sugi) and *Chamaecyparis obtusa* (hinoki), but evergreen or deciduous broadleaf trees grow in gaps in some wind sectors. The H, LE, and CO₂ fluxes for sugi, which occupies the dominant wind sector area (the right-bank side), were extracted as quality control with footprint, "_QC_FP" (Table 2). To extract these flux data, daytime fluxes for a wind sector on the right bank were selected, but nighttime fluxes for all wind sectors were used to increase data availability because there were no clear differences in nighttime fluxes among wind sectors. Gap-filling and flux partitioning were done only
for the extracted data. JP-Ozm is located at the edge of an urban park; thus, measured flux representing this park (Ueyama and Ando, 2016) were selected and designated "_QC_FP" in addition to the variables for measured fluxes representing both sectors of the urban park and other land covers. Gap-filling and flux partitioning were done only for the extracted data, which represented the urban park. These extracted flux data ("_QC_FP") were included in the ALLVARS files (described in section 2.5) in addition to measured fluxes for all sectors, and the gap-filled extracted fluxes were included in the COREVARS files (described in section 2.5). Flux partitioning and gap-filling for JP-Nkm, located on a complex mountainous terrain, were conducted using slope-normal shortwave radiation instead of downward shortwave radiation. Horizontally observed incident shortwave radiation was converted to radiation normal to the slope on the basis of the tilt and azimuth angles of the slope and the solar altitude and azimuth angles (Hammerle et al., 2007; Nie et al., 1992) as follows. Horizontally observed incident shortwave radiation was partitioned into direct and diffuse components using observed diffuse fraction (BF5, Delta-T Devices, UK), and the direct component was converted to that normal to the slope surface. The diffuse component was assumed to be isotropic. The total incident shortwave radiation normal to the slope surface was calculated as the sum of the direct component converted as above and the original diffuse component. When diffuse fraction was not observed, it was estimated from the relationship between the diffuse fraction and cloudiness; the latter was defined as the ratio of observed incident shortwave radiation to extraterrestrial radiation (Wang et al., 2018). The slope-normal shortwave radiation was included as a variable, SW_IN_SLOPE_PI_1_1_1, in ALLVARS. For tropical ecosystems (TH-Kms, TH-Kog, TH-Mae, ML-LHP, ID-PaB), nighttime-based flux partitioning failed because little seasonality in temperature hampered the determination of a significant relationship between nighttime CO₂ flux and temperature. For these sites, only daytime partitioning was provided in the dataset. In a subtropical forest (KH-Kmp), the determination of the u* threshold failed; thus, the u* threshold was estimated using gap-filled u* by the site team instead of measured u* with data gaps. Since the data quality of u* for KH-Kmp seemed reasonable, we were unable to find out why REddyProc failed to determine the u* thresholds with measured u* in KH-Kmp. The u* threshold for ID-Pag and ID-PaD could not be determined for several years; so, constant u* thresholds across these years were determined with REddyProc and applied for the subsequent data processing. Low availability of nighttime data due to the limited fetch in JP-Ako (Kosugi et al., 2005) hampered determination of the u* threshold, gap-filling flux for CO₂ flux, and flux partitioning with REddyProc. Consequently, no aggregated fluxes longer than half-hourly data for CO₂ flux, GPP, and RECO were provided in the dataset. Fluxes were not partitioned for lakes and a pond (JP-SwL, JP-KaL, JP-Nap) and an urban center (JP-Sac). For the lakes and pond, gap-filling H, LE, and CO₂ flux was based on MDS. For JP-Sac, gap-filling for H and LE was also based on MDS, but MDS was not applied to CO₂ flux because it was controlled by traffic volume and air temperature (Ueyama and Takano, 2022). Gap-filling for CO₂ flux at JP-Sac was conducted by the site team on the basis of random forest regression (Ueyama and Takano, 2022), and was included as FCO2_F_PI in COREVARS and ALLVARS. The u* threshold was not applied for JP-Nap, because the moving point method (Papale et al., 2006) developed for terrestrial ecosystems was not applicable to the pond. In this dataset, CH₄ fluxes were not gap-filled, because (1) consistent gap-filling was not possible because of missing important variables, such as water table depth, and (2) inconsistent processes control CH₄ emissions on different land surfaces, such as a rice paddy (JP-Hrt), bog (JP-BBY; Ueyama et al., 2020c, 2022b), lake (JP-SwL; Iwata et al., 2018), pond (JP-Nap), and urban landscapes (JP-Sac, JP-Om1; Takano and Ueyama, 2021). If the gap-filled CH₄ fluxes were provided by the site team (i.e., JP-BBY), the data were included as FCH₄F_PI in COREVARS; otherwise, non-gap-filled data were included in ALLVARS. # 2.5 Data format 285 290 295 305 310 315 The dataset was prepared in a format partially compatible with FLUXNET format, although the content and split of variables between ALLVARS and COREVARS were slightly different to FLUXNET2015 (Pastorello et al., 2020) (Table 2), which consists of files separated by sites, temporal aggregation (i.e., half-hourly/hourly, daily, weekly, monthly, and annual), and data product, i.e., ALLVARS and COREVARS, as described later. The separated files for ALLVARS and COREVARS were combined into two zip files for each site. The following file naming rules (Pastorello et al., 2020) were followed. 300 [SITE_ID]_JapanFlux2024_[DATA_PRODUCT]_[RESOLUTION]_[FIRST_YEAR]-[LAST_YEAR]_[SITE_VERSION][CODE_VERSION].csv [SITE_ID] is the site ID, the CC-SSS format: CC is a two-letter country code, and SSS is the three-character site code. [Data_PRODUCT] represents the data types: ALLVARS, COREVARS, AUXMETEO, AUXNEE, or ERA5. COREVARS is the data type representing selected data variables, including basic micrometeorological data and fluxes, and quality information flags. ALLVARS is a data file representing all variables of data products, including variables listed in COREVARS, original data before the processing pipeline, and internal variables. AUXMETEO includes auxiliary variables related to the meteorological downscaling of ERA5. ERA5 includes the meteorological data from ERA5 for 1990–2024. [RESOLUTION] is the temporal resolution of the data products: HH (half-hourly time step), HR (hourly time step), DD (daily time step), WW (weekly time step), MM (monthly time step), and YY (annual time step). [FIRST_YEAR] is the first year in the file, and [LAST_YEAR] is the last year in the file. The first and last years are based on the years in which the micrometeorological measurements are conducted, except for ERA5, where the first year is 1990 and the last year is 2024 for all sites. [SITE_VERSION] is the version of the original dataset, and [CODE_VERSION] is the code of the data processing pipeline used to process the dataset. The COREVARS file included variables for basic meteorology and turbulent fluxes. The gap-filled meteorological variables of air temperature, incoming shortwave radiation, incoming longwave radiation, relative humidity, VPD, atmospheric pressure, precipitation, wind speed, net radiation, ground heat flux, soil temperature, PPFD, CO₂ concentration, and soil water content were included. If the original data provided by a site team included wind direction, outgoing shortwave radiation, outgoing longwave radiation, outgoing PPFD, u*, and shortwave radiation, incoming, potential (top of atmosphere), non-gap-filled data for these variables were included. Gap-filled soil temperature and soil water content were measured at the shallowest depth, while CO₂ concentration was gap-filled for the highest altitude. A quality information flag was assigned for gap-filled variables, where 0 is the original data, 1 is a gap-filled value of the most reliable quality (calculated using a 14-day window), 2 is a gap-filled value of the medium quality (calculated using a 14- to 56-day window), and 3 is the gap-filled value of the least reliable quality (calculated using a window longer than 56 days) (Wutzler et al., 2018). If gap-filled CH₄ flux data were provided by the site team (i.e., at JP-BBY), they were included in COREVARS. The COREVARS file was provided with five temporal resolutions (half-hourly/hourly, daily, weekly, monthly, and annual aggregations). 320 325 335 345 The ALLVARS file includes original unprocessed data, internal variables (aggregated meteorological variables measured at different locations or with different sensors), and meteorological data from ERA5, in addition to processed variables included in COREVARS. The ALLVARS file is provided with the five temporal resolutions listed above. For NEE, GPP, and RECO, the unit was μ mol m⁻² s⁻¹ for half-hourly and hourly timescales, g C m⁻² d⁻¹ for the daily, weekly, and monthly timescales, and g C m⁻² yr⁻¹ for the annual timescale. For CH₄ flux, the unit for the half-hourly and hourly timescales was nmol m⁻² s⁻¹, whereas the units for the other timescales were as the same as those for CO₂ fluxes. The units of precipitation were mm for the half-hourly and hourly timescales, mm d⁻¹ for the daily, weekly, and monthly timescales, and mm yr⁻¹ for the annual timescale. The units of other variables followed FLUXNET format (https://ameriflux.lbl.gov/data/aboutdata/data-variables/), which did not change with the timescales. The ERA5 file contains the data for air temperature (TA_ERA5; °C), relative humidity (RH_ERA5; %), VPD (VPD_ERA5; hPa), vapor pressure (e_ERA5; hPa), saturation vapor pressure (e_sat_ERA5; hPa), wind speed (WS_ERA5; m s⁻¹), atmospheric pressure (PA_ERA5; kPa), incoming shortwave radiation (SW_ERA5; W m⁻²), incoming longwave radiation (LW_ERA5; W m⁻²), and precipitation (P_ERA5; mm). The ERA5 file is provided with the five temporal resolutions listed above. The variables in the ERA5 file were not corrected for the bias in comparison to the site data. Two auxiliary files—for meteorology and u*-threshold—are provided. The AUXMETEO file includes the following statistics for downscaling ERA5 to the site scale: the linear slope between the measured data and ERA5 (ERA_SLOPE), intercept (ERA_INTERCEPT), root mean square error (ERA_RMSE), and correlation coefficient (ERA_CORRELATION). These statistics are included for each year and for all years when measurements were
conducted. The TIMESTAMP column in the AUXMETEO file represents the year for the statistics, where -9999 represents the statistics for the entire year. The AUXNEE file includes the u* threshold in each year, with the reference threshold and the 5th, 50th, and 95th percentiles of the estimated u* threshold. The dataset also includes the BADM files, which are used in the FLUXNET community. Six BADM files are provided: (1) general information, (2) instrument, (3) instrument operations, (4) vegetation cover, (5) soil, and (6) disturbance and management. # 3 Database summary ### 3.1 CO₂ flux 375 Based on the dataset constructed, mean seasonalities in NEE, GPP, and RECO were as expected from the biomes and mean climatology (Figs. 5, 6). In northern boreal forests in Siberia (RU-Tur, RU-NeF, RU-SkP, RU-Sk2), the magnitude of the flux was generally low, and growing seasons when GPP was not negligible were short. In the southern Eurasian boreal forests in Siberia and Mongolia (RU-Ege, MN-Udg, MN-Skt), the magnitudes of CO₂ fluxes were greater than those in the above northern boreal forests. Inland grasslands in Mongolia (MN-Nkh, MN-Hst, MN-Kbu) had smaller CO₂ flux magnitudes than the nearby forests (MN-Udg, MN-Skt). For temperate forest and grassland sites, the dataset showed known seasonality with spring onset, summer peak, and autumn senescence with low fluxes in winter. Among forest sites, seasonal variations became smaller in the subtropics (JP-Ynf), and clear seasonality disappeared in the tropics (KH-Kmp, MY-LHP, ID, Pag, ID-PaD, ID-PaB) as the climate became warmer. Among rice paddies, single-cropping sites had a single peak (JP-Mse, JP-Hc2), but a double cropping site had two peaks (JP-Hc3) in GPP, RECO, and NEE (Fig. 6). For lakes (JP-SwL, JP-KaL), a pond (JP-Nap), and an urban center (JP-Sac), CO₂ fluxes showed smaller seasonality than those at vegetation surfaces. Some data for CO₂ fluxes raise suspicions. First, markedly negative NEE values in harsh winters were estimated for MN-Skt and MN-Kbu (Figs. 5, 6), which could be caused by an artifact known for the open path sensor (Burba et al., 2008). The artificially negative NEE caused a considerable positive GPP in winter. Data users should be cautious about the data for MN-Skt and MN-Kbu. Second, the daytime partitioning method extrapolated the relationship obtained during the growing season to winters when NEE was not measured. The result was erroneous estimation of GPP and RECO (e.g., JP-Nkm in Fig. 5). Using the nighttime approach, GPP and RECO were not estimated for the period when NEE was not measured. Despite these suspicious data, the fluxes partitioned using the nighttime and daytime methods were generally consistent across the sites. The spatial variabilities in annual NEE, GPP, and RECO were also consistent with earlier reports for Asian ecosystems (Fig. 7; Table 3). In Asia, the spatial variabilities in GPP and RECO are explained mostly by mean annual air temperature (Hirata et al., 2008; Kato and Tang, 2008; Saigusa et al., 2013; Yu et al., 2013). Except in disturbed forests and croplands, GPP and RECO increased linearly with mean annual air temperature (Fig. 7). Correlations of GPP and RECO with the annual sum of precipitation were lower than with mean annual air temperature. No clear correlation was found between annual NEE and mean annual air temperature or annual sum of precipitation, but the maximum CO_2 sink (i.e., negative NEE) with each temperature range appeared to be increased by temperature up to the annual mean temperature range until approximately 10° C (Fig. 7a). Except for disturbed forests and urban sites, most ecosystems were estimated to be a CO_2 sink of up to 1.0 kg C m^{-2} yr^{-1} . Figure 5. Mean seasonality of GPP, RECO, and NEE across forest sites. GPP and RECO were partitioned using the daytime method (DT, solid lines) or the nighttime method (NT, dashed lines). The seasonality is shown when NEE was measured, and those for GPP and RECO are shown when the partitioning was successful. The seasonality is the ensemble mean of the daily fluxes with for each day of year for all years. The sites are ordered according to latitude from high to low. The mean seasonality is shown for sites having the data at least one growing season. Figure 6. Mean seasonality of GPP, RECO, and NEE across sites other than forests. Designations are as in Fig. 5. Fig. 7. Relationships of annual NEE (a, b), GPP (c, d), and RECO (e, f) to mean climate of annual mean air temperature (a, c, e) and annual sum of precipitation (b, d, f). GPP and RECO were estimated using the daytime method. The stars represent fluxes obtained at disturbed forests, where a disturbed forest was defined as a forest that experienced disturbance within the last 10 years. The annual fluxes were calculated based on the sum of mean seasonality shown in Figs. 5 and 6; missing measurements during the winter in high-latitudes were gap-filled as zero. Since sites of JP-Spp, JP-Tmd, and JP-Tef experienced significant disturbance (windthrow or clearcut) during the measurement period, data obtained within 10 years after a disturbance were classified as disturbed forests (DIS). The lines represent linear regressions with shading showing the confidence intervals (p < 0.05), that was determined excluding the DIS data. The annual CO_2 flux for JP-Sac (5.8 kg C m⁻² yr⁻¹) is not shown due to the totally different carbon budget in the urban center compared to those in ecosystems. The values are shown in Table 3. Land cover type abbreviations are in Fig. 3. Table 3. Summary of mean annual air temperature (TA), annual sum of precipitation (PREC), mean annual downward shortwave radiation (Rsd), mean annual carbon fluxes (NEE, GPP, RECO), and mean annual latent heat flux (LE), mean annual sensible heat flux (H), evapotranspiration (ET), and land cover. The statistics were calculated for observation years; for disturbed sites, the data were considered separately for the periods before, during, and after disturbance. Disturbed ecosystems were defined as those that experienced disturbance within the last 10 years. GPP, RECO, NEE, LE, and ET for boreal forests in Russia that lacked winter measurements (RU-Tur, RU-NeB, RU-NeC, RU-NeF, RU-SkP, RU-Ege, RU-Sk2) were considered zero. GPP, RECO, and NEE at MN-Skt and MN-Kbu were also considered zero during winter, when daily mean air temperature was below -5 °C (indicated by asterisks in the table), to mitigate the influence of the negative values of CO₂ fluxes caused by an artifact associated with an open-path sensor. The N/A values were listed because missing observations, even after gap-filled fluxes, prevented the calculation of annual fluxes or because the standard flux partitioning was not available for pond, lakes, and urban landscapes. | Site ID | disturb | Land | TA | PREC | Rsd | NEE | GPP | RECO | LE | Н | ET | |---------|---------|-------|-------|-------|-------------------|---------------------|---------------------|---------------------|-------------------|-------------------|-------| | | ance | cover | | | | | | | | | | | | | | °C | mm yr | W m ⁻² | g C m ⁻² | g C m ⁻² | g C m ⁻² | W m ⁻² | W m ⁻² | mm yr | | | | | | 1 | | yr ⁻¹ | yr ⁻¹ | yr ⁻¹ | | | 1 | | RU-Tur | | DNF | -7.0 | 264 | 93 | -83 | 180 | 76 | N/A | N/A | N/A | | RU- | fire | GRA | -12.3 | 244 | 117 | 37 | 57 | 85 | N/A | N/A | N/A | | NeB | | | | | | | | | | | | | RU-NeF | | OSH | -8.6 | 175 | 117 | -166 | 653 | 455 | 10 | N/A | 132 | | RU- | clearcu | DIS | -10.9 | 224 | 112 | 12 | 147 | 170 | 13 | N/A | 162 | | NeC | t | | | | | | | | | | | | RU-SkP | | DNF | -5.7 | 238 | 118 | -139 | 523 | 375 | 21 | N/A | 265 | | RU-Sk2 | | ENF | -8.7 | 328 | 117 | -194 | 522 | 283 | 16 | N/A | 203 | | RU-USk | | GRA | -11.6 | 289 | 110 | N/A | N/A | N/A | 15 | N/A | 193 | | RU-Ege | | DNF | -6.3 | 248 | 122 | -225 | 715 | 466 | 20 | N/A | 259 | | MN-Skt | | DNF | -1.7 | 279 | 169 | -722 * | 1058 * | 324 * | 15 | 45 | 189 | | MN-Udg | | DNF | -0.6 | 303 | 157 | -431 | 617 | 413 | 19 | 29 | 246 | | MN-Nkh | | GRA | -1.9 | 163 | 171 | -83 | 603 | 516 | 20 | 25 | 253 | | MN-Hst | | GRA | 1.6 | 197 | 181 | 76 | 541 | 468 | 18 | 27 | 228 | | MN-Kbu | | GRA | 0.7 | 204 | 183 | -433 | 647 * | 248 * | 9 * | 30 | 116 | | CN-Lsh | | DNF | 4.4 | 443 | 144 | -60 | 1606 | 1255 | 25 | 36 | 324 | | JP-Sb1 | | WET | 6.0 | 794 | 145 | -288 | 1098 | 638 | N/A | N/A | N/A | | JP-Sb2 | | WET | 5.5 | 840 | 140 | -313 | 1476 | 935 | N/A | N/A | N/A | | JP-Tef | before | DIS | 5.9 | 926 | 125 | 192 | 882 | 898 | 18 | 10 | 232 | |--------|---------|-----|------|------|-----|------|------|------|-----|-----|------| | | clearcu | GRA | 5.9 | 926 | 125 | -118 | 1363 | 1114 | 27 | 13 | 343 | | | t | | | | | | | | | | | | | after | MIX | 5.9 | 926 | 125 | -26 | 1238 | 1034 | 21 | 17 | 268 | | JP-MBF | | DBF | 3.9 | 1373 | 134 | -442 | 1233 | 862 | 37 | 20 | 472 | | JP-MMF | 7 | MF | 5.4 | 1092 | 134 | -689 | 1537 | 861 | 43 | 21 | 537 | | JP-BBY | | WET | 7.2 | 953 | 143 | -118 | 785 | 610 | 41 | 12 | 524 | | JP-Spp | before | DIS | 7.4 | 1215 | 145 | 235 | 1366 | 1554 | 35 | 16 | 444 | | | windth | DBF | 7.4 | 1215 | 145 | -42 | 1557 | 1432 | 40 | 15 | 500 | | | ow | | | | | | | | | | | | JP-Tmk | | DNF | 6.6 | 1092 | 133 | -270 | 1727 | 1401 | 45 | 31 | 568 | | JP- | windth | GRA | 7.0 | 1738 | 139 | 421 | 1176 | 1249 | N/A | N/A | N/A | | Tmd | ow | | | | | | | | | | | | | after | DBF | 7.0 | 1738 | 139 | 89 | 1225 | 1147 | 34 | 21 | 427 | | JP-Toc | | DBF | 7.6 | 1342 | 137 | -556 | 1729 | 1189 | 33 | 30 | 418 | | JP-Tom | | DBF | 6.9 | 1173 | 128 | -249 | 916 | 642 | N/A | 40 | N/A | | JP-Srk | | DBF | 8.1 | 2669 | 129 | -847 | 1408 | 600 | 41 | -1 | 509 | | JP-Api | | DBF | 6.3 | 1509 | 150 | -375 | 1307 | 958 | 18 | 14 | 235 | | CN-HaM | 1 | GRA | -1.1 | 97 | 200 | -77 | 862 | 618 | 31 | 23 | 389 | | JP-NsM | | GRA | 12.2 | 1658 | 150 | -251 | 1989 | 1779 | 55 | 6 | 704 | |
JP-NsC | | GRA | 12.2 | 1658 | 150 | -376 | 2098 | 1880 | 53 | 7 | 674 | | JP-Kzw | | DBF | 7.0 | 1524 | 165 | -155 | 919 | 709 | 15 | 32 | 187 | | JP-Tkb | | ENF | 13.3 | 1514 | 159 | -599 | 2490 | 1781 | 45 | -7 | 579 | | JP-Tak | | DBF | 6.8 | 2483 | 146 | -342 | 1024 | 597 | 11 | 26 | 135 | | JP-Ta2 | | ENF | 9.8 | 1760 | 148 | -695 | 1990 | 1247 | 43 | 16 | 546 | | JP-Tgf | | GRA | 14.3 | 1141 | 153 | -291 | 2307 | 1851 | 53 | 19 | 681 | | JP-KaP | | CRO | 14.9 | 561 | 155 | -774 | 1127 | 584 | 70 | 7 | 894 | | JP-Mse | | CRO | 13.9 | 1407 | 154 | -197 | 1004 | 763 | 67 | 6 | 858 | | JP-SwL | | WAT | 11.8 | 1499 | 178 | -287 | N/A | N/A | 80 | 18 | 1021 | | JP-KaL | | WAT | 16.0 | 1575 | 163 | -826 | N/A | N/A | 59 | 21 | 759 | | JP-Kwg | | DBF | 15.2 | 1492 | 151 | -214 | 1631 | 1393 | N/A | 18 | N/A | | JP-Shn | | MF | 12.3 | 1713 | 167 | -242 | 1612 | 1211 | 53 | 43 | 675 | | JP-Nkm | | ENF | 0.5 | 2544 | 162 | -381 | 1442 | 725 | 36 | -3 | 445 | | JP-Fmt | | MF | 15.0 | 1611 | 158 | 35 | 2720 | 1652 | 71 | 35 | 913 | |--------|---------|-----|------|------|-----|-------|------|------|-----|----|------| | JP-Kgu | urbaniz | URB | 16.5 | 1400 | 149 | N/A | N/A | N/A | 27 | 41 | 344 | | | ation | | | | | | | | | | | | JP-Fjy | | ENF | 9.9 | 1989 | 165 | -404 | 1772 | 1270 | 39 | 20 | 501 | | JP-Fhk | before | DIS | 9.6 | 1846 | 168 | -74 | 1945 | 1873 | 43 | 43 | 554 | | | thinnin | DNF | 9.6 | 1846 | 168 | -433 | 1914 | 1619 | 40 | 40 | 510 | | | g | | | | | | | | | | | | JP-SMF | | MF | 14.8 | 1543 | 165 | -142 | 1587 | 1059 | 51 | 23 | 658 | | JP-Nuf | | DBF | 15.4 | 1465 | 156 | -327 | 1590 | 1139 | 22 | 16 | 277 | | JP-Tdf | | DBF | 14.8 | 2039 | 155 | -601 | 1559 | 840 | 45 | 19 | 584 | | JP-Yms | | DBF | 15.0 | 1384 | 159 | -223 | 1644 | 1400 | 63 | 30 | 805 | | JP-Nap | | WAT | 16.5 | 1083 | 176 | -48 | N/A | N/A | 60 | 9 | 773 | | JP-Ako | | EBF | 15.3 | 739 | 169 | N/A | N/A | N/A | 27 | 47 | 347 | | JP-Sac | urbaniz | URB | 16.4 | 1594 | 159 | 5807 | N/A | N/A | 28 | 43 | 354 | | | ation | | | | | | | | | | | | JP- | urbaniz | URB | 16.5 | 1828 | 150 | 793 | 1485 | 2353 | 52 | 23 | 673 | | Ozm | ation | | | | | | | | | | | | JP- | urbaniz | URB | 17.5 | 1202 | 165 | 1032 | 515 | 1622 | 23 | 39 | 294 | | Om1 | ation | | | | | | | | | | | | JP- | mowin | GRA | 16.9 | 1466 | 166 | 430 | 2634 | 2937 | 71 | 9 | 908 | | Om2 | g | | | | | | | | | | | | JP-Hc3 | | CRO | 15.8 | 1136 | 175 | -663 | 1265 | 625 | 51 | 10 | 659 | | JP-Hc2 | | CRO | 15.7 | 1141 | 161 | -132 | 890 | 697 | 60 | 10 | 772 | | JP-Khw | | ENF | 15.2 | 2294 | 158 | -906 | 2359 | 1689 | 81 | 20 | 1044 | | JP-Ynf | | EBF | 20.9 | 2611 | 159 | -374 | 2200 | 1808 | 65 | 5 | 834 | | TH-Kog | | EBF | 19.9 | 2004 | 183 | -1301 | 2078 | 1178 | 73 | 23 | 935 | | TH-Mae | | DBF | 25.3 | 1333 | 205 | -579 | 2215 | 1783 | 69 | 36 | 888 | | KH-Kmp | | EBF | 26.9 | 1786 | 206 | -72 | 3842 | 3044 | 106 | 19 | 1368 | | MY-LHP | | EBF | 26.2 | 2752 | 184 | -989 | 3431 | 2552 | 89 | 28 | 1157 | | ID-Pag | | EBF | 26.1 | 2639 | 200 | -183 | 3840 | 3486 | 111 | 29 | 1430 | | ID-PaB | fire | OSH | 26.4 | 2642 | 197 | -110 | 1746 | 1450 | 90 | 27 | 1164 | | ID-PaD | | EBF | 26.2 | 2543 | 197 | 179 | 3100 | 2997 | 94 | 29 | 1215 | In the developed dataset, annual CO₂ fluxes tended to differ by land cover type (Fig. 8). Forest ecosystems included in the datasets had, on average, similar CO₂ sinks. Among the forest ecosystems, the mean CO₂ sink tended to be highest in ENF. GPP and RECO in temperate managed grasslands were higher than those in natural grasslands in Mongolia and Russia. The annual CO₂ sink also tended to be greater in managed grasslands compared to natural grasslands, except for a frequently mowed site (JP-Om2), which exhibited net annual CO₂ emissions. Disturbed forests, on average, acted as a small CO₂ source. CO₂ emissions in urban centers (JP-Sac; 5.8 kg C m⁻² yr⁻¹; not included in Fig. 8a) were considerably higher than those from natural or agricultural ecosystems. The annual GPP was highest in EBF among forest ecosystems, followed by ENF, DBF, and DNF. RECO was highest in EBF, whereas those in ENF, DBF, and DNF were similar to each other. Annual GPP and RECO varied greatly among grasslands because they included inland dry grasslands and Japan's weedy grasslands (Fig. 8b, c). 425 Figure 8. Boxplots for annual NEE, GPP, and RECO by land cover type. GPP and RECO were estimated using the daytime method. Fluxes at urban sites are not shown because the range of urban CO₂ emissions was totally different from those for vegetation or lakes. Since flux partitioning was not conducted for lakes and ponds, partitioned fluxes for these water surfaces were not shown. Land cover type abbreviations are in Fig. 3, although the grassland category was separated into natural grassland (GRAn) and managed grassland (GRAm). The definition of DIS was the same as in Fig. 7, where all data from RU-440 NeC, RU-NeB, and ID-PaB are also classified as DIS. The box represents the interquartile range (25th to 75th percentiles), the whiskers represent the maximum and minimum values, excluding outliers shown by circles, and the orange bar represents the median value. # 3.2 Energy fluxes Mean annual energy fluxes represented in the dataset were explained better by air temperature than precipitation (Fig. 9; Table 3). The mean annual LE increased with the mean annual air temperature; their strong linear correlation could be explained by a close coupling between transpiration and photosynthesis (Medlyn et al., 2011), where spatial variations in annual GPP were strongly correlated with annual air temperature (Fig. 7c). Evaporation could also be enhanced under high air temperature and resulting high VPD conditions (Zhang et al., 2015). The dataset included mostly ecosystems around the Pacific Ocean, which were especially densely distributed in Japan, whereas water-limited inland ecosystems were scarce. Consequently, the correlation between LE and precipitation was weaker than those reported in a literature survey for Asia (Kang and Cho, 2021). Under similar climate conditions, LE was lower and H was higher in urban landscapes in comparison with vegetation surfaces, in agreement with a previous report (Ueyama et al., 2021). Mean annual H did not change with air temperature or precipitation, possibly be caused by missing high-latitude observations owing to missing winter data (e.g., RU-Tur, RU-SkP, Ru-Ege) (Fig. 5). Negative H values in high-latitude ecosystems were observed owing to decreased available energy associated with snow albedo (Nakai et al., 2013; Ueyama et al., 2020b). Figure 9. Relationships of annual energy fluxes of latent heat flux (LE) (a, b) and sensible heat flux (H) (c, d) to mean climate of annual mean air temperature (a, c) and annual sum of precipitation (b, d). The classification of the disturbed forest (DIS) is as in Fig. 8. Annual H were only calculated for the case where there were no missing data in the mean seasonality, whereas the missing LE data during the winter were considered to be zero for boreal forests in Russia. The lines represent linear regressions, with shading showing the confidence intervals (p < 0.05), that was determined excluding the data from DIS, urban areas (URB), and lakes and ponds (WAT). The values are shown in Table 3. Land cover type abbreviations are in Fig. 3. # 4 Data availability and data use guidelines The dataset associated with this publication can be found at the ADS website (https://ads.nipr.ac.jp/japan-flux2024/), where individual site data have their own DOIs. All data are available under the CC BY 4.0 copyright policy with appropriate citations of this paper. We suggest that researchers planning to use this dataset as a core dataset for their analysis contact and collaborate with database developers and relevant site teams. As in the data policy of FLUXNET2015, in case of a synthesis using both CC BY 4.0 and other private data, all data should be treated as Tier Two of the FLUXNET data policy (data producers must have opportunities to collaborate and consult with data users). ### **5 Conclusions** 460 465 470 The JapanFlux2024 dataset is the first public dataset that includes as much data as possible, both old and new, as an activity of JapanFlux. The dataset is consistent with previous synthesis studies in Asia in terms of seasonalities in CO₂ and energy fluxes across Japan and East Asia, but substantially increased the number of the data, 83 sites with 683 site-years from 1990 to 2023. The dataset will facilitate important studies in East Asia including Japan, such as those on land-atmosphere interactions, improvement of process models, and upscaling fluxes using machine learning. Since the dataset is processed in line with reference to selected procedures from the FLUXNET standard dataset, the JapanFlux2024 dataset will bridge collaborations between researchers from Asia and FLUXNET. ## **Author contributions** 480 485 The JapanFlux2024 dataset was conceptualized by MU. The standardized dataset was prepared by MU and YT, and the metadata was compiled by HY and TH in collaboration with the data contributors. The data distribution website was developed by a team led by HY. KI contributed to the editing of the manuscript. The remaining co-authors contributed eddy covariance data to the dataset and/or participated in editing the manuscript. # **Competing interests** 490 The authors declare that they have no conflict of interest. # Acknowledgements The development of the database was supported by the digital biosphere project under KAKENHI (21H05316, to T. Kumagai was supported), PAWCs project under KAKENHI (19H05668), JSPS A3 Foresight Program Number (JPJSA3F20220002), 495 and the Arctic Challenge for Sustainability II (ArCS II; JPMXD1420318865). The CH-Lsh data were provided by Dr. N. Saigusa of the National Institute of Environmental Studies and H. Wang of
the Chinese Academy of Sciences. Observations at JP-Tmk were supported by Dr. R. Hirata of the National Institute of Environmental Studies. Observations of JP-Kgu were supported by Dr. M. Kanda of the Institute of Science Tokyo. Observations of JP-Tdf were supported by Professor emeritus S. Hattori of Nagoya University. Observations of JP-Ynf were supported by Dr. S. Tanigushi of the University of the Ryukyus. 500 M. Ueyama was supported by KAKENHI (18H03362, 24K03065). S. Ishida was supported by KAKENHI (25450201). K. Ichii, H. Yazawa, and M. Tanaka were supported by KAKENHI (22H05711, 22H05004, 24H01504) and Environment Research and Technology Development Fund (JPMEERF24S12207). H. Iwata was supported by KAKENHI (17H05039, 21H02315, 23K21248, 23KK0194). M. Sugita was supported by KAKENHI (15K01159, 20H01384, 23K20125). T. Shimizu was supported by KAKENHI (20H0309). Multidisciplinary observations at Takayama sites (JP-Tak and JP-Ta2) have been 505 supported jointly by H. Muraoka (KAKENHI 21H05316, 21H05312, 19H03301), T.M. Saitoh (KAKENHI 18780113, 21241009, 22248017, 23710005, 24241008, 26241005, 26292092, 15H04512, 20H03041, 20K06144, 21H02245, 21H05316, 23K11395, 24K01818, 24K00986, the Environment Research and Technology Development Fund JPMEERF20232M01 of the Environmental Restoration and Conservation Agency provided by the Ministry of the Environment of Japan, the Global Environment Research Coordination System from the Ministry of the Environment, Japan MAFF2254), H. Kondo, S. 510 Murayama, S. Ishidoya and T. Maeda (KAKENHI 24241008, 24310017, 15H02814, 18H03365, 19H01975, 22H00564, 22H05006, Global Environment Research Coordination System from the Ministry of the Environment, Japan MAFF0751, MAFF1251, MAFF2254, the Global Environment Research Fund of the Ministry of the Environment, Japan S-1: Integrated Study for Terrestrial Carbon Management of Asia in the 21st Century Based on Scientific Advancement). JP-Spp, JP-Api, JP-Fjy, JP-Yms, and JP-Khw were supported by KAKEN (16K07789), Research revolution 2002: Global Warming Initiatives 515 (FY2002-2006) by the Ministry of Education, Culture, Sports, Science and Technology of Japan, Commissioned project study from the Ministry of Agriculture, Forestry and Fisheries (JPJ005317), Environment Research and Technology Development Fund (S-1), and Research Coordination System (MAFF0751, 1251, 2254) from the Ministry of the Environment of Japan, and Research grants (#199903, #200303, #201802) from the Forestry and Forest Products Research Institute. JP-Tom was supported by KAKENHI (11213204, 14656059, 16208014, 2331001513, 2529207903) and by the Ministry of the 520 Environment (0708BD437, D-0909) to T. Hiura. JP-Mse was supported by the Global Environmental Research Fund (S-1) of the Ministry of Environment of Japan, a research project entitled "Development of technologies for mitigation and adaptation to climate change in agriculture, forestry and fisheries" by the Ministry of Agriculture, Forestry and Fisheries of Japan, and KAKENHI (19H03077, 19H03085, 23H02341). K. Matsumoto was supported by KAKENHI (25304027, 16H02762, 21H02238, 22K05752, 24H01520). T. Maximov was partly supported by the project "Study of biogeochemical cycles and 525 adaptive reactions of plants of boreal and arctic ecosystems of northeastern Russia" (AAAA-A21-121012190034-2) of the Ministry of Education and Science of Russia. We thank the two anonymous reviewers and Dr. D. Papale for their constructive comments and suggestions. ### References - 530 Asanuma, J.: JapanFlux2024 MN-Kbu Kherlenbayan Ulaan, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024121004, 2025a. - Asanuma, J.: JapanFlux2024 MN-Skt Southern Khentei Taiga, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024121011, 2025b. - Asanuma, J., Shimoda, S.: JapanFlux2024 JP-Tgf Terrestrial Environment Research Center, University of Tsukuba, 1.00, - $535 \quad Arctic \ Data \ archive \ System \ (ADS), \ Japan, \ http://doi.org/10.17592/001.2024121013, \ 2025.$ - Awal, M. A., and Ohta, T.: JapanFlux2024 JP-Nuf Nagoya University Forest, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024121008, 2025a. - Awal, M. A., and Ohta, T.: JapanFlux2024 JP-Tdf Toyota Deciduous Forest, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024121012, 2025b. - Awal, M. A., Ohta, T., Matsumoto, K., Toba, T., Daikoku, K., Hattori, S., Hiyama, T., and Park, H.: Comparing the carbon sequestration capacity of temperate deciduous forests between urban and rural landscapes in central Japan, Urb. For. Urb. Greening, 9, 261–170, https://doi.org/10.1016/j.ufug.2010.01.007, 2010. - Baldocchi, D., Novick, K., Keenan, T., and Torn, M.: AmeriFlux: Its Impact on our understanding of the 'breathing of the biosphere', after 25 years, Agric. For. Meteorol., 348, 109929, https://doi.org/10.1016/j.agrformet.2024.109929, 2024. - Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rödenbeck, C., Arain, M. A., Baldocchi, D., Bonan, 545 G. B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luvssaert, S., Margolis, H., Oleson, K. W., Roupsard, O., Veenendaal, E., Viovy, N., Williams, C., Ian Woodward, F., and Papale, D.: Terrestrial Gross Carbon Covariation with Dioxide Uptake: Global Distribution and Climate. Science. 329. 834-838. https://doi.org/10.1126/science.1184984, 2010. - Boiarskii, B., and Hasegawa, H.: Comparison of NDVI and NDRE Indices to Detect Differences in Vegetation and Chlorophyll Content, Internatl. Conf. Appl. Sci., Tech. Engin. J. Mech. Cont.& Math. Sci., 4, 20-29, https://doi.org/10.26782/jmcms.spl.4/2019.11.00003, 2019. - Bonan, G. B., Oleson, K. W., Fisher, R. A., Lasslop, G., Reichstein, M.: Reconciling leaf physiological traits and canopy flux data: Use of the TRY and FLUXNET databases in the Community Land Model version 4, J. Geophys. Res. Biogeosci., 117, G02026, https://doi.org/10.1029/2011JG001913, 2012. - Bond-Lamberty, B., Christianson, D. S., Malhotra, A., Pennington, S. C., Sihi, D., Agha-Kouchak, A., Anjileli, H., Arain, M. A., Armesto, J. J., Ashraf, S., Ataka, M., Baldocchi, D., Black, T. A., Buchmann, N., Carbone, M. S., Chang, S.-C., Crill, P., Curtis, P. S., Davidson, E. A., Desai, A. R., Drake, J., El-Madany, T. S., Gavazzi, M., Görres, C.-M., Gough, C. M., Goulden, M., Gregg, J., del Arroyo, O. G., He, J.-S., Hirano, T., Hopple, A., Hughes, H., Järveoja, J., Jassal, R., Jian, J., - Kan, H., Kaye, J., Kominami, Y., Liang, N., Lipson, D., Macdonald, C., Maseyk, K., Mathes, K., Mauritz, M., Mayes, M. A., McNulty, S., Miao, G., Migliavacca, M., Miller, S., Miniat, C. F., Nietz, J. G., Nilsson, M. B., Noormets, A., Norouzi, H., O'Connell, C. S., Osborne, B., Oyonarte, C., Pang, Z., Peichl, M., Pendall, E., Perez-Quezada, J. F., Phillips, C. L., Phillips, R. P., Raich, J. W., Renchon, A. A., Ruehr, N. K., Sánchez-Cañete, E. P., Saunders, M., Savage, K. E., Schrumpf, M., Scott, R. L., Seibt, U., Silver, W. L., Sun, W., Szutu, D., Takagi, K., Takagi, M., Teramoto, M., Tjoelker, M. G., - Trumbore, S., Ueyama, M., Vargas, R., Varner, R. K., Verfaillie, J., Vogel, C., Wang, J., Winston, G., Wood, T. E., Wu, J., Wutzler, T., Zeng, J., Zha, T., Zhang, Q., and Zou, J.: COSORE: A community database for continuous soil respiration and other soil-atmosphere greenhouse gas flux data. Glob. Change Biol., 26, 7268-7283, https://doi.org/10.1111/gcb.15353, 2020. - Burba, G., McDermitt, D. K., Grelle, A., Anderson, D. J., Xu, L.: Addressing the influence of instrument surface heat exchange on the measurements of CO₂ flux from open-path gas analyzers, Glob. Change Biol., 14, 1854-1876, https://doi.org/10.1111/j.1365-2486.2008.01606.x, 2008. - Delwiche, K. B., Knox, S. H., Malhotra, A., Fluet-Chouinard, E., McNicol, G., Feron, S., Ouyang, Z., Papale, D., Trotta, C., Canfora, E., Cheah, Y.-W., Christianson, D., Alberto, M. C. R., Alekseychik, P., Aurela, M., Baldocchi, D., Bansal, S., Billesbach, D. P., Bohrer, G., Bracho, R., Buchmann, N., Campbell, D. I., Celis. G., Chen, J., Chen, W., Chu, H., Dalmagro, - H. J, Dengel, S., Desai, A. R., Detto, M., Dolman, H., Eichelmann, E., Euskirchen, E., Famulari, D., Fuchs, K., Goeckede, M., Gogo, S., Gondwe, M. J., Goodrich, J. P., Gottschalk, P., Graham, S. L., Heimann, M., Helbig, M., Helfter, C., Hemes, K. S., Hirano, T., Hollinger, D., Hörtnagl, L., Iwata, H., Jacotot, A., Jurasinski, G., Kang, M., Kasak, K., King, J., Klatt, J., Koebsch, F., Krauss, K. W., Lai, D. Y. F., Lohila, A., Mammarella, I., Manca, G., Marchesini, L. B., Matthes, J. H., - Maximon, T., Merbold, L., Mitra, B., Morin, T. H., Nemitz, E., Nilsson, M. B., Niu, S., Oechel, W. C., Oikawa, P. Y., Ono, K., Peichl, M., Peltola, O., Reba, M. L., Richardson, A. D., Riley, W., Runkle, B. R. K., Ryu, Y., Sachs, T., Sakabe, A., Sanchez, C. R., Schuur, E. A., Schäfer, Karina, V. R., Sonnentag, O., Sparks, J. P., Stuart-Haëntjens, E., Sturtevant, C., Sullivan, R. C., Szutu, D. J., Thom, J. E., Torn, M. S., Tuittila, E.-S., Turner, J., Ueyama, M., Valach, A. C., Vargas, R., Varlagin, A., Vazquez-Lule, A., Verfaillie, J. G., Vesala, T., Vourlitis, G. L., Ward, E. J., Wille, C., Wohlfahrt, G., Wong, G. X., Zhang, Z., Zona, D., Windham-Myers, L., Poulter, B., and Jackson, R. B.: FLUXNET-CH4: A global, multi-ecosystem dataset and analysis of methane seasonality from freshwater wetlands. Earth System Science Data, 13, 3607-3689, https://doi.org/10.5194/essd-13-3607-2021, 2021. - Delwiche, K. B., Nelson, J., Kowalska, N., Moore, C. E., Shirkey, G., Tarin, T., Cleverly, J. R., and Keenan, T. F.: Charting the Future of
the FLUXNET Network, Bull. Ameri. Meteorol. Soc., 105, E466–E473, https://doi.org/10.1175/BAMS-D-23-0316.1, 2024. - 590 Du, M., Kato, T., Tang, Y., Li, Y., Gu, S., Zhao, L., and Zhang, F.: JapanFlux2024 CN-HaM Qinghai Flux Research Site, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102214, 2025. - Du, M., Li, Y., Zhang, F., Zhao, L., Li, H., Gu, S., Yonemura, S., and Tang, Y.: Characteristics and scenarios projection of NEE change in an alpine meadow on the Tibetan Plateau, Internatl. J. Glob. Warming (IJGW), 24,307-325, https://doi.org/10.1504/IJGW.2021.116711, 2021. - Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer, C., Burba, G., Ceulemans, R., Clement, R., Dolman, H., Granier, A., Gross, P., Grünwald, T., Hollinger, D., Jensen, N.-O., Katul, G., Keronen, P., Kowalski, A., Lai, C. T., Law B. E., Meyers, T., Moncrieff, J., Moors, E., Munger, W., Pilegaard, K., Rannik, Ü., Rebmann, C., Suyker, A., Tenhunen, J., Tu, K., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: Gap filling strategies for defensible annual sums of net ecosystem exchange, Agric. For. Meteorol., 107, 43-69, https://doi.org/10.1016/S0168-1923(00)00225-2, 2001. - Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Bakker, D. C. E., Hauck, J., Landschützer, P., Le Quéré, C., 2399 Luijkx, I. T., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., 2400 Alin, S. R., Anthoni, P., Barbero, L., Bates, N. R., Becker, M., Bellouin, N., Decharme, B., Bopp, L., Brasika, I. B. M., 2401 Cadule, P., Chamberlain, M. A., Chandra, N., Chau, T.-T.-T., Chevallier, F., Chini, L. P., Cronin, M., Dou, X., Enyo, K., 2402 Evans, W., Falk, S., Feely, R. A., Feng, L., Ford, D. J., Gasser, T., Ghattas, J., Gkritzalis, T., Grassi, ". - G., Gregor, L., Gruber, 2403 N., Gürses, Ö., Harris, I., Hefner, M., Heinke, J., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A. 2404 K., Jarníková, T., Jersild, A., Jiang, F., Jin, Z., Joos, F., Kato, E., Keeling, R. F., Kennedy, D., Klein Goldewijk, K., Knauer, 2405 J., Korsbakken, J. I., Körtzinger, A., Lan, X., Lefèvre, N., Li, H., Liu, J., Liu, Z., Ma, L., Marland, G., Mayot, N., McGuire, 2406 P. C., McKinley, G. A., Meyer, G., Morgan, E. J., Munro, D. R., Nakaoka, S., Niwa, Y., O'Brien, K. M., Olsen, A., Omar, A. 2407 M., Ono, T., Paulsen, M., Pierrot, D., Pocock, K., Poulter, - B., Powis, C. M., Rehder, G., Resplandy, L., Robertson, E., 2408 Rödenbeck, C., Rosan, T. M., Schwinger, J., Séférian, R., Smallman, T. L., Smith, S. M., Sospedra-Alfonso, R., Sun, Q., 2409 Sutton, A. J., Sweeney, C., Takao, S., Tans, P. P., Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F., van der Werf, G. R., van Ooijen, E., Wanninkhof, R., Watanabe, M., - Wimart-Rousseau, C., Yang, D., Yang, X., Yuan, W., Yue, X., Zaehle, S., Zeng, 2411 J., and Zheng, B.: Global Carbon Budget 2023, Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, 2023. - Hamada, S., Ohta, T., Hiyama, T., Kuwada, T., Takahashi, A., and Maximov, T. C.: Hydrometeorological behaviour of pine and larch forests in eastern Siberia, Hydrol. Proc., 18, 23-29, https://doi.org/10.1002/hyp.1308, 2004. - Hammerle, A., Haslwanter, A., Schmitt, M., Bahn, M., Tappeiner, U., Cernusca, A., and Wohlfahrt, G.: Eddy covariance measurements of carbon dioxide, latent and sensible energy fluxes above a meadow on a mountain slope, Bound.-Layer Meteorol., 122, 397-416, https://doi.org/10.1007/s10546-006-9109-x, 2007. - 620 Harazono, Y.: JapanFlux2024 JP-Nsb NIAES Soybean, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102240, 2025a. - Harazono, Y.: JapanFlux2024 JP-Yrp Yawara Rice paddy, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024121019, 2025b. - Harazono, Y., and Miyata, A.: JapanFlux2024 JP-Km1 Kushiro Mire: Onnenai Fen, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102239, 2025a. - Harazono, Y., and Miyata, A.: JapanFlux2024 JP-Km2 Kushiro Mire: Akanuma Bog, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024121026, 2025b. - Harazono, Y., Kim, J., Miyata, A., Choi, T., Yun, J.-I.,and Kim, J.-W.: Measurement of energy budget components during the International Rice Experiment (IREX) in Japan, Hydrol. Proc., 12, 2081-2092, <a href="https://doi.org/10.1002/(SICI)1099-1085(19981030)12:13/14<2081::AID-HYP721>3.0.CO;2-M, 1998.">https://doi.org/10.1002/(SICI)1099-1085(19981030)12:13/14<2081::AID-HYP721>3.0.CO;2-M, 1998. - Harazono, Y., and Takagi, K.: JapanFlux2024 CN-In1 Inner Mongolia dune, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102241, 2025a. - Harazono, Y., and Takagi, K.: JapanFlux2024 CN-In2 Inner Mongolia grassland, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102242, 2025b. - Harazono, Y., and Takagi, K.: JapanFlux2024 CN-In3 Inner Mongolia soybean, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102243, 2025c. - Harazono, Y., and Takagi, K.: JapanFlux2024 CN-In4 Inner Mongolia maize, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102244, 2025d. - Harazono, Y., and Takagi, K.: JapanFlux2024 CN-In5 Inner Mongolia no grazing, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102245, 2025e. - Harazono, Y., and Takagi, K.: JapanFlux2024 CN-In6 Inner Mongolia heavy grazing, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102246, 2025f. - Harazono, Y., and Takagi, K.: JapanFlux2024 CN-In7 Inner Mongolia light grazing, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102247, 2025g. - 645 Harazono, Y., and Takagi, K.: JapanFlux2024 CN-In8 Inner Mongolia medium grazing, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102248, 2025h. - Harazono, Y.: JapanFlux2024 JP-Hc1 Hachihama Experimental Farm: the International Rice Experiment, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102237, 2025i. - Harazono, Y., Takagi, K., and Miyata, A.: JapanFlux2024 JP-KaP Kasumigaura lotus paddy, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102238, 2025. - Harazono, Y., Yamada, C., and Nishizawa, T.: Characteristics of Aerodynamic Parameters and Turbulent Transport of Momentum and CO₂ Over a Soybean Canopy, Bull. Environ. Res. Cent., the University of Tsukuba, 16, 13-25, 1992. - Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De - Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis. Quart. J. Roy. Meteorol. Soc. 146(730), 1999–2049. https://doi.org/10.1002/qj.3803, 2020. - Hirano,T.: JapanFlux2024 JP-Sb1 Sarobetsu Mire Moss, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102216, 2025a. - Hirano,T.: JapanFlux2024 JP-Sb2 Sarobetsu Mire Sasa, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102217, 2025b. - Hirano, T., and Hirata, R.: JapanFlux2024 JP-Tmd Tomakomai Flux Research Site Disturbed, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102230, 2025. - Hirano, T., Hirata, R., Fujinuma, Y., Saigusa, N., Yamamoto, S., Harazono, Y., Takada, M., Inukai, K., Inoue, G.: CO₂ and water vapor exchange of a larch forest in northern Japan. Tellus, 55B, 244-257, https://doi.org/10.3402/tellusb.v55i2.16753, 2003. - Hirano, T., Ohkubo, S.: JapanFlux2024 ID-PaB Palangkaraya Drained Burnt forest, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102213, 2025a. - 670 Hirano, T., and Ohkubo, S.: JapanFlux2024 ID-PaD Palangkaraya drained forest, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102232, 2025b. - Hirano, T., Ohkubo, S.: JapanFlux2024 ID-Pag Palangkaraya Undrained Forest, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102233, 2025c. - Hirano, T., Ohkubo, S., Itoh, M., Tsuzuki, H., Sakabe, A., Takahashi, H., Kusin, K., and Osaki, M.: Large variation in carbon dioxide emissions from tropical peat swamp forests due to disturbances, Comm. Earth & Environ., 5, 221, https://doi.org/10.1038/s43247-024-01387-7, 2024. - Hirano, T., Suzuki, K., and Hirata, R.: Energy balance and evapotranspiration changes in a larch forest caused by severe disturbance during an early secondary succession, Agric. For. Meteorol., 232, 457-468, https://doi.org/10.1016/j.agrformet.2016.10.003, 2017. - 680 Hirano, T., Yamada, H., Takada, M., Fujimura, Y., Fujita, H., and Takahashi, H.: Effects of the expansion of vascular plants in Sphagnum-dominated bog on evapotranspiration, Agric. For. Meteorol., 220, 90-100, https://doi.org/10.1016/j.agrformet.2016.01.039, 2016. - Hirata, R., and Hirano, T.: JapanFlux2024 JP-Tmk Tomakomai Flux Research Site, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102222, 2025. - Hirata, R., Saigusa, N., Yamamoto, S., Ohtani, Y., Ide, R., Asanuma, J., Gamo, M., Hirano, T., Kondo, H., Kosugi, Y., Li, S. -G., Nakai, Y.,
Takagi, K., Tani, M., and Wang, H.: Spatial distribution of carbon balance in forest ecosystems across East Asia, Agric. Meteorol. For., 148, 761-775, https://doi.org/10.1016/j.agrformet.2007.11.016, 2008. 695 - Hiyama, T., Kochi, K., Kobayashi, N. and Sirisampan, S.: Seasonal variation in stomatal conductance and physiological factors observed in a secondary warm-temperate forest, Ecol. Res., 20, 333-346, https://link.springer.com/chapter/10.1007/4-431-29361-2 10, 2005. - Ichii, K., Ueyama, M., Kondo, M., Saigusa, N., Kim, J., Alberto, M. C., Ardö, J., Euskirchen, E., Kang, M., Hirano, T., Joiner, J., Kobayashi, H., Marchesini, L. B., Merbold, L., Miyata, A., Saitoh, T. M., Takagi, K., Varlagin, A., Bret-Harte, M. S., Kitamura, K., Kosugi, Y., Kotani, A., Kumar, K., Li, S. -G., Machimura, T., Matsuura, Y., Mizoguchi, Y., Ohta, T., Mukherjee, S., Yanagi, Y., Yasuda, Y., Zhang, Y., and Zhao, F.: New data-driven estimation of terrestrial CO₂ fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression, J. Geophys. Res. Biogeosci., 122, 767-795, https://doi.org/10.1002/2016JG003640, 2017. - Igarashi, Y., Katul, G. G., Kumagai, T., Yoshifuji, N., Sato, T., Tanaka, N., Tanaka, K., Fujinami, H., Suzuki, M., and Tantasirin, C.: Separating physical and biological controls on long-term evapotranspiration fluctuations in a tropical deciduous forest subjected to monsoonal rainfall, J. Geophys. Res.: Biogeosci., 120, 1262-1278, https://doi.org/10.1002/2014JG002767, 2015. - Iida, S., Shimizu, T., Shinohara, Y., Takeuchi, S., and Kumagai, T.: The necessity of sensor calibration for the precise measurement of water fluxes in forest ecosystems, In: Levia, D.F., Carlyle-Moses, D.E., Iida, S., Michalzik, B., Nanko, K., Tischer, A. (eds) Forest-Water Interactions. Ecological Studies, vol 240. Springer, Cham. https://doi.org/10.1007/978-3-030-26086-6_2, 2020. - 705 Ishida, S.: JapanFlux2024 JP-Srk Shirakami Beech Forest Site, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102218, 2025. - Ishida S., Ito, D., and Matsuura, Y.: Overview of Shirakami Flux Tower and General Meteorological Conditions between July and October, 2008, Shirakami Kenkyu. 6, 18 25, 2009. (in Japanese with English abstract) - Ishikawa, M.: JapanFlux2024 MN-Udg Udleg practice forest,1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024121017, 2025. - Iwahana, G., Machimura, T., Kobayashi, Y., Fedorov, A. N., Konstantinov, P. Y., and Fukuda, M.; Influence of forest clear-cutting on the thermal and hydrological regime of the active layer near Yakutsk, eastern Siberia, J. Geophys. Res., 110, G02004, https://doi.org/10.1029/2005JG000039, 2005. - Iwata, H.: JapanFlux2024 JP-Nkm Nishikoma Site, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102231, 2025a. - Iwata, H.: JapanFlux2024 JP-SwL Suwa Lake Site, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.20241022-019, 2025b. - Iwata, H., and Suzuki, J.: JapanFlux2024 JP-Shn Shinshu University Experimental Forest Site, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024121009, 2025. - 720 Iwata, H., Hirata, R., Takahashi, Y., Miyabara, Y., Itoh, M., and Iizuka, K.: Partitioning eddy-covariance methane fluxes from a shallow lake into diffusive and ebullitive fluxes, Bound.-Layer Meteorol., 169, 413-428, https://doi.org/10.1007/s10546-018-0383-1, 2018. - Kabeya, N., Shimizu, A., Shimizu, T., Iida, S., Tamai, K., Miyamato, A., Chann, S., Araki, M., and Ohnuki, Y.: Long-term Hydrological Observations in a Lowland Dry Evergreen Forest Catchment Area of the Lower Mekong River, Cambodia, Japan Agricultural Res. Ouart., 55, 177-190, https://doi.org/10.6090/jarg.55.177, 2021. - Kanda, M., and Moriwaki, R.: JapanFlux2024 JP-Kgu Kugahara urban residential area, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024121018, 2025. - Kang, M., and Cho, S.: Progress in water and energy flux studies in Asia: A review focused on eddy covariance measurements, J. Agric. Meteorol., 77, 2-23, https://doi.org/10.2480/agrmet.D-20-00036, 2021. - Kato, T., and Tang, Y.: Spatial variability and major controlling factors of CO₂ sink strength in Asian terrestrial ecosystems: evidence from eddy covariance data, Glob. Change Biol., 14, 2333-2348, https://doi.org/10.1111/j.1365-2486.2008.01646.x, 2008. - Keenan, T. F., Luo, X., Stocker, B. D., De Kauwe, M. G., Medlyn, B. E., Prentice, I. C., Smith, N. G., Terrer, C., Wang, H., Zhang, Y., and Zhou, S.: A constraint on historic growth in global photosynthesis due to rising CO₂, Nat. Clim. Chang., 13, 1376-1381, https://doi.org/10.1038/s41558-023-01867-2, 2023. - Kitamura, K., Shimizu, T., Kominami, Y., Hagino, K., Mizoguchi, Y., Tamai, K. Shimizu, A., Ohnuki, Y., Kobayashi, M.: JapanFlux2024 JP-Khw Kahoku Experiment watershed, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024121005, 2025. - Knox, S. H., Jackson, R. B., Poulter, B., McNicol, G., Fluet-Chouinard, E., Zhang, Z., Hugelius, G., Bousquet, P., Canadell, J. G., Saunois, M., Papale, D., Chu, H., Keenan, T. F., Baldocchi, D., Torn, M. S., Mammarella, I., Trotta, C., Aurela, M., Bohrer, G., Campbell, D. I., Cescatti, A., Chamberlain, S., Chen, J., Chen, W., Dengel, S., Desai, A. R., Euskirchen, E., Friborg, T., Gasbarra, D., Goded, I., Goeckede, M., Heimann, M., Helbig, M., Hirano, T., Hollinger, D. Y., Iwata, H., Kang, M., Klatt, J., Krauss, K. W., Kutzbach, L., Lohila, A., Mitra, B., Morin, T. H., Nilsson, M. B., Niu, S., Noormets, A., Oechel, W. C., Peichl, M., Peltola, O., Reba, M. L., Richardson, A. D., Runkle, B. R., Ryu, Y., Sachs, T., Schäfer, K. - B. R., Schmid, H. P., Shurpali, N., Sonnentag, O., Tang, A. C. I., Ueyama, M., Vargas, R., Vesala, T., Ward, E. J., Windham-Myers, L., Wohlfahrt, G., and Zona, D., 2019. FLUXNET-CH₄ synthesis activity: objectives, observations, and future directions, Bull. Ameri. Meteorol. Soc., 100, 2607-2632, https://doi.org/10.1175/BAMS-D-18-0268.1, 2019. - Kominami, Y., Jomura, M., Dannoura, M., Goto, Y., Tamai, K., Miyama, T., Kanazawa, Y., Kaneko, S., Okumura, M., Misawa, N., Hamada, S., Sasaki, T., Kimura, H., and Ohtani, Y.: Biometric and eddy-covariance-based estimates of carbon balance for a warm-temperate mixed forest in Japan, Agric. For. Meteorol., 148, 723- - 737, https://doi.org/10.1016/j.agrformet.2008.01.017, 2008. Komiya, S.: Methane and carbon dioxide dynamics in temperate and tropical rice paddy fields, Ph.D. Dissertation, Meiji - Komiya, S.: Methane and carbon dioxide dynamics in temperate and tropical rice paddy fields, Ph.D. Dissertation, Meiji University, pp. 118, 2015. - Komiya, S.: JapanFlux2024 JP-Hrt Hiratsuka Rice Paddy, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024121020, 2025a. - Komiya, S.: JapanFlux2024 TH-Kms Kamphaeng Saen Rice Paddy, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024121021, 2025b. - Kosugi, Y., Takanashi, S.: JapanFlux2024 JP-Ako JP-Ako Akou green belt, 1.00, Arctic Data archive System (ADS), Japan, Japan, http://doi.org/10.17592/001.2024121001, 2025. - Kosugi, Y., Tanaka, H., Takanashi, S., Matsuo, N., Ohte, N., Shibata, S., and Tani, M.: Three years of carbon and energy fluxes from Japanese evergreen broad-leaved forest, Agric. For. Meteorol., 132, 329-343, https://doi.org/10.1016/j.agrformet.2005.08.010, 2005. - Kotani, A., Ohta, T.: JapanFlux2024 JP-SMF Seto Mixed Forest Site, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102234, 2025. - Kotani, A., Ohta, T., Yabuki, H., Maximov, T., Petrov, R.: JapanFlux2024 RU-Sk2 Yakutsk Pine, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102236, 2025. - Kotani, A., Kononov, A. V., Ohta, T., and Maximov, T. C.: Temporal variations in the linkage between the net ecosystem exchange of water vapour and CO₂ over boreal forests in eastern Siberia, Ecohydrology, 7, 209-225, https://doi.org/10.1002/eco.1449, 2014. - Kumagai, T., Hata, Y., Matsumoto, K., Kume, T.: JapanFlux2024 MY-LHP Lambir Hills National Park, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102206, 2025. - Kumagai, T., Takamura, N.: JapanFlux2024 TH-Kog Kog-Ma Watershed, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024121023, 2025a. - Kumagai, T., Takamura, N.: JapanFlux2024 TH-Mae Mae Moh plantation, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024121024, 2025b. - Kume, T., Takizawa, H., Yoshifuji, N., Tanaka, K., Tantasirin, C., Tanaka, N., and Suzuki, M.: Impact of soil drought on sap flow and water status of evergreen trees in a tropical monsoon forest in northern Thailand, For. Ecol. Management, 238, 220-230, https://doi.org/10.1016/j.foreco.2006.10.019, 2007. - Lasslop, G., Reichstein, M., Papale, D., Richardson, A. D., Arneth, A., Barr, A., Stoy, P., and Wohlfahrt, G.: Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation, Glob. Change Biol., 16, 187-208, https://doi.org/10.1111/j.1365-2486.2009.02041.x,
2010. - Li, S.-G., Asanuma, J., Eugster, W., Kotani, A., Davaa, G., Oyunbaatar, D., and Sugita, M.: Net ecosystem carbon dioxide exchange over grazed steppe in central Mongolia, Glob. Change Biol., 11, 1941–1955, https://doi:10.1111/j.1365-2486.2005.01047.x, 2005a. - 785 Li, S.-G., Asanuma, J., Kotani, A., Eugster, W., Davaa, G., Oyunbaatar, D., and Sugita, M.: Year-round measurements of net ecosystem CO₂ flux over a montane larch forest in Mongolia, J. Geophys. Res., 110, D0930, https://doi:10.1029/2004JD005453, 2005b. - Li, S. G., Harazono, Y., Oikawa, T., Zhao, H. L., He, Z. Y., and Chang, X. L.: Grassland desertification by grazing and the resulting micrometeorological changes in Inner Mongolia, Agric. For. Meteorol., 102, 125-137, https://doi.org/10.1016/S0168-1923(00)00101-5, 2000. - Liu, H.Z., Feng, J.W., Järvi, L., and Vesala, T.: Four-year (2006-2009) eddy covariance measurements of CO₂ flux over an urban area in Beijing. Atmos. Chem. Phys. 12, 7881–7892, https://doi.org/10.5194/acp-12-7881-2012, 2012. - Lloyd, J. and Taylor, J. A.: On the temperature dependence of soil respiration. Funct. Ecol. 8, 315323, https://doi.org/10.2307/2389824, 1994. - 795 Machimura, T.: JapanFlux2024 RU-NeB Neleger Burnt Forest, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102210, 2025a. - Machimura, T.: JapanFlux2024 RU-NeC Neleger Cutover, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102211, 2025b. - Machimura, T.: JapanFlux2024 RU-NeF Neleger larch forest, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102212, 2025c. - Matsuda, K., Watanabe, I., Mizukami, K., Ban, S., and Takahashi, A.: Dry deposition of PM_{2.5} sulfate above a hilly forest using relaxed eddy accumulation, Atmo. Environ., 107, 255-261, https://doi.org/10.1016/j.atmosenv.2015.02.050, 2015. - Matsumoto, K., Taniguchi, S., Takashima, A.: JapanFlux2024 JP-Ynf Yona-Field Tower Site, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102225, 2025. - 805 Matsumoto, K., Ohta, T., Nakai, T., Kuwada, T., Daikoku, K., Iida, S., Yabuki, H., Kononov, A. V., van der Molen, M. K., Kodama, Y., Maximov, T. C., Dolman, A. J., and Hattori, S.: Energy consumption and evapotranspiration at several boreal temperate forests the Far East, For. Meteorol., 148, 1978-1989, and in Agric. https://doi.org/10.1016/j.agrformet.2008.09.008, 2008. - Matsumoto, K., Terasawa, K., Taniguchi, S., Ohashi, M., Katayama, A., Kume, T., and Takashima, A.: Spatial and seasonal variations in soil respiration in a subtropical forest in Okinawa, Japan, Ecol. Res., 38, 367-490, https://doi.org/10.1111/1440-1703.12386, 2023. - Matsuo, T., Sasyo, Y.: Non-melting phenomena of snowflakes observed in subsaturated air below freezing level, J. Meteorol. Soc. Jpn, 59, 26-32, https://doi.org/10.2151/jmsj1965.59.1_26, 1981. - Matsuura, S., Mori, A., Miyata, A., Hatano, R.: Effects of farmyard manure application and grassland renovation on net ecosystem carbon balance in a temperate grassland: analysis of 11-year eddy covariance data, J. Agric. Meteorol., 79, 2-17, https://doi.org/10.2480/agrmet.D-22-00007, 2023. - Matsuura, S.: JapanFlux2024 JP-NsM Nasu Research Station, Manure Application Plot, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024121028, 2025a. - Matsuura, S.: JapanFlux2024 JP-NsC Nasu Research Station, Manure Application Plot, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024121029, 2025b. - Matsuura, Y., and Morishita, T.: JapanFlux2024 RU-Tur Tura, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102223, 2025. - Maximov, T., Kotani, A., Petrov, R., Hiyama, T., and Ohta, T.: JapanFlux2024 RU-Ege Elgeeii forest station, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102229, 2025a. - Maximov, T., Kotani, A., Petrov, R., Iijima, Y., Yabuki, H., Hiyama, T., and Ohta, T.: JapanFlux2024 RU-SkP Yakutsk Spasskaya Pad larch, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102235, 2025b. - Miyata, A., Harazono, Y., Kim, J., Terai, H., Takahashi, H., and Nishio, F.: Carbon dioxide and methane fluxes at Kushiro Mire, Proc. International Workshop for Advanced Flux Network and Flux Evaluation, 29-32, 2001 - Miyazaki, S., Ishikawa, M., Baatarbileg, N., Damdinsuren, S., Ariuntuya, N., and Jambaljav, Y.: Interannual and seasonal variations in energy and carbon exchanges over the larch forests on the permafrost in northeastern Mongolia, Polar Sci., 8, 166-182, https://doi.org/10.1016/j.polar.2013.12.004, 2014. - Mizoguchi, Y., and Kitamura, K.: JapanFlux2024 JP-Spp Sapporo forest meteorology research site, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024121010, 2025. - Mizoguchi, Y., Miyata, A., Ohtani, Y., Hirata, R., and Yuta, S.: A review of tower flux observation sites in Asia, J. For. Res., 14, 1-9, https://doi.org/10.1007/s10310-008-0101-9, 2009. - Mizoguchi, Y., Ohtani, Y., Takanashi, S., Iwata, H., Yasuda, Y., and Nakai, Y.: Seasonal and interannual variation in net ecosystem production of an evergreen needleleaf forest in Japan, J. For. Res., 17, 283–295, https://doi.org/10.1007/s10310-011-0307-0, 2012. - Moriwaki, R., and Kanda, M.: Seasonal and diurnal fluxes of radiation, heat, water vapor, and carbon dioxide over a suburban area, J. Appl. Meteorol., 43, 1700-1710, https://doi.org/10.1175/JAM2153.1, 2004. - Murayama, S., Kondo, H., Ishidoya, S., Maeda, T., Saigusa, N., Yamamoto, S., Kamezaki, K., and Muraoka, H.: Interannual variation and trend of carbon budget observed for more than two decades at Takayama in a cool-temperate deciduous forest in central Japan, J. Geophys. Res.: Biogeosci., 129, e2023JG007769, https://doi.org/10.1029/2023JG007769, 2024a. - Murayama, S., Kondo, H., Muraoka, H., Ishidoya, S., and Maeda, T.: JapanFlux2024 JP-Tak Takayama deciduous broadleaf forest site, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102221, 2025b. - Medlyn, B. E., Duursma, R. A., Eamus, D., Ellsworth, D. S., Prentice, I. C., Barton, C. V., Crous, K. Y., De Angelis, P., Freeman, M, and Wingate, L.: Reconciling the optimal and empirical approaches to modelling stomatal conductance, Glob. Change Biol., 17, 2134-2144, https://doi.org/10.1111/j.1365-2486.2010.02375.x, 2011. - Nagano, H., and Hasegawa, H.: JapanFlux2024 JP-Mra Muramatsu agricultural field, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102209, 2025. - Nakai, T., Kim, Y., Busey, R. C., Suzuki, R., Nagai, S., Kobayashi, H., Park, H., Sugiura, K., and Ito, A.: Characteristics of evapotranspiration from a permafrost black spruce forest in interior Alaska, Polar Sci., 7, 136-148, https://doi.org/10.1016/j.polar.2013.03.003, 2013. - Nakai, T., Ohta, T., Kodama, Y., Sumida, A., Toda, M., and Hara, T.: JapanFlux2024 JP-MBF Moshiri Birch Forest Site, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102207, 2025a. - Nakai, T., Ohta, T., Kodama, Y., Sumida, A., Toda, M., and Hara, T.: JapanFlux2024 JP-MMF Moshiri Mixed Forest Site, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.20241022-008, 2025b. - Nakai, T., van der Molen, M. K., Gash, J. H. C., and Kodama, Y.: Correction of sonic anemometer angle of attack errors, Agric. For. Meteorol.,136, 19-30, https://doi.org/10.1016/j.agrformet.2006.01.006, 2006. - Nakai, Y., Matsuura, Y., Kajimoto, T., Abaimov, A. P., Yamamoto, S., and Zyryanova, O. A.: Eddy covariance CO₂ flux above a Gmelin larch forest on continuous permafrost in Central Siberia during a growing season, Theo. Appl. Climatol., 93, 133-147, https://doi.org/10.1007/s00704-007-0337-x, 2008. - Nakaji, T.: JapanFlux2024 JP-Tom Tomakomai Experimental Forest, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024121015, 2025. - Nakaji, T., Nakamura, M., and Ide, R.: JapanFlux2024 JP-Toc Tomakomai Crane site, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024121014, 2025. - Nakamura, M., Nakaji, T., Muller, O., and Hiura, T.. Different initial responses of the canopy herbivory rate in mature oak trees to experimental soil and branch warming in a soil-freezing area, OIKOS, 124, 8, 1071-1077, https://doi.org/10.1111/oik.01940, 2014 - Nakaya, K., Suzuki, C., Kobayashi, T., Ikeda, H., and Yasuike, S.: Application of a displaced-beam small aperture scintillometer to a deciduous forest under unstable atmospheric conditions, Agric. For.t Meteorol., 136, 45–55, https://doi.org/10.1016/j.agrformet.2005.12.009, 2006. - Nakaya, K., Suzuki, C., Kobayashi, T., Ikeda, H., and Yasuike, S.: JapanFlux2024 JP-Kzw Karuizawa, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102205, 2025. - Nie, D., Demetriades-Shah, T., and Kanemasu, E. T.: Surface energy fluxes on four slope sites during FIFE 1988, J. Geophys. Res. Atmos., 97, 18641-18649, https://doi.org/10.1029/91JD03043, 1992. - Ohta, T., Maximov, T. C., Dolman, A. J., Nakai, T., van der Molen, M. K., Kononov, A. V., Maximov, A. P., Hiyama, T., Iijima, Y., Moors, E. J., Tanaka, H., Toba, T., and Yabuki, H.: Interannual variation of water balance and summer - evapotranspiration in an eastern Siberian larch forest over
a 7-year period (1998–2006), Agric. For. Meteorol., 148, 1941-1953, https://doi.org/10.1016/j.agrformet.2008.04.012, 2008. - Ohtaki, E.: Application of an infrared carbon dioxide and humidity instrument to studies of turbulent transport. College of Liberal Art. Sci., 29, 85-107, 1984. - Ohkubo, S., Hirano, T., and Kusin, K.: Assessing the carbon dioxide balance of a degraded tropical peat swamp forest following multiple fire events of different intensities, Agric. For. Meteorol., 306, 108448, https://doi.org/10.1016/j.agrformet.2021.108448, 2021. 890 - Ono, K.: JapanFlux2024 JP-Mse Mase paddy flux site, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024121007, 2025. - Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., Longdoz, B., Rambal, S., Valentini, R., Vesala, T., and Yakir, D.: Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation, Biogeosciences, 3, 571-583, https://doi.org/10.5194/bg-3-571-2006, 2006. - Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, Y.-W., Poindexter, C., Chen, J., Elbashandy, A., Humphrey, M., Isaac, P., Polidori, D., Ribeca, A., van Ingen, C., Zhang, L., Amiro, B., Ammann, C., Arain, M. A., Ardö, J., Arkebauer, T., Arndt, S. K., Arriga, N., Aubinet, M., Aurela, M., Baldocchi, D., Barr, A., Beamesderfer, E., Marchesini, L. B., Bergeron, O., Beringer, J., Bernhofer, C., Berveiller, D., Billesbach, D., Black, T. A., Blanken, P. D., Bohrer, G., Boike, J., Bolstad, P. V., Bonal, D., Bonnefond, J.-M., Bowling, D. R., Bracho, R., Brodeur, J., Brümmer, C., Buchmann, N., Burban, B., Burns, S. P., Buysse, P., Cale, P., Cavagna, M., Cellier, P., Chen, S., Chini, I., Christensen, T. R., Cleverly, J., Collalti, A., Consalvo, C., Cook, B. D., Cook, D., Coursolle, C., Cremonese, E., Curtis, P. S., D'Andrea, E., da Rocha, H., Dai, X., Davis, K. J., De Cinti, B., de Grandcourt, A., De Ligne, A., De Oliveira, R. C., Delpierre, N., Desai, A. R., Di Bella, C. M., di Tommasi, P., Dolman, H., Domingo, F., Dong, G., Dore, S., Duce, P., Dufrêne, E., Dunn, A., Dušek, J., Eamus, D., Eichelmann, U., ElKhidir, H. A. M., Eugster, W., Ewenz, C. M., Ewers, B., Famulari, D., Fares, S., Feigenwinter, I., Feitz, A., Fensholt, R., Filippa, G., Fischer, M., Frank, J., Galvagno, M., Gharun, M., Gianelle, D., et al.: - Saigusa, N., Li, S.-G., Kwon, H., Takagi, K., Zhang, L.-M., Ide, R. Ueyama, M., Asanuma, J., Choi, Y.-J., Chun, J. H., Han, S.-J., Hirano, T., Hirata, R., Kang, M., Kato, T., Kim, J., Li, Y.-N., Maeda, T., Miyata, A., Mizoguchi, Y., Murayama, S., Nakai, Y., Ohta, T., Saitoh, T. M., Wang, H.-M., Yu, G.-R., Zhang, Y.-P., and Zhao, F.-H.: Dataset of CarboEastAsia and uncertainties in the CO₂ budget evaluation caused by different data processing, J. For. Res., 18, 41-48, https://doi.org/10.1007/s10310-012-0378-6, 2013. https://doi.org/10.1038/s41597-020-0534-3, 2020. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data, Sci. Data, 7, 225, 910 Saigusa, N., and Wang, H.: JapanFlux2024 CN-Lsh Laoshan,1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024121006, 2025. - Saito, M., Miyata, A., Nagai, H., and Yamada, T.: Seasonal variation of carbon dioxide exchange in rice paddy field in Japan, Agric. For. Meteorol., 135, 93–109, https://doi:10.1016/j.agrformet.2005.10.007, 2005. - Saitoh, T. M., and Tamagawa, I.: JapanFlux2024 JP-Ta2 Takayama evergreen coniferous forest site, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102220, 2025. - Saitoh, T. M., Tamagawa, I., Muraoka, H., Lee, N.-Y. M., Yashiro, Y., and Koizumi, H.: Carbon dioxide exchange in a cool-temperate evergreen coniferous forest over complex topography in Japan during two years with contrasting climates, J. Plant Res., 123, 473-483, https://doi.org/10.1007/s10265-009-0308-7, 2010. - Sakabe, A., and Itoh, M.: JapanFlux2024 JP-Nap Nunoike Agricultural Pond, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024121025, 2025. - Shibata, H., Hiura, T., Tanaka, Y., Takagi, K., and Koike, T.: Carbon cycling and budget in a forested basin of southwestern Hokkaido, northern Japan, Ecol. Res., 20, 325-331, https://doi.org/10.1007/s11284-005-0048-7, 2005. - Shimizu, T., Iida, S., Kabeya, N., and Iwagami, S.: JapanFlux2024 JP-Tkb Tsukuba Experimental Watershed, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024121022, 2025b. - Shimizu, T., Kabeya, N., Iida, S., Tamai, K., Shimizu, A., Chann, S., and Saing, S.: JapanFlux2024 KH-Kmp Kampong Thom Lowland Dry Evergreen Forest, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102203, 2025a. - Shimizu, T., Kumagai, T., Kobayashi, M., Tamai, K., Iida, S., Kabeya, N., Ikawa, R., Tateishi, M., Miyazawa, Y., and Shimizu, A.: Estimation of annual forest evapotranspiration from a coniferous plantation watershed in Japan (2): Comparison of eddy covariance, water budget and sap-flow plus interception loss. J. Hydrol., 522, 250-264, https://doi.org/10.1016/j.jhydrol.2014.12.021, 2015. - Shimoda, S., Mo, W., and Oikawa, T.: The effects of characteristics of Asian Monsoon climate on interannual CO₂ exchange in a humid temperate C₃/C₄ co-occurring grassland, SOLA, 1, 169-172, https://doi.org/10.2151/sola.2005-044, 2005. - Sugita, M., Ogawa, S., and Kawade, M.: Wind as a main driver of spatial variability of surface energy balance over a shallow 10²-km² scale lake: Lake Kasumigaura, Japan, Water Resources Research, 56, e2020WR027173, https://doi.org/10.1029/2020WR027173, 2020. - Sugita, M.: JapanFlux2024 JP-KaL Koshin, Lake Kasumigaura, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102230, 2025. - Sulla-Menashe, D., Gray, J. M., Abercrombie, S. P., and Friedl, M. A.: Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product, Remote Sens. Environ. 222, 183–194, http://dx.doi.org/10.1016/j.rse.2018.12.013, 2019. - Takagi, K., Fukuzawa, K., Liang, N., Kayama, M., Nomura, M., Hojo, H., Sugata, S., Shibata, H., Fukuzawa, T., Takahashi, Y., Nakaji, T., Oguma, H., Mano, M., Akibayashi, Y., Murayama, T., Koike, T., Sasa, K., and Fujinuma, Y.: Change in CO₂ balance under a series of forestry activities in a cool-temperate mixed forest with dense undergrowth, Glob. Change Biol., 15, 1275-1288, https://doi.org/10.1111/j.1365-2486.2008.01795.x, 2009. - Takagi, K., and Matsuda, K.: JapanFlux2024 JP-Fmt Field Museum Tama Hills, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024121003, 2025. - Takagi, K., Miyata, A., Harazono, Y., Ota, N., Komine, M., and Yoshimoto, M.: An alternative approach to determining zero-plane displacement, and its application to a lotus paddy field, Agric. For. Meteorol., 115, 173–181, https://doi.org/10.1016/S0168-1923(02)00209-5, 2003. 960 - Takagi, K., and Takahashi, Y.: JapanFlux2024 JP-Tef CC-LaG Teshio Experimental Forest, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024121016, 2025. - Takahashi, Y., Liang, N., Ide, R., Hatsumi, K., Yamao, Y., and Hirose, Y.: JapanFlux2024 JP-Fhk Fuji Hokuroku Flux Observation Site, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024121002, 2025. - Takahashi, Y., Saigusa, N., Hirata, R., ide, R., Fujinuma, Y., Okano, T., and Arase, T.: Characteristics of temporal variations in ecosystem CO₂ exchange in a temperate deciduous needle-leaf forest in the foothills of a high mountain, J. Agric. Meteorol., 71, 302-317, https://doi.org/10.2480/agrmet.D-14-00009, 2015. - Takamura, N., Hata, Y., Matsumoto, K., Kume, T., Ueyama, M., and Kumagai, T.: El Niño-Southern Oscillation forcing on carbon and water cycling in a Bornean tropical rainforest, Proc. Natl. Acad. Sci. U. S. A., 120, e2301596120, https://doi.org/10.1073/pnas.2301596120, 2023. - Takanashi, S., Kominami, Y., and Miyama, T.: JapanFlux2024 JP-Fjy Fujiyoshida forest meteorology research site, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102202, 2025a. - Takanashi, S., Kominami, Y., and Miyama, T.: JapanFlux2024 JP-Yms Yamashiro forest meteorology research site, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102224, 2025b. - Takano, T., and Ueyama, M.: Spatial variations in daytime methane and carbon dioxide emissions in two urban landscapes, Sakai, Japan. Urb. Clim., 36, 100798, https://doi.org/10.1016/j.uclim.2021.100798, 2021. - Takimoto, T., and Iwata, T., 2024, JapanFlux2024 JP-Hc2 Hachihama Experimental Farm, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102249, 2025a. - Takimoto, T., and Iwata, T.: JapanFlux2024 JP-Hc3 Hachihama Experimental Farm: Double Crop, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102228, 2025b. - Takimoto, T., Iwata, T., Yamamoto, S., and Miura, T.: Characteristics of CO₂ and CH₄ flux at barley-rice double cropping field in southern part of Okayama, J. Agric. Meteorol., 66, 181-191, https://doi.org/10.2480/agrmet.66.3.5, 2010. - Twine, T. E., Kustas, W. P., Norman, J. M., Cook, D. R., Houser, P. R., Meyers, T. P., Prueger, J. H., Starks, P. J., and Wesely, M. L.: Correcting eddy-covariance flux underestimates over a grassland, Agric. For. Meteorol., 103, 279-300, https://doi.org/10.1016/S0168-1923(00)00123-4, 2000. - Ueyama, M.: JapanFlux2024 JP-Ozm Oizumi Urban Park, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024072201, 2025a. - Ueyama, M.: JapanFlux2024 JP-Om1 B11 building in Osaka Metropolitan University, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024072203, 2025b. - 980 Ueyama, M.: JapanFlux2024 JP-Om2 Farm field in Osaka Metropolitan University, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024072204, 2025c. - Ueyama, M.: JapanFlux2024 JP-Sac Sakai City Office, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102215, 2025d. - Ueyama, M., and Ando T.: Diurnal, weekly, seasonal and spatial variabilities in carbon dioxide flux in different urban landscapes in Sakai, Japan, Atmos. Chem. Phys., 16, 14727–14740, https://doi.org/10.5194/acp-16-14727-2016, 2016. - Ueyama, M., Ichii, K., Kobayashi, H., Kumagai, T., Beringer, J., Merbold, L., Euskirchen, E., Hirano, T., Belelli M. L., Baldocchi, D., Saitoh, T., Mizoguchi, Y., Ono, K., Kim, J., Varlagin, A., Kang, M., Shimizu, T., Kosugi, Y., Bret-Harte, M., Machimura, T., Matsuura, Y., Ohta, T., Takagi, K., Takanashi, S., and Yasuda, Y.: Inferring CO₂ fertilization effect based on global monitoring land-atmosphere exchange with a theoretical model, Environ. Res. Lett., 15, 084009, https://doi.org/10.1088/1748-9326/ab79e5, 2020a. - Ueyama, M., Hirano, T., and Kominami, Y.: JapanFlux2024 JP-BBY Bibai bog, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024072202, 2025e. 995 - Ueyama, M., Iwata, H., Nagano, H., Kukuu, N., and Harazono, Y.: Anomalous wet summers and rising atmospheric CO₂ concentrations increase the CO₂ sink in a poorly drained forest on permafrost, Proc. Natl. Acad. Sci. U. S. A., 121, e2414539121 https://doi.org/10.1073/pnas.2414539121, 2024f. - Ueyama, M., Knox, S. H., Delwiche, K. B., Bansal, S., Riley, W. J., Baldocchi, D., Hirano, T., McNicol, G., Schafer, K., Windham-Myers, L., Poulter, B., Jackson, R. B., Chang, K.-Y., Chen, J., Chu, H., Desai, A. R., Gogo, S., Iwata, H., Kang, M., Mammarella, I., Peichl, M., Sonnentag, O., Tuittila, E.-S., Ryu, Y., Euskirchen, E. S., Göckede, M., Jacotot, A., Nilsson, M. B., and Sachs, T.: Modeled production, oxidation, and transport processes of wetland methane emissions in temperate, boreal, and Arctic regions, Glob. Change Biol., 29, 2313-2334, https://doi.org/10.1111/gcb.16594, 2023. - Ueyama, M., and Takano, T.: A decade of CO₂ flux measured by the eddy covariance method including the COVID-19 pandemic period in an urban center in Sakai, Japan, Environ. Pollution, 119210, https://doi.org/10.1016/j.envpol.2022.119210, 2022a. - Ueyama, M., Taguchi, A., and Takano, T.: Water vapor emissions from urban landscapes in Sakai, Japan, Journal of Hydrology, 598, 126384, https://doi.org/10.1016/j.jhydrol.2021.126384, 2021. - Ueyama, M., Yamamori, T., Iwata, H., and Harazono, Y.: Cooling and moistening of the planetary boundary layer in interior Alaska due to a postfire change in surface energy exchange, J. Geophys. Res. Atmos., 125, e2020JD032968, https://doi.org/10.1029/2020JD032968, 2020b. - Ueyama, M., Yazaki, T., Hirano, T., and Endo, R.: Partitioning methane flux by the eddy covariance method in a cool temperate bog based on a Bayesian framework, Agric. For. Meteorol., 316, 108852, https://doi.org/10.1016/j.agrformet.2022.108852, 2022b. - Ueyama, M., Yazaki, T., Hirano, T., Futakuchi, and Okamura, M.: Environmental controls on methane fluxes in a cool temperate bog, Agric. For. Meteorol., 281, 107852, https://doi.org/10.1016/j.agrformet.2019.107852, 2020c. - Verma, M., Friedl, M. A., Richardson, A. D., Kiely, G., Cescatti, A., Law, B. E., Wohlfahrt, G., Gielen, B., Roupsard, O., Moors, E. J., Toscano, P., Vaccari, F. P., Gianelle, D., Bohrer, G., Varlagin, A., Buchmann, N., van Gorsel, E., Montagnani, L., and Propastin, P.: Remote sensing of annual terrestrial gross primary productivity from MODIS: an assessment using the FLUXNET La Thuile data set, Biogeosciences, 11, 2185-2200, https://doi.org/10.5194/bg-11-2185-2014, 2014. - Virkkala, A.-M., Natali, S. M., Rogers, B. M., Watts, J. D., Savage, K., Connon, S. J., Mauritz, M., Schuur, E. A. G., Peter, D., Minions, C., Nojeim, J., Commane, R., Emmerton, C. A., Goeckede, M., Helbig, M., Holl, D., Iwata, H., Kobayashi, - H., Kolari, P., López-Blanco, E., Marushchak, M. E., Mastepanov, M., Merbold, L., Parmentier, F.-J. W., Peichl, M., Sachs, T., Sonnentag, O., Ueyama, M., Voigt, C., Aurela, M., Boike, J., Celis, G., Chae, N., Christensen, T. R., Bret-Harte, M. S., Dengel, S., Dolman, H., Edgar, C. W., Elberling, Bo., Euskirchen, E., Grelle, A., Hatakka, J., Humphreys, E., Järveoja, J., Kotani, A., Kutzbach, L., Laurila, T., Lohila, A., Mammarella, I., Matsuura, Y., Meyer, G., Nilsson, M. B., Oberbauer, S. F., Park, S.-J., Petrov, R., Prokushkin, A. S., Schulze, C., St. Louis, V. L., Tuittila, E.-S., Tuovinen, J.-P., Quinton, W., - Varlagin, A., Zona, D., and Zyryanov V. I.: The ABCflux database: Arctic-Boreal CO₂ flux observations and ancillary information aggregated to monthly time steps across terrestrial ecosystems. Earth System Science Data, 14, 179-208, https://doi.org/10.5194/essd-14-179-2022, 2021. - Vuichard, N., and Papale, D.: Filling the gaps in meteorological continuous data measured at FLUXNET sites with ERA-Interim, Earth Syst. Sci. Data, 7, 157–171, https://doi.org/10.5194/essd-7-157-2015, 2015. - Wang, Q., Peng, X., Okadera, T., Watanabe, M., Saito, Y., and Batkhishig, O.: JapanFlux2024 MN-Nkh Nalaikh grassland, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102227, 2025a. - Wang, Q., Peng, X., Okadera, T., Watanabe, M., Saito, Y., and Batkhishig, O.: JapanFlux2024 MN-Hst Hustai grassland, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102226, 2025b. - Wang, H., Sun, F., Wang, T., Liu, W.: Estimation of daily and monthly diffuse radiation from measurements of global solar radiation a case study across China, Renewable Energy, 126, 226-241, https://doi.org/10.1016/j.renene.2018.03.029, 2018. - Wang, H., Zu, Y., Saigusa, N., Yamamoto, S., Kondo, H., Yang, F., and Wang, W.: CO₂, water vapor and energy fluxes in a larch forest in northeast China, J. Agr. Meteorol., 60, 549–552, https://doi.org/10.2480/agrmet.549, 2005. - Wang, Q., Peng, X., Watanabe, M., Batkhishig, O., Okadera, T., and Saito, Y.: Carbon budget in permafrost and non-permafrost regions and its controlling factors in the grassland ecosystems of Mongolia, Glob. Ecol. Conserv., 41, e02373, https://doi.org/10.1016/j.gecco.2023.e02373, 2023. - Wutzler, T., Lucas-Moffat, A., Migliavacca, M., Knauer, J., Sickel, K., Šigut, L., Menzer, O., and Reichstein, M.: Basic and extensible post-processing of eddy covariance flux data with REddyProc, Biogeosciences, 16, 5015-5030, https://doi.org/10.5194/bg-15-5015-2018, 2018. - Yabuki, H., Ishii, Y., Ohata, T.: Comparison of water and heat balance on grassland and forest in Central Yakutia, East Siberia, In: Proceedings 6th international study Conference on GEWEX in Asia and GAME (GAME CD-ROM Publ. 11), T1HY30Jul04115511, 2004. - Yabuki, H., Ishii, Y., Ohata, T.: JapanFlux2024 RU-Usk Ulakhan Sykkhan Alas, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024121027, 2025. - Yamanoi, K., Mizoguchi, Y., and Utsugi, H.: Effects of a windthrow disturbance on the carbon balance of a broadleaf deciduous forest in Hokkaido, Japan, Biogeosciences, 12, 6837–6851, https://doi.org/10.5194/bg-12-6837-2015, 2015. - Yasuda, Y.: JapanFlux2024 JP-Api Appi forest meteorology research site, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102201, 2025a. - Yasuda, Y.: JapanFlux2024 JP-Kwg Kawagoe forest meteorology research site, 1.00, Arctic Data archive System (ADS), Japan, http://doi.org/10.17592/001.2024102204, 2025b. - Yasuda, Y., Saito, T., Hoshino, D., Ono, K., Ohtani, Y., Mizoguchi, Y., and Morisawa, T.: Carbon balance in a cool–temperate deciduous forest in northern Japan: seasonal and interannual variations, and environmental controls of its annual balance, J. For. Res., 17, 253-267, https://doi.org/10.1007/s10310-011-0298-x, 2012. - Yasuda, Y., Watanabe, T., Ohtani, Y., Okano, M., and Nakayama, K.: Seasonal variation of CO₂ flux over a broadleaf deciduous forest, J. Japan Soc. Hydrol. & Water Resour, 11, 575-585, https://doi.org/10.3178/jjshwr.11.575, 1998. - Yu, G.-R., Zhu, X.-J., Fu, Y.-L., He, H.-L., Wang, Q.-F., Wen, X.-F., Li, X.-R., Zhang, L.-M., Zhang, L., Su, W., Li, S.-G., Sun, X.-M., Zhang, Y.-P., Zhang, J.-H., Yan, J.-H., Wang, H.-M., Zhou, G.-S., Jia, B.-R., Xiang, W.-H., Li, Y.-N., Zhao, L., Wang, Y.-F., Shi, P.-L., Chen, S.-P., Xin, X.-P., Zhao, F.-H., Wang, Y.-Y., Tong, C.-L.: Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China, Glob. Change Biology, 19, 798-810, https://doi.org/10.1111/gcb.12079, 2013. - Zhang, Y., Peña-Arancibia1, J. L., McVicar, T. R., Chiew, F. H. S., Vaze1, J., Liu, C., Lu, X., Zheng, H., Wang, Y., Liu, Y. Y., Miralles, D. G., Pan, M.: Multi-decadal trends in global terrestrial evapotranspiration and its components, Sci. Rep.,
6, 19124, https://doi:10.1038/srep19124, 2016.