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Abstract. We developed a climate data record (CDR) of atmospheric column water vapor (CWV) and sea surface temperature 10 

(SST) under oceanic rain-free conditions using over two decades of observational records from three satellite instruments: the 

Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), the MicroWave Radiation Imager 

(MWRI), and the Advanced Microwave Scanning Radiometer-2 (AMSR2). The AMSR-E and AMSR2 satellites operated in 

near-stable orbits, while the MWRI experienced orbital drifts of nearly an hour during its operational period. The CWV and 

SST products were retrieved from well-recalibrated level-1 brightness temperatures observed by common channels with the 15 

same frequencies on these instruments, designed for measuring these properties. Adjustments for diurnal drifting errors caused 

by orbital drift were applied to MWRI data using a semi-physical model developed in previous studies. The combination of 

prior recalibration and diurnal drift adjustment ensured inter-satellite consistency in the CDRs. Compared to in-situ radiosonde 

and buoy observations, the biases and root mean square errors of the CDRs are within 0.1 mm and 4.4 mm for CWV, and 0.2 

K and 1.6 K for SST, respectively. Long-term trends of the retrieved CWV and SST align with observations from the Global 20 

Navigation Satellite System (GNSS) and the Global Tropical Moored Buoy Array (GTMBA) products. The global oceanic 

trends of CWV and SST were 0.39 mm decade-1 and 0.16 K decade-1, respectively, over the period 2002–2022. Inter-

consistency between CWV and SST, as well as layer-mean temperatures derived from satellite microwave sounder 

observations, was examined and compared with climate model simulations from phase 6 of the Coupled Model 

Intercomparison Project (CMIP6). It was found that the trend ratio of the retrieved CWV to SST was 9.9% K-1 in the tropics, 25 

which closely aligns with CMIP6 models. These validation results indicate that the presented CDR has high accuracy and is 

suitable for long-term climate change research. The CDR dataset is publicly available at 

https://doi.org/10.5281/zenodo.14539414 (Fu et al., 2024). 
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1 Introduction 30 

Atmospheric column water vapor (CWV) and sea surface temperature (SST) are two essential climate variables (ECVs; Zemp 

et al., 2022). The long-term trend of SST is a key indicator of human-induced global warming (Fox-Kemper et al., 2021). 

Changes in SST also influence the ocean-atmosphere exchange of sensible and latent heat fluxes, as well as atmospheric 

dynamic and thermodynamic processes, through ocean-atmosphere coupling (Huntington et al., 2006; Wang J. H. et al., 2016; 

Minnett et al., 2019). Similarly, long-term changes in CWV affect the global water cycle, particularly the frequency and 35 

severity of heavy precipitation and drought events (Douville et al., 2021), which have significant impacts on human life and 

economies. Understanding the long-term changes in CWV and SST on a global scale is therefore of fundamental importance 

for climate change mitigation and adaptation efforts (Banzon et al., 2016; Ferreira et al., 2019; Blunden and Boyer, 2022). 

Satellite remote sensing is the only means available to provide CWV and SST observations with global coverage. Satellite 

climate data records (CDRs) are essential for investigating long-term changes in CWV and SST (Mears et al., 2018; Minnett 40 

et al., 2019). A CDR is defined as a time series of measurements with sufficient length, consistency, and continuity (Council 

et al., 2004). Establishing a multi-decade CDR using a single instrument is challenging since most satellite instruments are 

designed for weather monitoring and have much shorter operational lifespans than required for climate change research. To 

overcome this challenge, it is necessary to splice together observations from the same or similar sensors onboard multiple 

satellites. Intercalibration between satellite instruments, which aims to remove inter-satellite inconsistencies, is a critical step 45 

in CDR development. 

Several satellite-based CWV and SST CDRs have been developed and extensively used for climate trend studies (Blunden and 

Boyer, 2022; Santer et al., 2021; Schröder et al., 2016). The CWV CDRs include merged satellite products provided by Remote 

Sensing Systems (RSS) (Mears et al., 2018), the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data 

(HOAPS) from the European Organisation for the Exploitation of Meteorological Satellites’ (EUMETSAT’s) Satellite 50 

Application Facility on Climate Monitoring (CM SAF) (Andersson et al., 2010), and the National Aeronautics and Space 

Administration (NASA) Water Vapor Project–MEaSUREs (NVAP-M) from the NASA Making Earth Science Data Records 

for Use in Research Environments (MEaSUREs) program (Vonder Haar et al., 2012). For SST, satellite and in-situ 

observations are fused to produce global analyses, such as the Hadley Center Sea Ice and SST dataset (HadISST; Rayner et 

al., 2003) and National Oceanic and Atmospheric Administration’s (NOAA’s) Optimum Interpolation SST (OISST; Huang et 55 

al., 2020). 

Despite extensive studies on the long-term trends in individual CWV and SST products, large uncertainties remain when their 

trends are analyzed for climate covariability (Wang J. H. et al., 2016; Mears et al., 2018; Santer et al., 2021). The Clausius-

Clapeyron equation predicts a trend ratio of approximately 7% K-1 for CWV relative to SST over the tropical oceans (Wentz 

and Schabel, 2000; Held and Soden, 2006; Trenberth et al., 2005; Wang J. H. et al., 2016), assuming constant relative humidity. 60 

This predicted ratio is well-replicated in simulations by phases 5 and 6 of the Coupled Model Intercomparison Project (CMIP5 

and CMIP6) models (Santer et al., 2021). Such results provide a strong constraint on the observational trend ratio of CWV 
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relative to SST (Santer et al., 2021). However, observational datasets often show CWV-to-SST ratios and other atmospheric 

temperature trends that deviate significantly from theoretical expectations and climate model simulations (Santer et al., 2005; 

Mears et al., 2007; Santer et al., 2021). It remains unclear whether these differences are caused by trend errors in observed 65 

CWV, SST, or both (Santer et al., 2021). This highlights the need for improved observational datasets of CWV and SST and 

a deeper understanding of the error sources associated with their CDRs. 

Two main sources of error arise when developing a satellite-based CDR. First, measurement differences between sensors can 

result from variations in preprocessing, calibration approaches, and hardware designs, such as channel frequency, Earth 

incident angle, and bandwidth (Zou et al., 2018; Wu et al., 2020; Liu et al., 2023). Second, different satellites often have 70 

different local observation times depending on their orbits. Even within the same satellite, local observation times may vary 

over time due to orbital drift (Zou et al., 2018; Bojanowski and Musial, 2020; Lang et al., 2020). For physical variables with 

significant diurnal cycles, these variations can lead to large measurement differences (O'Dell et al., 2018), potentially 

introducing spurious trend signals in CDRs if not corrected. Different algorithms for correcting diurnal drift effects can also 

lead to trend differences in CDRs (Mears and Wentz, 2016; Po-Chedley et al., 2015; Zou et al., 2023). 75 

We aim to develop a new set of CWV and SST CDRs, both using observations from three satellite instruments with close local 

observation time: the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) onboard NASA’s 

Aqua satellite (Kawanishi et al., 2003), the Advanced Microwave Scanning Radiometer-2 (AMSR2) onboard JAXA’s Global 

Change Observation Mission first-Water (GCOM-W1) satellite (Maeda et al., 2016), and the MicroWave Radiometer Imager 

(MWRI) onboard the FengYun-3B (FY3B) satellite (Yang et al., 2011), developed by the National Satellite Meteorological 80 

Center of the China Meteorological Administration (NSMC). These instruments share the same channel frequencies, in the 

microwave range from 10.65 to 89 GHz, designed to measure water-vapor-related geophysical parameters with both vertical 

and horizontal polarizations. In particular, the MWRI can serve as an effective bridging instrument to fill the observation gap 

of approximately nine months, from October 2011 to July 2022, between AMSR-E and AMSR2, making continuous and 

complete CDRs possible for the period from 2002 to 2022. Recently, Wu et al. (2020) recalibrated the level-1 brightness 85 

temperatures (TBs) for these three sensors and constructed a consistent fundamental CDR (FCDR) for the last two decades 

using several intercalibration approaches. Additionally, it is worth noting that two of the three satellites have stable local 

overpass times, while one experienced orbital drift, as discussed below. Previous studies (Zou et al., 2018, 2021) demonstrated 

that satellite observations in stable sun-synchronous orbits produce highly accurate CDR trends. For satellites with orbital drift, 

Zou et al. (2023) developed a novel semi-physical model to effectively remove diurnal drifting errors in satellite microwave 90 

observations. These new developments have provided a solid foundation for constructing more accurate CWV and SST CDRs. 

Here, we apply these recent advances to develop CWV and SST CDRs from satellite microwave observations. Our results 

demonstrate that the CWV and SST CDRs from the same observations produced in this study exhibit trend ratios consistent 

with climate model simulations and theoretical expectations. The rest of this article is organized as follows. Section 2 presents 

the datasets used for validating the retrieved CDRs. Section 3 describes the source FCDR and ECV algorithm. Section 4 95 

performs the validation of the CWV and SST products against various observations from other instruments and climate 
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reanalyses. Section 5 examines the ratios of CWV to SST and satellite microwave sounder-based atmospheric layer 

temperatures over the tropical ocean. Finally, conclusions and discussions are provided in Section 6. 

2 Validation data 

2.1 Radiosonde and Buoy Observations 100 

In-situ measurements are widely used to validate retrievals from satellite observations at the pixel level (Gentemann and 

Hilburn, 2015; Wentz and Meissner, 2000). In this study, radiosonde observations (RAOBs) from the Integrated Global 

Radiosonde Archive (Durre et al., 2006) are used to evaluate the retrieved CWV (CWVRTV). Since the retrieved CWV is 

available only over the ocean, RAOB sites on 63 islands are selected for validation (Fig. 1). The equivalent CWV from RAOB 

(CWVRAOB) is calculated from RAOB profiles, which include pressure, air temperature, and dew point depression (Alishouse 105 

et al., 1990). During validation, only CWVRTV pixels closest to CWVRAOB are selected for comparison. The collocation criteria 

for CWVRTV and CWVRAOB are a spatial distance of 60 km and a temporal interval of 3 hours (Wang et al., 2009). 

 

Figure 1: Geographic locations of RAOB, GNSS, and GTMBA sites, along with GODAE measurements used for validation in this 

study. The number of GODAE buoy observations in 2021 is shown within 0.25° grid boxes. 110 

The U.S. Global Ocean Data Assimilation Experiment (GODAE) from the Fleet Numerical Meteorology and Oceanography 

Center (FNMOC) has collected global SST observations (SSTGODAE) from ships, moored buoys, and drifting buoys (Fig. 1). 

These observations are used to validate the retrieved SST (SSTRTV) on a pixel-by-pixel basis. GODAE files include time, 

latitude, longitude, SST, the probability of gross error—assuming a normal probability density function for SST errors 

(Cummings, 2011)—and other metadata. In this study, in-situ SST observations with a probability of gross error less than 0.6 115 

K are used (Gentemann and Hilburn, 2015). For validation, only the satellite observation pixel closest to each in-situ 

measurement is selected. The high spatial and temporal resolutions of GODAE observations enable a stringent collocation 

criterion of 0.1° and 6 minutes. 

In addition to GODAE, the Global Tropical Moored Buoy Array (GTMBA) provides systematic and sustained SST 

observations for monitoring tropical atmospheric and oceanic interactions, supporting climate research and assessment 120 

(McPhaden et al., 2023). GTMBA consists of three moored buoy arrays: the Tropical Atmosphere Ocean/Triangle Trans-
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Ocean Buoy Network (TAO/TRITON), the Prediction and Research Moored Array in the Atlantic (PIRATA), and the Research 

Moored Array for African-Asian-Australian Monsoon Analysis and Prediction (RAMA) (Foltz et al., 2019; Smith et al., 2019; 

Beal et al., 2020). These buoy arrays are located in the tropical waters of the Pacific (0° N, 156° E), Atlantic (6° S, 10° W), 

and Indian Oceans (5° S, 95° E) (Fig. 1). Observations from these buoys provide the longest continuous time series for 125 

validating the long-term trends of SSTRTV. 

2.2 Global Navigation Satellite System (GNSS) CWV Retrievals 

The GNSS deployed at ground stations provides moisture profile retrievals (Bock, 2020). GNSS retrievals offer advantages 

such as long-term stability, high accuracy, and high temporal resolution. They are often used for monitoring climate change 

and validating satellite and reanalysis products (Mears et al., 2018; Chen et al., 2021; Yuan et al., 2023; Blunden and Boyer, 130 

2022). For comparison, the GNSS moisture profiles are converted to equivalent CWV. Monthly mean data from three isolated 

island stations with long observation records—BRMU (32.37° N, 64.70° W), COCO (12.19° S, 96.83° E), and DGAR (7.27° 

S, 72.37° E) (Fig. 1)—are selected to validate the long-term trend in CWVRTV. 

2.3 SST analysis product 

The NOAA OISST (also known as Reynolds’ SST) is a long-term, globally gridded SST analysis product (Huang et al., 2020). 135 

It is developed by optimally integrating SST retrievals from satellite Advanced Very High Resolution Radiometer (AVHRR) 

observations with in-situ buoy and ship measurements. This SST dataset has been widely used in trend studies (Blunden and 

Boyer, 2022; Banzon et al., 2016). In this study, the monthly mean OISST product (version 2.1) with a horizontal resolution 

of 0.25° is used for climate trend comparisons with our SSTRTV. 

2.4 RSS CDRs 140 

Among the CWV CDRs, the RSS product (available at http://www.remss.com) has the longest time period with documented 

accuracy (Mears et al., 2018). This CWV product is a monthly gridded dataset with 1° resolution, created by averaging 

observations from 11 inter-calibrated satellites spanning 1987 to the present (Mears et al., 2018). In this study, the RSS CWV 

(CWVRSS) product from 2002 to 2022 is used for climate trend comparisons with CWVRTV. However, the RSS SST cannot be 

retrieved for several of these 11 satellites (e.g., F08–F18) due to the absence of low-frequency (10 GHz) channels on some of 145 

the passive microwave (PMW) imagers. To address this, another RSS product, named the Air-Sea ECV Merged Microwave 

CDR (hereinafter referred to as RSS-CDR), was developed by the RSS group (Wentz and the RSS team, 2021) using RSS 

CWV and OISST instead of RSS SST. This later RSS-CDR product, available on a monthly global 2.5°×2.5° grid from July 

1987 through February 2021, is used for validation purposes in this study. 
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2.5 Reanalysis Datasets 150 

Reanalysis data provide long-term, globally continuous ECVs within the Earth-atmosphere system. These datasets are 

generated by assimilating various observed data into model simulations using a fixed atmospheric numerical weather forecast 

model over time (Dee et al., 2011; Kalnay et al., 1996). Since different observations vary in accuracy and spatiotemporal 

coverage, optimal algorithms are required to blend observations with model simulations, ensuring that reanalysis data remain 

consistent with both physical principles and observational constraints. 155 

In this study, we use the fifth generation of the European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric 

reanalysis products (ERA5; Hersbach et al., 2020) for climatological comparisons with our retrieved CWV and SST. ERA5 is 

produced with an advanced atmospheric model and data assimilation system, offering improved accuracy and resolution 

compared to its predecessor, ECMWF ERA-Interim. Monthly mean ERA5 products with a 0.25°×0.25° resolution for CWV 

(CWVERA) and SST (SSTERA) are utilized to compare the climate trends of our satellite-retrieved CDR and SST over the same 160 

time period. 

2.6 CMIP6 product 

 The CMIP6 (Eyring et al., 2016) provides multi-decadal simulations of various atmospheric parameters, including 

atmospheric moisture profiles and SST, from multiple ocean-atmosphere coupled global climate models. In these simulations, 

the thermodynamic properties of the climate system are controlled and constrained by interior physical mechanisms (Santer et 165 

al., 2021). One such process is that the tropical atmosphere (20˚S–20˚N) generally follows the Clausius-Clapeyron law due to 

adiabatic moisture processes (Trenberth et al., 2005; Wang J. H. et al., 2016). As a result, the trend ratio of CWV over 

temperature remains relatively constant across different climate model simulations, although individual trends of CWV and 

temperature vary among models due to differences in climate sensitivities and the coupling of dynamical and radiative 

processes. This characteristic can be used to constrain satellite-observed trend ratios (Santer et al., 2021; Wang J. H. et al., 170 

2016), including the ratio of CWV over SST (denoted as 𝑅{𝐶𝑊𝑉/𝑆𝑆𝑇}), the ratio of CWV over mid-tropospheric temperatures 

(denoted as 𝑅{𝐶𝑊𝑉/𝑇𝑀𝑇} ) and the ratio of CWV over lower-tropospheric temperate (denoted as 𝑅{𝐶𝑊𝑉/𝑇𝐿𝑇}). 

CMIP6 includes simulation results from multiple experiments designed to address specific scientific questions (Eyring et al., 

2016). Among these, the historical simulation experiment covers the climate change process from 1850 to 2014, while the 

Scenario Model Intercomparison Project (ScenarioMIP) provides projections of climate change beyond 2015 based on 175 

different Shared Socioeconomic Pathway (SSP) scenarios. For example, SSP585 is a climate prediction under extreme 

emission scenarios, which can be spliced with historical simulations to obtain continuous simulation results (Santer et al., 

2021). In this study, outputs from 28 spliced models in CMIP6 (Table 1) during 2003–2020 from the tropics were selected to 

validate the covariation trend of the current CDR ECVs. To compare with satellite observations, the air temperature profiles 

in CMIP6 models are converted to the temperature of the mid- to upper- troposphere (TMT) and the temperature of the lower 180 

troposphere (TLT) using their weighting functions (Santer et al., 2021). 
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Table 1 Basic information of CMIP6 models. The term "Ensemble Member" refers to the initial conditions of the climate model and 

the identifiers of the different parameters. For example, r1i1p1f1 indicates the simulation result for the first initial condition, the 

first physical parameterization setting, and the first external forcing setting, while r1i1p1f2 is the same as r1i1p1f1 except for the 

second external forcing. 185 

Num. Forecast Centre Model Ensemble Member 

1 Australian Community Climate and Earth System Simulator (ACCESS), 

Australia 

ACCESS-CM2 r1i1p1f1 

2 ACCESS-ESM1-5 r1i1p1f1 

3 
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine 

Research, Germany 
AWI-CM-1-1-MR r1i1p1f1 

4 Beijing Climate Center, China Meteorological Administration, China BCC-CSM2-MR r1i1p1f1 

5 Chinese Academy of Meteorological Sciences, China CAMS-CSM1-0 r1i1p1f1 

6 
Community Earth System Model, National Center for Atmospheric 

Research (NCAR), USA 
CESM2-WACCM r1i1p1f1 

7 
Centre National de Recherches Météorologiques, France 

CNRM-CM6-1-HR r1i1p1f2 

8 CNRM-ESM2-1 r1i1p1f2 

9 

Energy Exascale Earth System Model, U.S. Department of Energy, USA 

E3SM-1-0 r1i1p1f1 

10 E3SM-1-1 r1i1p1f1 

11 E3SM-1-1-ECA r1i1p1f1 

12 

EC-Earth consortium, Europe 

EC-Earth3 r1i1p1f1 

13 EC-Earth3-CC r1i1p1f1 

14 EC-Earth3-Veg r1i1p1f1 

15 EC-Earth3-Veg-LR r1i1p1f1 

16 
Flexible Global Ocean-Atmosphere-Land System Model, Institute of 

Atmospheric Physics, Chinese Academy of Sciences, China 
FGOALS-g3 r1i1p1f1 

17 Geophysical Fluid Dynamics Laboratory, NOAA, USA GFDL-CM4 r1i1p1f1 

18 
Institute of Numerical Mathematics, Russian Academy of Sciences, Russia 

INM-CM4-8 r1i1p1f1 

19 INM-CM5-0 r1i1p1f1 

20 Korea Institute of Atmospheric Prediction Systems (KIAPS), Korea KACE-1-0-G r1i1p1f1 

21 Korea Institute of Ocean Science and Technology, Korea KIOST-ESM r1i1p1f1 

22 
Model for Interdisciplinary Research on Climate, Japan 

MIROC6 r1i1p1f1 

23 MIROC-ES2L r1i1p1f2 

24 
Max Planck Institute for Meteorology, Germany 

MPI-ESM1-2-HR r1i1p1f1 

25 MPI-ESM1-2-LR r1i1p1f1 

26 Meteorological Research Institute, Japan MRI-ESM2-0 r1i1p1f1 

27 
Norwegian Climate Centre, Norway 

NorESM2-LM r1i1p1f1 

28 NorESM2-MM r1i1p1f1 
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2.7 Satellite temperature data 

Three TMT and TLT products derived from satellite microwave sounder observations—NOAA’s Center for Satellite 

Applications and Research (STAR; version 5.0; Zou et al., 2021, 2023), RSS (version 4.0; Mears and Wentz, 2016, 2017), and 

the University of Alabama in Huntsville (UAH; version 6.0; Spencer et al., 2017)—are used to examine the covariance of 

CWVRTV with observed tropospheric temperatures in this study. STAR, RSS, and UAH are all monthly mean datasets on a 190 

global 2.5°×2.5° grid. Their temperature trends over the tropical ocean from 2003 to 2020 were used to construct observed 

trend ratios of CWV over tropospheric temperatures and to compare them with climate model results. 

It is worth noting that STAR has constructed a reference TMT and TLT dataset based solely on microwave sounder 

observations in stable orbits during the period from 2002 to the present (Zou et al., 2021). This reference time series achieves 

an accuracy of 0.012 K decade-1 in trend detection (Zou et al., 2021). The STAR V5.0 dataset maintains this trend detection 195 

accuracy during 2002–present by inter-calibrating satellites with orbital drifts to the reference dataset (Zou et al., 2023). The 

high trend accuracy in the STAR dataset serves as a robust reference for evaluating the trend accuracy of CWVRTV presented 

in this study. This is demonstrated in Section 5, where we examine the ratios of CWV over tropospheric temperatures. 

3 CDR Development for CWV and SST 

The development of CWV and SST CDRs requires well-intercalibrated and recalibrated radiance or TB data records at the 200 

satellite swath pixel level (level-1). The synthetic radiance dataset, consisting of these recalibrated observations from different 

sensors, is referred to as the FCDR (Liu et al., 2023; Poli et al., 2023). Recently, Wu et al. (2020) developed a continuous 

FCDR for the past two decades by applying several intercalibration approaches to recalibrate the observed TBs of the three 

sensors: AMSR-E, MWRI, and AMSR2. By examining long-term changes in these recalibrated TBs over the global ocean, it 

is demonstrated that this FCDR is consistent and homogeneous enough to be used for obtaining CDRs of water cycle-related 205 

variables for climate research. Accordingly, this TB FCDR for the three sensors−AMSR-E, MWRI and AMSR2−is used for 

our CWV and SST retrievals, which includes TBs from both vertically (V) and horizontally (H) polarized channels at five 

common frequencies: 10.65, 18.7, 23.8, 36.5, and 89.0 GHz (hereinafter referred to as 10V/H, 18V/H, 23V/H, 36V/H, and 

89V/H for convenience). The observations from the three sensors spanned 20 years, from June 2002 to May 2022 (Fig. 2). 

Among them, the AMSR-E and AMSR2 satellites maintained near-stable orbits throughout this period, with their ascending 210 

Local Equator Crossing Times (LECTs) around 1:30 PM. In contrast, the MWRI satellite’s orbit drifted from 1:35 PM in 2011 

to 3:40 PM in 2020 (Fig. 2). 

The AMSR-E and AMSR2 FCDRs covered the periods from June 2002 to August 2011 and July 2012 to May 2022, 

respectively. To ensure continuity and stability of the CDR, observations from MWRI during June 2011 to April 2015 were 

selected to bridge the temporal gap between AMSR-E and AMSR2. This selection of FY3B data allows a few months of 215 

overlap with AMSR-E (June to September 2011) and more than two years of overlap with AMSR2, facilitating inter-satellite 
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calibration. It is important to note that orbit changes in May 2015 may have introduced bias jumps, so MWRI data after this 

time were excluded. 

In the FCDR development by Wu et al. (2020), AMSR2 was used as a reference to recalibrate AMSR-E and MWRI, 

eliminating hardware differences between the sensors (e.g., those due to Earth incidence angle variations) using principal 220 

component analysis. This unique advantage of consistent TBs between various sensors at the observation level enables the 

FCDR to be directly utilized for CDR retrievals.  

 

Figure 2: Ascending Local Equator Crossing Times (LECTs) for the three satellites—Aqua, FY3B, and GCOM-W1—used in CWV 

and SST retrievals. The grey areas represent the overlap periods of MWRI with AMSR-E or AMSR2. 225 

The influence of precipitation and sea ice on the CWV and SST retrievals was eliminated. A TB threshold method for 

precipitation identification (Durre et al., 2006) was applied to remove precipitation-affected pixels. The Moderate Resolution 

Imaging Spectroradiometer (MODIS) onboard the Aqua satellite provides daily gridded data on sea ice extent [MYD29; Wentz, 

1997, distributed by the U.S. National Snow and Ice Data Center (NSIDC)]. This data was used to exclude pixels with sea ice. 

Moreover, Orbital drift caused MWRI scene TBs to develop diurnal biases due to changes in diurnal sampling over time. As 230 

a result, a diurnal drift correction was applied in this study to all channels before they were used for CWV and SST retrievals, 

by adjusting observations taken at different times to a common local time consistent with AMSR2, thereby eliminating diurnal 

drift biases. This process requires knowledge of diurnal cycles, which are functions of time and geolocation. Recently, Zou et 

al. (2023) developed a novel semi-physical model that effectively resolves diurnal cycles in satellite observations and removes 

diurnal drifting errors globally. In this study, we followed the procedures and diurnal correction equations developed by Zou 235 

et al. (2023) to resolve the diurnal drifting biases in MWRI. A detailed description of the semi-physical model is referred to 

Zou et al. (2023). For a single satellite such as MWRI, this semi-physical model is expressed as: 

𝐷(𝑋, 𝑚, 𝐿) = 𝛼(𝑋) + 𝛽(𝑋, 𝑚) sin(2𝜋𝐿/24) + 𝛾(𝑋, 𝑚) cos(2𝜋𝐿/24),      (1) 

where D is the diurnal anomaly of MWRI at geolocation X, month m and local time L; 𝛽(𝑋, 𝑚) and 𝛾(𝑋, 𝑚) are the amplitudes 

of the monthly diurnal components at different geolocations. The coefficient 𝛼(𝑋) is a constant changing with geolocation. 240 

The coefficients β and  varies with season and are assumed as: 

𝛽 = 𝛽0 + 𝛽1 sin(2𝜋𝑚/12)  + 𝛽2 cos(2𝜋𝑚/12),        (2) 
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𝛾 = 𝛾0 + 𝛾1 sin(2𝜋𝑚/12)  + 𝛾2 cos(2𝜋𝑚/12),        (3) 

where 𝛽0, 𝛽1, 𝛽2, 𝛾0, 𝛾1 and 𝛾2 are all constants.  

The TBs after diurnal adjustment can be expressed as: 245 

𝑇𝐵′(𝑋, 𝑡, 𝑚) = 𝑇𝐵(𝑋, 𝑡, 𝑚, 𝐿) − 𝐷(𝑋, 𝑚, 𝐿),          (4) 

During the overlapping period between MWRI and the other two AMSR instruments (Fig. 2), the TB differences can be 

expressed as: 

𝑇𝐵′(𝑋, 𝑡, 𝑚) − 𝑇𝐵𝐴𝑀𝑆𝑅(𝑋, 𝑡, 𝑚) = 𝑇𝐵(𝑋, 𝑡, 𝑚, 𝐿) − 𝑇𝐵𝐴𝑀𝑆𝑅(𝑋, 𝑡, 𝑚, 𝐿) − 𝐷(𝑋, 𝑚, 𝐿),     (5) 

By minimizing inter-satellite differences between satellite pairs (∆𝑇𝐵′ = 𝑇𝐵′(𝑋, 𝑡, 𝑚) − 𝑇𝐵𝐴𝑀𝑆𝑅(𝑋, 𝑡, 𝑚)), the coefficients α, 250 

β and γ can be solved through multiple linear regression based on the monthly gridded (2.5° resolution) TBs.  

It is essential to note that the “semi-physical” nature of the diurnal model requires that Eqs. (1)–(5) be resolved separately for 

daytime and nighttime, or for ascending and descending nodes (Zou et al., 2023). This distinction arises because daytime 

diurnal cycles exhibit a physically-based, solar heating-induced quasi-sinusoidal pattern, whereas nighttime diurnal cycles 

follow a thermal decay process. In the latter case, Eq. (1) serves as an empirical approximation of the thermal decay process 255 

(Zou et al., 2023). 

Figure 3 shows the global ocean mean inter-satellite difference time series between MWRI and the other two satellites, 

compared with their resolved diurnal cycle differences. The agreement in the temporal patterns is generally impressive across 

nearly all channels. Subtracting the diurnal differences yields the diurnally adjusted MWRI TBs, which are used for CWV and 

SST retrievals. These diurnally adjusted MWRI TBs are consistent with AMSR-E and AMSR2, as their mean biases are zero 260 

with negligible standard deviations during their overlaps. The impact of the diurnal adjustment on CWV and SST retrievals is 

shown below. 
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Figure 3: Inter-satellite differences ( ∆𝑻𝑩′ = 𝑻𝑩′(𝑿, 𝒕, 𝒎) − 𝑻𝑩𝑨𝑴𝑺𝑹(𝑿, 𝒕, 𝒎) , blue lines) and diurnal anomaly differences 

(𝑫(𝑿, 𝒎, 𝑳), red lines) derived from the semi-physical model over the global ocean. The differences are grouped into (left) ascending 265 
and (right) descending data separately, with the channels shown from (top) to (bottom): 10V, 10H, 19H, 23V, and 37H. 

The retrieval algorithm for CWV is based on the one developed by Wang et al. (2009) for measurements from the Tropical 

Rainfall Measuring Mission’s (TRMM) Microwave Imager (TMI). This algorithm uses TBs on five channels in the FCDR 

(10V, 10H, 19H, 23V, and 37H) with a logarithm relationship between the channel signals and CWVRTV, expressed as: 

CWVRTV = 𝑎0 + ∑ 𝑎𝑖𝑙𝑛 (
288−𝑇𝐵𝑖

288
)5

𝑖=1 ,         (6) 270 

where the coefficients 𝑎𝑖(i = 0,1, … 5) in Eq. (6) were derived from multiple linear regression of simulated AMSR2 TBs from 

a microwave radiative transfer model (Liu, 1998, 2004) with varying CWVs and cloud parameters as inputs. These coefficients 

and the sensitivities of the retrieved CWV to TB for each channel are shown in Table 2. As expected, the 23V channel, near 

the water vapor absorption line, has the largest influence on the CWV retrievals. The advantage of this algorithm is that the 

retrieved CWV depends only on TBs from the five channels, without additional ancillary data. As a result, the CWVRTV trend 275 

is only related to the TB trends. 

Table 2. Regression coefficients and the corresponding sensitivities of CWV to TBs for different PMW channels used in the retrieval 

algorithms. 

  Offset TB 10V TB 10H TB 19H TB 23V TB 37H 

CWV 

(mm) 

𝒂𝒊 -9.953 42.890 29.689 -84.776 -44.691 41.433 

ΔCWV/ΔTB  -0.387 -0.151 0.524 0.732 0.319 

According to Wang et al. (2009), the retrieval framework for CWV can also be used to retrieve SST or surface wind speed 

(SWS). To alleviate SST biases in the SST retrievals associated with the assumption of a logarithm relationship between SST 280 
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(SWS) and the TB [see Eqs. (2) and (3) in Wang et al. (2009) for details], a second-order term of the logarithm of TB is added 

in Eq. (6) as a bias correction term. This gives an SSTRTV or SWSRTV retrieval algorithm expressed as: 

SSTRTV = 𝑏0 + ∑ [𝑏𝑖ln (
288−𝑇𝐵𝑖

288
) + 𝑐𝑖ln (

288−𝑇𝐵𝑖

288
)2]5

𝑖=1 ,       (7) 

SWSRTV = 𝑑0 + ∑ [𝑑𝑖ln (
288−𝑇𝐵𝑖

288
) + 𝑒𝑖ln (

288−𝑇𝐵𝑖

288
)2]5

𝑖=1 ,       (8) 

where the coefficients bᵢ, cᵢ, dᵢ, and eᵢ (i = 0, 1, … 5) are derived from similar simulations as described for CWV. Equations (7) 285 

and (8) provide a reasonably good initial estimate of SST and SWS. However, the simple forms given by Eqs. (7) and (8) are 

incapable of fully representing the non-linearities in the relationship between TBs and SST (SWS) (Wentz and Meissner, 2007; 

Li and Jiang, 2024). Hence, in this study, the localized algorithm proposed by Wentz and Meissner (2007) is applied to 34 SST 

reference values from 272 to 308 K and 34 SWS reference values from 0 to 35 m s-1. For each reference value, the coefficients 

are calculated within the ranges of ±1 K for SST and ±1 m s-1 for SWS, respectively. The final retrieval is a bilinear 290 

interpolation of the four nearest first-step retrievals in the 2-D space of SST and SWS. After retrieval, the satellite orbit data 

are averaged to monthly global 0.25°×0.25° gridded data for each satellite. 

Figure 4 shows the impact of diurnal adjustment on the consistency of the retrieved CWV and SST between different satellites. 

Before the adjustment, the mean biases between MWRI and the other two satellites were -0.036 mm and 0.180 K for CWV 

and SST, respectively, with standard deviations of 0.114 mm and 0.076 K. After the adjustment, the mean biases were reduced 295 

to 0.003 mm and 0.003 K, respectively, with standard deviations of 0.058 mm and 0.050 K. 

 

Fig. 4 Monthly mean differences between MWRI and the other two instruments for (a) CWV and (b) SST over the global ocean 

during their overlapping period. The blue dashed and red solid lines indicate the differences before and after diurnal adjustment, 

respectively. The mean biases and standard deviations are shown in the legends. 300 
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After diurnal adjustment, the MWRI observations were converted to resemble observations from satellites in stable orbits. As 

a final step to merge data from different satellites, we followed the procedure outlined by Zou et al. (2021) for merging satellites 

in stable orbits. The procedure is as follows: i) Calculate anomalies for ascending and descending data separately, using a 

monthly climatology defined for the entire observation period for each satellite. ii) Average the ascending and descending 

anomalies to construct daily mean anomalies. iii) Make an adjustment so that the SST or CWV anomalies of individual 305 

satellites are defined relative to the same monthly climatology. We use the AMSR2 monthly climatology as a reference and 

adjust the MWRI anomalies by subtracting the “monthly climatology” of anomaly differences relative to AMSR2 during their 

overlapping periods (Zou et al., 2021). The AMSR-E data was further adjusted to match the MWRI anomalies using their 

overlapping observations. After these adjustments, the anomalies from the three satellites are averaged together to generate a 

CDR for the entire 2002–2022 period for trend investigation. 310 

4 Validation Results 

4.1 Validation with Radiosonde and Buoy observations 

Figure 5 shows scatter diagrams of the CWV and SST retrievals against in-situ measurements for each of the AMSR-E, 

AMSR2, and MWRI instruments. Collocated samples span the entire lifetime for AMSR-E and AMSR2, and from 2011 to 

2015 for MWRI, when its LECT drifted less than 1 hour (Wu et al., 2020). 315 

For CWV, the satellite retrievals from all three instruments are in good agreement with the RAOB sounding observations (Fig. 

5a–5c) and exhibit similar statistical characteristics. Specifically, the retrieval bias is generally less than 0.1 mm, and the root 

mean square errors (RMSEs) are about 4 mm for all three instruments. This accuracy is comparable to other retrieval products 

from satellite-based instruments such as the Special Sensor Microwave Imager (SSM/I) and the AMSR-E (Deeter, 2007; Liu 

et al., 2023). This indicates that there is no significant difference between the retrievals from the three instruments using the 320 

same algorithm. 

For the SST CDR, retrievals from all three instruments show similar accuracy compared to SSTGODAE (Fig. 5d–5e), with biases 

and RMSEs within 0.2 K and 1.6 K, respectively. This result is also similar to other retrievals from AMSR-E, AMSR2, and 

MWRI (Gentemann, 2014; Gentemann and Hilburn, 2015; Liao et al., 2017; Li and Jiang, 2024). 
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 325 

Figure 5: Density scatter diagram of retrieved CWV (top) and SST (bottom) versus in-situ measurements (CWVRAOB and SSTGODAE). 

From left to right: AMSR-E, MWRI, and AMSR2. The black dotted lines represent the diagonal. (N: Sample number; CC: 

Correlation coefficient; RMSE: Root mean square error; Slope: Slope of linear regression). 

4.2 Validation of long-term climate trends against ERA5, RSS retrievals, GTMBA, and Ground GNSS observations 

As one of the most important applications of CDRs, the capability of retrieved CWV and SST to detect climate trends is 330 

assessed here. The first evaluation is a comparison with long-term ground-based GNSS observations. Such a comparison 

provides insight into the CDR trends at local geolocations. Figure 6 shows time series of monthly mean CWV anomalies from 

our merged satellite retrievals (CWVRTV) and GNSS observations at three selected sites: BRMU, COCO, and DGAR. For all 

sites, the time variation of the GNSS CWV anomalies is highly consistent with CWVRTV, with a statistically significant 

correlation coefficient (CC) of more than 0.91. In addition, comparisons with RSS and ERA5 at these three sites are also shown 335 

in Fig. 6. Similar correlations were found between CWVRTV and the ERA5 and RSS datasets. The CWVRTV trends at the three 

sites vary from 0.4 to 1.2 mm decade-1, suggesting a large range and complexity in trend variations at different spatial locations. 

For all three sites, trend differences between CWVRTV and GNSS observations range from 7% to 20%. This is better than the 

ERA5 and RSS validations, where trend differences can reach 50%–80% when compared to GNSS observations at some sites. 

 340 
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Figure 6: Monthly anomaly time series for CWVRTV, GNSS, ERA5, and RSS over the three GNSS sites. The long-term trend values 

for each data type are shown in the legends. 

Figure 7 presents the time series of monthly mean anomalies for SSTRTV and other products for the three GTMBA sites. Similar 

to the CWV, their time series exhibit comparable seasonal variations, with correlations above 0.75, statistically significant at 345 

the 99% significance level. The trends of SSTRTV are within 0.3 K decade-1, and its trend differences with GTMBA are within 

0.11 K decade-1. 

 

Figure 7: Similar to Fig. 6, but for SSTRTV, GTMBA, OISST and ERA5 data at three GTMBA sites.  
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Figure 8a compares trends for global ocean monthly anomalies between our CWV retrievals and ERA5 and RSS, while Fig. 350 

8b presents SST comparisons between our retrievals and ERA5 and OISST. For CWV, all products are closely correlated with 

the AMSR-E and AMSR2 measurements. Specifically, the observed AMSR-E and AMSR2 TBs were assimilated into ERA5 

with bias corrections (Dee, 2005; Kazumori et al., 2016), while our CWVRTV and the RSS datasets are retrieved and merged 

products from AMSR-E and AMSR2 TB measurements (Mears et al., 2018). Therefore, it is expected that all CWV products 

exhibit consistent interannual variations. This is demonstrated by their high CCs exceeding 0.94. For long-term trends, 355 

CWVRTV exhibited a positive trend of 0.39 mm decade-1, which is close to the ERA5 and RSS values of 0.41 and 0.40 mm 

decade-1, respectively. For SST, all products exhibited a large-scale warming trend, with values of 0.16, 0.15, and 0.20 K 

decade-1 for the SSTRTV, ERA5, and OISST datasets, all with CCs exceeding 0.91. 

 

Figure 8: Monthly anomaly time series of (a) CWV and (b) SST for different datasets over global oceanic areas from 2002 to 2022. 360 
Long-term trends of the time series are indicated in the legends. The grey areas represent the overlap periods of MWRI with AMSR-

E or AMSR2. 

We further compare trends between different datasets of CWV and SST from 2003 to 2020 over the tropical ocean (20˚S–

20˚N) (Fig. 9), where there is well-understood covariability between temperature and atmospheric moisture (Wentz and 

Schabel, 2000; Held and Soden, 2006; Mears et al., 2007). The RSS-CDR trends is also included during this period. Figure 9a 365 

shows that all products exhibit similar interannual variations, with more pronounced amplitudes than those of the global ocean. 

Trend values for CWV during 2002–2022 are 0.61, 0.81, 0.81, and 0.83 mm decade-1 (1.49%, 1.97%, 1.97%, 2.02% decade-1) 

for the CWVRTV, ERA5, RSS, and RSS-CDR datasets, respectively. Meanwhile, the SST trends for the same period are 0.15, 

0.14, 0.23, and 0.14 K decade-1 for the SSTRTV, ERA5, OISST, and RSS-CDR datasets, respectively. The differences of these 

trend values are essential in analyzing the covariability between CWV and SST over the tropical ocean, which will be discussed 370 

in Section 5. 
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Figure 9: Similar to Fig. 8, but for the tropical ocean (20˚S–20˚N) from 2003 to 2020.  

The global trend distribution for CWVRTV and SSTRTV, along with those from ERA5, RSS, and OISST, is shown in Fig. 10. 

Different datasets show overall similar trend patterns for both CWV and SST. As a result of human-induced global warming, 375 

most global oceanic regions (80.7% of grids) show a positive trend in CWV, including the tropical Indian Ocean, the eastern 

North Pacific Ocean, the South Pacific Ocean, and the western tropical Pacific Ocean, with all of these regions passing the 99% 

significance test. This trend pattern is consistent with other studies (Wang J. H. et al., 2016; Wang Y. et al., 2016; Adler et al., 

2017). The regions with negative trends are mainly located along the equatorial central Pacific to the west coast of South 

America. The SST warming regions are consistent with the positive CWV trend regions and also pass the significance test. 380 

This is consistent with their physical covariance, as determined by the Clausius-Clapeyron equations (Santer et al., 2021; Held 

and Soden, 2006). 

 

Figure 10: Global trend distribution for CWV (left) and SST (right) from 2002 to 2022. From top to bottom: CDRRTV, ERA5, and 

RSS or OISST.  385 
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5. Trend Covariance in CWV and satellite temperature products over the Tropical Ocean 

As mentioned earlier, the ratio of CWV to SST (𝑅𝐶𝑊𝑉/𝑆𝑆𝑇) over the tropical ocean (20˚S–20˚N) provides a reliable indicator 

of the accuracy of satellite CDR products in trend detection. Figure 11a compares 𝑅{𝐶𝑊𝑉/𝑆𝑆𝑇} from our retrieved products with 

those from the CMIP6 multi-model simulations, as well as ERA5 and RSS-CDR products. To ensure a fair evaluation, both 

CWV and SST products were sourced from the same groups — either RSS-CDR, ERA5, or our retrievals. Although individual 390 

trends in CWV or SST differ significantly among different CMIP6 models, their ratios, 𝑅{𝐶𝑊𝑉/𝑆𝑆𝑇}, consistently align around 

the 8.6% K-1 regression diagonal line (Fig. 11a). This occurs because most CMIP6 model simulations follow the strict Clausius-

Clapeyron physical constraints in an adiabatic moisture process (Santer et al., 2021), providing a strong constraint on the 

observed ratio. For the retrieved CWV and SST products in this study, the 𝑅{𝐶𝑊𝑉/𝑆𝑆𝑇} ratio is 9.9% K-1, quite close to the 

CMIP6 regression value of 8.6% K-1. On the other hand, the 𝑅{𝐶𝑊𝑉/𝑆𝑆𝑇} ratios for the ERA5 and RSS-CDR products are as 395 

high as 13.9% and 14.3% K-1, respectively. A similar high 𝑅{𝐶𝑊𝑉/𝑆𝑆𝑇} was found over a longer time period for the RSS-CDR 

dataset (Santer et al., 2021). The much larger ratio in the ERA5 and RSS-CDR datasets occurred because their CWV trends 

appeared to be too large, while SST trends were slightly smaller compared to those in our retrieved CDR over the tropical 

ocean (Fig. 9, Fig. 11a). 

  400 

Figure 11. Comparison of trend covariance over the tropical ocean (20° N–20° S) during 2003–2022 showing scatterplots of tropical 

trends in (a)–(c) and histograms of the trend ratios between observations and CMIP6 model simulations in (d)–(f). The three 

comparisons from left to right are CWV versus SST, CWV versus TLT, and CWV versus TMT. In (a)–(c), the orange “x” symbols 

represent trend ratios from CMIP6, and the straight lines are their fitted lines. Squares, circles, and diamonds represent the CWV 

and SST from RTV, RSS-CDR, and ERA5, respectively. In (b), (c), (e), and (f), the different colours of symbols indicate the CWV 405 
trend plotted against observed TLT or TMT trends from STAR (red), RSS (blue), and UAH (purple). In (d)–(f), the orange curves 

are the fitting curves of the Gaussian distribution for CMIP6, and the black dashed line represents the fitted FWHM. Observational 

trend ratios are plotted in one reference row (grey dashed line), whose y-axis offset does not represent the actual value. 
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To further assess the accuracy of the CWVRTV trend, we pair it with trends from atmospheric layer temperatures observed by 

satellite microwave sounders (Fig. 11b and 11c), following the studies in Santer et al. (2021). For ratios of CWV over TLT 410 

(𝑅{𝐶𝑊𝑉/𝑇𝐿𝑇}) and TMT (𝑅{𝐶𝑊𝑉/𝑇𝑀𝑇}), the combination of CWVRTV with the STAR dataset is closest to the fitted straight line 

(Fig. 11b and 11c), with values of 6.3% K-1 and 6.5% K-1, compared to the CMIP6 values of 6.3% K-1 and 5.3% K-1, 

respectively. The combination of CWVRTV and RSS-CDR TLT also gives a ratio of 𝑅{𝐶𝑊𝑉/𝑇𝐿𝑇} that is closer to the expected 

CMIP6 value. The STAR TMT shows a high accuracy of 0.012 K decade-1 in trend detection from 2002 to 2022, as it was 

developed based on satellite microwave sounder observations in stable orbits with high radiometric stability (Zou et al., 2018, 415 

2021). The fact that the combination of CWVRTV with STAR TMT is closest to the expected CMIP6 value strongly suggests 

that the our CWVRTV product also has high accuracy in trend detection. In contrast, the CWV trends in ERA5 and RSS-CDR 

appeared to be too high, causing the 𝑅{𝐶𝑊𝑉/𝑇𝐿𝑇} and 𝑅{𝐶𝑊𝑉/𝑇𝑀𝑇} ratios to deviate significantly from the expected ratios in the 

CMIP6 simulations. 

Figures 11d–11f show the histogram distributions of the CMIP6 simulated ratios from different models for 𝑅{𝐶𝑊𝑉/𝑆𝑆𝑇} , 420 

𝑅{𝐶𝑊𝑉/𝑇𝐿𝑇}, and 𝑅{𝐶𝑊𝑉/𝑇𝑀𝑇}, compared with ratios derived from other data products. The full width at half maximum (FWHM) 

of the Gaussian fitting distribution defines a range within which ratios from observational products are consistent with the 

CMIP6 simulations. Their consistencies are further evaluated using the Z-score (Trenberth et al., 2005), which is calculated as 

the difference between the trend ratios of observed data products (RTV, ERA5, or RSS-CDR) and the CMIP6 model 

simulations, divided by the standard deviation of all CMIP6 models. A lower Z-score indicates better agreement with climate 425 

model simulations. In Fig. 11d, the retrieved CWV and SST products in this study fall within the FWHM, with Z-scores of 

0.67. This performs much better than the other products, which have Z-scores above 3. In Fig. 11e, the combination of CWVRTV 

with TLT from the three groups—STAR, RSS, and UAH—are all within the FWHM range, with the former two products 

positioned in the middle of the FWHM. For the ratio of 𝑅{𝐶𝑊𝑉/𝑇𝑀𝑇} (Fig. 11f), only the combination of CWVRTV and STAR 

TMT falls within the FWHM, with a Z-score of 0.92. These results suggest that ratios from our retrieved products, combined 430 

with satellite observations in stable orbits, generally align with expectations from the CMIP6 model simulations. 

The overall agreement in the 𝑅{𝐶𝑊𝑉/𝑆𝑆𝑇} ratios between climate model simulations and our retrieved products, as well as the 

combined satellite microwave imagery and sounding products, provided an extremely encouraging result. With careful 

calibration and inter-calibration, satellite observations not only follow the constraints from climate model simulations, even 

when observations are from completely different instrument sources, but also provide a constraint on climate model 435 

simulations regarding trends in separate CWV and SST. 

6. Data availability 

The CDR for CWV and SST described in this work is available from the Zenodo repository: 

https://doi.org/10.5281/zenodo.14539414 (Fu et al., 2024). 
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7. Conclusion 440 

We developed a set of CDRs for CWV and SST spanning over 20 years, from 2002 to 2022. The dataset is based on recalibrated 

AMSR-E, MWRI, and AMSR2 radiance measurements. A diurnal drift adjustment was conducted on the MWRI radiances 

using novel diurnal adjustment algorithms developed by researchers in previous studies. The adjustment ensures consistency 

in the developed CDRs and greatly enhances their application value in climate research. The retrieval algorithm utilizes the 

logarithmic relationship between observed TBs from multiple satellite microwave imagery channels and CWV and SST. The 445 

accuracy and long-term trends of the CWV and SST CDRs were validated against various observations, including in-situ data, 

satellite retrievals, and climate reanalyses. 

In general, the retrieved CWV and SST are in good agreement with in-situ observations, with small biases and RMSE, and are 

consistent with retrievals from other instruments. The variability in the developed CDR time series shows high correlation 

when compared with other observations, including GNSS, GTMBA, RSS, ERA5, and OISST. Long-term trends of the 450 

presented CDRs are generally consistent with the ERA5, RSS, and OISST datasets on a global scale. The most encouraging 

result is that the covariance between our retrieved CWV and SST over the tropical oceans is close to the expectations from 

CMIP6 model simulations. The ratios of our retrieved CWV to the layer mean temperatures from satellite microwave sounder 

observations also show favorable agreement with expectations from climate model simulations. Given the constraint on the 

CWV and SST trend ratios provided by CMIP6 model simulations, these agreements suggest good accuracy in trend detection 455 

by the retrieved CWV and SST products. In turn, because the satellite CWV and SST are from well-calibrated satellite 

observations of different instrument sources, the agreement also provides a constraint on trends in separate CWV and SST 

from climate model simulations.  

All these evaluation results suggest that the CDRs developed in this study can be effectively applied to climate change research 

due to their high consistency, accuracy, and continuity. 460 

In the future, as more satellites are launched and microwave radiometers continue to be introduced and recalibrated for the 

generation of FCDR datasets, it will be possible to establish CDR datasets for various geophysical parameters with longer 

periods and higher sampling frequencies. This will help to better characterize climate change and the diurnal variation of 

environmental variables, and improve our understanding of the mechanisms behind them. 
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