
Reply to Comments from Anonymous Referee #1  

1. Line 201: "The synthetic radiance dataset, consisting of these recalibrated 

observations from different sensors, is referred to as the FCDR (Liu et al., 2023; 

Poli et al., 2023)." - these are not synthetic data, but actual measurements. 

Synthetic data for example in Poli et al., 2023 refers to simulated measurements 

using a radiating transfer model from reanalysis outputs for instance.  

Reply: We thank the Anonymous Referee for this important correction. We 

agree that the use of the term "synthetic" was inaccurate in this context. 

Accordingly, we have revised the sentence in Line 201 as follows. 

Section 3, Lines 212-213: “The continuous and consistent radiance dataset, 

consisting of recalibrated observations from different sensors, is referred to as the 

FCDR (Liu et al., 2023; Poli et al., 2023).” 

 

Reply to Comments from Anonymous Referee #2  

Reply: We sincerely thank the anonymous referee for the thorough and 

constructive review. We have carefully addressed all comments, as outlined below. 

In the following, we provide responses in the order of the General Criticisms, 

Minor Criticisms, and Overall Recommendation sections, respectively, as 

presented in the anonymous referee’s report.   

General Criticisms 

1. Independence of the WV and SST products. To what extent can the WV and 

SST data be considered independent of each other. Both retrievals are based on 

TB data from the same instruments and same FCDR, are these products not 

consistent by design? I expect the difference is in the fact that CWV is based on 

cloudy cases and SST based on cloud free cases. Thus, an important aspect in 

the retrievals is the cloud decision, which is coming from the cloud parameter 

input. Please comment and explain in text more on the role of the cloud 

parameter input in the retrieval. 

Reply: We appreciate the Anonymous Referee’s insightful comment. Contrary to 

the assumption that SST is retrieved only under clear-sky conditions, both CWV 

and SST in our dataset are retrieved under rain-free but not necessarily cloud-

free scenes. The retrieval algorithms, following Wang et al. (2009), are robust 

under moderate cloud contamination. As both products are derived from the same 

FCDR of TBs, they share consistent temporal and spatial sampling, which 

facilitates joint variability analysis.  



Despite the common data source, CWV and SST retrievals are independent by 

design. Fundamentally, the radiometer channels are engineered such that 

measurements at different frequencies can be used to obtain information about 

different ECVs. For example, those low-frequency channels like 10V and 10H are 

primarily sensitive to SST, while higher-frequency channels such as 18H, 23V, and 

36H are more responsive to CWV. In the retrieval process, CWV is estimated 

using a first-order regression, whereas SST is retrieved using a second-order 

regression with regionally optimized coefficients. These differences in spectral 

sensitivity and algorithm formulation ensure that CWV and SST are physically 

and mathematically independent, even though they are retrieved from the same 

instrument observations and FCDR. This distinction is now clarified in the revised 

manuscript. In addition, we have added the initial estimated coefficients 

associated with used channels and their sensitivities for SST retrieval in Table 4 

to demonstrate the differences in CWV and SST retrievals. 

Section 3, Lines 315–319: “From the perspective of instrument design and 

microwave radiative transfer, different ECVs respond to measurements of different 

frequency channels in distinct ways. As shown in Table 4, low-frequency channels such 

as 10V and 10H are primarily sensitive to SST, while higher-frequency channels like 

19H, 23V, and 37H are more responsive to CWV. As a result, although CWV and SST 

are both retrieved from the same set of satellite TBs, the differences in channel 

sensitivity and retrieval algorithm expressions result in them being physically and 

mathematically independent products.” 

Table 4. Regression coefficients and the corresponding sensitivities of CWV and SST to TBs for different 

PMW channels used in the retrieval algorithms. For SST, the regression coefficients represent the initial 

estimate. 

  Offset TB 10V TB 10H TB 19H TB 23V TB 37H 

CWV 

(mm) 

𝒂𝒊 -9.953 42.890 29.689 -84.776 -44.691 41.433 

ΔCWV/ΔTB  -0.387 -0.151 0.524 0.732 0.319 

SST 

(K) 

𝒃𝒊 -559.777 -940.886 -406.252 201.324 -72.084 47.956 

𝒄𝒊  -393.786 -637.333 188.989 -20.560 13.612 

ΔSST/ΔTB  1.764 -0.313 0.082 0.118 -0.203 

2. Independence of the validation data. To what extent are the validation data 

independent of the CDR data, please explain.  

Reply: We thank the Anonymous Referee for raising this important point. Among 

all CWV and SST products, RAOB, GTMBA buoys, GNSS station CWV, and 

OISST SST are fully independent of our CDR, as they originate from distinct 

measurement systems and are not involved in any stage of our retrieval or 

calibration. These in situ datasets serve as objective references for assessing 

retrieval accuracy. 



The RSS CWV product, although also based on AMSR-E and AMSR2, is a peer 

satellite climate product developed with different recalibration approaches and 

retrieval algorithm, incorporating additional observations from other sensors 

such as SSM/I, TMI, and GMI. Importantly, MWRI is not included as a bridge 

instrument that can fill the gap in AMSR-E and AMSR2 observations, which is a 

key component of our CDR. Therefore, RSS product serves as an independent 

algorithmic reference data for evaluation. In terms of the ERA5 reanalysis, AMSR 

data is used for assimilation with variational bias correction to account for satellite 

drifts and biases, while MWRI was not assimilated into ERA5. In addition, ERA5 

has also assimilated a variety of observational data other than satellite 

observations. Therefore, due to the differences in the observation data and 

processing methods used, RSS and ERA5 products can be considered independent 

of our CDR. We have added the following sentence in the revised manuscript to 

address these points. 

Section 4.2, Lines 394–395: “As a ground-based observation system, GNSS is 

completely independent of retrievals and offers a reliable local reference.” 

Section 4.2, Lines 410–412: “Since GTMBA is a moored in situ buoy network, it 

is fully independent of the satellite retrievals and serves as a reliable reference for 

evaluating SST trends at fixed ocean locations.” 

Section 4.2, Lines 429–434: “Although both RSS and ERA5 include AMSR-E and 

AMSR2 data, their processing chains are entirely independent of the RTV. As a peer 

satellite climate product, RSS uses a different retrieval algorithm and merges the 

measurements from additional sensors (e.g., SSM/I and TMI) but not MWRI (Mears et 

al., 2018). ERA5 also excludes MWRI and applies variational bias correction to remove 

satellite drifting biases, and assimilates observations into a model-based reanalysis 

system (Hersbach et al., 2020).” 

3. Validation Data. Different source of in-situ validation data is used. The authors 

should make clearer that these are of superior quality, independent, and 

consistent with each other. 

Reply: We thank the Anonymous Referee for raising this important point. The in-

situ datasets used in our validation are widely recognized for their high quality, 

independence, and internal consistency. For CWV, the IGRA RAOB provide a 

robust reference, with a multi-stage quality assurance system that includes 

automated checks for persistence, climatological outliers, and vertical/temporal 

consistency, as described by Durre et al. (2008). Manual review–optimized 

thresholds and global applicability ensure minimal undetected errors (~1.1%) and 

no systematic biases. For SST, we use the GODAE SST from the FNMOC, which 

including data from ships, moored buoys, and drifting buoys. Buoy data are 

generally of higher quality, while ~8% of lower-quality ship data are excluded 

through decision-making quality control algorithms. Following Gentemann and 

Hilburn (2015), we only use in-situ measurements flagged as high quality, ensuring 



that the validation results reflect reliable reference standards. The manuscript has 

been supplemented and revised accordingly. 

Section 2.1, Lines 106–108: “The RAOB data has undergone a multi-stage quality 

assurance process, including persistence checks, climatological outlier removal, and 

vertical/temporal consistency tests, which ensure internal coherence and minimize 

undetected errors to about 1.1% (Durre et al., 2008).” 

Section 2.1, Lines 118–120: “The probability of gross error is used to ensure data 

quality and consistency, ensuring that only high-confidence data (defined as those with 

a probability less than 0.6 K) are used here (Gentemann and Hilburn, 2015).” 

4. Especially, I am skeptical about using CMIP simulations as validation data. To 

underpin the value of using CMIP simulations in this article, the authors should 

clearly explain for what statistical metrics the CMIP simulations contribute to 

the validation of observations.  

The authors correctly indicate that the CWV and SST variables of CMIP relate 

to each other by design, via the Clausius Clapeyron law. This predetermined 

relationship makes that one cannot use both variables as independent sources of 

validation data. In the paper only one variable can be used for validation. Please 

comment on this. 

Reply: We thank the Anonymous Referee for this important and thoughtful 

comment. We fully agree that CMIP simulations should not be used as traditional 

reference data for validating the absolute accuracy of individual satellite retrievals. 

However, in our study, the use of CMIP simulations serves a different purpose—

to evaluate the internal physical consistency of independently retrieved CWV and 

SST trends within the framework of thermodynamic constraints, as embodied in 

the Clausius-Clapeyron relationship. This aspect represents a distinctive 

component of our study. While most variables in CMIP cannot be directly 

compared with satellite products, Santer et al. (2021) has shown that the 

covariability between CWV and temperature products, is a suitable metric for 

such comparison. In particular, these inter-variable relationships can act as a 

bridge between model projections and satellite-observed responses to climate 

forcing. 

In our analysis, we find that the CWV–SST trend ratio derived from our satellite 

retrievals aligns closely with that from the CMIP6 ensemble, reinforcing the 

notion that the CDR preserves large-scale thermodynamic coupling. This 

comparison does not treat CMIP as a “truth” dataset but instead uses it as a 

physically grounded expectation. When models and observations yield consistent 

coupling behavior, it suggests a successful mutual constraint: the models are 

credible, and the observations are physically self-consistent. Furthermore, Santer 

et al. (2021) emphasized that not all observational datasets are equally reliable 

when used to evaluate model behavior. In their findings, some CWV (e.g., RSS) 



and SST products did not support the model-observed consistency in trends, 

raising the question of whether the discrepancy stemmed from errors in the 

models or the observations. At the time, this could not be conclusively determined. 

However, our result adds new evidence, showing that our independently retrieved 

CWV and SST trends are similar with CMIP expectations—suggesting that 

previous observational discrepancies may reflect observation limitations rather 

than model error. 

We have revised the relevant section in the manuscript to make these points 

clearer, and now emphasize that the CMIP comparison serves as a mutual 

consistency check, not a direct validation of trend accuracy. We hope this 

clarification addresses the Anonymous Referee’s concern. 

Section 5, Lines 460–466: “As mentioned earlier, the Clausius-Clapeyron 

relationship imposes a strong thermodynamic constraint on the covariance of CWV and 

temperature products under long-term warming. This physical linkage can be used to 

examine whether the joint behaviour of independently retrieved CWV and temperature 

variables conforms to expectations under radiative climate forcing. In fact, Santer et al. 

(2005, 2021) pointed out that this approach provides a meaningful way to evaluate 

observational datasets, with climate models offering physically grounded reference 

values. Following this rationale, we regard the trend ratios between CWV and SST (or 

TLT, TMT) as physically interpretable metrics that support mutual consistency checks 

between observations and model simulations.” 

Section 5, Lines 512–516: “This highlights the value of using climate covariance 

to evaluate the internal consistency of both observations and models. When retrieved 

satellite products reproduce the trend ratios expected from CMIP6 simulations, it 

increases confidence in their physical reliability. It also suggests that past 

disagreements between models and observations may have stemmed from biases in 

earlier datasets, rather than flaws in the models themselves.” 

5. Uncertainty and error propagation. The authors spend little words on the 

uncertainty of the CWV and SST products, and do not provide uncertainty bars 

in their figures. Literature describes approaches to estimate uncertainties of 

level 1 and level 2 satellite data, using metrological principles. Relevant work 

on this was done in the framework of the FIDUCEO project. 

FIDUCEO method paper: 

Giering, R.; Quast, R.; Mittaz, J.P.D.; Hunt, S.E.; Harris, P.M.; Woolliams, E.R.; 

Merchant, C.J. A Novel Framework to Harmonise Satellite Data Series for 

Climate Applications. Remote Sens. 2019, 11, 1002. 

https://doi.org/10.3390/rs11091002. 

FIDUCEO example paper: 



Hans, I.; Burgdorf, M.; Buehler, S.A.; Prange, M.; Lang, T.; John, V.O. An 

Uncertainty Quantified Fundamental Climate Data Record for Microwave 

Humidity Sounders. Remote Sens. 2019, 11, 548. 

https://doi.org/10.3390/rs11050548. 

More general descriptions for performing error propagation for Essential 

Climate Variables (ECVs) of the Global Climate Observing System, involving 

systematically tracking and quantifying uncertainties through all stages of the 

data processing (i.e., from raw observations to final climate data products), are 

described in the following papers: 

Roebeling, R. A., S. Bojinski, P. Poli, V. O. John, and J. Schulz, 2025: On the 

Determination of GCOS ECV Product Requirements for Climate Applications. 

Bull. Amer. Meteor. Soc., 106, E868–E893, https://doi.org/10.1175/BAMS-D-

24-0123.1. 

Merchant, C. J., Paul, F., Popp, T., Ablain, M., Bontemps, S., Defourny, P., 

Hollmann, R., Lavergne, T., Laeng, A., de Leeuw, G., Mittaz, J., Poulsen, C., 

Povey, A. C., Reuter, M., Sathyendranath, S., Sandven, S., Sofieva, V. F., and 

Wagner, W., 2017: Uncertainty information in climate data records from Earth 

observation, Earth Syst. Sci. Data, 9, 511–527, https://doi.org/10.5194/essd-9-

511-2017. 

Reply: We thank the Anonymous Referee for this important and constructive 

comment. We have carefully reviewed the relevant literature, including the 

FIDUCEO framework and other uncertainty propagation methodologies for 

ECVs, and we find these works highly valuable and instructive. While our current 

study does not directly start from raw instrument counts, we have systematically 

quantified the uncertainties of the Level 1 FCDR TBs and the Level 2 retrieved 

CWV and SST products. For the Level 3 gridded products, where retrieval 

uncertainties are substantially reduced through spatial and temporal averaging, 

we follow the approach of Zou et al. (2023) to estimate the statistical uncertainties 

in long-term trend detection. 

Specifically, for level 1 data, the FCDR relies on pre-processed TBs from three 

instruments, each with different measured uncertainties defined by the noise-

equivalent temperature difference (NEΔT). For AMSR-E and AMSR2, we use 

resampled TBs computed using the Backus-Gilbert (BG) method (Kawanishi et 

al., 2003; Maeda et al., 2016), where the channel uncertainties are characterized 

as the product of the NEΔT and an empirically derived noise amplification factor. 

For MWRI, as discussed in Wu et al. (2020), the TBs used in this study have 

undergone a combination of sensor-specific calibration and inter-satellite 

harmonization techniques, including a nonlinear lookup-table (LUT)-based 

correction. This calibration process introduces strong nonlinearity and 

discontinuities, making it impossible to derive an analytical Jacobian matrix for 

traditional uncertainty propagation. Therefore, inspired by the methodologies 



described in the references suggested by the Anonymous Referee, we adopted a 

Monte Carlo approach: the uncorrected TBs were perturbed using their original 

NEΔT values, passed through the nonlinear correction process, and the standard 

deviation of the resulting ensemble was used as an estimate of the final uncertainty. 

This method effectively captures the impact of the nonlinear correction on 

uncertainty propagation. For AMSR-E, TBs use linear correction and the 

Jacobian matrix is close to 1. Therefore, the uncertainty of the corrected AMSR-

E TBs is equivalent to the uncertainty of the resampled input. As a result, we 

obtained level 1 TB uncertainties for all three instruments. 

For the Level 2 retrieval products, the total uncertainty arises from two main 

aspects: the propagation of TB uncertainties through the retrieval algorithm, and 

the intrinsic uncertainty of the algorithm itself. Given that the SST retrieval 

algorithm involves multiple threshold-based segmentations and nonlinear terms, 

it constitutes a nonlinear system. Therefore, we also use a Monte Carlo approach 

to propagate the input TB uncertainties through the retrieval process and estimate 

the associated retrieval uncertainty. In contrast, the CWV retrieval is expressed 

analytically as a logarithmic function of TBs, enabling the use of a Jacobian-based 

linear error propagation approach. We compared the CWV uncertainties 

computed by the analytical Jacobian method and the Monte Carlo method, and 

found that the difference between the two was less than 0.01 mm, indicating that 

the Monte Carlo approach is sufficiently accurate for both variables. The 

algorithmic uncertainty is further estimated by comparing the retrieved CWV and 

SST values against their “true” values in a large set of training data simulated 

using a microwave radiative transfer model. Based on the statistical differences 

between retrievals and true values, the standard algorithmic uncertainties were 

found to be 0.51 mm for CWV and 0.20 K for SST, both lower than the 

uncertainties reported by Wentz (2000). This improvement is attributed to the 

inclusion of the 10 GHz channel in the CWV retrieval and the use of second-order 

term in localized algorithm in the SST retrieval. Finally, the total Level 2 

uncertainty is calculated by combining the retrieval-propagated uncertainty and 

the algorithmic uncertainty using standard uncertainty propagation formulas. 

For Level 3 gridded products, retrieval uncertainties are further reduced through 

spatial and temporal averaging. Following the classification framework proposed 

by Zou et al. (2023), trend uncertainties in satellite-derived climate data records 

can be categorized into three components: structural, internal, and statistical 

uncertainty. Structural uncertainty arises from differences in instrument design, 

calibration approaches, and retrieval algorithms across independently generated 

datasets. Internal uncertainty refers to errors introduced within a specific data 

product, including those from calibration adjustments, diurnal drift corrections, 

sampling strategies, and uncertainty propagation. Statistical uncertainty, which 

becomes the dominant source at Level 3, is linked to the limited temporal coverage 

and internal variability of the climate system. This study primarily focuses on the 

statistical component, as it directly affects the robustness of long-term trend 



estimates—particularly in the presence of strong low-frequency variability such 

as ENSO or volcanic signals. As highlighted by Santer et al. (2008), ignoring 

temporal autocorrelation in monthly anomalies can significantly underestimate 

trend uncertainty. To account for this, we follow their method by adjusting the 

effective sample size using the lagged autocorrelation coefficient, thereby 

obtaining more reliable standard errors and confidence intervals for linear trends. 

Specifically, we added the following to our manuscript. 

 Section 3, Lines 338–345: “Uncertainties in our dataset were systematically 

assessed across level-1 to level-3. Table 5 gives uncertainty estimates for level-1 and 

level-2. For level-1, the FCDR relies on pre-processed TBs from AMSR-E, AMSR2, 

and FY-3 MWRI. Channel-specific TB uncertainties for AMSR-E and AMSR2 are 

defined by the noise-equivalent temperature difference (NEΔT) and adjusted by noise 

amplification factors derived from the Backus–Gilbert (BG) resampling method 

(Kawanishi et al., 2003; Maeda et al., 2016). For MWRI, the complex recalibration 

introduces strong nonlinearity (Wu et al., 2020), for which analytical Jacobians are not 

available for uncertainty propagation. Thus, a Monte Carlo method (Merchant et al., 

2017; Roebeling et al., 2025) was used to estimate the uncertainty after correction by 

perturbing input TBs with NEΔT and calculating the standard deviation of the corrected 

outputs.” 

Section 3, Lines 348–355: “For level-2, total retrieval uncertainty includes both the 

propagation of TB uncertainty and the intrinsic retrieval algorithm error. The CWV 

algorithm allows both Jacobian-based and Monte Carlo-based propagating uncertainty 

estimation (Giering et al., 2019; Hans et al., 2019), which yield similar results (<0.01 

mm difference). The SST algorithm involves localized approach, requiring Monte 

Carlo simulation. Algorithmic uncertainties were further estimated by comparing 

retrievals with simulated truth from microwave radiative transfer model, yielding 

standard uncertainties of 0.51 mm for CWV and 0.20 K for SST. These values are lower 

than those reported by Wentz (2000), due to enhanced channel selection and algorithm 

design. Final level-2 uncertainties (Table 5) were obtained by combining both 

components using propagation of uncertainty (Giering et al., 2019; Hans et al., 2019).” 

Section 3, Lines 356–367: “For Level-3 gridded products, retrieval uncertainties are 

substantially reduced through spatial and temporal averaging. In this study, we focus 

primarily on the statistical uncertainty (SU) associated with trend estimation, which is 

especially relevant given the limited record length and the presence of low-frequency 

climate variability (Zou et al., 2023). Following the approach of Santer et al. (2008), 

we account for temporal autocorrelation in the anomaly time series by adjusting the 

effective sample size using the lagged autocorrelation coefficient. This correction 

ensures that the derived confidence intervals for linear trends are not underestimated, 

providing a more reliable assessment of long-term climate signals. The SU estimates of 

the trends are expressed as 95% confidence level, is computed as: 

𝑆𝑈 = 1.96 ∙ 𝑆𝐸 ∙ √
1+𝑟

1−𝑟
,           (9) 



where SE is the uncorrected standard error from ordinary least squares regression, 

and r is the lagged autocorrelation coefficient. Unless otherwise specified, r refers to 

the correlation between values that are 1 time period apart (lag-1 autocorrelation) 

throughout this study. The level-3 trend uncertainty is not included in Table 5, but is 

reported in all trend analysis in the relevant comparison figures below.” 

Table 5. Uncertainty Estimates for level-1 TBs and level-2 retrievals. 

Product Level Channel / Parameter AMSR-E MWRI AMSR2 

level-1 
TB uncertainty 

(K) 

10V 0.29 0.26 0.28 

10H 0.29 0.25 0.28 

18H 0.13 0.18 0.18 

23V 0.12 0.18 0.15 

36H 0.12 0.19 0.15 

level-2 
Retrieval 

uncertainty 

CWV 

(mm) 
0.54 0.55 0.55 

SST (K) 0.55 0.50 0.53 

6. Climate data records temporal coverage. Climate studies often ask for data that 

covers the standard 30-year reference period defined by WMO, eg 1991-2020 

(current reference period) or 2000-2030 (next reference period). Are there any 

plans to expand further back in time, e.g., back to 1997 by using TMI data, to 

cover the next reference period?   

Reply: We thank the Anonymous Referee for raising this important point. We 

fully agree that extending the temporal coverage of the climate data record (CDR) 

to meet the WMO-defined 30-year reference period is essential for long-term 

climate applications. To this end, our group are actively planning both backward 

and forward extensions of the current CDR. On the backward side, we are 

working to integrate microwave imager observations from legacy instruments, 

including SSMI (from 1987) and TMI (from 1997), which will allow us to extend 

the CWV record back to 1987 and the SST record back to 1997, respectively. 

These extensions are technically feasible given the similarity in channel 

configurations and the availability of inter-sensor calibration strategies already 

developed in previous studies. On the forward side, we are continuing the CDR 

using AMSR2 data beyond 2022, and incorporating observations from the Global 

Precipitation Measurement (GPM) Microwave Imager (GMI), the Special Sensor 

Microwave Imager/Sounder (SSMIS), and other new-generation sensors such as 

MWRI onboard subsequent FY-3 series satellites. With these planned extensions, 

the final dataset will span more than 30 years, fully satisfying the WMO criteria 

for reference climatology. We have added a statement regarding these extension 

plans in the revised manuscript.   

Section 7, Lines 545–549: “In particular, we plan to extend the CWV record back 

to 1987 using SSM/I and the SST record back to 1997 using TMI, respectively. 

Meanwhile, the forward extension will include ongoing AMSR2 observations and data 



from next-generation MWRI instruments onboard subsequent FY-3 series satellites. 

This will enable coverage of the standard 30-year reference periods defined by the 

World Meteorological Organization (WMO), ensuring that the dataset remains 

comprehensive.” 

Minor Criticisms 

7. Section 3: CDR Data: Add a table listing what data were used to construct the 

CDR, ie, name instrument the start date, end date, and discuss what steps were 

taken to harmonize and homogenise (see definitions 

https://research.reading.ac.uk/fiduceo/glossary/) these data over the entire CDR 

period, so as to use them for trend analysis. 

Reply: We thank the Anonymous Referee for this important comment. Wu et al. 

(2020) have conducted extensive and systematic recalibration work in the 

preliminary stage to support the construction of the FCDR. Specifically, these 

included correction of time-dependent calibration drifts using the vicarious cold 

reference method, removal of geolocation errors via the coastline inflection 

method, inter-sensor calibration through the double-difference (DD) method 

using AMSR2 as the reference, and a principal component analysis (PCA) 

approach to reduce hardware-induced biases over land. After these recalibrations, 

we believe that the FCDR TB has sufficient harmonization and homogenization. 

The biases of the matching pairs of MWRI and the other two instruments are close 

to 0 K, and the STDs of all used channels are all less than 0.7 K. These calibration 

procedures are not detailed in this paper. We have supplemented the instrument 

list and the constructing steps of the CDR in the manuscript. 

Section 3, Lines 237–241: “Table 3 summarizes the instruments and their time 

coverage used to construct the current CDR. To ensure consistency and long-term 

stability of the retrieved climate variables, a series of processing steps and adjustments 

were implemented. These steps include: i) removing precipitation and sea ice pixels, ii) 

correcting for diurnal drifts in MWRI, iii) retrieving CWV and SST, iv) spatially 

gridding the data onto a global 0.25° × 0.25° grid, v) merging of multi-sensor anomalies 

into a continuous time series, and vi) comprehensive uncertainty quantification at each 

processing level. Details of each step are provided below.” 

Table 3. Satellite instruments contributing to the CDR. 

Satellite Instrument Start date End date 

Aqua AMSR-E 2002-06 2011-06 

FY3B MWRI 2011-03 2015-04 

GCOM-W1 AMSR2 2012-09 2022-05 

8. Page 9, line 232: replace “thereby eliminated” by “thereby empirically 

correcting”. 



Reply: Done!  

9. Equation (1), (4), (5): For consistency with the other notations, can you replace 

𝐷(𝑋,𝑚, 𝐿), 𝑇𝐵(𝑋, 𝑡,𝑚, 𝐿), and 𝑇𝐵′(𝑋, 𝑡,𝑚, 𝐿) 

with 

𝐷𝑀𝑊𝑅𝐼(𝑋,𝑚, 𝐿), 𝑇𝐵𝑀𝑊𝑅𝐼(𝑋, 𝑡,𝑚, 𝐿), and 𝑇𝐵′𝑀𝑊𝑅𝐼(𝑋, 𝑡, 𝑚, 𝐿) 

Reply: Done! 

10. Figure 3: is the blue line in this figure not the difference of the two instruments 

before correction, thus: 

𝑇𝐵𝑀𝑊𝑅𝐼(𝑋, 𝑡,𝑚) − 𝑇𝐵𝐴𝑀𝑆𝑅(𝑋, 𝑡,𝑚) 

Instead of 

∆𝑇𝐵′ = 𝑇𝐵′(𝑋, 𝑡,𝑚) − 𝑇𝐵𝐴𝑀𝑆𝑅(𝑋, 𝑡, 𝑚) 

This is what I expect, because then the figure demonstrated that the difference 

between the instruments before corrections resemble those of the diurnal 

anomalies and thus seems to prove that a correction is needed. Please explain. 

Reply: Done! The Anonymous Referee is absolutely correct — the blue line 

represents the difference between unadjusted MWRI and AMSR TBs, thereby 

justifying the need for calibration correction. We also added the phrase “before 

diurnal drift adjustment” in the figure caption. 

Figure 3: Inter-satellite differences (𝑻𝑩𝑴𝑾𝑹𝑰(𝑿, 𝒕,𝒎) − 𝑻𝑩𝑨𝑴𝑺𝑹(𝑿, 𝒕,𝒎))  before diurnal drift 

adjustment (blue lines) and diurnal anomaly differences (𝑫𝑴𝑾𝑹𝑰(𝑿,𝒎, 𝑳), red lines) derived from 

the semi-physical model over the global ocean. 

11. Figure 6 (and similar figures later):  Indicate in the caption that the numbers 

given in the legend for each validation result represent BIAS and RMSE. 

Reply: Thanks for the suggestion. The numbers shown in the legend actually 

represent the linear trend and its standard error. We have now clearly labeled 

these values in the figure legend, and also clarified in the caption of Figure 6, where 

this notation first appears. For example, the revised figure 6 are provided below. 



 

Figure 6: Monthly anomaly time series for CWVRTV, GNSS, ERA5, and RSS over the three GNSS sites. The 

legend in each panel includes statistical metrics for trend comparison. The black text indicates the linear trend 

of the RTV anomaly (black line) along with its SU. Colored texts represent the trend values, SUs, and RMSEs 

of the anomaly differences between RTV and each of the validation datasets (GNSS, ERA5, and RSS). As the 

anomaly differences are computed over identical time periods, the mean bias is inherently zero and thus not 

shown. The lag-3 autocorrelation is used for the BRMU station in a). 

12. Figure 8 & 9: The compared datasets are partly based on the same observational 

datasets (AMSR-E and AMSR2) and thus cannot be considered independent of 

each other. I realize that complete independence is difficult to achieve, still the 

authors discuss and provide evidence of the degree of independence of the 

compared datasets. This is especially important in determining the 

climatological significance of jumps in the time series. 

Reply: We thank the Anonymous Referee for this thoughtful and important 

comment.  As noted in our Response to Comment #2, we have carefully discussed 

the independence between our CDR and the reference datasets used in Figures 8 

and 9. In particular, for ERA5 and RSS, while they incorporate AMSR-E and 

AMSR2 data, their processing chains, algorithms, and sensor combinations differ 

significantly from ours (see Comment #2). Given the very different processing 

schemes between each product and our CDR, the similarity observed in both 

short-term variability and long-term trends is notable. This consistency suggests 

that all datasets capture robust climate signals, and can serve as a valid reference 

for climate validation. Corresponding clarifications have been added in the 

revised manuscript. 

Section 4.2, Lines 433: “These differences make them suitable, independent 

references for evaluating variability and trends.” 



13. Figure 8 & 9: With reference to my above point, there is a clear jump in values 

between the period 2002-2012 and 2016-2022. This jump seems rather to be 

related to a change in instrument than to a change in climate. Please comment. 

Reply: We appreciate the Anonymous Referee’s observation. In our inter-sensor 

recalibration process, special attention was given to remove instrument jump 

while preserve physically meaningful climate signals. The apparent jumps in 2010 

and 2016 coincide with well-documented El Niño events, which caused abrupt 

increases in global CWV and SST. These climate shifts are supported by the ENSO 

index (see: https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-

12-3-34-4-oni-and-tni). Importantly, the OISST product, which is fully 

independent of our CDR in both observation and processing, also captures similar 

jumps during the same periods. This supports the interpretation that the changes 

observed between 2002–2012 and 2016–2022 are primarily climatic, rather than 

artifacts of instrument transition. We have added a clarification on this point in 

the revised manuscript. 

Section 4.2, Lines 433–435: “Although independent, including the fully 

independent OSSIT, all datasets exhibited a shift from 2010 to 2016 (Fig. 8). This most 

likely suggests that this shift is a true climate shift.” 

14. Line 375: The statement “Different datasets show overall similar trend patterns 

for both CWV and SST.” is very qualitative. Can you provide some statistics to 

make it more quantitative? 

Reply: We agree with the Anonymous Referee that this sentence was overly 

qualitative. In response, we have added spatial correlation coefficients to quantify 

the similarity of trend patterns across datasets. The spatial correlation between 

CWVRTV and CWVERA reaches 0.92, indicating high consistency. The slightly 

lower CC of 0.78 involving RSS CWV is due to differences in spatial resolution, as 

the comparison was performed on matched grid points only. The revised sentence 

now reads: 

Section 4.2, Lines 448–449: “Different datasets show overall similar trend patterns 

for both CWV and SST, with spatial CCs exceeding 0.78 and 0.85, respectively.” 

15. Figure 11: Why are there more crosses for the CMIP trends. Are these different 

CMIP scenarios? 

Reply: We thank the Anonymous Referee for this question. The crosses shown for 

CMIP in Figure 11 represent individual model simulations. Specifically, we 

selected 28 CMIP6 models, each using a concatenation of the historical experiment 

(up to 2014) and the SSP5-8.5 scenario (from 2015 onward). This high-emission 

scenario was chosen to reflect a strong forced climate signal over the analysis 

period (2003–2020). The large spread of trend estimates in either SST or CWV 

represents model uncertainties in simulating climate trends. However, our 



primary focus is not on absolute trends, but rather on the ratios between CWV 

and temperature trends (e.g., R{CWV/SST}, R{CWV/TLT}), which are considered to be 

more physically constrained and thus more appropriate for comparing 

observations with models. These ratios serve as mutual benchmarks and have been 

proposed in prior studies (e.g., Santer et al., 2021) as useful indicators of physical 

consistency across datasets. 

16. Line 452 Conclusions: Is the statement “The most encouraging result is that the 

covariance between our retrieved CWV and SST over the tropical oceans is 

close to the expectations from CMIP6 model simulations.” true? 

CMIP is an ensemble of model simulations, matching with CMIP does not say 

much about the quality of the observational data. May be one could reason the 

other way around and write that it is encouraging that the CMIP simulations 

seem to be able to reproduce the observed relationships. This would, however, 

be a statement about the quality of CMIP and not about the quality of the CWV 

and SST observations! Please comment. 

Reply：Please see our Reply on Comment #4. 

Overall Recommendation 

17. Provide a pointwise description of what validation metric is evaluated with what 

reference data. 

Reply: We thank the Anonymous Referee for this helpful suggestion. To improve 

the clarity and traceability of our validation framework, we have added Section 

2.8 in the revised manuscript, which provides a structured summary of each 

reference dataset, its degree of independence, and the specific validation metrics 

used. This information is also concisely presented in Table 2. 

Section 2.8, Line 202: “2.8 Validation Framework of Reference Datasets” 

Section 2.8, Lines 203–207: “To ensure a structured evaluation of the CDR quality, 

we systematically validated the retrieved CWV and SST products across multiple 

dimensions: retrieval accuracy, local and global long-term trends, and climate trend 

covariability. The various datasets mentioned above differ in spatial coverage, temporal 

extent, measurement principles, and are therefore suitable for different validation tasks. 

Table 2 summarizes the validation objectives, evaluation metrics, corresponding 

reference datasets, and their independence from the retrievals.” 

 

 

 



Table 2. Reference datasets used in validation. (RMSE: Root mean square error; CC: Correlation coefficient) 

Validation 

Objectives 
Variable Validation Metric 

Reference 

Dataset 
Dependency 

Retrieval 

accuracy 

CWV Bias, RMSE, CC RAOB Fully independent 

SST Bias, RMSE, CC GODAE Fully independent 

Regional 

variability and 

trend 

CWV Trend, CC GNSS Fully independent 

SST Trend, CC GTMBA Fully independent 

Global 

variability and 

trend 

CWV Trend, CC RSS 
AMSR-E and AMSR2 

observations included 

SST Trend, CC OISST Fully independent 

CWV and SST Trend, CC ERA5 
AMSR-E and AMSR2 

observations included 

CWV and SST Trend, CC RSS-CDR 
AMSR-E and AMSR2 

observations included 

Climate trend 

covariability 

CWV, SST, TLT 

and TMT 

𝑅{𝐶𝑊𝑉/𝑆𝑆𝑇}, 𝑅{𝐶𝑊𝑉/𝑇𝐿𝑇} and 

𝑅{𝐶𝑊𝑉/𝑇𝑀𝑇} 
CMIP6 Fully independent 

TLT and TMT 𝑅{𝐶𝑊𝑉/𝑇𝐿𝑇} and 𝑅{𝐶𝑊𝑉/𝑇𝑀𝑇} STAR Fully independent 

TLT and TMT 𝑅{𝐶𝑊𝑉/𝑇𝐿𝑇} and 𝑅{𝐶𝑊𝑉/𝑇𝑀𝑇} RSS Fully independent 

TLT and TMT 𝑅{𝐶𝑊𝑉/𝑇𝐿𝑇} and 𝑅{𝐶𝑊𝑉/𝑇𝑀𝑇} UAH Fully independent 

 

18. Explain to what extent the reference data are independent of, and superior to, 

the CDR. 

Reply：Please see our Reply on Comment #2 and Comment #17. 

19. Explain to what extent the CWV and SST products are independent of each 

other. 

Reply：Please see our Reply on Comment #1. 

20. Explain how uncertainties from input data and processing steps propagate into 

the CDR product. 

Reply：Please see our Reply on Comment #5. 

21. Discuss, and if possible assess, the role of validation uncertainties arising from 

collocation, synchronization, and representation differences between the 

reference data and the CDR. 



Reply: We thank the Anonymous Referee for raising this important point. As 

discussed in Giering et al. (2019) and Hans et al. (2019), validation uncertainty 

arises not only from the intrinsic errors of each dataset, but also from mismatches 

in collocation, synchronization, and physical representation between the CDR and 

the reference data. According to Zou et al. (2006), spatial collocation errors—

especially in variables with large horizontal gradients—can increase standard 

deviation, but tend to have symmetric distribution that reduces their impact on 

mean biases. In this study, we adopt matching criteria that balance accuracy and 

sample size. For RAOB, a typical radiosonde ascent takes about 2 hours and may 

drift more than 100 km laterally (Ingleby et al., 2016). Therefore, a collocation 

window of 60 km and 3 hours is considered appropriate. For GODAE SST, we use 

a tighter spatial threshold of 0.1° and temporal threshold of 6 minutes, as its field 

of view after resampling (over 20 km) is sufficiently large to absorb small-scale 

mismatch errors. 

Regarding representation differences, the CWV retrieved from satellites includes 

water vapor from sea level to the top of the atmosphere, while RAOB profiles may 

miss low-level vapor depending on the station elevation. Similarly, satellite-based 

microwave SST represents the sub-skin temperature at millimetre depths, while 

in situ measurements reflect temperature at 1 m depth, leading to possible 

systematic offsets (e.g., https://cersat.ifremer.fr/Thematics/Sea-Surface-

Temperature/Defining-sea-surface-temperature/). These factors are inherent in 

satellite–in situ comparisons and are taken into account when interpreting the 

validation results. We have made revisions in the manuscript. 

Section 4.1, Lines 378–381: “It is worth noting that some of the residual variability 

may originate from collocation and representation mismatches (Zou et al., 2006; 

Giering et al., 2019; Hans et al., 2019). Radiosonde ascents typically take up to two 

hours and can drift over 100 km (Ingleby et al., 2016). Moreover, satellite-derived 

CWV includes the full atmospheric column, whereas RAOB may miss water vapor near 

the surface depending on station elevation (Buehler et al., 2012).” 

Section 4.1, Lines 384–387: “The observed differences can be partially attributed 

to representation differences between microwave and in situ measurements. While 

satellite sensors retrieve sub-skin temperature at millimeter depth, GODAE integrates 

in situ measurements from ships and buoys, primarily at a depth of 1 meter (Huang et 

al., 2020).” 
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