Supporting Information for

Multi-spatial scale assessment and multi-dataset fusion of global terrestrial evapotranspiration datasets

Contents of this file

Text S1–S6 Figures S1–S25 Tables S1–S5

1 Text S1. Flux sites and data preprocessing

2 The ET from FLUXNET has been quality controlled and pre-processed to improve 3 cross-site consistency and comparability using the harmonised methodology described 4 in Pastorello et al. (2020). Meteorological data were filled by two independent methods: 5 marginal distribution sampling (variables with F MDS suffix) and ERA-Interim 6 (variables with F ERA suffix). The final missing-fill product (variables with F suffix) 7 consists of direct measurements and missing-fill records. In this study, latent heat fluxes 8 were filled using half-hourly (hourly) precipitation (P F in mm) and MDS methods 9 (LE F MDS in $W \cdot m^{-2}$). Record lengths for each site ranged from 1 to 24 years. For 10 latent heat fluxes, the data processing steps (screening criteria) were as follows: (1) 11 First, only data with a continuous coverage of at least 3 years were collected. (2) Data 12 with negative latent heat fluxes were excluded. (3) Because flux data from nighttime 13 eddy covariance measurements are missing and have large errors (Mahrt, 1999; Yuan 14 et al., 2021), the study extracted only daytime latent heat flux data. Daytime is defined 15 as 7:00 to 19:00 local time (McGloin et al., 2019; Yuan et al., 2021). The study did not 16 use incident shortwave radiation to define daytime, as nighttime occasionally has larger 17 values. (4) To avoid high likelihood of dew evaporation (Knauer et al., 2018), the study 18 excluded data with relative humidity above 95%, as it can strongly affect 19 evapotranspiration measurements. (5) To avoid intercepted evaporation and sensor 20 saturation at high relative humidity (Medlyn et al., 2017), data during and up to 6 hours 21 after rainfall were excluded. (6) To reduce the impact of outliers on half-hourly-scale 22 data, data below the 5% percentile and above the 95% percentile in latent heat flux were 23 excluded. Half-hourly evapotranspiration (in mm) was obtained from the latent heat 24 flux calculations. For precipitation, only (2) and (6) were considered in the data 25 processing steps. Half-hourly data (precipitation and evapotranspiration) were finally 26 computed on a monthly scale. In the end, 174 stations were retained.

27

28 Text S2. Verification of energy balance closure

There are many computational methods for evaluating and analysing energy balance closure, and in order to be able to comprehensively evaluate the state of energy balance closure at each flux site, this study used the least-squares linear regression (ordinary least squares [OLS]) and the energy balance ratio (EBR) methods. The study adjusted some of the flux data to ensure the quality of the data used in this study. Site energy closure is a key indicator of flux data quality (Zhu et al., 2016).

$$Res = R_n - H - \lambda E - G \tag{S1}$$

36 where R_n is the net radiation (W·m⁻²), H is the sensible heat flux (W·m⁻²), λE is 37 the latent heat flux (W·m⁻²), and G is the soil heat flux (W·m⁻²). The difference 38 between net radiation and soil heat flux is the available energy. In most cases, the 39 available energy is greater than the sum of sensible and latent heat. In general, the 40 surface energy balance closure (the sum of sensible and latent heat fluxes divided by 41 the available energy) is usually in the range of 70% to 90% (Foken et al., 2006).

42

43 Text S3. Water balance method

At the basin scale, changes in precipitation, runoff, ET, and total water storage constitute the watershed water balance, and the variables in the water balance can be obtained relatively accurately except for ET; therefore, watershed ET is usually calculated using the water balance method, and the method is often used as a standard method for watershed ET estimation (Xu et al., 2019). Based on the water balance principle, the actual evapotranspiration is calculated using the following equation

50

$$ET = P - R - TWSC \tag{S2}$$

51 where P represents total precipitation in the basin, R represents total runoff in the 52 basin, and TWSC represents the change in total water storage. Basin ET values 53 obtained based on water balance are often used as reference values to verify the 54 accuracy of ET datasets at the basin scale (Senay et al., 2011; Zhang et al., 2010). 55 Equation 2 can be used to assess various global ET datasets in a basin but is not 56 applicable to the basins where R is not available. TWSC should be considered when 57 data span less than 10 years, especially for monthly-scale ET assessments. The formula 58 for the region is as follows:

59

$$TWSC(i) = \frac{TWSA(i+1) - TWSA(i-1)}{2\Delta i}$$
(S3)

60 Here, *TWSA* is the total water storage anomaly, which can be obtained from GRACE 61 data(Tapley et al., 2019). When the data spans more than 10 years, it can be ignored. 62 Thus, the above equation can be written as ET = P - R.

63

64 Text S4. Three-cornered hat (TCH) method

65 The study uses the three-cornered hat (TCH) method to calculate the errors and 66 uncertainties of thirty evapotranspiration datasets without any prior knowledge.

68 The details of the TCH method are described below. Assuming that there are n69 different evapotranspiration datasets $\{ET_i\}_{i=1,2,\dots,N}$, i, then the i^{th} ET dataset ET_i 70 can generally be expressed as

71

76

$$ET_i = ET_{true} + \varepsilon_i, i = 1, 2, \dots, n \tag{S4}$$

Among them, ET_{true} is the true surface ET, and ε_i is the observation error of ET_i .

Since the real ET value cannot be obtained, any ET dataset is selected as the reference
value, and the difference sequence between the remaining ET datasets and the reference
value is obtained as

$$y_i = ET_i - ET_{ref} = \varepsilon_i - \varepsilon_{ref}, i = 1, 2, \dots, n-1$$
(S5)

For ET_{ref} is an arbitrarily selected reference ET dataset. The error analysis results of the TCH method do not depend on the selection of the reference dataset (Ferreira et al., 2016). The covariance matrix of Y can be represented by S = cov(Y). Introducing the unknown noise covariance matrix R (R is a symmetric matrix), then its relationship with S is

82

$$S = J \cdot R \cdot J^T \tag{S6}$$

83 where J is represented as

84
$$J_{n-1,n} = \begin{bmatrix} 1 & 1 & \cdots & 0 & -1 \\ 0 & 0 & \cdots & 0 & -1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -1 \end{bmatrix}$$
(S7)

85 Matrix *R* is defined as

86
$$R = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{12} & \sigma_{22} & \cdots & \sigma_{21} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{1n} & \sigma_{21} & \cdots & \sigma_{nn} \end{bmatrix}$$
(S8)

Among these, $\sigma_{ii} = cov(\varepsilon_i, \varepsilon_j)$, $(i, j = 1, 2, \dots, n)$, is the covariance of time series ε_i and ε_j . However, Eq. (8) cannot be solved as the number of unknown elements is larger than the number of equations. Therefore, the remaining parameters require a reasonable approach to obtain a unique value. Galindo and Palacio (1999) proposed a method based on Kuhn-Tucker theory, and the objective function is given below:

$$F_{(\sigma_{1n,\dots,\sigma_{nn}})} = \frac{1}{K^2} \sum_{i< j}^n (\sigma_{ij})^2 \tag{S9}$$

93 Here, $K = \sqrt[N-1]{\det(S)}$. The constraint *H* is

94

92

$$H_{(\sigma_{1n,\dots,\sigma_{nn}})} = -\frac{|\varrho|}{|s|\cdot\kappa} < 0 \tag{S10}$$

95 *Q* is a diagonal matrix, and the elements on its diagonal are $\sigma_{11}, \sigma_{22}, ..., \sigma_{nn}$. The 96 square root of the *Q* diagonal values are considered to be the uncertainty of evaluated 97 ET. The ratio of the uncertainty to the time series mean value is the relative uncertainty. 98

99 Text S5. Bayesian model average (BMA) fusion scheme

Bayesian model averaging (BMA) has recently been proposed as a statistical method to calibrate forecast ensembles from numerical weather models. Successful implementation of BMA, however, requires accurate estimates of the weights and variances of the individual competing models in the ensemble. In this study, we use the DiffeRential Evolution Adaptive Metropolis (DREAM) Markov Chain Monte Carlo (MCMC) algorithm for estimating the BMA weights and variances (Vrugt et al., 2008). The formulas are described in detail in Vrugt et al. (2008).

107

108 Text S6. Weighting scheme for ET dataset fusion

109 Analysis was performed based on the grid scale of each ET dataset. Among these 110 datasets, 1982-2011 are the common coverage years for all ET datasets, and their weights are calculated as detailed in section 2.2 of the main text. As for the non-111 112 common coverage years 1980-1981 and 2012-2020, the weights for each year are 113 obtained by filtering all ET datasets covering that year for BMA analyses to obtain the 114 corresponding weights (see Figure S3). For example, there are a total of 27 ET datasets 115 covering the year 1980, and the weights obtained from the BMA analysis based on these 116 27 ET datasets are used as the weights of these 27 datasets in 1980; there are a total of 117 19 ET datasets covering the year 2019, and the weights obtained from the BMA analysis 118 based on these 19 ET datasets are used as the weights of these 19 datasets in 2019.

120 References

- Ferreira, V. G., Montecino, H. D. C., Yakubu, C. I., and Heck, B.: Uncertainties of the
 Gravity Recovery and Climate Experiment time-variable gravity-field solutions
 based on three-cornered hat method, JARS, 10, 015015,
 https://doi.org/10.1117/1.JRS.10.015015, 2016.
- Foken, T., Wimmer, F., Mauder, M., Thomas, C., and Liebethal, C.: Some aspects of
 the energy balance closure problem, Atmospheric Chemistry and Physics, 6,
 4395–4402, https://doi.org/10.5194/acp-6-4395-2006, 2006.
- Galindo, F. J. and Palacio, J.: Estimating the Instabilities of N Correlated Clocks, in:
 Proceedings of the 31th Annual Precise Time and Time Interval Systems and
 Applications Meeting, Proceedings of the 31th Annual Precise Time and Time
 Interval Systems and Applications Meeting, 285–296, 1999.
- Knauer, J., Zaehle, S., Medlyn, B. E., Reichstein, M., Williams, C. A., Migliavacca, M.,
 De Kauwe, M. G., Werner, C., Keitel, C., Kolari, P., Limousin, J.-M., and
 Linderson, M.-L.: Towards physiologically meaningful water-use efficiency
 estimates from eddy covariance data, Global Change Biology, 24, 694–710,
 https://doi.org/10.1111/gcb.13893, 2018.
- Mahrt, L.: Stratified Atmospheric Boundary Layers, Boundary-Layer Meteorology, 90,
 375–396, https://doi.org/10.1023/A:1001765727956, 1999.
- McGloin, R., Šigut, L., Fischer, M., Foltýnová, L., Chawla, S., Trnka, M., Pavelka, M.,
 and Marek, M. V.: Available Energy Partitioning During Drought at Two Norway
 Spruce Forests and a European Beech Forest in Central Europe, Journal of
 Geophysical Research: Atmospheres, 124, 3726–3742,
 https://doi.org/10.1029/2018JD029490, 2019.
- 144 Medlyn, B. E., De Kauwe, M. G., Lin, Y.-S., Knauer, J., Duursma, R. A., Williams, C. 145 A., Arneth, A., Clement, R., Isaac, P., Limousin, J.-M., Linderson, M.-L., Meir, P., Martin-StPaul, N., and Wingate, L.: How do leaf and ecosystem measures of 146 147 water-use efficiency compare?, New Phytologist, 216, 758–770, https://doi.org/10.1111/nph.14626, 2017. 148
- 149 Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, Y.-W.,
- 150 Poindexter, C., Chen, J., Elbashandy, A., Humphrey, M., Isaac, P., Polidori, D.,
- 151 Reichstein, M., Ribeca, A., van Ingen, C., Vuichard, N., Zhang, L., Amiro, B.,
- 152 Ammann, C., Arain, M. A., Ardö, J., Arkebauer, T., Arndt, S. K., Arriga, N.,
- 153 Aubinet, M., Aurela, M., Baldocchi, D., Barr, A., Beamesderfer, E., Marchesini, L.

154 B., Bergeron, O., Beringer, J., Bernhofer, C., Berveiller, D., Billesbach, D., Black, 155 T. A., Blanken, P. D., Bohrer, G., Boike, J., Bolstad, P. V., Bonal, D., Bonnefond, 156 J.-M., Bowling, D. R., Bracho, R., Brodeur, J., Brümmer, C., Buchmann, N., 157 Burban, B., Burns, S. P., Buysse, P., Cale, P., Cavagna, M., Cellier, P., Chen, S., 158 Chini, I., Christensen, T. R., Cleverly, J., Collalti, A., Consalvo, C., Cook, B. D., 159 Cook, D., Coursolle, C., Cremonese, E., Curtis, P. S., D'Andrea, E., da Rocha, H., 160 Dai, X., Davis, K. J., Cinti, B. D., Grandcourt, A. de, Ligne, A. D., De Oliveira, R. C., Delpierre, N., Desai, A. R., Di Bella, C. M., Tommasi, P. di, Dolman, H., 161 162 Domingo, F., Dong, G., Dore, S., Duce, P., Dufrêne, E., Dunn, A., Dušek, J., 163 Eamus, D., Eichelmann, U., ElKhidir, H. A. M., Eugster, W., Ewenz, C. M., Ewers, 164 B., Famulari, D., Fares, S., Feigenwinter, I., Feitz, A., Fensholt, R., Filippa, G., Fischer, M., Frank, J., Galvagno, M., et al.: The FLUXNET2015 dataset and the 165 166 ONEFlux processing pipeline for eddy covariance data, Sci Data, 7, 225, 167 https://doi.org/10.1038/s41597-020-0534-3, 2020.

- Senay, G. B., Leake, S., Nagler, P. L., Artan, G., Dickinson, J., Cordova, J. T., and Glenn,
 E. P.: Estimating basin scale evapotranspiration (ET) by water balance and remote
 sensing methods, Hydrological Processes, 25, 4037–4049,
 https://doi.org/10.1002/hyp.8379, 2011.
- Tapley, B. D., Watkins, M. M., Flechtner, F., Reigber, C., Bettadpur, S., Rodell, M.,
 Sasgen, I., Famiglietti, J. S., Landerer, F. W., Chambers, D. P., Reager, J. T.,
 Gardner, A. S., Save, H., Ivins, E. R., Swenson, S. C., Boening, C., Dahle, C.,
 Wiese, D. N., Dobslaw, H., Tamisiea, M. E., and Velicogna, I.: Contributions of
 GRACE to understanding climate change, Nat. Clim. Chang., 9, 358–369,
 https://doi.org/10.1038/s41558-019-0456-2, 2019.
- 178 Vrugt, J. A., Diks, C. G. H., and Clark, M. P.: Ensemble Bayesian model averaging
 179 using Markov Chain Monte Carlo sampling, Environ Fluid Mech, 8, 579–595,
 180 https://doi.org/10.1007/s10652-008-9106-3, 2008.
- Xu, T., Guo, Z., Xia, Y., Ferreira, V. G., Liu, S., Wang, K., Yao, Y., Zhang, X., and Zhao,
 C.: Evaluation of twelve evapotranspiration products from machine learning,
 remote sensing and land surface models over conterminous United States, Journal
 of Hydrology, 578, 124105, https://doi.org/10.1016/j.jhydrol.2019.124105, 2019.
- Yuan, K., Zhu, Q., Zheng, S., Zhao, L., Chen, M., Riley, W. J., Cai, X., Ma, H., Li, F.,
 Wu, H., and Chen, L.: Deforestation reshapes land-surface energy-flux
 partitioning, Environ. Res. Lett., 16, 024014, https://doi.org/10.1088/1748-

188 9326/abd8f9, 2021.

- Zhang, K., Kimball, J. S., Nemani, R. R., and Running, S. W.: A continuous satellitederived global record of land surface evapotranspiration from 1983 to 2006, Water
 Resources Research, 46, https://doi.org/10.1029/2009WR008800, 2010.
- 192 Zhu, G., Zhang, K., Li, X., Liu, S.-M., Ding, Z.-Y., Ma, J.-Z., Huang, C.-L., Han, T.,
- 193 and He, J.-H.: Evaluating the complementary relationship for estimating
- 194 evapotranspiration using the multi-site data across north China, Agricultural and
- 195 Forest Meteorology, 230–231, 33–44,
- 196 https://doi.org/10.1016/j.agrformet.2016.06.006, 2016.

197

Fig. S1: Global spatial distribution of the 212 ET from FLUXNET and their
corresponding vegetation types. Numbers in parentheses indicate the number of sites
for each vegetation type (identified in Table S2).

Fig. S2: Least-squares linear-regression-based energy balance closed scatter fit for
monthly-scale flux tower data.

212 Fig. S3: Weighting scheme for ET datasets during non-common coverage years.

216 Fig. S4: Multi-year average evapotranspiration during 1982–2011 (unit: mm).

219 Fig. S5: Multi-year average evapotranspiration of multi-dataset median for four types

220 of evapotranspiration datasets during 1982–2011 (unit: mm).

Fig. S6: (a) Standard deviation (STD) and (b) standardized standard deviation of 30 ET
datasets at the multi-year average scale (unit: mm).

Fig. S7: Interannual trends in evapotranspiration datasets during 1982–2011 (unit: $mm \cdot yr^{-1}$) (the black dotted areas indicate that the trend in these grid points was significant at the 95% level).

Fig. S8: Spatial distribution of correlation coefficients (R) for site validation of each
ET dataset during 1991–2011.

Fig. S9: Spatial distribution of mean absolute errors (MAE) for site validation of each
ET dataset during 1991–2011.

Fig. S10: Spatial distribution of root-mean-square errors (RMSE) for site validation of
each ET dataset during 1991–2011.

249

Fig. S11: Spatial distribution of seasonal correlation coefficients (R), validated at each ET dataset site, 1991–2011. Each box-and-whisker plot represents the range of uncertainty across sites for that scenario (for each box, the central horizontal line represents the median of the sample, the upper and lower boundaries represent the 75th and 25th percentile values, respectively, and the two 'whiskers' extend to the maximum and minimum values that are not considered outliers, which are plotted separately).

259

Fig. S12: Spatial distribution of seasonal mean absolute errors (MAE) in the validation of each ET dataset site, 1991–2011. Each box-and-whisker plot represents the range of uncertainty across sites for that scenario (for each box, the central horizontal line represents the median of the sample, the upper and lower boundaries represent the 75th and 25th percentile values, respectively, and the two 'whiskers' extend to the maximum and minimum values that are not considered outliers, which are plotted separately).

269

Fig. S13: Spatial distribution of seasonal root-mean-square errors (RMSE) validated at each ET dataset site for 1991–2011. Each box-and-whisker plot represents the range of uncertainty across sites for that scenario (for each box, the central horizontal line represents the median of the sample, the upper and lower boundaries represent the 75th and 25th percentile values, respectively, and the two 'whiskers' extend to the maximum and minimum values that are not considered outliers, which are plotted separately).

278

Fig. S14: Correlation coefficients (R) between each ET dataset and ET from FLUXNET for different vegetation types, 1991–2011. Each box-and-whisker plot indicates the range of uncertainty for the different sites in the scenario (for each box, the central horizontal line indicates the median of the sample, its upper and lower boundaries indicate the 75th and 25th percentile values, respectively, and the two 'whiskers' extend to the maximum and minimum values that are not considered outliers, and outliers are plotted separately)

Fig. S15: Mean absolute errors (MAE) for each ET dataset and ET from FLUXNET across vegetation types, 1991–2011. Each box-and-whisker plot represents the range of uncertainty for the different sites in the scenario (for each box, the central horizontal line represents the median of the sample, the upper and lower borders represent the 75th and 25th percentile values, respectively, and the two 'whiskers' extend to the maximum and minimum values that are not considered outliers, which are plotted separately).

297

Fig. S16: Root-mean-square errors (RMSE) for each ET dataset and ET from FLUXNET for different vegetation types, 1991–2011. Each box-and-whisker plot represents the range of uncertainty for the different sites in the scenario (for each box, the central horizontal line represents the median of the sample, the upper and lower boundaries represent the 75th and 25th percentile values, respectively, and the two 'whiskers' extend to the maximum and minimum values that are not considered outliers, which are plotted separately).

Fig. S17: Correlation coefficients between monthly values of ET datasets and ET from
FLUXNET for 12 vegetation types during 1991–2011.

313 Fig. S18: Comparison of multi-year average evapotranspiration from 30 ET datasets

- and multi-year average observed evapotranspiration from basin water balance.
- 315
- 316

318 Fig. S19: Overall accuracy of simulated basin-scale evapotranspiration for all ET

319 datasets.

320

- 323 2011 (unit: mm).

Fig. S21: Spatial distribution of uncertainty of TCH for each ET dataset on monthlyscale for the common coverage years from 1982 to 2011 (unit: mm).

Fig. S22: Spatial distribution of relative uncertainty of TCH for each ET dataset on
monthly scale for the common coverage years from 1982 to 2011 (unit: %).

Fig. S23: Interannual and multi-year average seasonal variations of BMA-ET during
1980–2020.

Fig. S24: Spatial distribution of correlation coefficient (R), mean absolute error (MAE)
and root mean square error (RMSE) verified by BMA-ET and ET from FLUXNET
from 1991 to 2011.

Fig. S25: Taylor diagram of ET datasets and BMA-ET at all sites under different
vegetation types at monthly scale from 1991 to 2011. The observation data is ET from
FLUXNET.

Fig. S26: Overall accuracy of all datasets and BMA-ET in simulating basin-scale
evapotranspiration from 1982 to 2011.

ID	Name	Data download links
1	PML	https://doi.org/10.4225/08/5719A5C48DB85
2	GLEAM 3.6a	https://www.gleam.eu/#downloads
3	GLASS	http://www.glass.umd.edu/
4	PLSH	http://files.ntsg.umt.edu/data/ET_global_month
		ly/Global_8kmResolution/
5	FLUXCOM-CRUNCEP_v8	https://www.bgc-
		jena.mpg.de/geodb/projects/Data.php
6	FLUXCOM-GSWP3	https://www.bgc-
		jena.mpg.de/geodb/projects/Data.php
7	FLUXCOM-WFDEI	https://www.bgc-
		jena.mpg.de/geodb/projects/Data.php
8	MTE	https://www.bgc-
		jena.mpg.de/geodb/projects/DataDnld.php
9	ERA5-Land	https://cds.climate.copernicus.eu/datasets/reana
		lysis-era5-land-monthly-means?tab=download
10	MERRA-Land	https://gmao.gsfc.nasa.gov/reanalysis/MERRA-
10	MERRA-Land	https://gmao.gsfc.nasa.gov/reanalysis/MERRA- Land/data/
10 	MERRA-Land GLDAS CLSM 2.0	https://gmao.gsfc.nasa.gov/reanalysis/MERRA- Land/data/ <u>https://disc.gsfc.nasa.gov/datasets?keywords=G</u>
10	MERRA-Land GLDAS CLSM 2.0	https://gmao.gsfc.nasa.gov/reanalysis/MERRA- Land/data/ <u>https://disc.gsfc.nasa.gov/datasets?keywords=G</u> LDAS&page=1&source=Models%20Catchmen
10	MERRA-Land GLDAS CLSM 2.0	https://gmao.gsfc.nasa.gov/reanalysis/MERRA- Land/data/ <u>https://disc.gsfc.nasa.gov/datasets?keywords=G</u> LDAS&page=1&source=Models%20Catchmen <u>t-LSM</u>
10 11 12	MERRA-Land GLDAS CLSM 2.0 GLDAS NOAH 2.1	https://gmao.gsfc.nasa.gov/reanalysis/MERRA- Land/data/ <u>https://disc.gsfc.nasa.gov/datasets?keywords=G</u> <u>LDAS&page=1&source=Models%20Catchmen</u> <u>t-LSM</u> <u>https://disc.gsfc.nasa.gov/datasets?keywords=G</u>
10 11 12	MERRA-Land GLDAS CLSM 2.0 GLDAS NOAH 2.1	https://gmao.gsfc.nasa.gov/reanalysis/MERRA- Land/data/ <u>https://disc.gsfc.nasa.gov/datasets?keywords=G</u> <u>LDAS&page=1&source=Models%20Catchmen</u> <u>t-LSM</u> <u>https://disc.gsfc.nasa.gov/datasets?keywords=G</u> <u>LDAS&page=1&source=Models%20Noah-</u>
10 11 12	MERRA-Land GLDAS CLSM 2.0 GLDAS NOAH 2.1	https://gmao.gsfc.nasa.gov/reanalysis/MERRA- Land/data/ https://disc.gsfc.nasa.gov/datasets?keywords=G LDAS&page=1&source=Models%20Catchmen t-LSM https://disc.gsfc.nasa.gov/datasets?keywords=G LDAS&page=1&source=Models%20Noah- LSM
10 11 12 13	MERRA-Land GLDAS CLSM 2.0 GLDAS NOAH 2.1 GLDAS VIC	https://gmao.gsfc.nasa.gov/reanalysis/MERRA- Land/data/https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS&page=1&source=Models%20Catchment-LSMhttps://disc.gsfc.nasa.gov/datasets?keywords=GLDAS&page=1&source=Models%20Noah-LSMhttps://disc.gsfc.nasa.gov/datasets?keywords=GLSMhttps://disc.gsfc.nasa.gov/datasets?keywords=G
10 11 12 13	MERRA-Land GLDAS CLSM 2.0 GLDAS NOAH 2.1 GLDAS VIC	https://gmao.gsfc.nasa.gov/reanalysis/MERRA- Land/data/https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS&page=1&source=Models%20Catchment-LSMhttps://disc.gsfc.nasa.gov/datasets?keywords=GLDAS&page=1&source=Models%20Noah-LSMhttps://disc.gsfc.nasa.gov/datasets?keywords=GLDAS&page=1&source=Models%20Noah-LSMhttps://disc.gsfc.nasa.gov/datasets?keywords=GLDAS&page=1&source=Models%20Noah-LSMhttps://disc.gsfc.nasa.gov/datasets?keywords=GLDAS&page=1&source=Models%20VIC-
10 11 12 13	MERRA-Land GLDAS CLSM 2.0 GLDAS NOAH 2.1 GLDAS VIC	https://gmao.gsfc.nasa.gov/reanalysis/MERRA- Land/data/ https://disc.gsfc.nasa.gov/datasets?keywords=G LDAS&page=1&source=Models%20Catchmen t-LSM https://disc.gsfc.nasa.gov/datasets?keywords=G LDAS&page=1&source=Models%20Noah- LSM https://disc.gsfc.nasa.gov/datasets?keywords=G LDAS&page=1&source=Models%20VIC- LSM
10 11 12 13 14	MERRA-Land GLDAS CLSM 2.0 GLDAS NOAH 2.1 GLDAS VIC CABLE-POP	https://gmao.gsfc.nasa.gov/reanalysis/MERRA- Land/data/https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS&page=1&source=Models%20Catchment-LSMhttps://disc.gsfc.nasa.gov/datasets?keywords=GLDAS&page=1&source=Models%20Noah-LSMhttps://disc.gsfc.nasa.gov/datasets?keywords=GLDAS&page=1&source=Models%20Noah-LSMhttps://disc.gsfc.nasa.gov/datasets?keywords=GLDAS&page=1&source=Models%20Noah-LSMhttps://disc.gsfc.nasa.gov/datasets?keywords=GLDAS&page=1&source=Models%20VIC-LSMhttps://blogs.exeter.ac.uk/trendy/protocol/
10 11 12 13 14 15	MERRA-Land GLDAS CLSM 2.0 GLDAS NOAH 2.1 GLDAS VIC CABLE-POP CLASSIC	https://gmao.gsfc.nasa.gov/reanalysis/MERRA- Land/data/ https://disc.gsfc.nasa.gov/datasets?keywords=G LDAS&page=1&source=Models%20Catchmen t-LSM https://disc.gsfc.nasa.gov/datasets?keywords=G LDAS&page=1&source=Models%20Noah- LSM https://disc.gsfc.nasa.gov/datasets?keywords=G LDAS&page=1&source=Models%20VIC- LSM https://blogs.exeter.ac.uk/trendy/protocol/ https://blogs.exeter.ac.uk/trendy/protocol/
10 11 12 13 14 15 16	MERRA-Land GLDAS CLSM 2.0 GLDAS NOAH 2.1 GLDAS VIC CABLE-POP CLASSIC CLM5.0	https://gmao.gsfc.nasa.gov/reanalysis/MERRA- Land/data/https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS&page=1&source=Models%20Catchment-LSMhttps://disc.gsfc.nasa.gov/datasets?keywords=GLDAS&page=1&source=Models%20Noah-LSMhttps://disc.gsfc.nasa.gov/datasets?keywords=GLDAS&page=1&source=Models%20Noah-LSMhttps://disc.gsfc.nasa.gov/datasets?keywords=GLDAS&page=1&source=Models%20Noah-LSMhttps://disc.gsfc.nasa.gov/datasets?keywords=GLDAS&page=1&source=Models%20VIC-LSMhttps://blogs.exeter.ac.uk/trendy/protocol/https://blogs.exeter.ac.uk/trendy/protocol/https://blogs.exeter.ac.uk/trendy/protocol/https://blogs.exeter.ac.uk/trendy/protocol/
10 11 12 13 14 15 16 17	MERRA-Land GLDAS CLSM 2.0 GLDAS NOAH 2.1 GLDAS VIC CABLE-POP CLASSIC CLM5.0 DLEM	https://gmao.gsfc.nasa.gov/reanalysis/MERRA- Land/data/https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS&page=1&source=Models%20Catchment-LSMhttps://disc.gsfc.nasa.gov/datasets?keywords=GLDAS&page=1&source=Models%20Noah-LSMhttps://disc.gsfc.nasa.gov/datasets?keywords=GLDAS&page=1&source=Models%20Noah-LSMhttps://disc.gsfc.nasa.gov/datasets?keywords=GLDAS&page=1&source=Models%20Noah-LSMhttps://disc.gsfc.nasa.gov/datasets?keywords=GLDAS&page=1&source=Models%20VIC-LSMhttps://blogs.exeter.ac.uk/trendy/protocol/https://blogs.exeter.ac.uk/trendy/protocol/https://blogs.exeter.ac.uk/trendy/protocol/https://blogs.exeter.ac.uk/trendy/protocol/https://blogs.exeter.ac.uk/trendy/protocol/

Table S1 . Data download links for evapotranspiration datas	sets.
--	-------

19	EDv3	https://blogs.exeter.ac.uk/trendy/protocol/
20	IBIS	https://blogs.exeter.ac.uk/trendy/protocol/
21	ISBA-CTRIP	https://blogs.exeter.ac.uk/trendy/protocol/
22	JSBACH	https://blogs.exeter.ac.uk/trendy/protocol/
23	LPJ-GUESS	https://blogs.exeter.ac.uk/trendy/protocol/
24	LPJmL	https://blogs.exeter.ac.uk/trendy/protocol/
25	LPX-Bern	https://blogs.exeter.ac.uk/trendy/protocol/
26	OCN	https://blogs.exeter.ac.uk/trendy/protocol/
27	ORCHIDEE	https://blogs.exeter.ac.uk/trendy/protocol/
28	SDGVM	https://blogs.exeter.ac.uk/trendy/protocol/
29	VISIT	https://blogs.exeter.ac.uk/trendy/protocol/
30	YIBs	https://blogs.exeter.ac.uk/trendy/protocol/

ID	Name	Abbreviation	Number of sites
1	Croplands	CRO	16
2	Closed shrublands	CSH	2
3	Deciduous broadleaf forests	DBF	22
4	Deciduous needleleaf forests	DNF	1
5	Evergreen broadleaf forests	EBF	14
6	Evergreen needleleaf forests	ENF	42
7	Grasslands	GRA	33
8	Mixed forests	MF	9
9	Open shrublands	OSH	10
10	Savannas	SAV	3
11	Wetlands	WET	16
12	Woody savannas	WSA	6

357 Table S2. Vegetation types to which ET from FLUXNET (174) belong and the number358 of sites corresponding to each vegetation type.

362 Table S3. Vegetation types and time ranges for the 174 ET from FLUXNET used in363 this study.

ID	Name	Latitude	Longitude	IGBP	Start year	End year
1	AR-SLu	-33.4648	-66.4598	MF	2009	2011
2	AR-Vir	-28.2395	-56.1886	ENF	2009	2012
3	AT-Neu	47.1167	11.3175	GRA	2002	2012
4	AU-ASM	-22.283	133.249	SAV	2010	2014
5	AU-Ade	-13.0769	131.1178	WSA	2007	2009
6	AU-Cpr	-34.0021	140.5891	SAV	2010	2014
7	AU-Cum	-33.6152	150.7236	EBF	2012	2014
8	AU-DaP	-14.0633	131.3181	GRA	2007	2013
9	AU-Emr	-23.8587	148.4746	GRA	2011	2013
10	AU-Fog	-12.5452	131.3072	WET	2006	2008
11	AU-Gin	-31.3764	115.7138	WSA	2011	2014
12	AU-How	-12.4943	131.1523	WSA	2001	2014
13	AU-RDF	-14.5636	132.4776	WSA	2011	2013
14	AU-Rig	-36.6499	145.5759	GRA	2011	2014
15	AU-Stp	-17.1507	133.3502	GRA	2008	2014
16	AU-TTE	-22.287	133.64	GRA	2012	2014
17	AU-Tum	-35.6566	148.1517	EBF	2001	2014
18	AU-Wac	-37.4259	145.1878	EBF	2005	2008
19	AU-Whr	-36.6732	145.0294	EBF	2011	2014
20	AU-Wom	-37.4222	144.0944	EBF	2010	2014
21	AU-Ync	-34.9893	146.2907	GRA	2012	2014
22	BE-Bra	51.3076	4.5198	MF	1996	2014
23	BE-Lon	50.5516	4.7462	CRO	2004	2014
24	BE-Vie	50.3049	5.9981	MF	1996	2014
25	BR-Sa1	-2.8567	-54.9589	EBF	2002	2011
26	BR-Sa3	-3.018	-54.9714	EBF	2000	2004
27	CA-Gro	48.2167	-82.1556	MF	2003	2014
28	CA-Man	55.8796	-98.4808	ENF	1994	2008
29	CA-NS1	55.8792	-98.4839	ENF	2001	2005

30	CA-NS2	55.9058	-98.5247	ENF	2001	2005
31	CA-NS3	55.9117	-98.3822	ENF	2001	2005
32	CA-NS4	55.9144	-98.3806	ENF	2002	2005
33	CA-NS5	55.8631	-98.485	ENF	2001	2005
34	CA-NS6	55.9167	-98.9644	OSH	2001	2005
35	CA-NS7	56.6358	-99.9483	OSH	2002	2005
36	CA-Oas	53.6289	-106.1978	DBF	1996	2010
37	CA-Obs	53.9872	-105.1178	ENF	1997	2010
38	CA-Qfo	49.6925	-74.3421	ENF	2003	2010
39	CA-SF1	54.485	-105.8176	ENF	2003	2006
40	CA-SF2	54.2539	-105.8775	ENF	2001	2005
41	CA-SF3	54.0916	-106.0053	OSH	2001	2006
42	CA-TP1	42.6609	-80.5595	ENF	2002	2014
43	CA-TP2	42.7744	-80.4588	ENF	2002	2007
44	CA-TP3	42.7068	-80.3483	ENF	2002	2014
45	CA-TP4	42.7102	-80.3574	ENF	2002	2014
46	CA-TPD	42.6353	-80.5577	DBF	2012	2014
47	CG-Tch	-4.2892	11.6564	SAV	2006	2009
48	CH-Cha	47.2102	8.4104	GRA	2005	2014
49	CH-Dav	46.8153	9.8559	ENF	1997	2014
50	CH-Fru	47.1158	8.5378	GRA	2005	2014
51	CH-Lae	47.4783	8.3644	MF	2004	2014
52	CH-Oe1	47.2858	7.7319	GRA	2002	2008
53	CH-Oe2	47.2864	7.7337	CRO	2004	2014
54	CN-Cha	42.4025	128.0958	MF	2003	2005
55	CN-Cng	44.5934	123.5092	GRA	2007	2010
56	CN-Din	23.1733	112.5361	EBF	2003	2005
57	CN-Du2	42.0467	116.2836	GRA	2006	2008
58	CN-Ha2	37.6086	101.3269	WET	2003	2005
59	CN-HaM	37.37	101.18	GRA	2002	2004
60	CN-Qia	26.7414	115.0581	ENF	2003	2005
61	CN-Sw2	41.7902	111.8971	GRA	2010	2012
62	CZ-BK1	49.5021	18.5369	ENF	2004	2014

64 65 66 67 68	CZ-wet DE-Akm DE-Geb DE-Gri	49.0247 53.8662 51.0997	14.7704 13.6834 10.9146	WET WET	2006 2009	2014
65 66 67 68	DE-Akm DE-Geb DE-Gri	53.8662 51.0997	13.6834 10.9146	WET	2009	2014
66 67 68	DE-Geb DE-Gri	51.0997	10 9146		2007	2014
67 68	DE-Gri		10.7110	CRO	2001	2014
68	DE II '	50.95	13.5126	GRA	2004	2014
	DE-Hai	51.0792	10.4522	DBF	2000	2012
69	DE-Kli	50.8931	13.5224	CRO	2004	2014
70	DE-Lkb	49.0996	13.3047	ENF	2009	2013
71	DE-Lnf	51.3282	10.3678	DBF	2002	2012
72	DE-Obe	50.7867	13.7213	ENF	2008	2014
73	DE-RuR	50.6219	6.3041	GRA	2011	2014
74	DE-RuS	50.8659	6.4471	CRO	2011	2014
75	DE-Seh	50.8706	6.4497	CRO	2007	2010
76	DE-SfN	47.8064	11.3275	WET	2012	2014
77	DE-Spw	51.8922	14.0337	WET	2010	2014
78	DE-Tha	50.9626	13.5651	ENF	1996	2014
79	DK-Eng	55.6905	12.1918	GRA	2005	2008
80	DK-Sor	55.4859	11.6446	DBF	1996	2014
81	ES-Amo	36.8336	-2.2523	OSH	2007	2012
82	ES-LJu	36.9266	-2.7521	OSH	2004	2013
83	ES-LgS	37.0979	-2.9658	OSH	2007	2009
84	FI-Hyy	61.8474	24.2948	ENF	1996	2014
85	FI-Jok	60.8986	23.5134	CRO	2000	2003
86	FI-Let	60.6418	23.9595	ENF	2009	2012
87	FI-Lom	67.9972	24.2092	WET	2007	2009
88	FI-Sod	67.3624	26.6386	ENF	2001	2014
89	FR-Fon	48.4764	2.7801	DBF	2005	2014
90	FR-Gri	48.8442	1.9519	CRO	2004	2014
91	FR-LBr	44.7171	-0.7693	ENF	1996	2008
92	FR-Pue	43.7413	3.5957	EBF	2000	2014
93	GF-Guy	5.2788	-52.9249	EBF	2004	2014
94	GH-Ank	5.2685	-2.6942	EBF	2011	2014
95	GL-NuF	64.1308	-51.3861	WET	2008	2014

96	IT-BCi	40.5237	14.9574	CRO	2004	2014
97	IT-CA1	42.3804	12.0266	DBF	2011	2014
98	IT-CA2	42.3772	12.026	CRO	2011	2014
99	IT-CA3	42.38	12.0222	DBF	2011	2014
100	IT-Col	41.8494	13.5881	DBF	1996	2014
101	IT-Cp2	41.7043	12.3573	EBF	2012	2014
102	IT-Cpz	41.7052	12.3761	EBF	1997	2009
103	IT-La2	45.9542	11.2853	ENF	2000	2002
104	IT-Lav	45.9562	11.2813	ENF	2003	2014
105	IT-MBo	46.0147	11.0458	GRA	2003	2013
106	IT-Noe	40.6062	8.1517	CSH	2004	2014
107	IT-PT1	45.2009	9.061	DBF	2002	2004
108	IT-Ren	46.5869	11.4337	ENF	1998	2013
109	IT-Ro1	42.4081	11.93	DBF	2000	2008
110	IT-Ro2	42.3903	11.9209	DBF	2002	2012
111	IT-SRo	43.7279	10.2844	ENF	1999	2012
112	IT-Tor	45.8444	7.5781	GRA	2008	2014
113	JP-MBF	44.3869	142.3186	DBF	2003	2005
114	JP-SMF	35.2617	137.0788	MF	2002	2006
115	MY-PSO	2.973	102.3062	EBF	2003	2009
116	NL-Hor	52.2403	5.0713	GRA	2004	2011
117	NL-Loo	52.1666	5.7436	ENF	1996	2014
118	PA-SPn	9.3181	-79.6346	DBF	2007	2009
119	PA-SPs	9.3138	-79.6314	GRA	2007	2009
120	RU-Che	68.613	161.3414	WET	2002	2005
121	RU-Cok	70.8291	147.4943	OSH	2003	2014
122	RU-Fyo	56.4615	32.9221	ENF	1998	2014
123	RU-Hal	54.7252	90.0022	GRA	2002	2004
124	RU-Sam	72.3738	126.4958	GRA	2002	2014
125	RU-SkP	62.255	129.168	DNF	2012	2014
126	RU-Tks	71.5943	128.8878	GRA	2010	2014
127	SE-St1	68.3541	19.0503	WET	2012	2014
128	US-AR1	36.4267	-99.42	GRA	2009	2012

129	US-AR2	36.6358	-99.5975	GRA	2009	2012
130	US-ARM	36.6058	-97.4888	CRO	2003	2012
131	US-Atq	70.4696	-157.4089	WET	2003	2008
132	US-Blo	38.8953	-120.6328	ENF	1997	2007
133	US-CRT	41.6285	-83.3471	CRO	2011	2013
134	US-Cop	38.09	-109.39	GRA	2001	2007
135	US-GBT	41.3658	-106.2397	ENF	1999	2006
136	US-GLE	41.3665	-106.2399	ENF	2004	2014
137	US-Goo	34.2547	-89.8735	GRA	2002	2006
138	US-Ha1	42.5378	-72.1715	DBF	1991	2012
139	US-IB2	41.8406	-88.241	GRA	2004	2011
140	US-Ivo	68.4865	-155.7503	WET	2004	2007
141	US-KS2	28.6086	-80.6715	CSH	2003	2006
142	US-Los	46.0827	-89.9792	WET	2000	2014
143	US-MMS	39.3232	-86.4131	DBF	1999	2014
144	US-Me2	44.4523	-121.5574	ENF	2002	2014
145	US-Me3	44.3154	-121.6078	ENF	2004	2009
146	US-Me4	44.4992	-121.6224	ENF	1996	2000
147	US-Me5	44.4372	-121.5668	ENF	2000	2002
148	US-Me6	44.3233	-121.6078	ENF	2010	2014
149	US-Myb	38.0499	-121.765	WET	2010	2014
150	US-NR1	40.0329	-105.5464	ENF	1998	2014
151	US-Ne1	41.1651	-96.4766	CRO	2001	2013
152	US-Ne2	41.1649	-96.4701	CRO	2001	2013
153	US-Ne3	41.1797	-96.4397	CRO	2001	2013
154	US-Oho	41.5545	-83.8438	DBF	2004	2013
155	US-PFa	45.9459	-90.2723	MF	1995	2014
156	US-Prr	65.1237	-147.4876	ENF	2010	2014
157	US-SRC	31.9083	-110.8395	OSH	2008	2014
158	US-SRG	31.7894	-110.8277	GRA	2008	2014
159	US-SRM	31.8214	-110.8661	WSA	2004	2014
160	US-Sta	41.3966	-106.8024	OSH	2005	2009
161	US-Syv	46.242	-89.3477	MF	2001	2014

162	US-Ton	38.4309	-120.966	WSA	2001	2014
163	US-Tw1	38.1074	-121.6469	WET	2012	2014
164	US-Twt	38.1087	-121.6531	CRO	2009	2014
165	US-UMB	45.5598	-84.7138	DBF	2000	2014
166	US-UMd	45.5625	-84.6975	DBF	2007	2014
167	US-Var	38.4133	-120.9508	GRA	2000	2014
168	US-WCr	45.8059	-90.0799	DBF	1999	2014
169	US-WPT	41.4646	-82.9962	WET	2011	2013
170	US-Whs	31.7438	-110.0522	OSH	2007	2014
171	US-Wi3	46.6347	-91.0987	DBF	2002	2004
172	US-Wi4	46.7393	-91.1663	ENF	2002	2005
173	US-Wkg	31.7365	-109.9419	GRA	2004	2014
174	ZM-Mon	-15.4391	23.2525	DBF	2000	2009

ID	Variable name	Full name of variable
1	P_F	Precipitation
2	LE_F_MDS	Latent heat flux
3	H_F_MDS	Sensible heat flux
4	G_F_MDS	Soil heat flux
5	RH	Relative humidity
6	NETRAD	Net radiation

Table S4. The variable information from ET from FLUXNET used in this study.

ID	Basin name	Country	Station name	Station	Station	Starting
				longitude	latitude	and ending
						year
1	Amazon	Brazil	Obidos	-55.51	-1.95	1927–2018
2	Amur	Russia	Komsomolsk	137.00	50.53	1900–2006
3	Churchill	Canada	Churchill	-94.62	58.12	1928–2013
			River			
4	Columbia	USA	The Dalles	-121.17	45.61	1900–2018
5	Congo	Congo	Kinshasa	15.30	-4.30	1903–2010
6	Danube	Romania	Ceatal Izma	28.73	45.22	1900–2010
7	Don	Russia	Razdorskaya	40.65	47.53	1881–2010
8	Fraser	Canada	Норе	-121.45	49.38	1912–2016
9	Huaihe	China	Bengbu	117.37	32.94	1915–2004
10	Kolyma	Russia	Kolymskoye	158.72	68.73	1927–2008
11	Lena	Russia	Kusur	127.39	70.68	1934–2011
12	MacKenzie	Canada	Arctic Red	-133.74	67.46	1943–2016
13	Mekong	Laos	Pakse	105.80	15.11	1923–2005
14	Mississippi	USA	Vicksburg	-90.91	32.31	1928–2018
15	Nelson	Canada	Upstream of	-97.92	54.77	1915–2016
			Bladder			
16	Niger	Nigeria	Lokoja	6.77	7.80	1915–2012
17	Ob'	Russia	Salekhard	66.60	66.63	1930–2015
18	Orange	South	Vioolsdrift	17.63	-28.78	1935–2018
		Africa				
19	Ottawa	Canada	Chats Falls	-76.23	45.47	1914–2018
20	Paraná	Argentina	Timbues	-60.71	-32.67	1905–2018
21	Parnaiba	Brazil	Porto Formo	-42.37	-3.46	1955–2018
22	Pechora	Russia	Oksino	52.18	67.63	1916–2014
23	Rhine	Netherland	Lobith	6.11	51.85	1901–2017
		S				
24	Saõ	Brazil	Traipu	-36.99	-9.98	1926–2018
	Francisco					

Table S5. Basin information.

25	Severnaya	Russia	Ust Pinega	41.92	64.13	1900–2014
	Dvina					
26	Saint	Canada	Cornwall ON	-74.74	45.00	1900–2018
	Lawrence					
27	Tocantins	Brazil	Tucurui	-49.67	-3.76	1955–2018
28	Uruguay	Argentina	Concordia	-58.03	-31.40	1942–2018
29	Yangtze	China	Datong	117.62	30.77	1960–2016
30	Yellow	China	Lijin	118.25	37.50	1960–2014
	River					
31	Yenisei	Russia	Igarka	86.48	67.43	1936–2015
32	Yukon	USA	Pilot Station	-162.88	61.93	1956–2018